

Comptes Rendus Mathématique

Chandranandan Gangopadhyay and Ronnie Sebastian

Nef cones of some Quot schemes on a Smooth Projective Curve

Volume 359, issue 8 (2021), p. 999-1022

Published online: 8 October 2021

https://doi.org/10.5802/crmath.245

This article is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org e-ISSN: 1778-3569

Comptes Rendus Mathématique

2021, 359, n° 8, p. 999-1022 https://doi.org/10.5802/crmath.245

Algebraic geometry / Géométrie algébrique

Nef cones of some Quot schemes on a Smooth Projective Curve

Chandranandan Gangopadhyay*, a and Ronnie Sebastiana

 a Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra. India.

E-mails: chandra@math.iitb.ac.in (C. Gangopadhyay), ronnie@math.iitb.ac.in (R. Sebastian)

Abstract. Let C be a smooth projective curve over \mathbb{C} . Let $n,d \geq 1$. Let \mathcal{Q} be the Quot scheme parameterizing torsion quotients of the vector bundle \mathcal{O}_C^n of degree d. In this article we study the nef cone of \mathcal{Q} . We give a complete description of the nef cone in the case of elliptic curves. We compute it in the case when d=2 and C very general, in terms of the nef cone of the second symmetric product of C. In the case when $n \geq d$ and C very general, we give upper and lower bounds for the Nef cone. In general, we give a necessary and sufficient criterion for a divisor on \mathcal{Q} to be nef.

Mathematical subject classification (2010). 14C05, 14C20, 14C22, 14E30, 14J10, 14J60. Manuscript received 26th February 2021, revised 16th July 2021, accepted 13th July 2021.

1. Introduction

Throughout this article we assume that the base field to be $\mathbb C$. Let X be a smooth projective variety and let $N^1(X)$ be the $\mathbb R$ -vector space of $\mathbb R$ -divisors modulo numerical equivalence. It is known that $N^1(X)$ is a finite dimensional vector space. The closed cone $\operatorname{Nef}(X) \subset N^1(X)$ is the cone of all $\mathbb R$ -divisors whose intersection product with any curve in X is non-negative. It has been an interesting problem to compute $\operatorname{Nef}(X)$. For example, when $X = \mathbb P(E)$ where E is a semistable vector bundle over a smooth projective curve, Miyaoka computed the $\operatorname{Nef}(X)$ in [14]. In [4], $\operatorname{Nef}(X)$ was computed in the case when X is the Grassmann bundle associated to a vector bundle E on a smooth projective curve C, in terms of the Harder Narasimhan filtration of E. Let $C^{(d)}$ denote the Eth symmetric product. In [15], the author computed the $\operatorname{Nef}(C^{(d)})$ in the case when E0 is a very general curve of even genus and E1 and E3 is a perfect square. In [5] $\operatorname{Nef}(E^{(2)})$ was computed assuming the Nagata conjecture. We refer the reader to [12, Section 1.5] for more such examples and details.

The reader is referred to [6] for the definition and details on Quot schemes. Let E be a vector bundle over a smooth projective curve C. Fix a polynomial $P \in \mathbb{Q}[t]$. Let $\mathcal{Q}(E, P)$ denote the Quot

^{*} Corresponding author.

scheme parametrizing quotients of E with Hilbert polynomial P. In [16], when $C = \mathbb{P}^1$, the quot scheme $\mathcal{Q}(\mathcal{O}_C^n, P)$ is studied as a natural compactification of the set of all maps from C to some Grassmannians of a fixed degree. In this article we will consider the case when P = d a constant, that is, when $\mathcal{Q}(E,d)$ parametrizes torsion quotients of E of degree d. For notational convenience, we will denote $\mathcal{Q}(E,d)$ by \mathcal{Q} , when there is no possibility of confusion. It is known that \mathcal{Q} is a smooth projective variety. Many properties of \mathcal{Q} have been studied. In [1], the Betti cohomologies of $\mathcal{Q}(\mathcal{O}_C^n,d)$ are computed, $\mathcal{Q}(\mathcal{O}_C^n,d)$ has been interpreted as the space of higher rank divisors of rank n, and an analogue of the Abel–Jacobi map was constructed. In [2] the automorphism group scheme of $\mathcal{Q}(\mathcal{Q}_C^n,d)$ was computed in the case when the genus of C satisfies g(C) > 1 and a Torelli theorem for these Quot schemes was proved. In [3] the Brauer group of $\mathcal{Q}(\mathcal{O}_C^n,d)$ is computed. In [7], the automorphism group scheme of $\mathcal{Q}(E,d)$ was computed in the case when either r is semistable and genus of C satisfies g(C) > 1. In [8], the S-fundamental group scheme of $\mathcal{Q}(E,d)$ was computed.

In this article, we address the question of computing Nef(\mathcal{Q}). Recall that we have a Hilbert–Chow map $\Phi:\mathcal{Q}\to C^{(d)}$ (this map is explained after Definition 9. A precise definition can be found, for example, in [8]). For notational convenience, for a divisor $D\in N^1(C^{(d)})$ we will denote its pullback $\Phi^*D\in N^1(\mathcal{Q})$ by D, when there is no possibility of confusion. The line bundle $\mathcal{O}_{\mathcal{Q}}(1)$ is defined in Definition 9. In Section 2 we recall the results we need on Nef($C^{(d)}$). In Section 3 we compute Pic(\mathcal{Q}).

Theorem (Theorem 11). $\operatorname{Pic}(\mathcal{Q}) = \Phi^* \operatorname{Pic}(C^{(d)}) \oplus \mathbb{Z}[\mathcal{O}_{\mathcal{Q}}(1)]$.

As a corollary (Corollary 13) we get that $N^1(\mathcal{Q}) \cong N^1(C^{(d)}) \oplus \mathbb{R}[\mathcal{O}_{\mathcal{Q}}(1)]$. The computation of $N^1(\mathcal{Q})$ can also be found in [3]. As a result, when $C \cong \mathbb{P}^1$, since $C^{(d)} \cong \mathbb{P}^d$, we have that the $N^1(\mathcal{Q})$ is 2-dimensional and we prove that its nef cone is given as follows.

Theorem (Theorem 34). Let
$$C = \mathbb{P}^1$$
. Let $E = \bigoplus_{i=1}^k \mathscr{O}(a_i)$ with $a_i \le a_j$ for $i < j$. Let $d \ge 1$. Then

$$\operatorname{Nef}(\mathcal{Q}(E,d)) = \mathbb{R}_{\geq 0}\left(\left[\mathcal{O}_{\mathcal{Q}(E,d)}(1)\right] + \left(-a_1+d-1\right)\left[\mathcal{O}_{\mathbb{P}^d}(1)\right]\right) + \mathbb{R}_{\geq 0}\left[\mathcal{O}_{\mathbb{P}^d}(1)\right].$$

Note that this theorem was already known in the case when $E = V \otimes \mathcal{O}_{\mathbb{P}^1}$, for a vector space V over k ([16, Theorem 6.2]).

For the rest of the introduction, we will assume $E = V \otimes \mathcal{O}_C$ with $\dim_k V = n$ and denote by $\mathcal{Q} = \mathcal{Q}(n,d)$ the Quot scheme $\mathcal{Q}(E,d)$. Let us consider the case g=1. In this case, $N^1(\mathcal{Q})$ is three-dimensional (see Proposition 14), and we prove that its nef cone is given as follows (see Definition 4 for notations).

Theorem (Theorem 43). Let g = 1, $n \ge 1$ and $\mathcal{Q} = \mathcal{Q}(n,d)$. Then the class $[\mathcal{O}_{\mathcal{Q}}(1)] + [\Delta_d/2] \in N^1(\mathcal{Q})$ is nef. Moreover,

$$Nef(\mathcal{Q}) = \mathbb{R}_{>0} ([\mathcal{O}_{\mathcal{Q}}(1)] + [\Delta_d/2]) + \mathbb{R}_{>0} [\theta_d] + \mathbb{R}_{>0} [\Delta_d/2].$$

From now on assume that $g \ge 2$ and C is very general. See Definition 9 for the definition of t and α_t . When d = 2 we have the following result.

Theorem (Theorem 37). Let $g \ge 2$ and C be very general. Let d = 2. Consider the Quot scheme $\mathcal{Q} = \mathcal{Q}(n,2)$. Then

$$\operatorname{Nef}(\mathcal{Q}) = \mathbb{R}_{\geq 0} \left([\mathcal{O}_{\mathcal{Q}}(1)] + \frac{t+1}{g+t} [L_0] \right) + \mathbb{R}_{\geq 0} [L_0] + \mathbb{R}_{\geq 0} [\alpha_t].$$

Precise values of t are known for small genus. When $g \ge 9$ it is conjectured that $t = \sqrt{g}$. This is known when g is a perfect square. The precise statements have been mentioned after Theorem 37.

In general (without any assumptions on n and d), we give a criterion for certain line bundle on \mathcal{Q} to be nef in terms of its pullback along certain natural maps from products $\prod_i C^{(d_i)}$, see Subsection 7.1 for notation.

Theorem (Theorem 39). Let $\beta \in N^1(C^{(d)})$. Then the class $[\mathcal{O}_{\mathcal{Q}}(1)] + \beta \in N^1(\mathcal{Q})$ is nef iff the class $[\mathcal{O}(-\Delta_{\mathbf{d}}/2)] + \pi_{\mathbf{d}}^*\beta \in N^1(C^{(\mathbf{d})})$ is nef for all $\mathbf{d} \in \mathcal{P}_d^{\leq n}$.

