

INSTITUT DE FRANCE Académie des sciences

Comptes Rendus

Mathématique

Stéphane R. Louboutin

On the continued fraction expansions of $(1 + \sqrt{pq})/2$ and \sqrt{pq}

Volume 359, issue 9 (2021), p. 1201-1205

Published online: 25 November 2021

https://doi.org/10.5802/crmath.266

This article is licensed under the CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org e-ISSN : 1778-3569

Number theory / Théorie des nombres

On the continued fraction expansions of $(1 + \sqrt{pq})/2$ and \sqrt{pq}

Stéphane R. Louboutin^a

^{*a*} Aix Marseille Université, CNRS, Centrale Marseille, I2M, Marseille, France *E-mail*: stephane.louboutin@univ-amu.fr

Abstract. The evenness and the values modulo 4 of the lengths of the periods of the continued fraction expansions of \sqrt{p} and $\sqrt{2p}$ for $p \equiv 3 \pmod{4}$ a prime are known. Here we prove similar results for the continued fraction expansion of \sqrt{pq} , where $p, q \equiv 3 \pmod{4}$ are distinct primes.

Mathematical subject classification (2010). 11A55, 11R11. Manuscript received 21st June 2021, accepted 27th August 2021.

1. Introduction

Let α be a real quadratic irrational number. Its continued fraction expansion $\alpha = [a_0, a_1, a_2, ...]$ is periodic, i.e. there exists $k \ge 0$ and $l \ge 1$ such that $a_{i+l} = a_i$ for $i \ge k$. In that case we write $\alpha = [a_0, ..., a_{k-1}, \overline{a_k, ..., a_{k+l-1}}]$. The least such l is called the length of the period of the periodic continued fraction expansion of α . The evenness of the length of the period of the continued fraction expansion of \sqrt{p} for $p \equiv 3 \pmod{4}$ a prime is well known. In [8] we determined its value modulo 4 and gave a similar result for $\sqrt{2p}$:

Theorem 1. Take d = p or d = 2p, where $p \equiv 3 \pmod{4}$ is a prime integer. Let $l \ge 1$ be the length of the period of the periodic continued fraction expansion $\sqrt{d} = [a_0, \overline{a_1, \dots, a_l}]$. Then,

- (i) $a_0 = \lfloor \sqrt{d} \rfloor$, $a_l = 2a_0$ and $a_k = a_{l-k}$ for $1 \le k \le l-1$,
- (ii) l = 2L is even and L is even if and only if $p \equiv 7 \pmod{8}$,
- (iii) $a_{l/2} = a_L$ is the integer in $\{a_0 1, a_0\}$ of the same parity as d.

This behavior in the case of d = p had already been proved in [3, Corollary 2 p. 2071]. Our proof was different and applied both to d = p and d = 2p. It was based on the arithmetic of quadratic number fields and their ideal class groups in the narrow sense (as in [6] and [7]). Let \mathscr{I} be an integral ideal of the ring of algebraic integers \mathbb{Z}_K of a real quadratic number field *K*. Recall that \mathscr{I} is principal if and only if there exists $\alpha \in \mathbb{Z}_K$ such that $\mathscr{I} = \alpha \mathbb{Z}_K$, whereas \mathscr{I} is principal in the narrow sense if there exists a totally positive element $\alpha \in \mathbb{Z}_K$ such that $\mathscr{I} = \alpha \mathbb{Z}_K$. Here, bearing on a similar approach, we prove: **Theorem 2.** Let p, q be two prime integers equal to 3 (mod 4), with $3 \le p < q$. Let $l \ge 1$ be the length of the period of the periodic continued fraction expansion $(1 + \sqrt{pq})/2 = [a_0, \overline{a_1, \dots, a_l}]$. Then.

- (i) $a_l = 2a_0 1$ and $a_k = a_{l-k}$ for $1 \le k \le l-1$, (ii) l = 2L is even and $(-1)^L = \left(\frac{p}{q}\right)$ (Legendre's symbol),
- (iii) $a_{l/2} = a_L$ is the unique odd integer in $\{\lfloor \sqrt{q/p} \rfloor 1, \lfloor \sqrt{q/p} \rfloor\}$.

