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Abstract. In dimension two, we investigate a free energy and the ground state energy of the Schrödinger–
Poisson system coupled with a logarithmic nonlinearity in terms of underlying functional inequalities which
take into account the scaling invariances of the problem. Such a system can be considered as a nonlinear
Schrödinger equation with a cubic but nonlocal Poisson nonlinearity, and a local logarithmic nonlinearity.
Both cases of repulsive and attractive forces are considered. We also assume that there is an external
potential with minimal growth at infinity, which turns out to have a logarithmic growth. Our estimates
rely on new logarithmic interpolation inequalities which combine logarithmic Hardy–Littlewood–Sobolev
and logarithmic Sobolev inequalities. The two-dimensional model appears as a limit case of more classical
problems in higher dimensions.
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1. The Schrödinger–Poisson system with a local logarithmic nonlinearity

The standard Schrödinger–Poisson (SP) system is a nonlinear Schrödinger equation with cubic
but nonlocal nonlinearity. As for the nonlinear Schrödinger (NLS) equation with a local nonlin-
earity, scaling properties play a crucial role in the analysis of the solutions and depend on the
dimension d of the Euclidean space. The fact that the nonlinearity in (SP) involves the Poisson
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convolution kernel makes existence results easier to study than for (NLS) because of the com-
pactness properties induced by the convolution, but adds difficulties due to the non-locality of
the mean field potential. We consider primarily the case d = 2.

Our purpose is to focus on the underlying functional inequalities and study the interaction
of the Poisson term with other terms in the energy (external potential, local nonlinearities)
with similar scaling properties: we shall consider quantities which are all critical for (SP) in the
two-dimensional case. This is quite interesting from the mathematical point of view, as it is a
threshold case for (SP) systems and involves a non sign-defined logarithmic kernel. The d = 2 case
complements the results of [17, 18] in the limit regime involving logarithmic local nonlinearities.
For related questions for d = 3, we refer to [17] and references therein. In higher dimensions, the
problem is sub-critical if d ≤ 5 and critical for d = 6: see Section 3.2.

The (SP) system is used in quantum mechanics to represent a large number of particles by
a single complex valued wave function. The local nonlinear term arises from local effects or
thermodynamical considerations while the non-local Poisson potential accounts for long range
forces which are either of repulsive nature (charged particles) or attractive (in case of gravitational
and related models). Most models in the physics literature are justified only on an empirical basis
as thermodynamical limits but are difficult to establish rigorously. This issue is anyway out of the
scope of this paper.

The Schrödinger equation with a logarithmic nonlinearity is a remarkable model in physics,
with interesting mathematical properties: see [5, 12, 34]. The equation has soliton-like solutions
of Gaussian shape (called Gaussons in [5]). We shall refer to [14–16, 20] for some additional
contributions in mathematics. Schrödinger–Poisson systems are commonly used in charged
particles transport and particularly in semiconductor physics, in the repulsive case. In this
direction, a classical reference for mathematical properties is [13] and we also quote [4, 36] for
examples of applications. The mean-field attractive case (Newton equation) reflects gravitational
forces instead of electrostatic forces. It is not studied as much as the repulsive case and it
is mathematically more difficult: see for instance [36, Section 4]. As a side remark, we may
notice that stationary solutions of (SP) share many properties with stationary solutions of two-
dimensional models of chemotaxis, and the same functional inequalities are involved: see [24].
We can however handle the two cases, attractive and repulsive, in a common framework. We
primarily focus on variational results, in relation with some interesting functional inequalities
and their scaling properties.

For any function u ∈ H1(R2), let us consider the Schrödinger energy

E [u] :=
∫
R2

|∇u|2 dx +α
∫
R2

V |u|2 dx +2πβ
∫
R2

W |u|2 dx +γ
∫
R2

|u|2 log |u|2 dx (1)

where α, β, γ are real parameters and the self-consistent potential W is obtained as a solution of
the Poisson equation

−∆W = |u|2 .

The solution W is defined only up to an additive constant: we make the specific choice W =
(−∆)−1|u|2 given by the Green kernel as follows. Let us recall that on R2 the standard Green
function Gy associated with (−∆), that is, the solution of −∆xG = δy (x), is given by

G(x, y) =− 1

2π
log |x − y | ∀ (x, y) ∈R2 ×R2 .

Our choice amounts to take W (x) = ∫
R2 |u(y)|2 G(x, y)dy . As a consequence, we have

W (x) ∼− ‖u‖2
2

2π
log |x| as |x|→+∞ ,

and also x · ∇W (x) < 0 for large values of |x| if, for instance, u is compactly supported. The
cases β > 0 and β < 0 correspond to two very different physical situations. The case β < 0 is the
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attractive case of a Newton–Poisson coupling for gravitational mean-field models. With β > 0,
the model represents the two-dimensional case of repulsive electrostatic forces, i.e., a mean field
version of a quantum Coulomb gas of interacting particles in dimension d = 2.

The function V is an external potential, and we shall assume that it has a critical growth. The
parameterα ∈R is a coupling parameter, whose value has to be discussed depending on the other
terms. Without much loss of generality, we can assume that

V (x) = 2 log
(
1+|x|2) ∀ x ∈R2 . (2)

Concerning the local nonlinearity, the case γ < 0 corresponds to a focusing local nonlinearity
while γ > 0 is the case a defocusing local nonlinearity. It is standard to observe that any critical
point of E under the mass constraint ∫

R2
|u|2 dx = M

determines a standing wave of the nonlinear Schrödinger–Poisson system

i
∂ψ

∂t
=∆ψ+αV ψ+βW ψ+ γ log |ψ|2ψ .