Using the above we show that certain classes are in Nef(2). Define

$$\kappa_1 := [\mathcal{O}_{\mathcal{Q}}(1)] + \mu_0[L_0] + \frac{d + g - 2}{dg}[\theta_d] \qquad \kappa_2 = [\mathcal{O}_{\mathcal{Q}}(1)] + \frac{g + 1}{2g}[L_0] \in N^1(\mathcal{Q}). \tag{1}$$

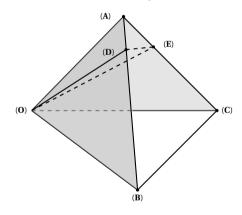
Proposition (Proposition 41). *Let* $g \ge 1$, $n \ge 1$ *and* $\mathcal{Q} = \mathcal{Q}(n, d)$. *Then*

$$Nef(\mathcal{Q}) \supset \mathbb{R}_{>0} \kappa_1 + \mathbb{R}_{>0} \kappa_2 + \mathbb{R}_{>0} [\theta_d] + \mathbb{R}_{>0} [L_0].$$

Now consider the case when $n \ge d \ge \text{gon}(C)$. Then $\text{Nef}(C^{(d)})$ is generated by θ_d and L_0 (see Definitions 1 and 4). In this case we give the following upper bound for the nef cone in Proposition 20. Let $\mu_0 := \frac{d+g-1}{dg}$. Then

$$\operatorname{Nef}(\mathcal{Q}) \subset \mathbb{R}_{\geq 0} \left([\mathcal{O}_{\mathcal{Q}}(1)] + \mu_0[L_0] \right) + \mathbb{R}_{\geq 0}[\theta_d] + \mathbb{R}_{\geq 0}[L_0].$$

When $d \ge \text{gon}(C)$, in Lemma 30 we show that any convex linear combination of the κ_1 and θ_d is nef but not ample. In particular, any such class lies on the boundary of Nef(2). Similarly, in Corollary 42 we show when $n \ge d$, any convex linear combination of the class κ_2 and $L_0^{(d)}$ is nef but not ample. So any such class lies on the boundary of Nef(2).



(2)

- (1) $(\mathbf{A}) = [\mathcal{O}_{\mathcal{Q}}(1)] + \mu_0[L_0]$
- (2) **(B)** = $[\theta_d]$
- (3) **(C)** = $[L_0]$

(4) **(D)** =
$$\tau \kappa_1 = \tau([\mathcal{O}_{\mathcal{Q}}(1)]/2 + \mu_0[L_0]) + (1 - \tau)[\theta_d]$$
 $\tau = \frac{1}{1 + \frac{d + g - 2}{d \tau}}$

(5) (C) =
$$[L_0]$$

(4) (D) = $\tau \kappa_1 = \tau([\mathcal{O}_{\mathcal{Q}}(1)]/2 + \mu_0[L_0]) + (1 - \tau)[\theta_d]$ $\tau = \frac{1}{1 + \frac{d + g - 2}{dg}}$
(5) (E) = $\rho \kappa_2 = \rho([\mathcal{O}_{\mathcal{Q}}(1)] + \mu_0[L_0]) + (1 - \rho)[L_0]$ $\rho = \frac{1}{1 + \frac{g + 1}{2g} - \frac{d + g - 2}{dg}}$

In terms of the above diagram, we have that when $n \ge d \ge gon(C)$

$$\langle \overline{OD}, \overline{OE}, \overline{OC}, \overline{OB} \rangle \subset \operatorname{Nef}(\mathcal{Q}) \subset \langle \overline{OA}, \overline{OC}, \overline{OB} \rangle$$
.

We do not know if the inclusion in the right is an equality when $n \ge d \ge \text{gon}(C)$. This is same as saying that $[\mathcal{O}_{\mathcal{Q}}(1)] + \mu_0[L_0]$ is nef when $n \ge d \ge \text{gon}(C)$. In Section 8 we give a sufficient condition for when the pullback of $[\mathscr{O}_{\mathscr{Q}}(1)] + \mu_0[L_0]$ along a map $D \to \mathscr{Q}$ is nef. However, when d = 3 we have the following result.

Theorem (Theorem 49). Let C be a very general curve of genus $2 \le g(C) \le 4$. Let $n \ge 3$ and let $\mathcal{Q} = \mathcal{Q}(n,3)$. Let $\mu_0 = \frac{g+2}{3g}$ Then

$$\operatorname{Nef}(\mathcal{Q}) = \mathbb{R}_{\geq 0} \left([\mathcal{O}_{\mathcal{Q}}(1)] + \mu_0[L_0] \right) + \mathbb{R}_{\geq 0} [\theta_d] + \mathbb{R}_{\geq 0} [L_0].$$

Some of the results above can be improved in the case when g = 2k using the results in [15]. (See Proposition 32.)

2. Nef cone of $C^{(d)}$

We follow [15, § 2] for this section. Assume that either *C* is an elliptic curve or is a very general curve of genus $g \ge 2$. Then it is known that the Neron–Severi space is 2-dimensional. So in this case, to compute the nef cone, it is enough to give two classes in $N^1(C)$ which are nef but not

For any smooth projective curve and $d \ge 2$ (not just a very general curve) there is a natural line bundle L_0 on $C^{(d)}$ which is nef but not ample. This line bundle is constructed in the following manner. Consider the map

$$\phi: C^d \to J(C)^{\binom{d}{2}},$$

$$(x_i) \mapsto (x_i - x_j)_{i < j}.$$

Let p_{ij} denote the projections from $J(C)^{\binom{d}{2}}$. Since ϕ is not finite, as it contracts the diagonal, the line bundle $\phi^*(\otimes p_{ij}^*\Theta)$ is nef but not ample. This line bundle is invariant under the action of S_d on C^d . This follows from the fact that Θ in J(C) is invariant under the involution $L \mapsto L^{-1}$.

Definition 1. $\phi^*(\otimes p_{i}^*, \Theta)$ descends to a line bundle L_0 on $C^{(d)}$.

Since ϕ contracts the small diagonal $\delta: C \hookrightarrow C^{(d)}$, we have $\delta^*[L_0] = 0$. Hence L_0 is nef but not ample [15, Lemma 2.2]. Therefore, in the case when C is very general, computing the nef cone of $C^{(d)}$ boils down to finding another class which is nef but not ample.

In the case when $d \ge \text{gon}(C) =: e$, [15, Lemma 2.3] we can easily construct another line bundle which is nef but not ample: Then we have a map $g_e: C \to \mathbb{P}^1$ of degree e. This induces a closed immersion $\mathbb{P}^1 \to C^{(e)}$ with $v \mapsto [(g_e)^{-1}(v)] \in C^{(e)}$. This in turn gives a closed immersion $\mathbb{P}^1 \to C^{(d)}$ with $v \mapsto [(g_e)^{-1}(v) + (d-e)x]$ for some point $x \in C$.

Definition 2. Denote the class of this \mathbb{P}^1 in $N_1(C^{(d)})$ by [l'].

The composition $\mathbb{P}^1 \to C^{(d)} \xrightarrow{u_d} J(C)$ is constant, since there can be no non-constant maps from $\mathbb{P}^1 \to J(C)$. Hence $u_d: C^{(d)} \to J(C)$ is not finite and we get that $u_d^*\Theta$ is nef but not ample.

Definition 3. Define $\theta_d := u_d^* \Theta$.

Recall that over $C^{(d)}$ we have natural divisors [15, § 2]:

Definition 4. Define

- (1) θ_d
- (2) the big diagonal Δ_d → C^(d)
 (3) If i_{d-1}: C^(d-1) → C^(d) is the map given by D → D + x for a point x ∈ C, then the image i_{d-1}(C^(d-1)). This divisor will be denoted [x].

It is known that when g = 1 or C is very general of $g \ge 2$, then $N^1(C^{(d)})$ is of dimension 2 and any two of the above three forms a basis.

By abuse of notation, let us denote the class (δ is the small diagonal) $[\delta_*(C)] \in N_1(C^{(d)})$ by δ . We summarise the above discussion in the following theorem.

Proposition 5 ([15, Proposition 2.4]). When $d \ge gon(C)$, we have:

- (1) $\operatorname{Nef}(C^{(d)}) = \mathbb{R}_{\geq 0}[L_0] \oplus \mathbb{R}_{\geq 0}[\theta_d]$,
- (2) $\overline{NE}(C^{(d)}) = \mathbb{R}_{\geq 0}[l'] \oplus \mathbb{R}_{\geq 0}[\delta]$.

The above basis are dual to each other.

We will need to write $[L_0]$ in terms of [x] and $[\theta_d]$, for which we need the following computations. Define

$$\delta': C \xrightarrow{f} C^d \to C^{(d)}$$

where the first map is given by $x \mapsto (x, x_1, \dots, x_{d-1})$.

Lemma 6. Let $d \ge 1$. We have the following

- (1) $deg(\delta^*[\theta_d]) = d^2g$
- (2) $deg(\delta'^*[\theta_d]) = g$
- (3) $deg(\delta^*[x]) = d$
- (4) $deg(\delta'^*[x]) = 1$

Proof. Recall that $\theta_d = u_d^* \Theta$, where $u_d : C^{(d)} \to J(C)$ is given by $D \mapsto \mathcal{O}(D - dx_0)$ for a fixed point $x_0 \in C$. Therefore the composition $u_d \circ \delta : C \to J(C)$ is given by $x \mapsto dx \mapsto \mathcal{O}(dx - dx_0)$, which is the map

$$C \xrightarrow{u_1} J(C) \xrightarrow{\times d} J(C)$$
.

The pullback of Θ under the map $J(C) \xrightarrow{\times d} J(C)$ is Θ^{d^2} and the degree of the pullback of Θ under the map $u_1: C \to J(C)$ is g. Hence degree of $\delta^* \theta_d = d^2 g$. This proves (1).

The composition $u_d \circ \delta' : C \to J(C)$ is given by $C \to C^{(d)} \to J(C)$

$$x \mapsto x + \sum_{i=1}^{d-1} x_i \mapsto \mathcal{O}\left(x + \sum_{i=1}^{d-1} x_i - dx_0\right)$$

which is the composition $C \xrightarrow{u_1} J(C) \xrightarrow{t_a} J(C)$, where t_a is translation by an element in J(C). Hence degree of $\delta'^*\theta_d = g$. This proves (2).

For a line bundle L on C, we will denote by $L^{\boxtimes d}$ to be the unique line bundle on $C^{(d)}$, whose pullback under the quotient map $\pi: C^d \to C^{(d)}$ is $\bigotimes_{i=1}^d p_i^* L$. Recall that by [15, § 2], we have that $[x] = [\mathscr{O}(x)^{\boxtimes d}]$ for a point $x \in C$. By definition under the map $\pi: C^d \to C^{(d)}$ the pullback of $\mathscr{O}(x)^{\boxtimes d}$ is $\bigotimes_{i=1}^d p_i^* \mathscr{O}(x)$. Now $\delta: C \hookrightarrow C^{(d)}$ is the composition $C \to C^d \to C^{(d)}$

$$x \mapsto (x, ..., x) \mapsto dx$$
.

