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Abstract. In this note, we make an observation that Laplacian eigenfunctions fail equidistribution at the
Planck scale. Furthermore, equidistribution at the same scale also fails around the points where the eigen-
functions have large values.

Résumé. Dans cette note, on observe que les fonctions propres du laplacien ne sont pas équidistribuées à
l’échelle de Planck. De plus, l’équidistribution à la même échelle n’est plus valable autour des points où les
fonctions propres ont des valeurs grandes.
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1. Introduction

Let M be a n-dim compact Riemannian manifold. Denote by ∆ the non-negative Laplacian on
M. (If M has boundary, then we impose the Dirichlet or Neumann boundary condition.) We
call r : (0,∞) → (0,1) a small scale function if r (λ) → 0 as λ → ∞. We are concerned with the
(non-)equidistribution of Laplacian eigenfunctions at small scales.

Definition (Equidistribution at small scales). Suppose that r = r (λ) is a small scale function. Let
{uk }∞k=1 be a sequence of eigenfunctions, ∆uk = λ2

k uk with λk →∞ and ‖uk‖L2(M) = 1. We say that
{uk }∞k=1 tend to be equidistributed at the scale r , if∫

B(p,rk )
|uk |2 dVol = Vol

(
B

(
p,rk

))
Vol(M)

+o
(
r n

k

)
as k →∞, (1)

for all p ∈M uniformly. Here, rk = r (λk ), B(p,r ) ⊂M is the geodesic ball with center p and radius
r , and dVol denotes the Riemannian volume onM.
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The phenomenon of equidistribution of eigenfunctions has been extensively studied in
physics and mathematics, see, e.g., Gutzwiller [2, Chapter 15] and Zelditch [17, Chapter 9]. In
particular, Shnirelman [11], Zelditch [16], and Colin de Verdière [15] proved that if the geodesic
flow on a manifold M is ergodic, then any orthonormal basis of eigenfunctions (i.e., eigenbasis)
contains a full density subsequence which tend to be equidistributed at the macroscopic scale,
as a consequence, (1) holds with r independent of λ. In fact, equidistribution of the subsequence
holds in the phase space (a stronger condition than the one in the physical spaceM). This result
is called Quantum Ergodicity, since eigenfunctions describe the stationary states in the corre-
sponding quantum system of the geodesic flow.

It is well known that on a manifold with negative sectional curvature, the geodesic flow is
ergodic, c.f., Katok–Hasselblatt [7, Chapter 17], so Quantum Ergodicity holds. On these negatively
curved manifolds, Han [3] and Hezari–Rivière [4] proved a weaker form of equidistribution at the
scale r (λ) = (logλ)−α with someα> 0, that is, any eigenbasis contains a full density subsequence
of eigenfunctions for which the two sides of (1) are uniformly comparable. Such small scale
results have applications to problems including the Lp norm estimates of eigenfunctions [4, 12].
We refer to Zelditch’s survey [18] for the recent development of equidistribution at small scales.

In this note, we study scales r at which equidistribution fails for all (real-valued) eigenfunc-
tions (i.e., non-equidistribution) in the sense that one of the following two cases happens.

(Case I) For some p ∈M, ∫
B(p,r )

|u|2 dVol ¿ Vol
(
B

(
p,r

))
.

(Case II) For some p ∈M, ∫
B(p,r )

|u|2 dVol À Vol
(
B

(
p,r

))
.

We will make the conditions “¿,À” precise in the theorems below. We shall also remark that
the above inequalities can not hold for all points p ∈M uniformly, due to the normalization that
‖u‖L2(M) = 1. Moreover, the points at which the inequalities hold depend on the function u.

Notice that an eigenfunction with eigenvalue λ2 oscillates at a typical wavelength ≈ λ−1,
which is usually referred as the Planck scale. For example, the following picture demonstrates
the density distribution of the eigenfunctions in the Barnett domain. As the eigenvalues increase
from left to right, the oscillating wavelengths (Planck scale) decrease.