In this paper we shall focus on finding conditions on α, β, γ ∈ R insuring that the functional E is
either bounded or unbounded from below on

HM := {
u ∈ H1(R2) : ‖u‖2

2 = M
}

.

This paper is organized as follows. We establish in Section 2 several new functional inequalities
which generalize the logarithmic Hardy–Littlewood–Sobolev inequality, with an application to a
free energy functional in dimension two: see Theorem 3. Section 3 is devoted to the boundedness
from below of the Schrödinger energy E , with main results in Theorem 10.

2. New logarithmic inequalities and free energy estimates

2.1. Generalized logarithmic Hardy–Littlewood–Sobolev inequalities

The logarithmic Hardy–Littlewood–Sobolev inequality∫
R2
ρ log

( ρ
M

)
dx + 2

M

Ï
R2×R2

ρ(x)ρ(y) log |x − y |dx dy +M (1+ logπ) ≥ 0 (3)

has been established in optimal form in [11] by E. Carlen and M. Loss, and in [1] by W. Beckner
for any ρ ∈ L1+(R2) such that

∫
R2 ρdx = M > 0. Equality is achieved by ρ = ρ? with

ρ?(x) := M

π
(
1+|x|2)2 ∀ x ∈R2 , (4)

and also by any function obtained from ρ? by a multiplication by a positive constant (with
the corresponding mass constraint), a scaling or a translation. Alternative proofs based on fast
diffusion flows have been obtained in [10, 21, 23]. Also see [2, 7, 22, 35] for further related results
and considerations on dual Onofri type inequalities and [28] for a rearrangement-free proof
of (3) using reflection positivity. Inequality (3) provides us with a useful lower bound on the free
energy in the case of an attractive Poisson equation corresponding to the Keller–Segel model:
see [6, 25], or in the case of a mean-field Newton equation in gravitational models. In presence of
the potential V given by (2), we have∫

R2
ρ log

( ρ
M

)
dx +2τ

∫
R2

log
(
1+|x|2)ρdx +M (1−τ+ logπ)

≥ 2

M
(τ−1)

Ï
R2×R2

ρ(x)ρ(y) log |x − y |dx dy (5)
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for any τ≥ 0 and for any function ρ ∈ L1+(R2) with M = ∫
R2 ρdx > 0, according to [24]. Compared

to [24], the discrepancy in the coefficient of M in the last term of the r.h.s. in (5) is due to the
normalization of V as defined by (2). Equality again holds if ρ = ρ? given by (4). When τ= 0, (5) is
nothing else than (3) while the case τ= 1 is easily recovered by Jensen’s inequality. Notice that the
sign of the coefficient in front of the convolution term in the r.h.s. of (5) becomes positive if τ> 1.

Let us divide (5) by τ > 0 and then take the limit as τ→+∞. By doing this, we obtain a new
inequality, which differs from (3) and is of interest by itself.

Lemma 1. For any function ρ ∈ L1+(R2) such that
∫
R2 ρdx = M, we have

2
∫
R2

log
(
1+|x|2)ρdx −M ≥ 2

M

Ï
R2×R2

ρ(x)ρ(y) log |x − y |dx dy . (6)

Moreover equality in (6) is achieved if and only if ρ = ρ?.

Proof. We give a direct proof of (6), which does not rely on (5). A preliminary observation is
that (6) makes sense, i.e., that

ρ 7−→
∫
R2

log
(
1+|x|2)ρdx − 1

M

Ï
R2×R2

ρ(x)ρ(y) log |x − y |dx dy

is bounded from below. We may indeed notice that, for any x, y ∈Rd ,

|x − y |2 = |x|2 +|y |2 −2 x · y ≤ |x|2 +|y |2 + (
1+|x|2 |y |2)= (

1+|x|2)(1+|y |2) ,

so that, after multiplying by ρ(x)ρ(y) and integrating with respect to x and y , we obtain

2
Ï
R2×R2

ρ(x)ρ(y) log |x − y |dx dy ≤
Ï
R2×R2

ρ(x)ρ(y)
(

log
(
1+|x|2)+ log

(
1+|y |2))dx dy

≤ 2 M
∫
R2

log
(
1+|x|2)ρdx .

As a consequence, the problem is reduced to proving that the largest constant C such that

2
∫
R2

log
(
1+|x|2)ρdx −C ≥ 2

M

Ï
R2×R2

ρ(x)ρ(y) log |x − y |dx dy

is C = M .
At heuristic level, if we admit that ρ? realizes the equality case, this equality can be established

as follows. The potential V given by (2) is such that µ? = 1
π e−V = ρ?

M is a probability measure and
we have

∆V = 8πµ? .

One can also check that

(−∆)−1µ? :=− 1

2π

∫
R2

log |x − y |µ?(y)dy =− V

8π
=− 1

4π
log

(
1+|x|2)

which requires a careful analysis of the integration constants. Indeed, in radial coordinates, by
solving the ordinary differential equation(

r V ′)′ = 8r(
1+ r 2

) , V ′(0) = 0, V (0) =V0 ,

a couple of integrations shows that

V ′(r ) = 1

r

(
4

1+ r 2 −4

)
and V (r )−V0 =

∫ r

0

4 s

1+ s2 ds = 2 log
(
1+ r 2) ,

so that 8π (−∆)−1µ? =−(V +V0) with V0 = 0. Alternatively, a direct proof is obtained by observing
that

V0 = 4
∫
R2

log |y |µ?(y)dy = 8
∫ +∞

0

r logr(
1+ r 2

)2 dr = 0,
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where the last equality is a consequence of the change of variables r 7→ 1/r . Taking into account
the identity ∫

R2
log

(
1+|x|2) µ?(x)dx =

∫ +∞

0

2r log
(
1+ r 2

)(
1+ r 2

)2 dr = 1,

this is consistent with the fact that ρ? = M µ? corresponds to the equality case in (3), according
to [11]. Altogether, we have C = M , meaning that (6) is an equality if ρ = ρ?.