Hence we get that the pullback of $\mathcal{O}(x)^{\boxtimes d}$ to δ is $\mathcal{O}(dx)$. Therefore degree of $\delta^*[x] = d$. This proves(3).

We know δ' is the composition $C \to C^d \to C^{(d)}$

$$x \mapsto (x, x_1, ..., x_{d-1}) \mapsto x + x_1 + ... + x_{d-1}$$
.

Hence we get that $\delta'^*[x] = \mathcal{O}(x)$. Therefore degree of $\delta'^*[x] = 1$. This proves (4).

Lemma 7. Let $g, d \ge 1$. Let $\mu_0 := \frac{d+g-1}{dg}$. Then

$$\begin{split} [L_0] &= dg[x] - [\theta_d] \\ &= \left(dg - d - g + 1 \right) . [x] + [\Delta_d/2] \\ &= \left(\frac{1}{\mu_0} - 1 \right) [\theta_d] + \frac{1}{\mu_0} \left[\Delta_d/2 \right] \,. \end{split}$$

Proof. Let $[L_0] = a[\theta_d] + b[x]$. We need two equations to solve for a and b. The first equation is $\delta^*[L_0] = 0$. Recall

$$\delta': C \xrightarrow{f} C^d \to C^{(d)}$$

where the first map is given by $x \mapsto (x, x_1, \dots, x_d)$. Hence

$$\delta^{\prime *}[L_0] = f^* \phi^* (\otimes p_i^* \Theta).$$

Now the composition

$$C \xrightarrow{f} C^d \xrightarrow{\phi} I(C)^{\binom{d}{2}}$$

is given by $x \mapsto (x - x_1, x - x_2, \dots, x - x_{d-1}, x_i - x_i)_{i < i}$. Hence

$$\deg(\delta'^*[L_0]) = \sum_{i=1}^{d-1} \deg(\theta_1) = (d-1)g.$$

This will be our second equation.

We use these two equations and the preceding computations to compute a and b.

$$0 = \deg(\delta^*[L_0])$$

= $a \cdot \deg(\delta^*[\theta_d]) + b \cdot \deg(\delta^*[x])$
= $ad^2g + bd$.

Therefore

$$b = -adg$$
.

Now using the second equation we get

$$(d-1)g = \deg(\delta'^*[L_0])$$

= $a. \deg(\delta'^*[\theta_d]) + b. \deg(\delta'^*[x])$
= $ag + b$
= $ag - adg = ag(1-d)$.

Therefore

$$a = -1$$
, $b = dg$.

Hence we get $[L_0] = dg[x] - [\theta_d]$. For the other two equalities, we use the relation

$$[\theta_d] = (d + g - 1)[x] - [\Delta_d/2]$$

between [x], $[\Delta_d/2]$ and $[\theta_d]$ [15, Lemma 2.1].

3. Picard group and Neron-Severi group of \mathcal{Q}

Let E be a locally free sheaf over C. Throughout this section $\mathcal Q$ will denote the Quot scheme $\mathcal Q(E,d)$ which parametrizes torsion quotients of E of degree d. In this section we compute the Picard group of $\mathcal Q$, and the vector spaces $N^1(\mathcal Q)$ and $N_1(\mathcal Q)$.

Lemma 8. Let *S* be a scheme over *k*. Let *F* be a coherent sheaf over $C \times S$ which is *S*-flat and for all $s \in S$, $F|_{C \times S}$ is a torsion sheaf over *C* of degree *d*. Let $p_S : C \times S \to S$ be the projection. Then

(i) $p_{S*}(F)$ is locally free of rank d and $\forall s \in S$ the natural map $p_{S*}(F)|_s \to H^0(C, F|_{C \times s})$ is an isomorphism.

(ii) Assume that we are given a morphism $\phi: T \to S$. We have the following diagram:

$$\begin{array}{ccc}
C \times T & \xrightarrow{id \times \phi} & C \times S \\
\downarrow p_T & & \downarrow p_S \\
T & \xrightarrow{\phi} & S
\end{array}$$

Then the natural morphism

$$\phi^* p_{S*}(F) \rightarrow (p_T)_* (id \times \phi)^* F$$

is an isomorphism.

Proof. Since $F|_{C\times s}$ is a torsion sheaf for all $s\in S$, we have $H^1(C,F|_{C\times s})=0$. By [9, Chapter III, Theorem 12.11 (a)] we get $R^1p_{S*}(F)=0$. Using [9, Chapter III, Theorem 12.11 (b)] (ii) with i=1 we get that the morphism $p_{S*}(F)|_s\to H^0(C,F|_{C\times s})$ is surjective. Again using the same with i=0 we get that $p_{S*}(F)$ is locally free of rank d and the map $p_{S*}(F)|_s\to H^0(C,F|_{C\times s})$ is an isomorphism.

Since F is S-flat it follows that $(id \times \phi)^*F$ is T-flat. Applying the above we see $\phi^*p_{S*}(F)$ and $(p_T)_*(id \times \phi)^*F$ are locally free of rank d. For each $t \in T$ we have the commutative diagram:

$$\phi^* p_{S*}(F)|_t = p_{S*}(F)|_{\phi(t)} \longrightarrow (p_T)_* (id \times \phi)^* F|_t$$

$$\downarrow \qquad \qquad \downarrow$$

$$H^0\left(C, F|_{C \times \phi(t)}\right) = H^0\left(C, (id \times \phi^*) F|_{C \times t}\right)$$

By the first part we get that the vertical arrows are isomorphisms. Hence we get that the first row of the diagram is an isomorphism. Therefore

$$\phi^* p_{S*}(F) \rightarrow (p_T)_* (id \times \phi)^* F$$

is a surjective morphism of vector bundles of same rank and hence an isomorphism. \Box

We define a line bundle on \mathscr{Q} . Let us denote the projections $C \times \mathscr{Q}$ to C and \mathscr{Q} by p_C and p_Q respectively. Then we have the universal quotient $p_C^*E \to \mathscr{B}_{\mathscr{Q}}$ over $C \times \mathscr{Q}$. By Lemma 8, $p_{\mathscr{Q}*}(\mathscr{B}_{\mathscr{Q}})$ is a vector bundle of rank d.

Definition 9. Denote the line bundle $\det(p_{\mathcal{Q}_*}(\mathcal{B}_{\mathcal{Q}}))$ by $\mathcal{O}_{\mathcal{Q}}(1)$.

Denote the d^{th} symmetric product of C by $C^{(d)}$. Recall the Hilbert–Chow map $\Phi: \mathcal{Q} \to C^{(d)}$ which sends $[E \to B]$ to $\sum l(B_p)p$, where $l(B_p)$ is the length of the $\mathcal{O}_{C,p}$ -module B_p . Therefore, we have the pullback $\Phi^*: \mathrm{Pic}(C^{(d)}) \to \mathrm{Pic}(\mathcal{Q})$ which is in fact an inclusion. To see this, recall that the fibres of Φ are projective integral varieties [8, Corollary 6.6] and Φ is flat [8, Corollary 6.3]. Hence $\Phi_*(\mathcal{O}_{\mathcal{Q}}) = \mathcal{O}_{C^{(d)}}$. Now by projection formula $\Phi_*\Phi^*L \cong L$ for all $L \in \mathrm{Pic}(C^{(d)})$ and the statement follows.

The big diagonal is the image of the map $C \times C^{(d-2)} \to C^{(d)}$ given by $(x,A) \mapsto 2x + A$. Let us denote the big diagonal in $C^{(d)}$ by Δ . Let $U_C := C^{(d)} \setminus \Delta$ and $\mathcal{U} := \Phi^{-1}(U_C)$. Then $\mathcal{U} \subset \mathcal{Q}$.

Lemma 10. For any line bundle $\mathcal{L} \in \text{Pic}(\mathcal{Q})$, \exists an unique $n \in \mathbb{Z}$ such that $(\mathcal{L} \otimes \mathcal{O}_{\mathcal{Q}}(-n))|_{\Phi^{-1}(p)} \cong \mathcal{O}_{\Phi^{-1}(p)}$ for all $p \in U_C$.

Proof. Let $\pi: \mathbb{P}(E) \to C$ be the projective bundle associated to E and let $\mathcal{O}_{\mathbb{P}(E)}(1)$ be the universal line bundle over $\mathbb{P}(E)$. Let $Z = \mathbb{P}(E)^d$. Let $p_i: Z \to \mathbb{P}(E)$ be the i^{th} projection. Let $\pi_d: Z \to C^d$ be the product map. The symmetric group S_d acts on Z and the map π_d is equivariant for this action. Let $\psi: C^d \to C^{(d)}$ be the quotient map. Define $U_Z := (\psi \circ \pi_d)^{-1}(U)$.