Figure 1. Credit: Alex Barnett

Concerning the (non-)equidistribution at small scales, we consider the eigenfunctions on
the unit circle R/2πZ as the simplest model. In this case, the eigenvalues are k2, k ∈ N. The
eigenfunctions are given by linear combinations of sin(kx) and cos(kx). These functions oscillate
at the Planck scale k−1 and clearly fail equidistribution at such scale.

The goal of this note is to generalize the non-equidistribution result on the circle at the Planck
scale to all eigenfunctions on any manifold. Indeed, we prove the non-equidistribution in (Case I)
of eigenfunctions u on balls at the Planck scale. The proof is based on two facts about the
eigenfunctions:
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(1) The nodal points of u, ∆u = λ2u, are “λ−1 dense” on M. This fact is standard. See e.g.,
Colding–Minicozzi [1, Lemma 1]: There is a > 0 depending only onM such that for

R = aλ−1 (2)

and any p ∈M, there is q ∈ B(p,R/3) with u(q) = 0. We fix a throughout the note.
(2) The average of the gradient of u, |∇u|, is bounded above by O(λ) uniformly on M. This

fact follows from Green’s identity:∫
M
|∇u|2 dVol =

∫
M

u∆u dVol =λ2
∫
M
|u|2 dVol =λ2, (3)

since ‖u‖L2(M) = 1. By Cauchy–Schwarz inequality,∫
M
|∇u| dVol ≤ Vol(M)

1
2

(∫
M
|∇u|2 dVol

) 1
2 = Vol(M)

1
2 λ.

We say that a collection of balls {B(p j , r )}J
j=1 is maximal disjoint in M if they are disjoint and

any ball of radius r in M intersects B(p j ,r ) for some j = 1, . . . , J . Let {B(p j ,R)}J
j=1 be a maximal

disjoint collection of balls, in which R = aλ−1. Then Fact A asserts that there is always a nodal
point q j ∈ B(p j ,R/3), while Fact B implies that |∇u| . λ if we average over all balls. Therefore,
for “almost all” balls, u cannot grow too fast from the nodal points to neighboring points. It then
results non-equidistribution in Case I at the Planck scale on these balls. This is our main theorem:

Theorem 1. Let R = aλ−1 and ε > 0. Then there exists c > 0 depending on ε and M such that the
following holds. Assume that ∆u = λ2u and {B(p j ,R)}J

j=1 is a maximal disjoint collection of balls

inM. Let δ= cε and r ≤ δλ−1. Then there is a subcollection {p jk }K
k=1 ⊂ {p j }J

j=1 which satisfies

(i) K ≥ (1−ε)J ,
(ii) for all k = 1, . . . , K , there is q jk ∈ B(p jk ,R/3) such that∫

B
(
q jk

,r
) |u|2 dVol ≤ ε ·Vol

(
B

(
q jk ,r

))
.

Therefore, equidistribution of eigenfunctions fails on the balls B(q jk ,r ), in which r ≤ δλ−1.
These balls can be regarded as small Planck balls, each of which is contained in a large Planck
ball B(p jk ,R) with R = aλ−1.

From Theorem 1, we have that the following corollary.

Corollary 2. Let R = aλ−1 and r = o(λ−1) be a small scale function. Assume that ∆u = λ2u
and {B(p j ,R)}J

j=1 is a maximal disjoint collection of balls in M. Then there is a subcollection

{p jk }K
k=1 ⊂ {p j }J

j=1 which satisfies

(i) limλ→∞ K
J = 1,

(ii) there is q jk ∈ B(p jk ,R/3) such that

lim
λ→∞

∫
B

(
q jk

,r
) |u|2 dVol

Vol
(
B

(
q jk ,r

)) = 0 uniformly for all k = 1, . . . , K .

Remark.

• In Theorem 1 and Corollary 2, the quantities R, r , J , and K depend on the eigenvalue λ2,
whereas the collection of balls {B(q jk ,r )}K

k=1 (on which equidistribution of the eigenfunc-
tion u fails) depend on u.