After these preliminary considerations, which are provided only for a better understanding
of the functional framework, let us give a proof. With no loss of generality, we may assume that
M = 1 because of the 1-homogeneity of (6). Let us notice that

2
∫
R2

log
(
1+|x|2)ρdx −1−2

Ï
R2×R2

ρ(x)ρ(y) log |x − y |dx dy

=−2
Ï
R2×R2

(
ρ(x)−µ?(x)

)(
ρ(y)−µ?(y)

)
log |x − y |dx dy.

We recover that the equality case in (6) is achieved if ρ =µ?. With W =−(−∆)−1(ρ−µ?), we obtain

− 2
Ï
R2×R2

(
ρ(x)−µ?(x)

)(
ρ(y)−µ?(y)

)
log |x − y |dx dy

= 4π
∫
R2

(ρ−µ?) (−∆)−1(ρ−µ?)dx =−4π
∫
R2

(∆W )W dx = 4π
∫
R2

|∇W |2 dx ≥ 0,

where the last equality is obtained by a simple integration by parts. This can be done only because∫
R2 (ρ−µ?)dx = 0, a necessary and sufficient condition to guarantee that ∇W is square integrable

(for a proof, one has to study the behavior of the solution of the Poisson equation as |x|→+∞). At
this point it is clear that

∫
R2 |∇W |2 dx = 0 if and only if ρ = µ?. The general case with an arbitrary

M > 0 is obtained by writing ρ? = M µ?, which concludes the proof. �

The equality case in (6) is achieved among radial functions. It is classical that the l.h.s. is de-
creasing under symmetric decreasing rearrangements, while the r.h.s. is increasing. The strict re-
arrangement inequality for the logarithmic kernel is proved in [11, Lemma 2]. As a limit case ofÎ
R2×R2

(
ρ(x)−µ?(x)

)(
ρ(y)−µ?(y)

) |x − y |λdx dy when λ→ 0−, according to [30, Theorem 4.3]
(also see [33] for interesting consequences), this is indeed expected. Justifying the square inte-
grability of ∇W has therefore to be done only among radial functions, which is elementary using,
e.g., a compactly supported function ρ and a density argument.

Also notice that one can now recover (5) as a simple consequence of (3) and (6). Next, we turn
our attention to an inequality which is a consequence of convexity and Jensen’s inequality. Let

Jη[ρ] :=
∫
R2
ρ log

(
ρ∥∥ρ∥∥

1

)
dx +η

∫
R2

log
(
1+|x|2)ρdx ∀ ρ ∈ L1

+(R2) .

Lemma 2. Let η> 0, M > 0 and XM := {
ρ ∈ L1+(R2) :

∥∥ρ∥∥
1 = M

}
.

(i) If η> 1, then Jη is bounded from below on XM and∫
R2
ρ log

( ρ
M

)
dx +η

∫
R2

log
(
1+|x|2)ρdx ≥ M log

(η−1

π

)
∀ ρ ∈XM . (7)

For any η> 1, equality in (7) is achieved by ρ = M ρη, where

ρη(x) := η−1

π
(
1+|x|2)η ∀ x ∈R2 .

(ii) If η ∈ (0,1], then infXM Jη =−∞.

If η = 2, then ρ2 = ρ?, while (7) amounts to Jη[ρ] ≥ Jη[M ρη] for any η > 1. If τ is restricted
to the range [0,1], we notice as in [24] that (5) is a simple convex combination, with coefficients
(1−τ) and τ, of (3) and (7) written with η= 2.

C. R. Mathématique — 2021, 359, n 10, 1279-1293
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Proof. A direct computation based on d
dr

(
1+ r 2

)1−η =−2(η−1)r
(
1+ r 2

)−η
shows that∫

R2
ρηdx = 2(η−1)

∫ +∞

0
r
(
1+ r 2)−η dr = 1

for all η> 1 and

Jη[ρ] =
∫
R2
ρ log

( ρ

M ρη

)
dx +M log

(η−1

π

)
∀ ρ ∈XM .

Using that u 7→ u logu −u +1 is a convex function whose minimum is 0, we get∫
R2
ρ log

( ρ

M ρη

)
dx =

∫
R2

ρ

M ρη
log

( ρ

M ρη

)
M ρηdx ≥

∫
R2

( ρ

M ρη
−1

)
M ρηdx = 0

by taking u = ρ/(M ρη) and then integrating against M ρηdx. This proves (7) for any η> 1, where
equality holds as a consequence of Jη[M ρη] = M log

(η−1
π

)
.

