Stéphane R. Louboutin

On the continued fraction expansions of $(1 + \sqrt{pq})/2$ and \sqrt{pq}

Volume 359, issue 9 (2021), p. 1201-1205

Published online: 25 November 2021

https://doi.org/10.5802/crmath.266

This article is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
Number theory / Théorie des nombres

On the continued fraction expansions of \((1 + \sqrt{pq})/2\) and \(\sqrt{pq}\)

Stéphane R. Louboutina

a Aix Marseille Université, CNRS, Centrale Marseille, I2M, Marseille, France
E-mail: stephane.louboutin@univ-amu.fr

Abstract. The evenness and the values modulo 4 of the lengths of the periods of the continued fraction expansions of \(\sqrt{p}\) and \(\sqrt{2p}\) for \(p \equiv 3 \pmod{4}\) a prime are known. Here we prove similar results for the continued fraction expansion of \(\sqrt{pq}\), where \(p, q \equiv 3 \pmod{4}\) are distinct primes.

Manuscript received 21st June 2021, accepted 27th August 2021.

1. Introduction

Let \(\alpha\) be a real quadratic irrational number. Its continued fraction expansion \(\alpha = [a_0, a_1, a_2, \ldots]\) is periodic, i.e. there exists \(k \geq 0\) and \(l \geq 1\) such that \(a_{i+k} = a_i\) for \(i \geq k\). In that case we write \(\alpha = [a_0, \ldots, a_{k-1}, a_k, \ldots, a_{k+l-1}]\). The least such \(l\) is called the length of the period of the periodic continued fraction expansion of \(\alpha\). The evenness of the length of the period of the continued fraction expansion of \(\sqrt{p}\) for \(p \equiv 3 \pmod{4}\) a prime is well known. In [8] we determined its value modulo 4 and gave a similar result for \(\sqrt{2p}\):

Theorem 1. Take \(d = p\) or \(d = 2p\), where \(p \equiv 3 \pmod{4}\) a prime integer. Let \(l \geq 1\) be the length of the period of the periodic continued fraction expansion \(\sqrt{d} = [a_0, a_1, \ldots, a_l]\). Then,

(i) \(a_0 = \lfloor \sqrt{d} \rfloor, a_l = 2a_0\) and \(a_k = a_{l-k}\) for \(1 \leq k \leq l-1\),
(ii) \(l = 2L\) is even and \(L\) is even if and only if \(p \equiv 7 \pmod{8}\),
(iii) \(a_{l/2} = a_L\) is the integer in \([a_0-1, a_0]\) of the same parity as \(d\).

This behavior in the case of \(d = p\) had already been proved in [3, Corollary 2 p. 2071]. Our proof was different and applied both to \(d = p\) and \(d = 2p\). It was based on the arithmetic of quadratic number fields and their ideal class groups in the narrow sense (as in [6] and [7]). Let \(\mathcal{O}\) be an integral ideal of the ring of algebraic integers \(\mathbb{Z}_K\) of a real quadratic number field \(K\). Recall that \(\mathcal{O}\) is principal if and only if there exists \(\alpha \in \mathbb{Z}_K\) such that \(\mathcal{O} = \alpha\mathbb{Z}_K\), whereas \(\mathcal{O}\) is principal in the narrow sense if there exists a totally positive element \(\alpha \in \mathbb{Z}_K\) such that \(\mathcal{O} = \alpha\mathbb{Z}_K\). Here, bearing on a similar approach, we prove:
Theorem 2. Let \(p, q \) be two prime integers equal to 3 (mod 4), with \(3 \leq p < q \). Let \(l \geq 1 \) be the length of the period of the periodic continued fraction expansion \((1 + \sqrt{pq})/2 = [a_0, a_1, \ldots, a_l] \). Then,

(i) \(a_1 = 2a_0 - 1 \) and \(a_k = a_{l-k} \) for \(1 \leq k \leq l - 1 \),
(ii) \(l = 2l \) is even and \((−1)^{l} = \left(\frac{p}{q} \right) \) (Legendre’s symbol),
(iii) \(a_{l/2} = a_{l} \) is the unique odd integer in \([\sqrt{q/p} - 1, \sqrt{q/p}]\).