• According to (i) in Corollary 2, “almost all” the large Planck balls contains small Planck
balls on which equidistribution fails. We shall mention that “almost all” can not be
replaced by “all”. See the example on the sphere in Section 2.
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We next establish the non-equidistribution in Case II at the Planck scale around the points
where the eigenfunction takes large values.

Theorem 3. There exists γ > 0 depending on M such that the following holds. Given any M > 0
and p ∈M for which |u(p)| ≥ M, we have that∫

B(p,r ) |u|2 dVol

Vol
(
B

(
p,r

)) ≥ γM 2 with r = γλ−1.

Here, ∆u =λ2u and M can depend on λ.

Remark.

• Suppose that there is a sequence of eigenfunctions {uk }∞k=1 for which ‖uk‖L∞(M) →∞ as
k →∞. Then as an immediate consequence of Theorem 3, non-equidistribution at the
Planck scale in Case II happens around the points where uk achieves the maximum value.

• The eigenfunctions on rectangles with irrational ratio are all sine or cosine functions (or
finite linear combinations of these functions) so are uniformly bounded. It is plausible
that they are the only manifolds on which all eigenfunctions are uniformly bounded. See
Toth–Zelditch [14] for related discussion. But this is unknown to the author’s knowledge.

Moreover, we prove non-equidistribution at larger scales than the Planck one, depending on
M in Theorem 3.

Theorem 4. Let ε> 0. Then there exists γ> 0 depending on ε andM such that the following holds.
Given any M ≥ 1 and p ∈M for which |u(p)| ≥ M, we have that∫

B(p,r ) |u|2 dVol

Vol
(
B

(
p, r

)) ≥ 1

ε
with r = γλ−1M

2
n .

Here, ∆u =λ2u and M can depend on λ.

Remark.

• From the Weyl-type estimate that ‖u‖L∞(M) ≤Cλ(n−1)/2 by Hörmander [5], we see that the
best scale that one can hope to get from Theorem 4 is λ−1(λ(n−1)/2)2/n = λ−1/n (which is
much larger than the Planck scale λ−1.)

• On the spheresSn , there are Laplacian eigenfunctions that saturate the above L∞ bound,
e.g., the zonal harmonics. Therefore, these eigenfunctions display non-equidistribution
in Case II at the scale λ−1/n . It is unclear whether the sphere is the only example of
manifolds for non-equidistribution at such scale to hold.

Related literature

The results in this note are on general manifolds. If there is additional arithmetic structure, then
some non-equidistribution results at various scales are known.

On the tori Tn =Rn/2πZn , Bourgain proved non-equidistribution in Case I for eigenfunctions
at scales r such that r = o(λ−1/(n−1)), which is much larger than the Planck one. (The result was
published in [8, Theorem 4.1].) However, the non-equidistribution in [8] is for balls with a fixed
center, as opposite to balls that are separated by the Planck scale in Theorem 1 and Corollary 2.
In addition, the method used in [8] differ with the one in this note. That is, the eigenfunction u,
∆u =λ2u, on Tn can be written as

u(x) = c
∑

k ∈Zn with |k|=λ
ak sin(k · x)+bk cos(k · x) ,
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in which ak ,bk ∈R and c ∈R is the normalizing factor such that ‖u‖L2(Td ) = 1. Bourgain selected a
special collection of lattice points k on the sphere Sλ = {x ∈Rn : |x| =λ}. Cancellation can then be
exploited so that

∫
B(p,r ) |u|2/Vol(B(p,r )) → 0 for r = o(λ−1/(n−1)) and some p ∈ Tn . On a general

manifold, the arithmatic structure is not available. Our proof of Theorem 1 and Corollary 2 rely
on the elliptic estimates of eigenfunctions at the Planck scale.