Let us consider the case η ∈ (0,1] and take ρ = M ρζ with ζ > 1 as a test function. With a few
integrations by parts, we obtain∫
R2

log
(
1+|x|2) ρζ(x)dx = 2(ζ−1)

∫ +∞

0
r log

(
1+ r 2) (

1+ r 2)−ζ dr

=−
∫ +∞

0

d

dr

((
1+ r 2)1−ζ)

log
(
1+ r 2) dr = 2

∫ +∞

0
r
(
1+ r 2)−ζ dr = 1

ζ−1
,∫

R2
ρζ logρζdx = log

(ζ−1

π

)∫
R2
ρζdx −ζ

∫
R2

log
(
1+|x|2) ρζ(x)dx = log

(ζ−1

π

)
− ζ

ζ−1
,

so that limζ→1+ Jη[M ρζ] =−∞ because

1

M
Jη[M ρζ] =

∫
R2
ρζ logρζdx +η

∫
R2

log
(
1+|x|2) ρζ(x)dx = log

(ζ−1

π

)
− ζ−η
ζ−1

. �

2.2. Boundedness from below of the free energy functional

Let us consider the free energy functional defined by

Fa,b[ρ] :=
∫
R2
ρ log

( ρ
M

)
dx +a

∫
R2

log
(
1+|x|2)ρdx − b

M

Ï
R2×R2

ρ(x)ρ(y) log |x − y |dx dy

for any ρ ∈ L1+(R2) such that
∫
R2 ρdx = M . We look for the range of the parameters a and b such

that
Fa,b[ρ] ≥C (a,b) M ∀ ρ ∈ L1

+(R2) such that
∥∥ρ∥∥

1 = M , (8)

for some constant C (a,b). Inequality (5) with τ ≥ 0 is obtained as the special case a = 2τ and
b = 2(τ− 1), with C (a,b) = M (τ− 1− logπ), according to [24]. As a consequence, we also know
that (8) holds for some C (a,b) >−∞ if a≥ 2τ and b= 2(τ−1), that is, 0 ≤ b+2 ≤ a. This range can
be improved. For instance, if b= 0, it is clear from Lemma 2 that the threshold is at a= 1 and not
a= 2. Our result (see Figure 1) is as follows.

Theorem 3. Inequality (8) holds for some C (a,b) >−∞ if either a= 0 and b=−2, or

a> 0, −2 ≤ b< a−1 and b≤ 2a−2.

If either a< 0 or b<−2 or b> min{a−1,2a−2} or (a,b) = (1,0), then

inf
ρ∈X1

Fa,b[ρ] =−∞ .

If 0 ≤ a< 1 and b= 2a−2, then

C (a,2a−2) =− log
( eπ

1−a

)
.

Moreover, if a> 0 there is no minimizer for C (a,2a−2).

C. R. Mathématique — 2021, 359, n 10, 1279-1293
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-1 1 2 3

-3

-2

-1

1

2

a

b

b= min{a−1,2a−2}

b= a−2

(1,0)

(0,−2)

Figure 1. White (resp. grey) area corresponds to the domain in which (8) holds for some finite constant
C (a,b) (resp. C (a,b) = −∞). We also know that C

(
a,2(a− 1)

) = − log(eπ/(1−a)) if 0 ≤ a < 1 and
C (1,0) =−∞, while the boundedness from below of Fa,b is not known in the threshold case b= a−1 > 0.
On the dotted half-line b= a−2 ≥−2, optimality is achieved by ρ? and Inequality (8) corresponds to (5)
with a= 2τ, b= 2(τ−1), and τ≥ 0.

The boundedness from below of Fa,b is unknown only in the case b= a−1 > 0. If b= 2a−2 < 0,
we do not only show the semi-boundedness of Fa,b, but we actually compute the infimum
C (a,b). The infimum is also known if b = a− 2 ≥ −2 and in that case optimality is achieved by
ρ? according to (5). Note that for a = 0, the inequality Fa,2(a−1)[ρ] ≥C

(
a,2(a−1)

)
M is the sharp

logarithmic Hardy–Littlewood–Sobolev inequality (3) and as a → 1 the infimum diverges to −∞
consistently with the result of Lemma 2. For the convenience of the reader, we divide the proof of
Theorem 3 in several intermediate results.

Lemma 4. Inequality (8) holds for some C (a,b) >−∞ if either a= 0 and b=−2, or

a> 0 and −2 ≤ b< min{a−1,2a−2} .

The proof for −2 ≤ b < 0 and a > 1−b/2 follows from the case a = 1−b/2, which is treated in
Lemmas 6 and 7 below, but we give the argument here nevertheless, since it is simpler.

Proof. The case a= 0 and b=−2 corresponds to (3). The case a= η> 1 and b= 0 is (7).
If b < 0, the condition b < 2a− 2 arises by combining (3) and (7), respectively multiplied by

−b/2 and 1+b/2, with a= (1+b/2)η for any η> 1. In that case, (8) holds with

C (a,b) = M (1+ logπ)
b
2
+M log

(
η−1

π

)(
1+ b

2

)
= M (1+ logπ)

b
2
+M log

(
2a−2−b
π (b+2)

) b+2

2
.

If b > 0, we sum (6) with a coefficient b/2 and (7) with coefficient 1 and η = a− b > 1. In that
case, (8) holds with

C (a,b) = M
b
2
+M log

(
η−1

π

)
= M

b
2
+M log

(a−b−1

π

)
. �

With M = 1, notice that

Fa,b[ρ] =
∫
R2
ρ logρdx +a

∫
R2

log
(
1+|x|2)ρdx +2πb

∫
R2
ρ (−∆)−1ρdx .

Lemma 5. If either a< 0 or b<−2 or b> min{a−1,2a−2} or (a,b) = (1,0), then

inf
ρ∈X1

Fa,b[ρ] =−∞ .

C. R. Mathématique — 2021, 359, n 10, 1279-1293
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In Lemma 5, there is no loss of generality in assuming that M = 1. Under the assumptions on
(a,b) of Lemma 5, Inequality (8) does not hold for some C (a,b) >−∞. In that case, we shall simply
write C (a,b) =−∞. See Figure 1.