Theorem 3. Let \(p, q \) be two prime integers equal to 3 (mod 4), with \(3 \leq p < q \). Let \(l \geq 1 \) be the length of the period of the periodic continued fraction expansion \(\sqrt{pq} = [a_0, a_1, \ldots, a_l] \). Then,

(i) \(a_0 = [\sqrt{pq}] \), \(a_1 = 2a_0 \) and \(a_k = a_{l-k} \) for \(1 \leq k \leq l - 1 \),
(ii) \(l = 2L \) is even and \((−1)^{l} = \left(\frac{p}{q} \right) \) (Legendre’s symbol),
(iii) \(a_{l/2} = a_{l} = 2[\sqrt{q/p}] \) is even.

Part of Theorem 3 was proved in [10, Corollary 1], [2, Theorem 2] and [1], but notice that point (iii) of Theorem 3 is much more precise than [1, Theorem 1.2].

2. On the continued fraction expansions of some real quadratic irrational numbers

(i) Let \(\omega \) be a real quadratic irrational number. Hence \(\omega = (P + \sqrt{d})/Q \) for some non-square integer \(d > 1 \), some \(P \in \mathbb{Z} \) and some \(Q \in \mathbb{Z} \setminus \{0\} \) dividing \(d - P^2 \). Then \(\omega \) is called reduced if \(\omega > 1 \) and \(-1/\omega' > 1 \), where \(\omega' = (P - \sqrt{d})/Q \) is the conjugate of \(\omega \) in \(\mathbb{Q}(\sqrt{d}) \). Hence, \(\omega \) is reduced if and only if \(P + \sqrt{d} > Q > \sqrt{d} - P > 0 \), which implies \(0 < Q < 2\sqrt{d}, |P| < 2\sqrt{d} \) and \(\{|\omega| \in \{2\sqrt{d}/Q - 1, 2\sqrt{d}/Q\} \}. \)

(ii) The continued fraction expansion \(\omega_0 = [a_0, a_1, \ldots] \) of \(\omega_0 = (P_0 + \sqrt{d})/Q_0 \) with \(P_0, Q_0 \in \mathbb{Z} \), and \(Q_0 \neq 0 \) dividing \(d - P_0^2 \), can be computed inductively by writing \(\omega_k = [a_k, \ldots] \) as \(\omega_k = (P_k + \sqrt{d})/Q_k \), where the \(P_k, Q_k \in \mathbb{Z} \) with \(Q_0 \neq 0 \) dividing \(d - P_k^2 \) are inductively computed, using \(a_k = [\omega_k] \) and \(\omega_k = a_k + 1/\omega_{k+1} \), by \(P_{k+1} = a_k Q_k - P_k \) and \(Q_{k+1} = (d - P_k^2)/Q_k = (d - P_k^2)/Q_k + 2a_k P_k - a_k^2 Q_k \). (Hence \(Q_0 \) is a non-zero rational integer, \(Q_{k+1} = Q_{k-1} + 2a_k P_k - a_k^2 Q_k \) for \(k \geq 1 \) and the \(Q_k \)'s are non-zero rational integers, by induction on \(k \).)