Theorem 3. Let p, q be two prime integers equal to 3 (mod 4), with $3 \le p < q$. Let $l \ge 1$ be the length of the period of the periodic continued fraction expansion $\sqrt{pq} = [a_0, \overline{a_1, \dots, a_l}]$. Then,

- (i) $a_0 = \lfloor \sqrt{pq} \rfloor$, $a_l = 2a_0$ and $a_k = a_{l-k}$ for $1 \le k \le l-1$,
- (ii) l = 2L is even and $(-1)^L = \left(\frac{p}{q}\right)$ (Legendre's symbol),
- (iii) $a_{1/2} = a_L = 2\lfloor \sqrt{q/p} \rfloor$ is even.

Part of Theorem 3 was proved in [10, Corollary 1], [2, Theorem 2] and [1], but notice that point (iii) of Theorem 3 is much more precise than [1, Theorem 1.2].

2. On the continued fraction expansions of some real quadratic irrational numbers

(i). Let ω be a real quadratic irrational number. Hence $\omega = (P + \sqrt{d})/Q$ for some non-square integer d > 1, some $P \in \mathbb{Z}$ and some $O \in \mathbb{Z} \setminus \{0\}$ dividing $d - P^2$. Then ω is called *reduced* if $\omega > 1$ and $-1/\omega' > 1$, where $\omega' = (P - \sqrt{d})/Q$ is the conjugate of ω in $\mathbb{Q}(\sqrt{d})$. Hence, ω is reduced if and only if $P + \sqrt{d} > Q > \sqrt{d} - P > 0$, which implies $0 < Q < 2\sqrt{d}$, $|P| < \sqrt{d}$, $2\sqrt{d}/Q - 1 < \omega < 2\sqrt{d}/Q$ and $|\omega| \in \{|2\sqrt{d}/Q| - 1, |2\sqrt{d}/Q|\}.$

(ii). The continued fraction expansion $\omega_0 = [a_0, a_1, ...]$ of $\omega_0 = (P_0 + \sqrt{d})/Q_0$ with $P_0, Q_0 \in \mathbb{Z}$, and $Q_0 \neq 0$ dividing $d - P_0^2$, can be computed inductively by writing $\omega_k = [a_k, \ldots]$ as $\omega_k = (P_k + \sqrt{d})/Q_k$, where the $P_k, Q_k \in \mathbb{Z}$ with $Q_k \neq 0$ dividing $d - P_k^2$ are inductively computed, using $a_k = \lfloor \omega_k \rfloor$ and $\omega_k = a_k + 1/\omega_{k+1}$, by $P_{k+1} = a_k Q_k - P_k$ and $Q_{k+1} = (d - P_{k+1}^2)/Q_k = (d - P_k^2)/Q_k + 2a_k P_k - a_k^2 Q_k$. (Hence Q_1 is a non-zero rational integer, $Q_{k+1} = Q_{k-1} + 2a_k P_k - a_k^2 Q_k$ for $k \ge 1$ and the Q_k 's are non-zero rational integers, by induction on k.)

(iii). Assume that $\omega_0 = (P_0 + \sqrt{d})/Q_0$ is reduced. Using $\omega_k = a_k + 1/\omega_{k+1}$, we obtain that all the ω_k 's are reduced, by induction. Hence $0 < Q_k < 2\sqrt{d}$ and $|P_k| < \sqrt{d}$ for $k \ge 0$ and there are only finitely many pairwise distinct ω_k 's. It follows that $\omega_m = \omega_n$ for some $m > n \ge 0$, which implies $\omega_{k+l} = \omega_k$ and $a_{k+l} = a_k$ for $k \ge b$, where $l := m - n \ge 1$. Hence, the continued fraction expansion of ω_0 is *l*-periodic. In fact is purely periodic, which we write $\omega_0 = [\overline{a_0, \dots, a_{l-1}}]$, i.e. $\omega_{k+l} = \omega_k$ and $a_{k+l} = a_k$ for $k \ge 0$, where $l := m - n \ge 1$. (Notice that $\omega_{k+l} = \omega_k$ and $k \ge 1$ imply $\omega_{k-1} - a_{k-1} = 1/\omega_k = 1/\omega_{k+l} = \omega_{k+l-1} - a_{k+l-1}$, hence imply $\omega_{k+l-1} - \omega_{k-1} = a_{k+l-1} - a_{k-1} \in \mathbb{Z}$ and $\omega_{k+l-1} - \omega_{k-1} = \omega'_{k+l-1} - \omega'_{k-1} \in (-1,1) \cap \mathbb{Z}$, hence imply $\omega_{k+l-1} = \omega_{k-1}$.) The least such $l \ge 1$ is called *the length* of the purely periodic continued fraction expansion of the reduced quadratic irrational number ω_0 .