Proof. For an arbitrary ρ ∈X1, i.e., ρ ∈ L1+(R2) such that
∥∥ρ∥∥

1 = 1, let ρx0 (x) := ρ(x −x0). Since∫
R2

log
(
1+|x|2)ρx0 (x)dx ∼ 2 log |x0|

∫
R2
ρdx as |x0|→+∞

and all other integrals are unchanged, the conclusion is straightforward if a< 0.
Assume now that ρ ∈ X1 is such that ρ logρ and log

(
1+|x|2)ρ are integrable, and let ρλ(x) =

λ2ρ(λx), for any x ∈R2. We have∫
R2
ρλ logρλdx =

∫
R2
ρ logρdx +2 logλ ,∫

R2
log

(
1+|x|2)ρλdx =

∫
R2

log
(
1+λ−2 |x|2)ρdx ,∫

R2
ρλ (−∆)−1ρλdx =

∫
R2
ρ (−∆)−1ρdx + logλ

2π
.

As λ→+∞, we obtain that Fa,b[ρλ] ∼ (b+2) logλ, which proves our statement if b<−2.
Assume additionally that ρ(x) = 0 if |x| 6∈ [1,2]. Since on any compact set of R2 \ {0}, we have

that 1+λ−2 |x|2 ∼λ−2 |x|2 as λ→ 0+ and deduce that∫
R2

log
(
1+|x|2)ρλ(x)dx =

∫
R2

log
(
1+λ−2 |x|2)ρ(x)dx ∼−2 logλ .

As λ→ 0+, we obtain that Fa,b[ρλ] ∼ (b+2−2a) logλ, which proves our statement if b+2−2a> 0.
Now, still assuming that ρ(x) = 0 if |x| 6∈ [1,2], let

ρε,λ(x) = (1−ε)ρ(x)+λ2 ερ (λx)

with parameters (ε,λ) ∈ (0,1)2. Using that the supports of ρ and ρλ decouple if λ< 1/2, we have,
for any given ε ∈ (0,1), as λ→ 0+∫

R2
ρε,λ logρε,λdx =

∫
R2
ρ logρdx +ε logε+ (1−ε) log(1−ε)+2ε logλ ,

∫
R2

log
(
1+|x|2)ρε,λdx = (1−ε)

∫
R2

log
(
1+|x|2)ρdx +2ε

∫
R2

log |x|ρdx −2ε logλ+o
(
logλ

)
,

∫
R2
ρε,λ (−∆)−1ρε,λdx = (

ε2 + (1−ε)2)∫
R2
ρ (−∆)−1ρdx +ε2 logλ

2π

− ε (1−ε)

π

∫
R2

log |x|ρ(x)dx + ε (1−ε)

π
logλ+o

(
logλ

)
.

Thus,∫
R2
ρε,λ logρε,λdx +a

∫
R2

log
(
1+|x|2)ρε,λdx +2πb

∫
R2
ρε,λ (−∆)−1ρε,λdx

∼ 2ε
((

1− ε

2

)
b+1−a

)
logλ as λ→ 0+ .

This again proves our statement if b+1−a> 0, because (1−ε/2)b+1−a can be made positive for
ε> 0, small enough. �

The proof of Theorem 3 in the case b = 2(a−1) ∈ [−2,0) is based on two ingredients exposed
in Lemma 6 and Lemma 7. The first ingredient relates the minimization of Fa,2(a−1) to a simpler,
scale-invariant minimization problem. Let

Ga[ρ] :=
∫
R2
ρ logρdx +2a

∫
R2

log |x|ρdx +2(a−1)
Ï
R2×R2

ρ(x) log
1

|x − y | ρ(y)dx dy
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and

K (a) := inf

{
Ga[ρ] : ρ ≥ 0,

∫
R2
ρdx = 1

}
.

Lemma 6. Let 0 ≤ a< 1. Then

C
(
a,2(a−1)

)=K (a) .

Moreover, if a> 0 there is no minimizer for C
(
a,2(a−1)

)
.

Proof. Since log
(
1+|x|2) > 2 log |x|, we immediately obtain Fa,2(a−1)[ρ] >Ga[ρ] whenever ρ 6≡ 0

(and the functionals are finite). This implies that C
(
a,2(a− 1)

) ≥ K (a) and that, if a > 0 and if
Fa,2(a−1) has a minimizer, then C

(
a,2(a−1)

)>K (a).
We show now the opposite inequality C

(
a,2(a− 1)

) ≤ K (a), which will complete the proof.
Let σ ≥ 0 with

∫
R2 σdx = 1 and with compact support not containing the origin. Consider

ρλ(x) =λ−2σ(x/λ) with λÀ 1. Then, as in the proof of Lemma 5,

Fa,b[ρλ] = (−2+2a−b) logλ+
∫
R2
σ logσdx +a

∫
R2

log
(
λ−2 +|x|2)σ(x)dx

+b
Ï
R2×R2

σ(x) log
1

|x − y | σ(y)dx dy .

If b= 2(a−1), then the coefficient of logλ vanishes and we obtain

C
(
a,2(a−1)

)≤ liminf
λ→∞

Fa,2(a−1)[ρλ] =Ga[σ] .

Taking the infimum over all σ (and removing the support assumptions by an approximation
argument), we obtain C

(
a,2(a−1)

)≤K (a), as claimed. �

Lemma 7. Let 0 ≤ a< 1. Then

K (a) =− log
( eπ

1−a

)
.

For a> 0 the infimum K (a) is achieved if and only if, for some λ> 0,

ρ(x) = 1−a
π

λ2

|x|2a (
λ2 +|x|2(1−a)

)2 .