Let $c \in C$ be a closed point and let k_c denote the skyscraper sheaf supported at c. A closed point of $\mathbb{P}(E)$ which maps to $c \in C$ corresponds to a quotient $E \to E_c \to k_c$. Recall that we have a map [7, Theorem 2.2 (a)]

$$\widetilde{\psi}:U_Z\to\mathscr{U}$$

which sends a closed point

$$\left(E_{c_i} \to k_{c_i}\right)_{i=1}^d \in U_Z$$

to the quotient

$$E \to \bigoplus_i E_{c_i} \to \bigoplus_i k_{c_i} \in \mathcal{U}.$$

So we have a commutative diagram:

$$U_{Z} \xrightarrow{\tilde{\psi}} \mathscr{U}$$

$$\downarrow^{\pi_{d}} \qquad \downarrow^{\Phi}$$

$$\psi^{-1}(U_{C}) \xrightarrow{\psi} U_{C}$$

Moreover, if $c = (c_1, ..., c_d) \in \psi^{-1}(U_C)$, then by [8, Lemma 6.5] $\widetilde{\psi}$ induces an isomorphism

$$\prod \mathbb{P}(E_{c_i}) = \pi_d^{-1}(\underline{c}) \xrightarrow{\sim} \Phi^{-1}(\psi(\underline{c})).$$

Applying Lemma 8 by taking $T=U_Z$, $S=\mathcal{U}$ and $\phi=\widetilde{\psi}$ and the definition of the map $\widetilde{\psi}$ (see the proof of [7, Theorem 2.2(a)]) we see that

$$\widetilde{\psi}^* \mathcal{O}_{\mathcal{Q}}(1) = \bigotimes_{i=1}^d p_i^* \mathcal{O}_{\mathbb{P}(E)}(1)|_{U_Z}.$$

Hence it is enough to show that $\exists n \in \mathbb{Z}$ such that $\forall \underline{c} \in \psi^{-1}(U_C)$

$$\widetilde{\psi}^* \mathcal{L}|_{\pi_d^{-1}(\underline{c})} \cong \bigotimes_{i=1}^d p_i^* \mathcal{O}(n)|_{\pi_d^{-1}(\underline{c})}.$$

For $\underline{c} \in \psi^{-1}(U_C)$ define $n_i(\underline{c}) \in \mathbb{Z}$ using the equation

$$\widetilde{\psi}^* \mathcal{L}|_{\pi_d^{-1}(\underline{c})} = \bigotimes_{i=1}^d p_i^* \mathcal{O}_{\mathbb{P}(E_{c_i})} (n_i(\underline{c})).$$

We may view the n_i as functions $n_i : \psi^{-1}(U_C) \to \mathbb{Z}$. Since the line bundle $\widetilde{\psi}^* \mathcal{L}$ is invariant under the action of the group S_d , it follows that

$$n_{\sigma(i)}(c) = n_i \left(\sigma(c) \right). \tag{3}$$

Here $\sigma(\underline{c}) := (c_{\sigma(1)}, \dots, c_{\sigma(d)})$. Hence it suffices to show that n_1 is a constant function.

Let $c_2, ..., c_d$ be distinct points in C. Define $V := C \setminus \{c_2, ..., c_d\}$ and a map

$$i: V \hookrightarrow \psi^{-1}(U_C)$$
 $i(c) := (c, c_2, ..., c_d)$.

Then $\pi_d^{-1}(V)$ is equal to $\mathbb{P}(E|_V) \times \mathbb{P}(E_{c_2}) \times \ldots \times \mathbb{P}(E_{c_d})$. The restriction of $\widetilde{\psi}^* \mathcal{L}$ to $\mathbb{P}(E|_V) \times \mathbb{P}(E_{c_2}) \times \ldots \times \mathbb{P}(E_{c_d})$ is isomorphic to

$$\pi^*M\otimes p_1^*\mathcal{O}_{\mathbb{P}(E|_V)}(a_1)\otimes p_2^*\mathcal{O}_{\mathbb{P}(E_{c_2})}(a_2)\ldots\otimes p_d^*\mathcal{O}_{\mathbb{P}(E_{c_d})}(a_d)$$
,

where M is a line bundle on V. Further restricting to $(c, c_2, ..., c_d)$ and $(c', c_2, ..., c_d)$, where $c, c' \in V$, we see that

$$n_i(c, c_2, ..., c_d) = n_i(c', c_2, ..., c_d)$$
 $\forall i.$ (4)

This proves that for distinct points $c, c', c_2, ..., c_d \in C$ we have

$$n_i(c, c_2, ..., c_d) = n_i(c', c_2, ..., c_d)$$
 $\forall i.$ (5)

Choose 2d distinct points $c_1, \ldots, c_d, c'_1, \ldots, c'_d$ in C. Then using equations (4) and (5) we get

$$n_{1}(c_{1}, c_{2}, ..., c_{d}) = n_{1}(c'_{1}, c_{2}, ..., c_{d})$$

$$= n_{2}(c_{2}, c'_{1}, ..., c_{d})$$

$$= n_{2}(c'_{2}, c'_{1}, c_{3}, ..., c_{d})$$

$$= n_{1}(c'_{1}, c'_{2}, c_{3}, ..., c_{d})$$

$$= ...$$

$$= n_{1}(c'_{1}, c'_{2}, ..., c'_{d}).$$

Finally, for any two points $\underline{c}, \underline{c}' \in \psi^{-1}(U_C)$ choose a third point \underline{c}'' such that the coordinates of \underline{c}'' are distinct from those of \underline{c} and \underline{c}' . Then we see that $n_1(\underline{c}) = n_1(\underline{c}'') = n_1(\underline{c}')$. This proves that n_1 is the constant function. Therefore, $\psi^* \mathcal{L}|_{\pi_d^{-1}(\underline{c})}$ is of the form $\bigotimes p_i^* \mathcal{O}_{\mathbb{P}(E_{c_i})}(n)$, $\forall \underline{c} \in \psi^{-1}(U_C)$. The uniqueness of n is obvious.

Theorem 11. $\operatorname{Pic}(\mathcal{Q}) = \Phi^* \operatorname{Pic}(C^{(d)}) \oplus \mathbb{Z}[\mathcal{O}_{\mathcal{Q}}(1)]$.

Proof. Let $\mathcal{L} \in \operatorname{Pic}(\mathcal{Q})$. By [8, Corollary 6.3] and [8, Corollary 6.4] the morphism Φ is flat and fibres of Φ are integral. Then by [13, Lemma 2.1.2] and Lemma 10 we get that $\mathcal{L} \otimes \mathcal{O}_{\mathcal{Q}}(-n) = \Phi^* \mathcal{M}$ for some $\mathcal{M} \in \operatorname{Pic}(C^{(d)})$. Hence $\mathcal{L} = \Phi^* \mathcal{M} \otimes \mathcal{O}_{\mathcal{Q}}(n)$. The uniqueness of such an expression follows from the statement on uniqueness in Lemma 10.

For a projective variety X over k recall that $N^1(X)$ (respectively, $N_1(X)$) is the vector space of \mathbb{R} -divisors (respectively, 1-cycles) modulo numerical equivalences [12, § 1.4]. It is known that $N^1(X)$ and $N_1(X)$ are finite dimensional and the intersection product defines a non-degenerate pairing

$$N^1(X)\times N_1(X)\to \mathbb{R} \qquad \qquad \left([\beta],[\gamma]\right)\mapsto [\beta]\cdot [\gamma]\,.$$

We will compute $N^1(\mathcal{Q})$ and $N_1(\mathcal{Q})$. Let $\underline{c} \in U_C \subset C^{(d)}$. As we saw in the proof of Theorem 11,

$$\Phi^{-1}(\underline{c})\cong \prod \mathbb{P}\left(E_{c_i}\right).$$

Let $\mathbb{P}^1 \hookrightarrow \mathbb{P}(E_{c_1})$ be a line and let $v_i \in \mathbb{P}(E_{c_i})$ for $i \geq 2$. Then we have an embedding:

$$\mathbb{P}^1 \cong \mathbb{P}^1 \times \nu_2 \times \dots \times \nu_d \hookrightarrow \mathbb{P}(E_{c_1}) \times \prod_{i \ge 2} \mathbb{P}(E|_{c_i}) = \Phi^{-1}(\underline{c}) \subset \mathcal{Q}. \tag{6}$$

Definition 12. Let us denote the class of this curve in $N_1(\mathcal{Q})$ by [l].

Corollary 13. $N^1(\mathcal{Q}) = \Phi^* N^1(C^{(d)}) \bigoplus \mathbb{R}[\mathcal{O}_{\mathcal{Q}}(1)].$

Proof. Since Φ is surjective, $N^1(C^{(d)}) \to N^1(\mathcal{Q})$ is an inclusion [12, Example 1.4.4]. Note that $\mathscr{O}_{\mathcal{Q}}(1) \neq 0$ in $N^1(\mathcal{Q})$ since $[\mathscr{O}_{\mathcal{Q}}(1)] \cdot [l] = 1$. Hence $\mathscr{O}_{\mathcal{Q}}(1) \neq 0$ in $N^1(\mathcal{Q})$. This also shows that $\mathscr{O}_{\mathcal{Q}}(1) \notin \Phi^* N^1(C^{(d)})$.

By Theorem 11, we know that any $N^1(\mathcal{Q})$ is generated by $\Phi^*N^1(C^{(d)})$ and $[\mathcal{O}_{\mathcal{Q}}(1)]$. The only thing left is to show that

$$\Phi^*N^1\left(C^{(d)}\right)\cap\mathbb{R}\left[\mathcal{O}_{\mathcal{Q}}(1)\right]=0.$$

For $a \in \mathbb{R}$ if $a[\mathcal{O}_{\mathcal{Q}}(1)] \in N^1(C^{(d)})$, then $a[\mathcal{O}_{\mathcal{Q}}(1)] \cdot [l] = a = 0$. Hence the result follows.

Hence, it follows from Corollary 13 that

Proposition 14. *If* g = 1 *or* C *is very general with* $g \ge 2$, *then* $\dim_{\mathbb{R}} N^1(\mathcal{Q}) = 3$.

Proof. We already saw that $N^1(C^{(d)})$ is of dimension 2. The Proposition follows.

To compute $N_1(\mathcal{Q})$ we first construct a section of $\Phi: \mathcal{Q} \to C^{(d)}$. Over $C \times C^{(d)}$ we have the universal divisor Σ which gives us the universal quotient $\mathcal{O}_{C \times C^{(d)}} \to \mathcal{O}_{\Sigma}$. Choose a surjection $E \to L$ over C, where L is a line bundle on C. This induces a surjection $E \otimes \mathcal{O}_{C \times C^{(d)}} \to L \otimes \mathcal{O}_{C \times C^{(d)}}$. Then the composition

$$E \otimes \mathcal{O}_{C \times C^{(d)}} \to L \otimes \mathcal{O}_{C \times C^{(d)}} \to L \otimes \mathcal{O}_{\Sigma}$$

gives us a morphism

$$\eta: C^{(d)} \to \mathcal{Q} \tag{7}$$

which is easily seen to be a section of Φ .

Corollary 15. $N_1(\mathcal{Q}) = N_1(C^{(d)}) \oplus \mathbb{R}[l]$ where $N_1(C^{(d)}) \hookrightarrow N_1(\mathcal{Q})$ is the morphism given by the pushforward η_* .