(iii) Assume that \(\omega_0 = (P_0 + \sqrt{d})/Q_0 \) is reduced. Using \(\omega_k = a_k + 1/\omega_{k+1} \), we obtain that all the \(\omega_k \)'s are reduced, by induction. Hence \(0 < Q_k < 2\sqrt{d} \) and \(|P_k| < \sqrt{d} \) for \(k \geq 0 \) and there are only finitely many pairwise distinct \(\omega_k \)'s. It follows that \(\omega_m = \omega_n \) for some \(m > n \geq 0 \), which implies \(\omega_{k+l} = \omega_k \) and \(a_{k+l} = a_k \) for \(k \geq b \), where \(l := m - n \geq 1 \). Hence, the continued fraction expansion of \(\omega_0 \) is \(l \)-periodic. In fact is purely periodic, which we write \(\omega_0 = [a_0, \ldots, a_{-1}] \), i.e. \(\omega_{k+l} = \omega_k \) and \(a_{k+l} = a_k \) for \(k \geq 0 \), where \(l := m - n \geq 1 \). (Notice that \(\omega_{k+l} = \omega_k \) and \(k \geq 1 \) imply \(\omega_{k-1} - a_{k-1} = 1/\omega_k = 1/\omega_{k+l} = \omega_{k+1} - a_{k+1} \), hence imply \(\omega_{k+l-1} - a_{k+l-1} = a_k - a_k = a_{k-1} \) for \(a \in \mathbb{Z} \) and \(\omega_{k+l-1} - \omega_{k-1} = \omega_{k+l-1} - \omega_{k-1} \in (-1, 1) \cap \mathbb{Z} \), hence imply \(\omega_{k+l-1} = \omega_{k-1} \).) The least such \(l \geq 1 \) is called the length of the purely periodic continued fraction expansion of the reduced quadratic number \(\omega_0 \).

In that case \(-1/\omega_0' = [a_{-1}, \ldots, a_0] \) (e.g. see [4, XV page 311]).

(iv) If \(\omega_0 = [a_0, a_1, \ldots, a_{-1}] \in \mathbb{Q}(\sqrt{d}) \) is reduced, using \(\omega_k = a_k + 1/\omega_{k+1} \) we obtain \(\mathbb{M}_k := Z + Z \omega_k = Z + Z \omega_{k+1} = \omega_{k+1} \mathbb{M}_{k+1} \) and \(\mathbb{M}_0 = \omega_1^{-1} \mathbb{M}_1 = \omega_1^{-1} \omega_2^{-1} \mathbb{M}_2 = \cdots = \epsilon^{-1} \mathbb{M}_l = \epsilon^{-1} \mathbb{M}_0 \), where \(\epsilon = \omega_1 \omega_2 \cdots \omega_l = \omega_0 \omega_1 \cdots \omega_{l-1} \). Therefore, \(\epsilon \) is a unit of norm \(N(\epsilon) = |\epsilon|_{l+1} (\omega_k \omega_k') = (-1)^l \) of the \(\mathbb{Z} \)-module \(\mathbb{M}_0 = Z + Z \omega_0 \subseteq \mathbb{Q}(\sqrt{d}) \) (as \(\omega_k > 1 \) and \(-1/\omega_k' > 1 \)).

(v) See [4, p. 305–322], [5, Chapter 10] and [9] for more information on continued fractions.
3. Proof of Theorem 2

Let $d \equiv 1 \pmod{4}$ be a non-square integer, with $d \geq 5$. Let $g' \geq 1$ be the unique odd integer in $[\sqrt{d} - 2, \sqrt{d}]$. Then $\omega_0 = (P_0 + \sqrt{d})/Q_0 = (g' + \sqrt{d})/2$ is reduced. Its continued fraction expansion $\omega_0 = [g', a_1, \ldots, a_{l-1}]$ is purely periodic and $\omega_1 = [a_1, \ldots, a_{l-1}, g'] = 1/((\omega_0 - g') = 2/((\sqrt{d} - g') = -1/\omega_0' = [a_1, \ldots, a_1, g']$. Hence, $a_k = a_{l-k}$ for $1 \leq k \leq l - 1$. Using $Q_0 = 2$, the oddness of $P_0 = g'$, the evenness of $Q_1 = (d - P_0^2)/Q_0 = (d - g'^2)/2$ and the identities $Q_{k+1} = Q_{k-1} + 2a_kP_k - a'^2_kQ_k$ for $k \geq 1$ and $P_{k+1} = a_kQ_k - P_k$ for $k \geq 0$, we obtain that the Q_k’s are even and the P_k’s are odd for $k \geq 0$. Consequently, if d is square-free then M_0 is equal to the ring of algebraic integers \mathbb{Z}_k of the real quadratic number field $\mathbb{K} = \mathbb{Q}(\sqrt{d})$ and the \mathbb{Z}-modules