The idea of the proof is to apply a change of variables and to reduce the result to the case a= 0.

Proof. By symmetric decreasing rearrangement it suffices to bound Ga[ρ] from below for radial
decreasing ρ. In fact, in the following we only use that ρ is radial, and we use this in order to
apply Newton’s theorem. We set ρ̃(x) := |x|2aρ(x) and then we define a radial function τ on R2 by
τ(z) = ρ̃ (|z|1/(1−a)

)
(with an obvious abuse of notation for the radial function ρ̃). We have∫
R2
τ(z)dz = 2π

∫ ∞

0
ρ̃

(
r 1/(1−a))r dr = 2π (1−a)

∫ ∞

0
ρ̃(s) s1−2a ds

= 2π (1−a)
∫ ∞

0
ρ(s) s ds = (1−a)

∫
R2
ρ(x)dx = 1−a .

Moreover, by a similar computation,∫
R2
ρ logρdx +2a

∫
R2

log |x|ρdx =
∫
R2
ρ̃ log ρ̃ |x|−2a dx = 2π

∫ ∞

0
ρ̃(s) log ρ̃(s) s1−2a ds

= 2π

1−a

∫ ∞

0
τ(r ) logτ(r )r dr = 1

1−a

∫
R2
τ(z) logτ(z)dz .
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Finally, by Newton’s theorem,Ï
R2×R2

ρ(x) log
1

|x − y | ρ(y)dx dy =
Ï
R2×R2

ρ(x)min

{
log

1

|x| , log
1

|y |
}
ρ(y)dx dy

=
Ï
R2×R2

ρ̃(x)min

{
log

1

|x| , log
1

|y |
}
ρ̃(y)

dx

|x|2a
dy

|y |2a

= (2π)2
∫ ∞

0

∫ ∞

0
ρ̃(s)min

{
log

1

s
, log

1

s′

}
ρ̃(s′)

ds

s2a−1

ds′

(s′)2a−1

= (2π)2

(1−a)3

∫ ∞

0

∫ ∞

0
τ(r )min

{
log

1

r
, log

1

r ′

}
τ(r ′)r dr r ′dr ′

= 1

(1−a)3

Ï
R2×R2

τ(z) log
1

|z −w | τ(w)dz dw .

To summarize, we have

Ga[ρ] = 1

1−a

∫
R2
τ(z) logτ(z)dz − 2

(1−a)2

Ï
R2×R2

τ(z) log
1

|z −w | τ(w)dz dw .

By the logarithmic Hardy–Littlewood–Sobolev inequality (3), taking the normalization of τ into
account, we deduce that

Ga[ρ] ≥− log
( eπ

1−a

)
with equality if and only if, for some λ> 0,

τ(z) = 1−a
π

λ2

(λ2 +|z|2)2 .

Translating this in terms of ρ, we obtain the claim of the lemma. �

2.3. Additional remarks on the free energy and some open questions

In Lemma 4, Inequality (8) holds for some finite constant C (a,b) if (a,b) = (0,−2). We also know
from Lemma 2 that lima→1+ C (a,0) = −∞. If b = a−1 > 0, it is so far open to decide whether (8)
holds for some C (a,b) >−∞. See Figure 1.

The free energy Fa,b[ρ] is a natural Lyapunov functional for the drift-diffusion equation

∂ρ

∂t
=∆ρ+∇·

(
ρ

(
a∇V +4π b

M ∇W
))

, W = (−∆)−1ρ . (9)

Indeed we can write that ∆ρ = ∇ · (ρ∇ logρ
)

so that, for any smooth and sufficiently decreasing
function ρ solving (9), we obtain using an integration by parts that

d

dt
Fa,b[ρ(t , · )] =−

∫
R2
ρ

∣∣∣∇ logρ+a∇V +4π b
M ∇W

∣∣∣2
dx .

Concerning the long time behavior of the solution of (9), we expect that Fa,b[ρ(t , · )] converges
to C (a,b) as t → +∞ by analogy, e.g., with the Keller–Segel system (see [6, Section 4]), but it is
an open question to deduce global decay rates of Fa,b[ρ(t , · )], for instance in a restricted class
of solutions of (9), or even asymptotic decay rates as in [8]. Another issue is to understand the
counterpart onS2 of the results onR2 using the inverse stereographic projection, as in [11,21,23].

For any M > 0, the boundedness from below of

F c
a,b[ρ] := a

∫
R2

log
(
1+|x|2)ρdx − b

M

Ï
R2×R2

ρ(x)ρ(y) log |x − y |dx dy +c
∫
R2
ρ log

( ρ
M

)
dx

on the set XM arises for any c > 0 as a straightforward consequence of Lemma 4 under the
obvious condition −2c ≤ b < min{a− c,2a− 2c}, by homogeneity. The case c = 0 is covered by
Lemma 1. It is therefore a natural question to inquire what happens if c< 0.
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Proposition 8. For any (a,b) ∈R2 and M > 0, with the above notations, if c< 0, then

inf
ρ∈XM

F c
a,b[ρ] =−∞ .

Proof. The key point of the proof is that ρ 7→ c
∫
R2 ρ logρdx with c< 0 is a concave functional. Let

ρ ∈X1 be a function supported in the unit ball. For any ε ∈ (0,1/4) and n ∈N\ {0}, let

Rε,n(x) := 1

n2

n∑
k,`=1

ε−2ρ
(
ε−1 (

x − (k,`)
)) ∀ x ∈R2 .