Proof. Since $\Phi \circ \eta = id_{C^{(d)}}$ we have that η_* is an injection. Also since $[\mathcal{O}_{\mathcal{Q}}(1)] \cdot [l] = 1$, we have $[l] \neq 0$. We claim that $[l] \notin N_1(C^{(d)})$. If not, assume that $[l] = \eta_*[\gamma]$ for $[\gamma] \in N^1(C^{(d)})$. Then for every $\beta \in N^1(C^{(d)})$ we have

$$[l] \cdot \Phi^* \beta = \Phi_*([l]) \cdot \beta = 0 = \gamma \cdot \beta.$$

This proves that $\gamma = 0$.

Let $\gamma \in N_1(\mathcal{Q})$. Then we claim that

$$\gamma = \eta_* \Phi_* \gamma + ([\mathcal{O}_{\mathcal{Q}}(1)] \cdot (\gamma - \eta_* \Phi_* \gamma)) [l].$$

This can be seen as follows. It is enough to show that $\forall D \in N^1(\mathcal{Q})$,

$$[D] \cdot \gamma = [D] \cdot (\eta_* \Phi_* \gamma) + ([\mathcal{O}_{\mathcal{Q}}(1)] \cdot \gamma) [D] \cdot [l].$$

By Corollary 13, it is enough to consider the case when $D = \Phi^*D'$ where $D' \in N^1(C^{(d)})$ or $D = \mathcal{O}_{\mathcal{Q}}(1)$. In the first case the statement follows from projection formula and the second case is by definition. This completes the proof of the Corollary 15.

Let $p_C: C \times \mathcal{Q} \to \mathcal{Q}$ and $p_{\mathcal{Q}}: C \times \mathcal{Q} \to C$ be the projections. Let $\mathcal{B}_{\mathcal{Q}}$ denote the universal quotient on $C \times \mathcal{Q}$. For a vector bundle F over C, we define

$$B_{F,\mathcal{Q}} := \det(p_{\mathcal{Q}*}(\mathscr{B}_{\mathcal{Q}} \otimes p_C^*F)).$$

Lemma 16. Suppose we are given a map $f: T \to \mathcal{Q}$. Let $(id \times f)^* \mathcal{B}_{\mathcal{Q}} = \mathcal{B}_T$. Let $p_T: C \times T \to T$ and $p_{1,T}: C \times T \to C$ be the projections.

$$\begin{array}{ccc} C \times T & \stackrel{id \times f}{\longrightarrow} & C \times \mathcal{Q} \\ \downarrow^{p_T} & & \downarrow^{p_{\mathcal{Q}}} \\ T & \stackrel{f}{\longrightarrow} & \mathcal{Q} \end{array}$$

- (i) $f^*p_{\mathcal{Q}*}(\mathcal{B}_{\mathcal{Q}}\otimes p_C^*F)\to p_{T*}(\mathcal{B}_T\otimes p_{1,T}^*F)$ is an isomorphism.
- (ii) For a vector bundle F on C define $B_{F,T} := \det(p_{T*}(\mathscr{B}_T \otimes p_{1:T}^*F))$. Then $f^*B_{F,\mathcal{Q}} = B_{F,T}$.

Proof. For (i) take $\mathscr{B}_{\mathscr{Q}} \otimes p_C^* F$ and use Lemma 8. The assertion (ii) follows from (i) by applying determinant to the isomorphism

$$f^* p_{\mathscr{Q}_*}(\mathscr{B}_{\mathscr{Q}} \otimes p_C^* F) \xrightarrow{\sim} p_{T_*}(\mathscr{B}_T \otimes p_{1:T}^* F).$$

Recall the definition of η from equation (7), this is a section of Φ . For a line bundle L on C we have a line bundle $\mathcal{G}_{d,L}$ over $C^{(d)}$ (see [15, page 8] for notation).

Lemma 17. Let η be defined by a quotient $E \to M \to 0$. Then

$$\eta^* B_{L,\mathcal{Q}} \cong \mathcal{G}_{d,L\otimes M}$$
.

Proof. We have the diagram:

$$C \times C^{(d)} \xrightarrow{id_C \times \eta} C \times \mathcal{Q}$$

$$\downarrow \qquad \qquad \downarrow$$

$$C^{(d)} \xrightarrow{\eta} \mathcal{Q}$$

Recall that by definition of η , the pullback of the universal quotient on $C \times \mathcal{Q}$ to $C \times C^{(d)}$ via the section $(id_C \times \eta)$ is the quotient

$$E\otimes\mathcal{O}_{C\times C^{(d)}}\to L\otimes\mathcal{O}_{C\times C^{(d)}}\to L\otimes\mathcal{O}_{\Sigma}$$

Hence by Lemma 16, we have

$$\eta^* B_{L,\mathcal{Q}} \cong \mathcal{G}_{d,L\otimes M}.$$

Proposition 18. For any two line bundles L, L' over C

$$B_{L,\mathcal{Q}} \otimes B_{L',\mathcal{Q}}^{-1} = \Phi^* \left(\left(L \otimes L'^{-1} \right)^{\boxtimes d} \right).$$

Proof. First we show that $B_{L,\mathcal{Q}} \otimes B_{L',\mathcal{Q}}^{-1} \in \Phi^* \operatorname{Pic}(C^{(d)})$. Since any line bundle over \mathcal{Q} is of the form $\mathcal{O}_{\mathcal{Q}}(a) \otimes \phi^* \mathcal{L}$, where $\mathcal{L} \in \operatorname{Pic}(C^{(d)})$, it is enough to show that both $B_{L,\mathcal{Q}}$ and $B_{L',\mathcal{Q}}$ have the same $\mathcal{O}_{\mathcal{Q}}(1)^{\text{th}}$ coeffcient.

To compute the coefficient of this component of any line bundle over \mathcal{Q} , we can do the following. Fix d distinct points $c_1, \ldots, c_d \in C$. These define a point $\underline{c} \in C^{(d)}$. As we saw in the proof of Theorem 11.

$$\Phi^{-1}\left(\underline{c}\right) \cong \prod_{i=1}^{d} \mathbb{P}\left(E_{c_i}\right).$$

Let $v_i \in \mathbb{P}(E_{c_i})$ for $i \geq 2$. Then we have an embedding:

$$f: \mathbb{P}(E_{c_1}) \times v_2 \times \ldots \times v_d \hookrightarrow \mathbb{P}(E_{c_1}) \times \prod_{i > 2} \mathbb{P}(E_{c_i}) = \Phi^{-1}(\underline{c}).$$

Then the $\mathscr{O}_{\mathscr{Q}}(1)^{\operatorname{th}}$ coefficient of a line bundle \mathscr{M} over \mathscr{Q} is the degree of $f^*\mathscr{M}$ with respect to $\mathscr{O}_{\mathbb{P}(E_{c_1})}(1)$. Let $Y = \mathbb{P}(E_{c_1})$. Using Lemma 16, $f^*B_{L,\mathscr{Q}} = \det(p_{Y*}(\mathscr{B}_Y \otimes p_{1,Y}^*L))$.

The $v_j \in \mathbb{P}(E_{c_j})$ correspond to quotients $v_j : E \to E_{c_j} \to k_{c_j}$, for $2 \le j \le d$. Over $C \times Y$ we have the inclusions $i_j : Y \cong c_j \times Y \hookrightarrow C \times Y$ for every $1 \le j \le d$. We have a map

$$p_{1,Y}^*E \to \bigoplus_{j=1}^d i_{j*} \left(p_{1,Y}^*E|_{c_j \times Y} \right).$$

The bundle $p_{1,Y}^*E|_{c_j\times Y}$ is just the trivial bundle on Y, and using v_j we can get quotients $p_{1,Y}^*E|_{c_j\times Y}\to \mathscr{O}_Y$ for $2\leq j\leq d$. For j=1 we have the quotient $p_{1,Y}^*E|_{c_1\times Y}\to i_{1*}(\mathscr{O}_Y(1))$. Since the $c_j\times Y$ are disjoint we can put these together to get a quotient on $C\times Y$

$$p_{1,Y}^*E \to \left(\bigoplus_{j=2}^d i_{j*}\mathcal{O}_Y\right) \bigoplus i_{1*}\mathcal{O}_Y(1).$$

By definition, the sheaf \mathcal{B}_{V} is the sheaf in the RHS. Then

$$\mathcal{B}_{Y} \otimes p_{1,Y}^{*} L = \left(\bigoplus_{j=2}^{d} i_{j*} \mathcal{O}_{Y} \right) \otimes p_{1,Y}^{*} L \bigoplus i_{1*} \mathcal{O}_{Y}(1) \otimes p_{1,Y}^{*} L$$

$$= \left(\bigoplus_{j=2}^{d} i_{j*} \mathcal{O}_{Y} \right) \bigoplus i_{1*} \mathcal{O}_{Y}(1)$$

$$= \mathcal{B}_{Y}.$$

Thus, using the remark in the preceding para, we get that the $\mathcal{O}_{\mathcal{Q}}(1)^{\text{th}}$ coefficient of $B_{L,\mathcal{Q}}$ is the same as that of $B_{L',\mathcal{Q}}$. Hence $B_{L,\mathcal{Q}} \otimes B_{L',\mathcal{Q}}^{-1} = \Phi^* \mathcal{L}$.

Recall the section η of Φ from equation (7), constructed using some line bundle quotient $E \to M$. Then $\eta^*(B_{L,\mathcal{Q}} \otimes B_{L,\mathcal{Q}}^{-1}) = s^*\Phi^*\mathcal{L} = \mathcal{L}$. Now using Lemma 17, we get that $\eta^*B_{L,\mathcal{Q}} = \mathcal{G}_{d,L\otimes M}$.