On the modular surface SL(2,R)/SL(2,Z), Humphries [6, Theorem 1.14] proved non-equi-
distribution in (Case II) for Hecke–Maass eigenforms (Laplacian eigenfunctions with additional
arithmetic structure) at scales λ−1(logλ)α(α> 0) around the Heegner points. The proof is similar
to the one of Theorem 4. That is, the eigenfunction u achieves values of order (logλ)α at the
Heegner points, see Milićević [9]. Non-equidistribution at the scale λ−1(logλ)α therefore follows
from Theorem 4 by setting M = (logλ)α.

2. Non-equidistribution around nodal points

We prove Theorem 1 in this section. Let ∆u =λ2u and R = aλ−1 in (2). Assume that {B(p j ,R)}J
j=1

is a maximal disjoint collection of balls in M. Then J ≥ c0λ
n for some c0 > 0 that depends only

onM.
According to the mean value inequality for ∇u (see Schoen–Yau [10, Section II.6] and

Zelditch [17, Section 5.3.4]), we have that

sup
B

(
p j , 2

3 R
){|∇u|2}≤ C0

Vol
(
B

(
p j , R

)) ∫
B

(
p j ,R

) |∇u|2 dVol ≤C1λ
n

∫
B

(
p j ,R

) |∇u|2 dVol,

in which C1 > 0 depends only onM. It then follows that

1

J

J∑
j=1

sup
B

(
p j , 2

3 R
){|∇u|2}≤ 1

c0λn

J∑
j=1

C1λ
n

∫
B

(
p j ,R

) |∇u|2 dVol

≤ C1

c0

J∑
j=1

∫
B

(
p j ,R

) |∇u|2 dVol

≤ C1

c0

∫
M
|∇u|2 dVol

=C2λ
2,

in which C2 =C1/c0 depends only onM and the last step follows from (3).
By the Tchebychev inequality,

1

J
·#

 j = 1, . . . , J : sup
B

(
p j , 2

3 R
){|∇u|2}> C2λ

2

ε

≤ ε

Denote {p jk }K
k=1 ⊂ {p j }J

j=1 the subcollection that

sup
B

(
p jk

, 2
3 R

) |∇u|2 ≤ C2λ
2

ε
.

Then we have that K ≥ (1−ε)J , proving Condition (i) in Theorem 1.
Now for each k = 1, . . . , K , there is q jk ∈ B(p jk ,R/3) such that u(q jk ) = 0 by (2). For δ< a/3 and

r ≤ δλ−1 ≤ R/3, B(q jk ,r ) ⊂ B(p jk ,2R/3). Let d(q1, q2) denote the Riemannian distance between
q1, q2 ∈M.

For any q ∈ B(q jk ,r ), ∣∣u(q)−u
(
q jk

)∣∣≤ sup
B

(
q jk

,r
) {|∇u|} ·d

(
q, q jk

)
. (4)
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Since u(q jk ) = 0 and B(q jk ,r ) ⊂ B(p jk ,2R/3),∫
B

(
q jk

,r
) ∣∣u(q)

∣∣2 dVol ≤ sup
B

(
q jk

,r
){|∇u|2} ·∫

B
(
q jk

,r
) d

(
q, q jk

)2 dVol

≤ sup
B

(
p jk

, 2
3 R

){|∇u|2} ·∫
B

(
q jk

,r
) d

(
q, q jk

)2 dVol

≤ C2λ
2

ε
· r 2Vol

(
B

(
q jk ,r

))
,

Therefore, for any ε> 0,∫
B

(
q jk

,r
) |u|2 dVol ≤ C2λ

2r 2

ε
·Vol

(
B

(
q jk , r

))≤ εVol
(
B

(
q jk ,r

))
for all r ≤ δλ−1 with δ= ε/

p
C2.

Remark. The above proof uses the simple observation that the non-equidistribution in Case I
around nodal points is a direct consequence of the gradient bound. We use the average gradient
bound that |∇u|.λ to prove non-equidistribution at the Planck scale λ−1 at “almost all” balls in
Theorem 1 and Corollary 2.

On the other hand, recall the Weyl-type estimate

‖∇u‖L∞(M) .λ
n+1

2 .