In that case $-1/\omega'_0 = [\overline{a_{l-1}, ..., a_0}]$ (e.g. see [4, XV page 311]).

(iv). If $\omega_0 = [\overline{a_0, a_1, \dots, a_{l-1}}] \in \mathbb{Q}(\sqrt{d})$ is reduced, using $\omega_k = a_k + 1/\omega_{k+1}$ we obtain $\mathbb{M}_k :=$ $\mathbb{Z} + \mathbb{Z}\omega_k = \mathbb{Z} + \mathbb{Z}\omega_{k+1}^{-1} = \omega_{k+1}^{-1}\mathbb{M}_{k+1} \text{ and } \mathbb{M}_0 = \omega_1^{-1}\mathbb{M}_1 = \omega_1^{-1}\omega_2^{-1}\mathbb{M}_2 = \cdots = \varepsilon^{-1}\mathbb{M}_l = \varepsilon^{-1}\mathbb{M}_0, \text{ where } \varepsilon^{-1}\mathbb{M}_l = \varepsilon^{-1}\mathbb{M}_l = \varepsilon^{-1}\mathbb{M}_l$ $\varepsilon = \omega_1 \omega_2 \dots \omega_l = \omega_0 \omega_1 \dots \omega_{l-1}$. Therefore, ε is a unit of norm $N(\varepsilon) = \prod_{k=0}^{l-1} (\omega_k \omega'_k) = (-1)^l$ of the \mathbb{Z} -module $\mathbb{M}_0 = \mathbb{Z} + \mathbb{Z}\omega_0 \subseteq \mathbb{Q}(\sqrt{d})$ (as $\omega_k > 1$ and $-1/\omega'_k > 1$).

(v). See [4, p. 305–322], [5, Chapter 10] and [9] for more information on continued fractions.

3. Proof of Theorem 2

Let $d \equiv 1 \pmod{4}$ be a non-square integer, with $d \ge 5$. Let $g' \ge 1$ be the unique odd integer in $\lfloor \sqrt{d} - 2, \sqrt{d} \rfloor$. Then $\omega_0 = (P_0 + \sqrt{d})/Q_0 = (g' + \sqrt{d})/2$ is reduced. Its continued fraction expansion $\omega_0 = \lfloor g', a_1, \dots, a_{l-1} \rfloor$ is purely periodic and $\omega_1 = \lfloor a_1, \dots, a_{l-1}, g' \rfloor = 1/(\omega_0 - g') = 2/(\sqrt{d} - g') = -1/\omega'_0 = \lfloor a_{l-1}, \dots, a_1, g' \rfloor$. Hence, $a_k = a_{l-k}$ for $1 \le k \le l-1$. Using $Q_0 = 2$, the oddness of $P_0 = g'$, the evenness of $Q_1 = (d - P_0^2)//Q_0 = (d - g'^2)/2$ and the identities $Q_{k+1} = Q_{k-1} + 2a_kP_k - a_k^2Q_k$ for $k \ge 1$ and $P_{k+1} = a_kQ_k - P_k$ for $k \ge 0$, we obtain that the Q_k 's are even and the P_k 's are odd for $k \ge 0$. Consequently, if d is square-free then \mathbb{M}_0 is equal to the ring of algebraic integers $\mathbb{Z}_{\mathbb{K}}$ of the real quadratic number field $\mathbb{K} = \mathbb{Q}(\sqrt{d})$ and the \mathbb{Z} -modules

$$\mathscr{I}_k := (Q_k/2)\mathbb{M}_k = (Q_k/2)\mathbb{Z} + \frac{P_k + \sqrt{d}}{2}\mathbb{Z} = (Q_k/2)\omega_1 \dots \omega_k \mathbb{M}_0 = \alpha_k \mathbb{Z}_{\mathbb{M}_0}$$

are primitive, principal, integral ideals of norms $Q_k/2$ of the real quadratic number field $\mathbb{Q}(\sqrt{d})$, where $\alpha_k = (Q_k/2)\omega_1...\omega_k \in \mathscr{I}_k \subseteq \mathbb{Z}_{\mathbb{K}}$ is an algebraic integer of norm $(-1)^k(Q_k/2)$ (recall that $\omega_k > 1$ and $-1/\omega'_k > 1$ for $k \ge 0$). Hence, \mathscr{I}_k is principal in the narrow sense if and only if k is even.