By Göttsche's theorem ([15, page 9]) we get that $\eta^*B_{L,\mathcal{Q}}=\mathcal{G}_{d,L\otimes M}=(L\otimes M)^{\boxtimes d}\otimes\mathcal{O}(-\Delta_d/2)$. Therefore, we get

$$\mathcal{L} = \eta^* \left(B_{L,\mathcal{Q}} \otimes B_{L',\mathcal{Q}}^{-1} \right) = \left(L \otimes L'^{-1} \right)^{\boxtimes d}.$$

This completes the proof of the Proposition 18

Corollary 19. $[B_{L,\mathcal{Q}}] = [\mathcal{O}_{\mathcal{Q}}(1)] + \deg(L)[x] \text{ in } N^1(\mathcal{Q}).$

4. Upper bound on NEF cone

Let V be a vector space of dimension n. From now, unless mentioned otherwise, the notation \mathcal{Q} will be reserved for the space $\mathcal{Q}(V \otimes \mathcal{O}_C, d)$. Sometimes we will also denote this space by $\mathcal{Q}(n, d)$ when we want to emphasize n and d.

Notation

For the rest of this article, except in section 6, the genus of the curve C will be $g(C) \ge 1$. If $g(C) \ge 2$ then we will also assume that C is very general.

Our aim is to compute the NEF cone of \mathcal{Q} . Since this cone is dual to the cone of effective curves, it follows that if we take effective curves C_1, C_2, \ldots, C_r , take the cone generated by these in $N_1(\mathcal{Q})$, and take the dual cone T in $N^1(\mathcal{Q})$, then Nef(\mathcal{Q}) is contained in T. This gives us an upper bound on Nef(\mathcal{Q}). We already know two curves in \mathcal{Q} . The first being a line in the fiber of $\Phi: \mathcal{Q} \to C^{(d)}$, see Definition 12, which was denoted [l]. Recall the section η of Φ from equation (7), taking L to be the trivial bundle. The second curve is $\eta_*([l'])$, where [l'] is from Definition 2. Now we will construct a third curve in \mathcal{Q} .

Define a morphism

$$\widetilde{\delta}: C \to \mathcal{Q}$$
 (8)

as follows. Let $p_1, p_2: C \times C \to C$ be the first and second projections respectively. Let $i: C \to C \times C$ be the diagonal. Fix a surjection $k^n \to k^d$ of vector spaces. Then define the quotient over $C \times C$

$$\mathcal{O}^n_{C\times C} \to \mathcal{O}^d_{C\times C} \to i_* i^* \mathcal{O}^d_{C\times C}.$$

This induces a morphism $\widetilde{\delta}: C \to \mathcal{Q}$ which sends $c \mapsto [\mathcal{O}_C^n \to k_c^d \to 0]$. We will abuse notation and denote the class $[\widetilde{\delta}_*(C)] \in N_1(\mathcal{Q})$ by $[\widetilde{\delta}]$.

We now give an upper bound for the NEF cone when $n \ge d \ge \text{gon}(C)$.

Proposition 20. Consider the Quot scheme $\mathcal{Q} = \mathcal{Q}(n,d)$. Assume $n \ge d \ge \text{gon}(C)$. Let $\mu_0 := \frac{d+g-1}{dg}$. Then

$$Nef(\mathcal{Q}) \subset \mathbb{R}_{>0} ([\mathcal{O}_{\mathcal{Q}}(1)] + \mu_0[L_0]) + \mathbb{R}_{>0}[\theta_d] + \mathbb{R}_{>0}[L_0].$$

Proof. We claim that the cone dual to $\langle [l], \eta_*([l']), [\tilde{\delta}] \rangle$ is precisely

$$\langle ([\mathcal{O}_{\mathcal{Q}}(1)] + \mu_0[L_0]), [L_0], [\theta_d] \rangle$$
.

We have the following equalities:

- (1) $([\mathcal{O}_{\mathcal{D}}(1)] + \mu_0[L_0]) \cdot [l] = 1$. This is clear.
- (2) $([\mathcal{O}_{\mathscr{D}}(1)] + \mu_0[L_0]) \cdot \eta_*[l'] = 0$. By projection formula and Lemma 17, we get that

$$([\mathscr{O}_{\mathscr{Q}}(1)] + \mu_0[L_0]) \cdot [\eta_* l'] = ([-\Delta_d/2] + \mu_0[L_0]) \cdot [l'].$$

By Lemma 7 we get that $[-\Delta_d/2] + \mu_0[L_0] = (1-\mu_0)[\theta_d]$. But as we saw earlier, $[\theta_d] \cdot [l'] = 0$.

(3) $([\mathcal{O}_{\mathcal{Q}}(1)] + \mu_0[L_0]) \cdot [\widetilde{\delta}] = 0$. By Lemma 8, it is easy to see that $[\mathcal{O}_{\mathcal{Q}}(1)] \cdot [\widetilde{\delta}] = 0$. By projection formula, we get

$$\left(\left[\mathcal{O}_{\mathcal{Q}}(1) \right] + \mu_0[L_0] \right) \cdot \left[\widetilde{\delta} \right] = \left[\mu_0 L_0 \right] \cdot \left[\Phi_* \widetilde{\delta} \right] = \left[\mu_0 L_0 \right] \cdot \left[\delta \right] = 0.$$

(4) $[\theta_d] \cdot [l] = [L_0] \cdot [l] = 0$ follows using the projection formula.

Now the claim follows from Proposition 5. As explained before, since Nef(\mathcal{Q}) is contained in the dual to the cone $\langle [l], \eta_*([l']), [\widetilde{\delta}] \rangle$, the proposition follows.

When the genus g = 1, we have the following improvement of Proposition 20.

Proposition 21. Let C be a smooth projective curve of genus g = 1. Consider the Quot scheme $\mathcal{Q} = \mathcal{Q}(n,d)$. Assume $d \ge \text{gon}(C) = 2$. Then

$$\operatorname{Nef}(\mathcal{Q}) \subset \mathbb{R}_{\geq 0} \left([\mathcal{O}_{\mathcal{Q}}(1)] + [L_0] \right) + \mathbb{R}_{\geq 0} [\theta_d] + \mathbb{R}_{\geq 0} [L_0].$$

Proof. We claim that the cone dual to $\langle [l], \eta_*([l']), \eta_*[\delta] \rangle$ is precisely

$$\langle ([\mathcal{O}_{\mathcal{Q}}(1)] + [L_0]), [L_0], [\theta_d] \rangle.$$

Let us check that $[([\mathscr{O}_{\mathscr{Q}}(1)] + [L_0])] \cdot \eta_*[\delta] = 0$. Since $[L_0] \cdot [\delta] = 0$ it is clear that it suffices to check that $[\mathscr{O}_{\mathscr{Q}}(1)] \cdot \eta_*[\delta] = 0$. Applying the definition of the map $\eta \circ \delta : C \to \mathscr{Q}$ we see that $[\mathscr{O}_{\mathscr{Q}}(1)] \cdot \eta_*[\delta] = \deg(p_{2*}(\mathscr{O}/\mathscr{I}^d))$, where \mathscr{I} is the ideal sheaf of the diagonal in $E \times E$. Since $\mathscr{I}/\mathscr{I}^2$ is trivial and $\mathscr{I}^j/\mathscr{I}^{j+1} = (\mathscr{I}/\mathscr{I}^2)^{\otimes j}$, it follows that $\deg(p_{2*}(\mathscr{O}/\mathscr{I}^d)) = 0$. The rest of the proof is the same as that of Proposition 20.

5. Lower bound on NEF cone

In this section we obtain a lower bound for Nef(\mathcal{Q}) ($\mathcal{Q} = \mathcal{Q}(n, d)$).

Lemma 22. Let $f: D \to \mathcal{Q}$ be a morphism, where D is a smooth projective curve. Fix a point $q \in f(D)$ and an effective divisor A on C containing the scheme theoretic support of \mathcal{B}_q . If there is a line bundle L on C such that $H^0(L) \to H^0(L|_A)$ is surjective then $[B_{L,\mathcal{Q}}] \cdot [D] \geq 0$.

Proof. Consider the map

$$p_{\mathscr{Q}_*}(p_C^*(V \otimes \mathscr{O}_C) \otimes p_C^*L) \to p_{\mathscr{Q}_*}(\mathscr{B}_{\mathscr{Q}} \otimes p_C^*L)$$

on \mathcal{Q} . We claim that this map is surjective at the point q. In view of Lemma 8 when we restrict this map to q, it becomes equal to the map

$$H^0\left(V\otimes L\right)\to H^0\left(\mathcal{B}_q\otimes L\right)\,.$$

The map $V \otimes L \rightarrow \mathcal{B}_q \otimes L$ on C factors as

$$V \otimes L \to V \otimes L|_A \to \mathscr{B}_q \otimes L$$
.

Taking global sections we see that the map $H^0(V \otimes L) \to H^0(\mathscr{B}_q \otimes L)$ factors as

$$H^0\left(V\otimes L\right)\to H^0\left(V\otimes L|_A\right)\to H^0\left(\mathcal{B}_q\otimes L\right)\,.$$

The second arrow is surjective since these are coherent sheaves on a zero dimensional scheme. The first arrow is simply

$$V \otimes H^0(L) \to V \otimes H^0(L|_A)$$
.

Since $H^0(L) \to H^0(L|_A)$ is surjective by our choice of L, it follows that $H^0(V \otimes L) \to H^0(\mathcal{B}_q \otimes L)$ is surjective, and so it follows that $p_{\mathcal{Q}*}(V \otimes p_C^*L) \to p_{\mathcal{Q}*}(\mathcal{B}_{\mathcal{Q}} \otimes p_C^*L)$ is surjective at the point q.

The rank of the vector bundle $p_{\mathcal{Q}*}(\mathcal{B}_{\mathcal{Q}}\otimes p_C^*L)$ on \mathcal{Q} is d. Taking the dth exterior of $p_{\mathcal{Q}*}(V\otimes p_C^*L)\to p_{\mathcal{Q}*}(\mathcal{B}_{\mathcal{Q}}\otimes p_C^*L)$ we get a map

$$\bigwedge^d \left(V \otimes H^0(L) \right) \to B_{L,\mathcal{Q}}.$$

This map is nonzero and that can be seen by looking at the restriction to the point q. This shows that there is a global section of $B_{L,\mathcal{Q}}$ whose restriction to q does not vanish. It follows that $[B_{L,\mathcal{Q}}] \cdot [D] \ge 0$. This completes the proof of the Lemma 22.