$$\mathcal{I}_k := (Q_k/2)M_k = (Q_k/2)\mathbb{Z} + \frac{P_k + \sqrt{d}}{2} \mathbb{Z} = (Q_k/2)\omega_1 \ldots \omega_k M_0 = a_k \mathbb{Z}_k$$

are primitive, principal, integral ideals of norms $Q_k/2$ of the real quadratic number field $\mathbb{Q}(\sqrt{d})$, where $a_k = (Q_k/2)\omega_1 \ldots \omega_k \in \mathcal{I}_k \subseteq \mathbb{Z}_k$ is an algebraic integer of norm $(-1)^k(Q_k/2)$ (recall that $\omega_k > 1$ and $-1/\omega_k > 1$ for $k \geq 0$). Hence, \mathcal{I}_k is principal in the narrow sense if and only if k is even.

Now, assume that d is divisible by a prime $p \equiv 3 \pmod{4}$. Since the congruence $x^2 - d'y^2 \equiv -4 \pmod{p}$ has no solution in rational integers, any algebraic unit of $\mathbb{Q}(\sqrt{d})$ has norm 1. The algebraic unit $\epsilon = \omega_0 \omega_1 \ldots \omega_{l-1} := Z + \mathbb{Z}w_0$ being of norm $(-1)^l$, $l = 2$ is even, $\omega_0 = [g', a_1, \ldots, a_{l-1}, a_{l-1}, a_{l-1}, a_1]$, $\omega_1 = [a_1, \ldots, a_1, g', a_1, \ldots, a_{l-1}]$ and $\omega_{l+1} = [a_{l-1}, \ldots, a_1, g', a_1, \ldots, a_1] = -1/\omega_{l+1}$. Hence, $-1 = \omega_{l+1}\omega_{l+1}' = \frac{P_{l+1} + \sqrt{d} \epsilon}{Q_{l+1}} - \frac{Q_{l+1}}{Q_{l+1}}$, which implies $P_{l+1} = P_l$. Since $P_{l+1} = a_lQ_l - P_l$, we have $P_{l+1} = a_l(Q_l/2)$ and a_l is odd. Moreover, $d - P_{l+1}^2 = d - a^2_l(Q_l/2)^2 = 4(Q_l/2)(Q_{l+1}/2)$.

Hence, $Q_l/2$ divides d. Finally, $\omega_l = (P_l + \sqrt{d})/Q_l$ being reduced, we have $1 < Q_l < 2\sqrt{d}$ and $a_l = [\omega_l] \in \{[2\sqrt{d}/Q_l], [2\sqrt{d}/Q_l] - 1\}$, and we obtain the following Proposition and Corollary from which Theorem 2 follows:

Proposition 4. Let $d \equiv 1 \pmod{4}$ be a square-free integer, with $d \geq 5$ such that at least one prime $p \equiv 3 \pmod{4}$ divides d. Let $g' \geq 1$ be the unique odd integer in the interval $[\sqrt{d} - 2, \sqrt{d}]$. Set $\omega_0 = (g' + \sqrt{d})/2$, $l \geq 1$ be the length of the period of the purely periodic continued fraction expansion $\omega_0 = [g', a_1, \ldots, a_{l-1}, a_1]$. Then

(i) $a_k = a_{l-k}$ for $1 \leq k \leq l - 1$;

(ii) $l = 2l$ is even;

(iii) $Q_l/2$ divides d and $1 < Q_l/2 < \sqrt{d}$;

(iv) ω_1 is odd and $a_l = [\omega_l] \in \{[2\sqrt{d}/Q_l], [2\sqrt{d}/Q_l] - 1\}$;

(v) The integral ideal $\mathcal{I}_l = (Q_l/2)\mathbb{Z} + \frac{P_l + \sqrt{d}}{2} \mathbb{Z}$ of norm $Q_l/2$ is principal and l is even if and only if l is principal in the narrow sense.