In order to investigate the limits ε→ 0+ and n →+∞, we compute∫
R2

Rε,n logRε,n dx =− log
(
n2 ε2)+∫

R2
ρ logρdx =−2 log(n ε)+O(1) ,∫

R2
log

(
1+|x|2)Rε,n dx . log

(
1+2n2)= 2 logn

(
1+o(1)

)
,∣∣∣∣Ï

R2×R2
Rε,n(x)Rε,n(y) log |x − y |dx dy

∣∣∣∣. |logε|
n2 + log

(
1+2n2

)
2n2 = |log(ε/n)|

n2

(
1+o(1)

)
.

With the choice ε = n−A for some A > 0 large enough, we find that c
∫
R2 Rε,n logRε,n dx ∼

(A − 1) |c| logn → −∞ as n → +∞ and this term dominates the other ones. This concludes the
proof. �

3. Logarithmic interpolation inequalities and Schrödinger energy estimates

We are now going to study the Schrödinger energy E defined by (1). As we shall see, the kinetic
energy

∫
R2 |∇u|2 dx completely changes the picture and considering c< 0 makes sense.

3.1. A new logarithmic interpolation inequality

Here we combine logarithmic Hardy–Littlewood–Sobolev inequalities with the logarithmic
Sobolev inequality to produce a new logarithmic interpolation inequality. This new inequality
is more directly connected with the Schrödinger–Poisson system (SP).

In dimension d = 2, with the Gaussian measure defined as dµ = µ(x)dx where µ(x) =
(2π)−1 exp(−|x|2/2), the Gaussian logarithmic Sobolev inequality reads∫

R2
|∇v |2 dµ≥ 1

2

∫
R2

|v |2 log |v |2 dµ (10)

for any function v ∈ H1(R2,dµ) such that
∫
R2 |v |2 dµ = 1, and there is equality if and only if v ≡ 1

(see [9, Theorem 4]). With u = v
p
µ, it is a classical fact that Inequality (10) is equivalent to the

standard Euclidean logarithmic Sobolev inequality established in [29] (also see [27] for an earlier
related result) which can be written in dimension d = 2 as∫

R2
|∇u|2 dx ≥ 1

2

∫
R2

|u|2 log

(
|u|2
‖u‖2

2

)
dx + 1

2
log

(
2πe2)‖u‖2

2 (11)

for any function u ∈ H1(R2,dx). This inequality is not invariant under scaling. By applying (11) to
the scaled function uλ(x) =λu(λx), we obtain

λ2 ‖∇u‖2
2 − logλ ‖u‖2

2 ≥
1

2

∫
R2

|u|2 log

(
|u|2
‖u‖2

2

)
dx + 1

2
log

(
2πe2)‖u‖2

2 (12)

for any λ > 0. The scaling parameter λ can be optimized in order to obtain the Euclidean
logarithmic Sobolev inequality in scale invariant form

‖u‖2
2 log

(
1

πe

‖∇u‖2
2

‖u‖2
2

)
≥

∫
R2

|u|2 log

(
|u|2
‖u‖2

2

)
dx (13)
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for any function u ∈ H1(R2,dx), that can be found in [40, Theorem 2], [37, Inequality (2.3)], [19,
Appendix B] or [9, Inequality (26)]. See [26, 38] for further references and consequences. Of
course, (11) can be deduced from (13), so that (10), (11) and (13) are equivalent, and none of
these inequalities is limited to d = 2, but constants in (11) and (13) have to be adapted to the
dimension if d 6= 2.

It is possible to combine (3) and (11) with ρ = |u|2 into∫
R2

|∇u|2 dx ≥ 2π

‖u‖2
2

∫
R2

|u|2 (−∆)−1|u|2 dx + 1

2
log(2e) ‖u‖2

2 (14)

where

2π
∫
R2

|u|2 (−∆)−1|u|2 dx =−
Ï
R2×R2

|u(x)|2 log |x − y | |u(y)|2 dy .

By applying (14) to the scaled function uλ(x) =λu(λx), we obtain that

λ2
∫
R2

|∇u|2 dx −‖u‖2
2 logλ≥ 2π

‖u‖2
2

∫
R2

|u|2 (−∆)−1|u|2 dx + 1

2
log(2e) ‖u‖2

2 (15)

for any λ> 0. By optimizing on λ, we obtain the following scale invariant inequality.

Proposition 9. For any function u ∈ H1(R2), we have

2π
∫
R2

|u|2 (−∆)−1|u|2 dx ≤ ‖u‖4
2 log

(‖∇u‖2

‖u‖2

)
. (16)

Since (3) and (11) admit incompatible optimal functions, respectively the function ρ = ρ?
given by (4) and the Gaussian function u(x) = (2π)−1/2

p
M e−|x|

2/4 = √
M µ(x), up to multipli-

cations by a constant, scalings and translations, equality is not achieved in (16) by a function
u ∈ H1(R2).

3.2. Interpolations inequalities in higher dimensions

For comparison, let us briefly consider the case of higher dimensions, that is, the case of the
Euclidean space Rd with d ≥ 3. We can refer for instance to [3] for more detailed considerations
on scalings in absence of an external potential. The Gagliardo–Nirenberg inequality

CGN ‖∇u‖ϑ2 ‖u‖1−ϑ
2 ≥ ‖u‖p ∀ u ∈ H1(Rd ) (17)

holds with θ = d p−2
2 p for any p ∈ (2,2∗], where 2∗ = 2d

d−2 is the critical Sobolev exponent.
Optimality is attained by the so-called Lommel functions, which are radial functions according
to, e.g., [39], and are defined by the Euler–Lagrange but have no explicit formulation in terms of
the usual special functions: see [31,32]. This can be combined with the critical Hardy–Littlewood–
Sobolev inequality,

1

(d −2) |Sd−1|
Ï
Rd×Rd

ρ(x)ρ(y)

|x − y |d−2
dx dy =

∫
Rd
ρ (−∆)−1ρdx ≤CHLS

(∫
Rd

|ρ| 2d
d+2 dx

)1+ 2
d

(18)

for any function ρ ∈ L
2d

d+2 (Rd ), to establish for ρ = |u|2 that

Cd

∫
Rd

|u|2 (−∆)−1|u|2 dx ≤ ‖∇u‖d−2
2 ‖u‖6−d

2 ∀ u ∈ H1(Rd ) , (19)

under the condition that 4d
d+2 ≤ 2d

d−2 , that is, for

3 ≤ d ≤ 6.