Lemma 23. Let A be an effective divisor on C of degree d. Then there is a line bundle L of degree d + g - 1 such that the natural map

$$H^0(L) \to H^0(L|_A)$$

is surjective.

Proof. It suffices to find a line bundle of degree d+g-1 such that $H^1(L\otimes \mathcal{O}_C(-A))=0$. By Serre duality this is same as saying that $H^0(L^\vee\otimes K_C\otimes \mathcal{O}_C(A))=0$. The degree of $L^\vee\otimes K_C\otimes \mathcal{O}_C(A)$ is g-1. Thus, fixing A we may choose a general L such that $L^\vee\otimes K_C\otimes \mathcal{O}_C(A)$ line bundle has no global sections.

Definition 24. Define $U \subset \mathcal{Q}$ to be the set of quotients of the form

$$\mathcal{O}_C^n \to \frac{\mathcal{O}_C}{\prod\limits_{i=1}^r \mathfrak{m}_{C,c_i}^{d_i}} \cong \bigoplus \frac{\mathcal{O}_{C,c_i}}{\mathfrak{m}_{C,c_i}^{d_i}} \qquad c_i \neq c_j.$$

We now prove a lemma, which is implicitly contained [8, Section 5]. Let $\Sigma \subset C \times C^{(d)}$ denote the closed sub-scheme which is the universal divisor. In the following Lemma we work more generally with $\mathcal{Q}(E,d)$.

Lemma 25. Let E be a locally free sheaf of rank r on C. Let $\mathcal{Q} = \mathcal{Q}(E,d)$ denote the Quot scheme of torsion quotients of length d. The universal quotient $\mathcal{B}_{\mathcal{Q}}$ is supported on $\Phi^*\Sigma \subset C \times \mathcal{Q}$. The set U is open in \mathcal{Q} . On $C \times U$ the sheaf $\mathcal{B}_{\mathcal{Q}}$ is a line bundle supported on the scheme $\Phi^*\Sigma \cap (C \times U)$.

Proof. Let A denote the kernel of the universal quotient on $C \times \mathcal{Q}$

$$0 \to A \xrightarrow{h} p_C^* E \to \mathscr{B}_{\mathscr{Q}} \to 0.$$

The map Φ is defined taking the determinant of h, that is, using the quotient

$$0 \to \det(A) \xrightarrow{\det(h)} p_C^* \det(E) \to \mathcal{F} \to 0.$$

If \mathcal{I}_{Σ} denotes the ideal sheaf of Σ then this shows that

$$\Phi^* \mathscr{I}_{\Sigma} = \det(A) \otimes p_C^* \det(E)^{-1}.$$

Let $0 \to E' \xrightarrow{h} E$ be locally free sheaves of the same rank on a scheme Y. Let $\mathscr I$ denote the ideal sheaf determined by $\det(h)$. Then it is easy to see that $\mathscr I E \subset h(E') \subset E$. Applying this we get that $(\Phi^*\mathscr I_\Sigma)p_C^*E \subset A$. This proves that $\mathscr B$ is supported on $\Phi^*\Sigma$. Let us denote by $Z := \Phi^*\Sigma \subset C \times \mathscr Q$. Consider the closed subset $Z_2 \subset Z$ defined as follows

$$Z_2 := \left\{ z = (c,q) \in Z \mid \operatorname{rank}_k(\mathcal{B}_{\mathcal{Q}} \otimes k(z)) \geq 2 \right\} \,.$$

Then the image of Z_2 in \mathcal{Q} is closed and U is precisely the complement of Z_2 . This proves that U is open in \mathcal{Q} .

Let R be a local ring with maximal ideal \mathfrak{m} and let $R \to S$ be a finite map. Let M be a finite S module, which is flat over R and such that $M/\mathfrak{m}M \cong S/\mathfrak{m}S$. Then it follows easily that $M \cong S$.

Let $q \in U \subset \mathcal{Q}$ be a point. The sheaf $\mathcal{B}_{\mathcal{Q}}$ is a coherent sheaf supported on Z, the map $Z \to \mathcal{Q}$ is finite, the fiber

$$\mathscr{B}_q = \bigoplus \frac{\mathscr{O}_{C,c_i}}{\mathfrak{m}_{C,C_i}^{d_i}} \cong \mathscr{O}_{\Sigma}|_q \cong \mathscr{O}_{Z}|_q.$$

From the preceding remark it follows that $\mathscr{B}_{\mathcal{Q}}$ is a line bundle over $Z \cap (C \times U)$.

Lemma 26. Consider the Quot scheme $\mathcal{Q} = \mathcal{Q}(n,d)$. Let D be a smooth projective curve and let $D \to \mathcal{Q}$ be a morphism such that its image intersects U. Then $([\mathcal{O}_{\mathcal{Q}}(1)] + [\Delta_d/2]) \cdot [D] \ge 0$.

Proof. Denote by \mathscr{B}_D the pullback of the universal quotient over $C \times \mathscr{Q}$ to $C \times D$. Denote by $i_D : \Gamma \hookrightarrow C \times D$ the pullback of the universal subscheme $\Sigma \hookrightarrow C \times C^{(d)}$ to $C \times D$. Then \mathscr{B}_D is supported on Γ .

Let Γ_i be the irreducible components of Γ . Since $\Gamma \to D$ is flat each Γ_i dominates D. Let $f:\Gamma \to D$ denote the projection. There is an open subset $U_1 \subset D$ such that

$$f^{-1}(U_1) = \bigsqcup_{i} \Gamma_i \cap f^{-1}(U_1)$$

and \mathscr{B}_D restricted to $f^{-1}(U_1)$ is a line bundle. Note that by $\Gamma_i \cap f^{-1}(U_1)$ we mean this open subscheme of Γ . Fix a closed point $x_i \in \Gamma_i \cap f^{-1}(U_1)$. Consider the quotient

$$V \otimes \mathcal{O}_{C \times D} \to \mathcal{B}_D$$

and restrict it to the point x_i . We get a quotient

$$V \to \mathscr{B}_D \otimes k(x_i) \to 0$$
.

If we pick a general line in V, then it surjects onto $\mathscr{B}_D \otimes k(x_i)$. Thus, for the general element $s \in V$, $s \otimes \mathscr{O}_{C \times D}$ surjects onto $\mathscr{B}_D \otimes k(x_i)$. This map factors through \mathscr{O}_{Γ} , and we get an exact sequence

$$0 \to \mathcal{O}_{\Gamma} \to \mathcal{B}_D \to F \to 0$$

where F is supported on a 0 dimensional scheme. Then we have

$$0 \to f_* \mathcal{O}_{\Gamma} \to f_* \mathcal{B}_D \to f_* F \to 0$$
.

Since f_*F is again supported on finitely many points, hence we have

$$\deg(f_*\mathscr{B}_D) - \deg(f_*\mathscr{O}_\Gamma) \ge 0$$

By Lemma 8, $\deg(f_*\mathscr{B}_D) = [\mathscr{O}_{\mathscr{Q}}(1)] \cdot [D]$ and by [15, § 3] we have

$$\deg(f_*\mathscr{O}_{\Gamma}) = [\mathscr{O}(-\Delta_d/2)] \cdot [D].$$

Hence the result follows.

Corollary 27. If the image of $f: D \to \mathcal{Q}$ intersects U, then $([\mathcal{O}_{\mathcal{Q}}(1)] + \mu_0[L_0]) \cdot [D] \ge 0$.

Proof. If its image intersects *U*, then by Lemma 26,

$$([\mathcal{O}_{\mathcal{Q}}(1)] + [\Delta_d/2]) \cdot [D] \geq 0.$$

By Lemma 7,

$$[\Delta_d/2] = \mu_0[L_0] - (1 - \mu_0)[\theta_d]$$
.

Since θ_d is nef, we have that

$$([\mathcal{O}_{\mathcal{D}}(1)] + \mu_0[L_0]) \cdot [D] \ge 0.$$

Lemma 28. Consider the Quot scheme $\mathcal{Q} = \mathcal{Q}(n,d)$. Let D be a smooth projective curve and let $f: D \to (\mathcal{Q} \setminus U) \subset \mathcal{Q}$ be a morphism. Then $([\mathcal{O}_{\mathcal{Q}}(1)] + (d+g-2)[x]) \cdot [D] \geq 0$.

Proof. Fix a point $q \in f(D)$. Let A be the scheme theoretic support of the quotient \mathscr{B}_q on C. Let $\deg(A) = d'$. Since $q \notin \mathscr{U}$, we have d' < d. By Lemma 23 we have a line bundle L of degree d' + g - 1 such that $H^0(L) \to H^0(L|_A)$ is surjective. By Lemma 22 and Corollary 19 we get that $[B_{L,\mathscr{Q}}] \cdot [D] = ([\mathscr{O}_{\mathscr{Q}}(1)] + (d' + g - 1)[x]) \cdot [D] \ge 0$. Since [x] is nef on \mathscr{Q} and $d' \le d - 1$ we get that $([\mathscr{O}_{\mathscr{Q}}(1)] + (d + g - 2)[x]) \cdot [D] \ge 0$.

Proposition 29. Consider the Quot scheme $\mathcal{Q} = \mathcal{Q}(n,d)$. Let $\mu_0 = \frac{d+g-1}{dg}$. Then the class $\kappa_1 := [\mathcal{O}_{\mathcal{Q}}(1)] + \mu_0[L_0] + \frac{d+g-2}{dg}[\theta_d]$ is nef.

