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Abstract. Let S be a smooth projective surface with pg = g = 0. We show how to use derived categorical
methods to study the geometry of certain special iterated Hilbert schemes associated to S by showing that
they contain a smooth connected component isomorphic to S.
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1. Introduction

Hilbert schemes are ubiquitous in modern algebraic geometry. But even in good situations these
schemes can behave badly. This became clear with Mumford’s famous example, which shows
that there is an irreducible component of the Hilbert scheme of smooth irreducible curves in
P3 of degree 14 and genus 24 that is generically non-reduced, see [17]. More exactly Mumford
constructs a 56-dimensional irreducible family of such curves, such that the tangent space at
each point of this component has dimension 57 and proves that this family is not contained in
any other irreducible family of dimension > 56.

In this note we prove that there are certain iterated Hilbert schemes which contain at least one
smooth connected component. More exactly the main result of this note is:

Theorem 1. Assume S is a smooth projective surface with pg = q = 0 and let S be the Hilbert
scheme of length n subschemes of S. Then the universal family Z in S x S™ can be understood as
a family of codimension two subschemes in S"™ with common Hilbert polynomial p(t) classified
by S such that the classifying morphism identifies S with a smooth connected component of the
Hilbert scheme Hilb?? (S,
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This theorem has its origin in a result by Lange and Newstead, who proved a similar result
for curves and moduli spaces of stable vector bundles on these curves in [15]. More exactly they
show that if M is a fine moduli space of stable vector bundles on a smooth projective curve C of
genus g = 2 with universal family % on C x M, then for any c € C the vector bundle %, on M is
stable. Furthermore they show that for ¢ # ¢’ we have %, # % . Together with a previous result by
Narasimhan and Ramanan these results imply that C embeds as a smooth connected component
in a moduli spaces of stable vector bundles o M.

The main input into the proof of the main result of this note is a result by Krug and Sosna
which states that the integral functor @ : DP(S) — DP($!") with kernel the universal ideal sheaf
F5 is fully faithful. This result allows to reduce the computation of certain Ext-groups on S to
the computation of easier Ext-groups on S.

All objects in this note are defined over the field of complex numbers C.
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2. Proof of the Main Theorem

Let S be a smooth projective surface with py = g =0, that is we have
H' (S,05) = H (S, 05) = 0.

Remark 2. Around the year 1870 Max Noether posed the question if surfaces with p; = g =0
are necessarily rational, see [2, § 3, Question 1]. By now it is known that the answer to this
question is negative. In fact besides rational surfaces there is a huge class of surfaces satisfying
these conditions which are not rational, most classically Enriques surfaces which have Kodaira
dimension zero. But there are also surfaces of general type satisfying these conditions for example
Godeaux surfaces, Campedelli surfaces or Beauville surfaces, see [1, 7] for more information and
examples.

In the following we denote the Hilbert scheme of length n subschemes of S by S, that is we
have as sets:

sl = {(Z1| Z < Sis a zero-dimensional subscheme with h°(Z,67) =n}.

It is well known that S is smooth and that dim(S"™) = 2n. Using this notation we have the
universal subscheme

Z={(s[2) e Sx 8" |sesupp(2)} = Sx S 1)
coming with the corresponding universal ideal sheaf ¥z — Gy, gin.

Remark 3. Recall that the universal family Z is flat over S ("] Indeed, using definition (1) one can
see that the restriction of p : S x S/ — §!" to Z is finite and flat of degree n. But as a matter of
fact Z is also flat over S due to [13, Theorem 2.1].

As we use integral functors in the following, we quickly recall their definition: let X and Y be
smooth projective varieties and denote their bounded derived categories of coherent sheaves by
DP(X) and DP(Y) respectively, then the integral functor with kernel # € D (X x Y) is defined by

@z :D°(X) - DP(Y), E—Rp.(q"Eol %)
where p and q are the projections X x Y — Y resp. X x Y — X, see [10, § 5].

The description of the image of an integral transform is rather easy for a skyscraper sheaf 0
of a closed point x € X, which we will collect as
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Example 4 ([10, Examples 5.4 (vi)]). Assume the kernel of the integral functor @ 4 is in fact a
coherent sheaf on X x Y flat over X, then we have for every closed point x € X

Oy (Oy) = A,
where the fiber £ := %y xy is considered as a sheaf on Y via the second projection {x} xY — Y.

Interpreting the universal ideal sheaf .#7 as an element in D (S x S} (as a complex concen-
trated in degree zero), we can look at the integral functor with kernel given by .#:

®:DP(S) -~ DP(s"), E—Rp.(q"E® 7).

In our case this integral functor has some very good properties. The main input into this note is
the following very useful fact discovered by Krug and Sosna:

Theorem 5 ([12, Theorem 1.2]). Let S be a smooth projective surface which satisfies pg = q = 0,
then the integral functor @ is fully faithful.