Let us notice that the inequality is critical if d = 6 in the sense that
∫
R6 |u|2 (−∆)−1|u|2 dx and(∫

R6 |∇u|2 dx
)2

have the same homogeneity and scaling invariance, which is a standard source of
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loss of compactness along an arbitrary minimizing sequence satisfying a given ‖u‖2 constraint.
From (17) and (18), we find out that

Cd ≥C −4
GN C −1

HLS .

The above estimate is strict because optimal functions do not coincide in (17) and (18) if 3 ≤ d ≤ 5.
In dimension d = 6, we have that C6 = C −4

GN C −1
HLS is sharp, with equality in (19) achieved by the

Aubin–Talenti function x 7→ (1+|x|2)−2.

3.3. Bounds on the Schrödinger energy

Let γ+ := max{γ,0} and consider E as in (1).

Theorem 10. Let α, β, γ be real parameters and assume that M > 0. Then

(i) E is not bounded from below on HM if one of the following conditions is satisfied:
(a) α< 0,
(b) α≥ 0 and M β> min

{
2α−γ,4α−2γ

}
.

(ii) E is bounded from below on HM if either α= 0, β≤ 0 and M β+2γ≤ 0, or α> 0 and one
of the following conditions is satisfied:
(a) γ≤ 0 and M β≤ 2α,
(b) γ> 0, M β≤ 4α−2γ and M β< 2α−γ.

Two cases covered by Theorem 10 are shown in Figure 2.

-2 -1 1 2 3 4

-4

-2

2

4

-2 2 4 6

-4

-2

2

4

6

γ

γ/α

?
?

α= 0 α= 1
M β M β/α

Figure 2. White (resp. dark grey) area corresponds to the domain in which E is bounded
(resp. unbounded) from below with α = 0 on the left and α = 1 on the right. Whether E is
bounded in the light grey domain or not is open so far.

Proof. Let us start by the proof of (i), i.e., the cases for which inf{E [u] : u ∈HM } =−∞. Case (a)
corresponds to α < 0 and can be dealt with using translations as in the proof of Lemma 5:
lim|x0|→+∞E [u( · −x0)] =−∞. Next let uλ(x) :=λu(λx) and notice that∫

R2
|∇uλ|2 dx =λ2

∫
R2

|∇u|2 dx = o(logλ) as λ→ 0+ ,

so that, with ρλ = |uλ|2,

E [uλ] ∼ 2α
∫
R2

log
(
1+|x|2)ρλdx +2πβ

∫
R2
ρλ (−∆)−1ρλdx +γ

∫
R2
ρλ logρλdx .

By arguing as in Lemma 5, we obtain that limλ→0+ E [uλ] =−∞ in case (b).
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Concerning (ii), the boundedness from below of E is as follows. From (12) and (15), we learn
that ∫

R2
|∇u|2 dx ≥ 1

2λ2
1

∫
R2

|u|2 log

( |u|2
M

)
dx + log

(
2πe2λ2

1

)
2λ2

1

M (20)

and ∫
R2

|∇u|2 dx ≥ 2π

M λ2
2

∫
R2

|u|2 (−∆)−1|u|2 dx + log
(
2eλ2

2

)
2λ2

2

M (21)

with ‖u‖2
2 = M . Here λ1 and λ2 are two arbitrary positive parameters. Let us distinguish various

cases:

(1) Ifα= 0, β≤ 0 and γ≤ 0, the boundedness from below of E is a direct consequence of (20)
and (21). The case α = 0, β < 0 and γ > 0 can be reduced to the case α = 0 and γ = 0
using (3) if M β+2γ≤ 0.

(2) If either α > 0, β ≤ 0 and γ ≤ 0, or α > 0, β > 0, γ ≤ 0 and M β+2γ ≤ 0, we conclude as
above.

(3) Ifα> 0,β> 0 and γ≤ 0, the boundedness from below is a direct consequence of Lemma 1
if M β−2α≤ 0.

(4) If α > 0, γ > 0 and M β+ 2γ ≥ 0, we notice that E [u] ≥ γFa,b
[|u|2] with a = 2α/γ and

b= M β/γ. The result of Lemma 4 applies and the condition b< min{a−1,2a−2} can be
rewritten as M β< min

{
2α−γ,4α−2γ

}
. The case M β= 4α−2γ corresponds to b= 2a−2

and it is covered by Lemmas 6 and 7.
(5) If α> 0, γ> 0 and M β+2γ< 0, we conclude by observing that

E [u] ≥ γFa,−2
[ |u|2 ]+∫

R2
|∇u|2 dx + 2π

M
(M β+2γ)

∫
R2

|u|2 (−∆)−1|u|2 dx ,

where, because M β+ 2γ < 0, the sum of the last two terms is bounded from below in
view (21) and where Lemma 4 guarantees that Fa,−2

[ |u|2 ]
is bounded from below. �
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