Now, assume that *d* is divisible by a prime $p \equiv 3 \pmod{4}$. Since the congruence $x^2 - dy^2 \equiv -4 \pmod{p}$ has no solution in rational integers, any algebraic unit of $\mathbb{Q}(\sqrt{d})$ has norm +1. The algebraic unit $\varepsilon = \omega_0 \omega_1 \dots \omega_{l-1} := \mathbb{Z} + \mathbb{Z} \omega_0$ being of norm $(-1)^l$, l = 2L is even, $\omega_0 = [\overline{g'}, a_1, \dots, a_{L-1}, a_L, a_{L-1}, \dots, a_1]$, $\omega_L = [\overline{a_L}, \dots, a_1, g', a_1, \dots, a_{L-1}]$ and $\omega_{L+1} = [\overline{a_{L-1}}, \dots, a_1, g', a_1, \dots, a_L] = -1/\omega'_L$. Hence, $-1 = \omega_{L+1}\omega'_L = \frac{P_{L+1} + \sqrt{d}}{Q_{L+1}} \frac{P_L - \sqrt{d}}{Q_L}$, which implies $P_{L+1} = P_L$. Since $P_{L+1} = a_L Q_L - P_L$, we have $P_{L+1} = a_L (Q_L/2)$ and a_L is odd. Moreover,

$$d - P_{L+1}^2 = d - a_L^2 (Q_L/2)^2 = 4(Q_L/2)(Q_{L+1}/2).$$

Hence, $Q_L/2$ divides *d*. Finally, $\omega_L = (P_L + \sqrt{d})/Q_L$ being reduced, we have $1 < Q_L < 2\sqrt{d}$ and $a_L = \lfloor \omega_L \rfloor \in \{\lfloor 2\sqrt{d}/Q_L \rfloor, \lfloor 2\sqrt{d}/Q_L \rfloor - 1\}$, and we obtain the following Proposition and Corollary from which Theorem 2 follows:

Proposition 4. Let $d \equiv 1 \pmod{4}$ be a square-free integer, with $d \ge 5$ such that at least one prime $p \equiv 3 \pmod{4}$ divides d. Let $g' \ge 1$ be the unique odd integer in the interval $[\sqrt{d} - 2, \sqrt{d})$. Set $\omega_0 = (g' + \sqrt{d})/2$. $l \ge 1$ be the length of the period of the purely periodic continued fraction expansion $\omega_0 = [g', a_1, \dots, a_{l-1}]$. Then

- (i) $a_k = a_{l-k}$ for $1 \le k \le l-1$;
- (ii) l = 2L is even;
- (iii) $Q_L/2$ divides d and $1 < Q_L/2 < \sqrt{d}$;
- (iv) a_L is odd and $a_L = \lfloor \omega_L \rfloor \in \{\lfloor 2\sqrt{d}/Q_L \rfloor, \lfloor 2\sqrt{d}/Q_L \rfloor 1\};$
- (v) The integral ideal $\mathscr{I}_L = (Q_L/2)\mathbb{Z} + \frac{\overline{P_L} + \sqrt{d}}{2}\mathbb{Z}$ of norm $Q_L/2$ is principal and L is even if and only \mathscr{I}_L is principal in the narrow sense.

Corollary 5. Let p, q be two prime integers equal to 3 (mod 4), with $3 \le p < q$. Take $d = pq \equiv 1$ (mod 4). Then $Q_L/2 = p$. Hence, \mathscr{I}_L is the prime ramified ideal \mathscr{P} of norm p of the ring of algebraic integers of the real quadratic field $\mathbb{Q}(\sqrt{d})$ and a_L is the unique odd integer in $\{\lfloor \sqrt{q/p} \rfloor, \lfloor \sqrt{q/p} \rfloor - 1\}$. Moreover, \mathscr{P} is principal in the narrow sense if and only if $\left\lfloor \frac{p}{q} \right\rfloor = +1$.