See e.g., Sogge–Zelditch [13]. Therefore, we immediately have non-equidistribution of u at the
scale λ−(n+1)/2 around every nodal point. But notice that this scale is much smaller than the
Planck one.

Example 5 (Highest weight spherical harmonics). We shall point out that the non-equidis-
tribution in Case I may not hold everywhere, that is, the “almost all” condition in Theorem 1
and Corollary 2 is optimal. For example, in the polar coordinates θ ∈ [0,π] and φ ∈ [0,2π) on the
sphere S2, let uk (θ,φ) = k1/4(sinθ)k sin(kφ). Then uk is a Laplacian eigenfunction on S2 with
eigenvalue k(k +1). The factor k1/4 normalizes the function so that c1 ≤ ‖uk‖L2(S2) ≤ c2, in which
the positive constants c1 and c2 are absolute. See, e.g., Zelditch [17, Section 4.4.5].

The function uk has mass concentrated in an O(k−1/2) neighborhood of the equator {(x, y, z) ∈
S2 : z = 0} and are commonly referred as the “highest weight spherical harmonics”. In particular,

(sinθ)k =
∣∣∣cos

(π
2
−θ

)∣∣∣k
≥ 1

2
if

∣∣∣θ− π

2

∣∣∣≤ 1

10
k− 1

2 .

Fix any δ ≤ 1 and let r = δk−1. Take any ball B(q,r ) ⊂ S2 such that q = (θq ,φq ) with |θq −π/2| <
k−1/2/20. Then it is straightforward to compute that∫

B(q,r )
|uk |2 dVol ≥ ck

1
2 ·Vol

(
B

(
q, r

))
,

in which the positive constant c depends only on δ. This shows that the non-equidistribution
in (Case I) at the Planck scale can not happen for balls in the strip. However, for any maximal
disjoint balls with separation ≈ k−1, the ones in this strip are of “zero density” as k →∞, which
agrees with Condition (i) in Corollary 2.

Remark. We use the same example as above to show that the scale of non-equidistribution
in (Case I) at single points can be much larger than the Planck one.

Take p = (θp ,φp ) with θp = 0 or π (i.e., p is the north or south pole) and r < π/2. So uk (p) = 0
and B(p,r ) does not intersect the equator. Then∫

B(p,r )
|uk |2 dVol ≤C k

1
2

∫ cosr

0
t k t d t ≤C k− 1

2 (cosr )k+2.
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Hence, ∫
B(p,r ) |uk |2 dVol

Vol
(
B

(
p, r

)) ≤ C k− 1
2 (cosr )k+2

r 2 → 0 as k →∞.

That is, one observes non-equidistribution of uk in Case I at any scale r < π/2 around the north
and south poles. This is a reflection of the fact that uk and ∇uk decay exponentially fast away
from the equator.

3. Non-equidistribution around points with large values

We prove Theorem 3 in this section. For δ> 0 and r = δλ−1, the mean value inequality yields that

sup
B

(
p, r

2

){|u|2}≤ c

Vol
(
B

(
p,r

)) ∫
B(p,r )

|u|2 dVol.

Here, c > 0 depends only onM. See Schoen–Yau [10, Section II.6] and Zelditch [17, Corollary 5.11]
for the mean value inequality applied to eigenfunction in such balls. Thus,∫

B(p,r )
|u|2 dVol ≥ cVol

(
B

(
p,r

)) · sup
B

(
p, r

2

){|u|2}≥ cVol
(
B

(
p,r

))
M 2,

because |u(p)| ≥ M . Therefore, ∫
B(p,r )

∣∣u(y)
∣∣2 dVol

Vol
(
B

(
p,r

)) ≥ cM 2 ≥ δM 2,

by choosing δ≤ c.
Theorem 4 follows by noticing that if r = δλ−1M 2/n , then∫

B(p,r )
|u|2 dVol ≥

∫
B(p,δλ−1)

|u|2 dVol.
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