As an application of Theorem 5 we have the following

Corollary 6. Assume S is a smooth projective surface with pg = q = 0 then for all E, F € DP(S) and
i =0 there is an isomorphism

Ext’

L (P(E), ©(F)) = Ext(E, F).

Remark 7. There are also fully faithfulness results for universal families of moduli spaces
of stable bundles of rank two and degree one on smooth projective curves of genus g = 2
by Narasimhan as well as Fonarev and Kuznetsov, see [9, 18, 19]. Recently these results were
generalized to higher rank and degree by Belmans and Mukhopadhyay as well as Lee and Moon,
see [5,16]. These results can be used to give a proof of the result of Lange and Newstead in the
spirit of this note.

Proof of Theorem 1. Remark 3 shows that the universal family Z c S x S is flat over S. Denote
the fiber over a closed point s € S by Z; and its image in S (via the second projection
{s} x 8" = §l"! which is an isomorphism) by F;. This identification together with Example 4 gives
isomorphisms

Ip, = (I7); =@ (05). 2

Remark 8. By the definition of Z given in (1) we have
Fy={[Z1e 8" |sesupp(2)} = $".

That is, F is the subscheme of S classifying all length n subschemes containing the closed
point s € S in its support. Note that dim(F;) = 2n — 2, that is F is a subscheme of codimension
two in S,

Since S is integral the Hilbert polynomial of F; does not depend on s € S by [11, Proposi-
tion 2.1.2], call it p(¢). We thus have a well defined classifying morphism

@:S—HilbP? (s"), s [F].

Remark 9. Here we can choose any ample line bundle L € Pic(S!"™) to define the Hilbert
polynomial p(#) of F;, as there is no distinguished ample line bundle on S". The choice of a
different ample line bundle L would give rise to a different Hilbert polynomial 7(¢), but it would
not change the proof of the main theorem.

A more conceptual way would be to choose a n-very ample line bundle M on S, then by [6]
there is a closed embedding

S — Gr(n,HY(S,M)*), [Z]—H'(S,Me0z)".
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Composing this morphism with the Pliicker embedding of the Grassmannian, we get a closed
embedding S — PV for some N and we can pullback Gpn (1) to get an ample line bundle L on
st

We claim that the morphism ¢ identifies S with a smooth connected component of
HilbP® (§1"). To see this we have to show that the morphism is injective on closed points and
that for every closed point s € S we have

dim (Tig, Hilb?® (s')) = 2.

We start by picking two closed points s; # s € S and note that using equation (2) as well as
Corollary 6, we get:

Homgu (I, , Ir,, | = Homgu (®(0s,), @ (0,)) = Homs (0, 0,) = 0. 3)

If [F;,] = [Fs,] € Hilb?® (8"), then we would have an isomorphism @Fsl = @pxz and the exact
sequences (fori =1,2)

0 > IF, > Oginm > OF, > 0

would give rise to a commutative diagram of short exact sequences (with the identity between
Ogim) which shows that there is a nontrivial morphism between I, and I, . But this is impossi-
ble by 3. So the classifying morphism ¢ is indeed injective on closed points.

To find dim(Tir, Hilb”” (§")) we remark that

Tirg Hilb?® (S[n]) = Homgin) (IFxr@Fs) R

see for example [11, Proposition 2.2.7].
As g =0 we have Pic®(S) = 0, but by [8, Theorem 5.4.] we also have an isomorphism

Pic®(S) — Pic” (s'™)
and thus Pic?(S™™) = 0. So we can use [14, Lemma B.5.6.] which gives an isomorphism
Homgn (Ir,, OF,) = Exty, (Ir,, Ir,) -
We find, using again equation (2) and Corollary 6:

Exty, (I, Ir,) = Extg

s (P @9, (05)) = Bxtg (05,04) = T5S.

Putting all results together shows dim(Tiz, Hilb”” (SU")) = 2 as desired. O

Remark 10. Theorem 5 can be generalized in the case n = 2 to all smooth projective varieties
X having the property H(X,0x) = 0 for i = 1 (that is Gy is exceptional). By [3, Theorem A] the
integral functor @ : DP(X) — DP(X'?') with kernel the universal ideal sheaf .#7 is also fully faithful
in these cases. Thus our proof of the main result is also valid in these cases.

Remark 11. In the case of surfaces, the proof of the main result only works for those surfaces
with pe = g = 0, since for n = 2 the integral functor @ : DP(S) — DP(s!M) is fully faithful if and
only if pg = g = 0 by [4, Theorem A]. But there are similar results for K3 surfaces as well as abelian
surfaces, see [20]. In these cases the integral functor @ is a so-called P”-functor, which again
allows to reduce cohomological computations on S to computations on S.
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