Proof. Let \mathscr{P} and \mathscr{Q} be the prime ideals above p and q, respectively. Hence $\mathscr{P} = \mathscr{I} = (\alpha)$ is principal and $\mathscr{P}\mathscr{Q} = (\sqrt{d})$ is also clearly principal. Since $\sqrt{d} \in \mathscr{P}\mathscr{Q} \subseteq \mathscr{P} = (\alpha)$, we have $\sqrt{d} = \alpha\beta$ for some algebraic integer β . Hence $\mathscr{Q} = (\beta)$ is also principal. Since $N(\alpha)N(\beta) = N(\alpha\beta) = N(\sqrt{d}) = -d < 0$, only one of the two principal ideals \mathscr{P} or \mathscr{Q} is principal in the narrow sense. If $\mathscr{P} = (\alpha)$ is principal in the narrow sense, with $\alpha = (x + y\sqrt{d})/2$ such that $p = N(\alpha) = (x^2 - pqy^2)/4$, then p divides x = pX, $4 = pX^2 - qy^2$ and $\left(\frac{p}{q}\right) = +1$. If \mathscr{P} is not principal in the narrow sense, then $\mathscr{Q} = (\beta)$ is principal in the narrow sense, with $\beta = (x + y\sqrt{d})/2$ such that $q = N(\beta) = (x^2 - pqy^2)/4$. Hence, q divides x = qX, $4 = qX^2 - py^2$ and $\left(\frac{-p}{q}\right) = -\left(\frac{p}{q}\right) = +1$.

4. Proof of Theorem 3

Let $d \equiv 1 \pmod{4}$ be a non-square integer, with $d \ge 5$. Set $g = \lfloor \sqrt{d} \rfloor$. Then $\omega_0 = (P_0 + \sqrt{d})/Q_0 = g + \sqrt{d}$ is reduced. Since $\mathbb{M}_0 = \mathbb{Z}[\omega_0] = \mathbb{Z}[\sqrt{d}]$ is not the ring of algebraic integers of $\mathbb{Q}(\sqrt{d})$, the proof of Theorem 3 is a little more tricky than the one of Theorem 2. Here again, the continued fraction expansion $\omega_0 = [\overline{2g}, a_1, \dots, a_{l-1}]$ is purely periodic and $\omega_1 = [\overline{a_1, \dots, a_{l-1}, 2g}] = 1/(\omega_0 - 2g) = 1/(\sqrt{d} - g) = -1/\omega'_0 = [\overline{a_{l-1}, \dots, a_{1}, 2g}]$. Hence, $a_k = a_{l-k}$ for $1 \le k \le l-1$. Suppose that we had $Q_n \equiv 2 \pmod{4}$ for some $n \ge 0$. Then P_{n+1} would be odd and Q_{n+1} would be even, as $Q_n Q_{n+1} = d - P_{n+1}^2$. Therefore, all the Q_k 's would be even for $k \ge n$, as $Q_{k+1} = Q_{k-1} + 2a_k P_k - a_k^2 Q_k$ for $k \ge 1$, hence for $k \ge 0$, by pure periodicity of the continued fraction expansion of ω_0 . Since Q_0 is odd, we deduce that $Q_k \ne 2 \pmod{4}$ for $k \ge 0$.

Now, assume that *d* is divisible by a prime $p \equiv 3 \pmod{4}$. As above, l = 2L is even and

$$2P_{L+1} = a_L Q_L$$
, and $4d - a_L^2 Q_L^2 = 4Q_L Q_{L+1}$.

Hence, Q_L divides 4*d* and 4 does not divide Q_L and we obtain the following Proposition from which Theorem 3 follows, by Corollary 5:

Proposition 6. Let $d \equiv 1 \pmod{4}$ be a square-free integer, with $d \ge 5$ such that at least one prime $p \equiv 3 \pmod{4}$ divides *d*.

Set $\omega_0 = g + \sqrt{d}$, where $g = \lfloor \sqrt{d} \rfloor$. Let $l \ge 1$ be the length of the period of the purely periodic continued fraction expansion $\omega_0 = [\overline{2g, a_1, \dots, a_{l-1}}]$. Then

- (i) $a_k = a_{l-k}$ for $1 \le k \le l-1$;
- (ii) l = 2L is even;
- (iii) Q_L divides 2d and $1 < Q_L < 2\sqrt{d}$;
- (iv) $a_L = \lfloor \omega_L \rfloor \in \{\lfloor 2\sqrt{d}/Q_L \rfloor, \lfloor 2\sqrt{d}/Q_L \rfloor 1\};$
- (v) if d = pq, where p, q are prime numbers equal to 3 modulo 4 with p < q, then $a_L = 2\lfloor \sqrt{q/p} \rfloor$, $Q_L = p$, the prime ideal \mathcal{P} of norm p of the ring of algebraic integers of the real quadratic field $\mathbb{Q}(\sqrt{d})$ is principal and L is even if and only if \mathcal{P} is principal in the narrow sense.