Corollary 5. Let p, q be two prime numbers equal to 3 (mod 4), with $3 \leq p < q$. Take $d = pq \equiv 1 \pmod{4}$. Then $Q_l/2 = p$. Hence, \mathcal{I}_l is the prime ramified ideal \mathcal{P} of norm p of the ring of algebraic integers of the real quadratic field $\mathbb{Q}(\sqrt{d})$ and a_l is the unique odd integer in $\{[\sqrt{d}/p], [\sqrt{d}/p] - 1\}$. Moreover, \mathcal{P} is principal in the narrow sense if and only if $\left(\frac{p}{q}\right) = +1$.

Proof. Let \mathcal{P} and \mathcal{Q} be the prime ideals above p and q, respectively. Hence $\mathcal{I} = \mathcal{I} = (\alpha)$ is principal and $\mathcal{P} \mathcal{Q} = (\sqrt{d})$ is also clearly principal. Since $\sqrt{d} \in \mathcal{P} \mathcal{Q} \subseteq \mathcal{P} = (\alpha)$, we have $\sqrt{d} = \alpha \beta$ for some algebraic integer β. Hence $\mathcal{Q} = (\beta)$ is also principal. Since $N(\alpha)N(\beta) = N(\alpha \beta) = N(\sqrt{d}) = -d < 0$, only one of the two prime ideals \mathcal{P} or \mathcal{Q} is principal in the narrow sense. If $\mathcal{P} = (\alpha)$ is principal in the narrow sense, with $\alpha = (x + y\sqrt{d})/2$ such that $p = N(\alpha) = (x^2 - pqy^2)/4$, then p divides $x = pX, 4 = pX^2 - qy^2$ and $\left(\frac{p}{q}\right) = +1$. If \mathcal{P} is not principal in the narrow sense, then $\mathcal{Q} = (\beta)$ is principal in the narrow sense, with $\beta = (x + y\sqrt{d})/2$ such that $q = N(\beta) = (x^2 - pqy^2)/4$. Hence, q divides $x = qX, 4 = qX^2 - py^2$ and $\left(\frac{p}{q}\right) = -\left(\frac{p}{q}\right) = +1$. □
4. Proof of Theorem 3

Let $d \equiv 1 \pmod{4}$ be a non-square integer, with $d \geq 5$. Set $g = \lfloor \sqrt{d} \rfloor$. Then $\omega_0 = (P_0 + \sqrt{d})/Q_0 = g + \sqrt{d}$ is reduced. Since $M_0 = \mathbb{Z}[^{\omega_0}] = \mathbb{Z}[\sqrt{d}]$ is not the ring of algebraic integers of $\mathbb{Q}(\sqrt{d})$, the proof of Theorem 3 is a little more tricky than the one of Theorem 2. Here again, the continued fraction expansion of $\omega_0 = [2g, a_1, \ldots, a_{l-1}]$ is purely periodic and $\omega_1 = [a_1, \ldots, a_{l-1}, 2g] = 1/(\omega_0 - 2g) = 1/(\sqrt{d} - g) = -1/\omega_0 = [a_{l-1}, \ldots, a_1, 2g]$. Hence, $a_k = a_{l-k}$ for $1 \leq k \leq l - 1$. Suppose that we had $Q_n \equiv 2 \pmod{4}$ for some $n \geq 0$. Then P_{n+1} would be odd and Q_{n+1} would be even, as $Q_n Q_{n+1} = d - P_{n+1}^2$. Therefore, all the Q_k’s would be even for $k \geq n$, as $Q_{k+1} = Q_{k-1} + 2a_k P_k - a_k^2 Q_k$ for $k \geq 1$, hence for $k \geq 0$, by pure periodicity of the continued fraction expansion of ω_0. Since Q_0 is odd, we deduce that $Q_k \not\equiv 2 \pmod{4}$ for $k \geq 0$.

Now, assume that d is divisible by a prime $p \equiv 3 \pmod{4}$. As above, $l = 2L$ is even and

$$2P_{L+1} = a_l Q_L, \quad 4d - a_L^2 Q_L^2 = 4Q_L Q_{L+1}.$$

Hence, Q_L divides $4d$ and 4 does not divide Q_L and we obtain the following Proposition from which Theorem 3 follows, by Corollary 5:

Proposition 6. Let $d \equiv 1 \pmod{4}$ be a square-free integer, with $d \geq 5$ such that at least one prime $p \equiv 3 \pmod{4}$ divides d.