Proof. It remains to prove point (*v*). Since Q_L divides 2pq, $Q_L \neq 2 \pmod{4}$ and $Q_L < 2\sqrt{pq}$, we have $Q_L \in \{p, q\}$. Since $Q_L = q$ would yield the contradiction $4qQ_{L+1} = 4d - a_L^2Q_L^2 \leq 4pq - 4q^2 < 0$, we have $Q_L = p$. Hence, a_L is even, as $2P_L = a_LQ_L$, and $a_L \in \{\lfloor 2x \rfloor, \lfloor 2x \rfloor - 1\}$, where $x = \sqrt{d}/Q_L$. Since $\lfloor 2x \rfloor \in \{2\lfloor x \rfloor, 2\lfloor x \rfloor + 1\}$ for *x* real, we have that a_L is even and $a_L \in \{2\lfloor x \rfloor - 1, 2\lfloor x \rfloor, 2\lfloor x \rfloor + 1\}$. Therefore, $a_L = 2\lfloor x \rfloor = 2\lfloor \sqrt{d}/Q_L \rfloor = 2\lfloor \sqrt{q/p} \rfloor$.

Finally, set $\beta_L = Q_L \omega_1 \dots \omega_L$. Then

$$\mathscr{J}_L := \beta_L \mathbb{Z}[\sqrt{d}] = \beta_L \mathbb{M}_0 = Q_L \omega_1 \dots \omega_L \mathbb{M}_0 = Q_L \mathbb{M}_L = Q_L \mathbb{Z} + (P_L + \sqrt{d}) \mathbb{Z} \subseteq \mathbb{Z}[\sqrt{d}].$$

Hence, $\beta_L = x + y\sqrt{d} \in \mathbb{Z}[\sqrt{d}]$ and $\{Q_L, P_L + \sqrt{d}\}$ and $\{\beta_L, \beta_L\sqrt{d}\} = \{x + y\sqrt{d}, dy + x\sqrt{d}\}$ are two \mathbb{Z} -bases of \mathscr{J}_L and the change of basis matrix

$$A = \begin{pmatrix} \frac{x - yP_L}{Q_L} & \frac{dy - xP_L}{Q_L} \\ y & x \end{pmatrix}$$

is in $M_2(\mathbb{Z})$ and of determinant ± 1 , i.e. $\pm 1 = (x^2 - dy^2)/Q_L = N(\beta_L)/p$. Therefore, $N(\beta_L) = (-1)^L p$, with $\beta_L \in \mathbb{Z}[\sqrt{d}]$. It follows that the prime ideal \mathscr{P} of the ring of algebraic integers $\mathbb{Z}_{\mathbb{K}} = \mathbb{Z}[(1 + \sqrt{d})/2]$ of $\mathbb{K} = \mathbb{Q}(\sqrt{d})$ lying above p is principal and equal to (β_L) and that \mathscr{P} it is principal in the narrow sense if and only if L is even.

References

- [1] S. Das, D. Chakraborty, A. Saikia, "On the period of the continued fraction of \sqrt{pq} ", Acta Arith. **196** (2020), no. 3, p. 291-302.
- [2] C. Friesen, "Legendre symbols and continued fractions", Acta Arith. 59 (1991), no. 4, p. 365-379.
- [3] E. P. Golubeva, "Quadratic irrationals with fixed period length in the continued fraction expansion", J. Math. Sci., New York **70** (1994), no. 6, p. 2059-2076.
- [4] H. Hasse, Vorlesungen über Zahlentheorie, Grundlehren der Mathematischen Wissenschaften, vol. 59, Springer, 1964.
- [5] L. K. Hua, Introduction to number theory, Springer, 1982, translated from the Chinese by Peter Shiu.
- [6] S. R. Louboutin, "Continued fractions and real quadratic fields", J. Number Theory 30 (1988), no. 2, p. 167-176.
- [7] _____, "Groupes des classes d'idéaux triviaux", Acta Arith. 54 (1989), no. 1, p. 61-74.
- [8] —, "On the continued fraction expansions of \sqrt{p} and $\sqrt{2p}$ for primes $p \equiv 3 \pmod{4}$ ", in *Class groups of Number fields and related topics*, Springer, 2020, p. 175-178.
- [9] O. Perron, Die Lehre von den Kettenbrüchen. Band I. 3. erweiterte und verbesserte Aufl., Teubner, 1954.
- [10] A. J. van der Poorten, P. G. Walsh, "A note on Jacobi symbols and continued fractions", *Am. Math. Mon.* **106** (1999), no. 1, p. 52-56.