Set $\omega_0 = g + \sqrt{d}$, where $g = \lfloor \sqrt{d} \rfloor$. Let $l \geq 1$ be the length of the period of the purely periodic continued fraction expansion $\omega_0 = [2g, a_1, \ldots, a_{l-1}]$. Then

(i) $a_k = a_{l-k}$ for $1 \leq k \leq l - 1$;

(ii) $l = 2L$ is even;

(iii) Q_L divides $2d$ and $1 < Q_L < 2\sqrt{d}$;

(iv) $a_L = [\omega_L] \in \{|2\sqrt{d}/Q_L|, |2\sqrt{d}/Q_L| - 1\}$;

(v) if $d = pq$, where p, q are prime numbers equal to 3 modulo 4 with $p < q$, then $a_L = 2\lfloor \sqrt{q/p} \rfloor$, $Q_L = p$, the prime ideal \mathcal{P} of norm p of the ring of algebraic integers of the real quadratic field $\mathbb{Q}(\sqrt{d})$ is principal and L is even if and only if \mathcal{P} is principal in the narrow sense.

Proof. It remains to prove point (v). Since Q_L divides $2pq$, $Q_L \not\equiv 2 \pmod{4}$ and $Q_L < 2\sqrt{p}q$, we have $Q_L \in \{p, q\}$. Since $Q_L = q$ would yield the contradiction $4qQ_{L+1} = 4d - a_L^2 Q_L^2 \leq 4pq - 4q^2 < 0$, we have $Q_L = p$. Hence, a_L is even, as $2P_L = a_l Q_L$, and $a_L \in \{2x, 2|x| - 1\}$, where $x = \sqrt{d}/Q_L$. Since $\{2x\} \in \{2[x], 2[x] + 1\}$ for x real, we have that a_L is even and $a_L \in \{2[x] - 1, 2[x], 2[x] + 1\}$. Therefore, $a_L = 2[x] = 2\lfloor \sqrt{d}/Q_L \rfloor = 2\lfloor \sqrt{q/p} \rfloor$.

Finally, set $\beta_L = Q_L \omega_1 \ldots \omega_L$. Then

$$\mathcal{J}_L := \beta_L \mathbb{Z}[\sqrt{d}] = \beta_L M_0 \mathbb{Z} = Q_L \omega_1 \ldots \omega_L M_0 = Q_L M_0 = Q_L Z + (P_L + \sqrt{d}) Z \subseteq \mathbb{Z}[\sqrt{d}].$$

Hence, $\beta_L = x + y\sqrt{d} \in \mathbb{Z}[\sqrt{d}]$ and $(Q_L, P_L + \sqrt{d})$ and $(\beta_L, \beta_L \sqrt{d}) = (x + y\sqrt{d}, d y + x\sqrt{d})$ are two \mathbb{Z}-bases of \mathcal{J}_L and the change of basis matrix

$$A = \left(\begin{array}{cc} x/y & y-x P_L/Q_L \\ y/Q_L & x/Q_L \end{array} \right)$$

is in $M_2(\mathbb{Z})$ and of determinant ± 1, i.e. $\pm 1 = (x^2 - dy^2)/Q_L = N(\beta_L)/p$. Therefore, $N(\beta_L) = (-1)^L p$, with $\beta_L \in \mathbb{Z}[\sqrt{d}]$. It follows that the prime ideal \mathcal{P} of the ring of algebraic integers $\mathbb{Z}_K = \mathbb{Z}[(1 + \sqrt{d})/2]$ of $K = \mathbb{Q}(\sqrt{d})$ lying above p is principal and equal to (β_L) and that \mathcal{P} it is principal in the narrow sense if and only if L is even. \[\square\]
References

[8] ———, "On the continued fraction expansions of \sqrt{p} and $\sqrt{2p}$ for primes $p \equiv 3 \pmod{4}$", in Class groups of Number fields and related topics, Springer, 2020, p. 175-178.