Proof. Let $D \to \mathcal{Q}$ is a morphism, where D is a smooth projective curve. If the image of this morphism intersects U then by Lemma 26 we have $([\mathcal{O}_{\mathcal{Q}}(1)] + [\Delta_d/2]) \cdot [D] \ge 0$. By Lemma 7 we have $[\Delta_d/2] = \mu_0[L_0] - (1 - \mu_0)[\theta_d]$. Hence we get

$$\left(\left[\mathcal{O}_{\mathcal{Q}}(1)\right] + \mu_0[L_0]\right) \cdot [D] \geq \left(1 - \mu_0\right) \left[\theta_d\right] \cdot [D] \geq 0.$$

Since $[\theta_d]$ is nef, we get

$$\left(\left[\mathcal{O}_{\mathcal{Q}}(1)\right]+\mu_0[L_0]\right)\cdot [D]+\frac{d+g-2}{dg}[\theta_d]\cdot [D]\geq 0\,.$$

Now assume $D \rightarrow \mathcal{Q}$ does not intersect U. Then by Lemma 28 we get

$$\left([\mathcal{O}_{\mathcal{Q}}(1)] + (d+g-2)[x] \right) \cdot [D] \ge 0.$$

By Lemma 7 we have $[x] = \frac{1}{d\sigma}[L_0] + \frac{1}{d\sigma}[\theta_d]$. Therefore

$$\begin{split} (d+g-2)[x] &= \frac{d+g-2}{dg} [L_0] + \frac{d+g-2}{dg} [\theta_d] \\ &= \mu_0 [L_0] - \frac{1}{dg} [L_0] + \frac{d+g-2}{dg} [\theta_d] \,. \end{split}$$

Since L_0 is nef we get that

$$\left(\left[\mathcal{O}_{\mathcal{Q}}(1) \right] + \mu_0[L_0] + \frac{d+g-2}{dg} \left[\theta_d \right] \right) \cdot [D] \ge 0.$$

Lemma 30. Let L be a line bundle on C of degree d+g-1. If $d \ge gon(C)$ then the line bundle $B_{L,\mathcal{Q}}$ is not ample. Moreover, for any $t \in [0,1]$ the class $t[B_{L,\mathcal{Q}}] + (1-t)[\theta_d]$ is nef but not ample.

Proof. We saw in the last para of the proof of Proposition 18 that $\eta^*B_{L,\mathcal{Q}} = L^{\boxtimes d} \otimes \mathcal{O}(-\Delta_d/2)$. Its class in the nef cone is $(d+g-1)[x] - [\Delta_d/2]$. It follows from Lemma 7 that this is equal to $[\theta_d]$. Since $d \geq \operatorname{gon}(C)$ we have θ_d is not ample on $C^{(d)}$. That $t[B_{L,\mathcal{Q}}] + (1-t)[\theta_d]$ is nef is clear since both $[B_{L,\mathcal{Q}}]$ and $[\theta_d]$ are nef. This is not ample since η^* of this class is $[\theta_d]$ on $C^{(d)}$, which is not ample.

Proposition 31. Consider the Quot scheme $\mathcal{Q} = \mathcal{Q}(n,d)$. Then the class $[\mathcal{O}_{\mathcal{Q}}(1)] + (d+g-1)[x] \in N^1(\mathcal{Q})$ is nef.

Proof. It is easily checked that the class $[\mathcal{O}_{\mathcal{Q}}(1)] + (d+g-1)[x]$ can be written as a positive linear combination of $[\theta_d]$ and the class in Proposition 29.

We may slightly improve Proposition 31 in a special case using the results in [15]. For this we first recall the main results in [15, § 4]. Let C be a very general curve of genus g(C) = 2k. Since the gonality is given by $\lfloor \frac{g+3}{2} \rfloor$, in this case it is k+1. Let L_i' denote the finitely many g_{k+1}^1 's on C and define $L_i = K_C - L_i'$. Then $\deg(L_i) = 3(k-1)$. It is proved in [15, Proposition 3.6, Theorem 4.1] that \mathcal{G}_{k,L_i} is nef but not ample.

Proposition 32. Let C be a very general curve of genus g(C) = 2k. Consider the Quot scheme $\mathcal{Q} = \mathcal{Q}(n, k)$. The line bundle $B_{L,\mathcal{Q}}$ is nef when $\deg(L) \geq 3(k-1)$. When $\deg(L) = 3(k-1)$ the class $t[B_{L,\mathcal{Q}}] + (1-t)[\mathcal{G}_{k,L}]$ is nef but not ample for any $t \in [0,1]$.

We remark that this is an improvement since Proposition 31 only shows that $B_{L,\mathcal{Q}}$ is nef when $\deg(L) \ge 3k - 1$.

Proof. It follows from Proposition 18 that the class of $B_{L,\mathcal{Q}}$ in $N^1(\mathcal{Q})$ is $[\mathcal{O}_{\mathcal{Q}}(1)] + \deg(L)[x]$, since $B_{\mathcal{O}_C,\mathcal{Q}} = \mathcal{O}_{\mathcal{Q}}(1)$. Notice that this class only depends on the degree of L. Since the sum of nef line bundles is nef, it suffices to show that $[B_{L,\mathcal{Q}}] = [\mathcal{O}_{\mathcal{Q}}(1)] + \deg(L)[x]$ is nef when $\deg(L) = 3(k-1)$.

The set $V(\sigma_{L_i})$ is defined in equation [15, equation (18)]. Then (A) in [15, Theorem 4.1] says that for every $A \in C^{(k)}$ there is an L_i such that $H^0(C, L_i) \to H^0(C, L_i|_A)$ is surjective.

Let $f: D \to \mathcal{Q}$ be morphism, where D is a smooth projective curve. Fix a point $q \in f(D)$. Let A be the divisor corresponding to $\Phi(q)$, then A is an effective divisor of degree k. For this A, choose a line bundle L_i such that

$$H^0(C, L_i) \rightarrow H^0(C, L_i|_A)$$

is surjective. The scheme theoretic support of \mathcal{B}_q is contained in A. It follows from Lemma 22 that

$$f^*B_{L_i,\mathcal{Q}} = f^*([\mathcal{O}_{\mathcal{Q}}(1)] + 3(k-1)[x]) \ge 0.$$

It follows that $B_{L,\mathcal{Q}}$ is nef.

Note that

$$\begin{split} \eta^* B_{L,\mathcal{Q}} &= \eta^* \left[\mathcal{O}_{\mathcal{Q}}(1) \right] + \deg(L) \eta^* [x] \\ &= \left[\mathcal{O} \left(-\Delta_k/2 \right) \right] + 3(k-1)[x] \\ &= \left[\mathcal{G}_{k,L} \right] \,. \end{split}$$

Thus, when $t \in [0,1]$ the pullback along η of $t[B_{L,\mathcal{Q}}] + (1-t)[\mathcal{G}_{k,L}]$ is $[\mathcal{G}_{k,L}]$, which is not ample. \square

6. The genus 0 case

Throughout this section we will work with $C = \mathbb{P}^1$. Let us first compute the nef cone of $\mathcal{Q}(n,d)$.

Note that we have $C^{(d)} \cong \mathbb{P}^d$. Hence $N^1(C^{(d)}) = \mathbb{R}[\mathcal{O}_{\mathbb{P}^d}(1)]$. By Corollary 13 it follows that $N^1(\mathcal{Q})$ is two dimensional. Hence, it suffices to find a line bundle on \mathcal{Q} which is different from the pullback of $\mathcal{O}_{\mathbb{P}^d}(1)$ and which is nef but not ample. The following result is proved in [16, Theorem 6.2], but we include it for the benefit of the reader.

Proposition 33.

$$\begin{split} \operatorname{Nef}(\mathcal{Q}(n,d)) = & \mathbb{R}_{\geq 0} \left[B_{\mathcal{O}(d-1),\mathcal{Q}} \right] + \mathbb{R}_{\geq 0} \left[\mathcal{O}_{\mathbb{P}^d}(1) \right] \\ = & \mathbb{R}_{\geq 0} \left(\left[\mathcal{O}_{\mathcal{Q}}(1) \right] + (d-1) \left[\mathcal{O}_{\mathbb{P}^d}(1) \right] \right) + \mathbb{R}_{\geq 0} \left[\mathcal{O}_{\mathbb{P}^d}(1) \right]. \end{split}$$

Proof. Let $W := H^0(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(d))$. There is a natural isomorphism $\mathbb{P}W^* \xrightarrow{\sim} C^{(d)}$. The universal subscheme $\Sigma \subset \mathbb{P}^1 \times \mathbb{P}W^*$ is given by the tautological section

$$p_2^*\mathcal{O}_{\mathbb{P}W^*}(-1) \to p_2^*W = p_1^*W \to p_1^*\mathcal{O}_{\mathbb{P}^1}(d)\,.$$

By Lemma 22 and Lemma 23 we get that $B_{\mathcal{O}(d-1),\mathcal{Q}}$ is nef. To show $B_{\mathcal{O}(d-1),\mathcal{Q}}$ is not ample, consider a section $\eta:C^{(d)}\to\mathcal{Q}$ constructed as in (7) with L the trivial bundle. Let p_i denote the two projections from $\mathbb{P}^1\times\mathbb{P}W^*$. By definition and Lemma 16 it follows that $\eta^*B_{\mathcal{O}(d-1),\mathcal{Q}}=\det(p_{2*}(\mathcal{O}_\Sigma\otimes p_1^*\mathcal{O}_{\mathbb{P}^1}(d-1)))$. Tensoring the exact sequence

$$0 \to p_1^* \mathcal{O}_{\mathbb{P}^1}(-d) \otimes p_2^* \mathcal{O}_{\mathbb{P}W^*}(-1) \to \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}W^*} \to \mathcal{O}_{\Sigma} \to 0$$

with $p_1^*\mathcal{O}_{\mathbb{P}^1}(d-1)$ and applying p_{2*} it easily follows that $p_{2*}(\mathcal{O}_{\Sigma} \otimes p_1^*\mathcal{O}_{\mathbb{P}^1}(d-1))$ is the trivial bundle and so $\eta^*B_{\mathcal{O}(d-1),\mathcal{Q}}$ is trivial. This proves that $B_{\mathcal{O}(d-1),\mathcal{Q}}$ is nef but not ample.

By restricting to a fiber of Φ and using Corollary 19 we see that $[B_{\mathcal{O}(d-1),\mathcal{Q}}]$ is linearly independent from $[\mathcal{O}_{\mathbb{P}^d}(1)]$. This completes the proof of the first equality. The second equality will follow from the first equality once we show that

$$\left[B_{\mathcal{O}(d-1),\mathcal{Q}}\right] = \left[\mathcal{O}_{\mathcal{Q}}(1)\right] + (d-1)\left[\mathcal{O}_{\mathcal{P}^d}(1)\right].$$

By Corollary 19, we have that $[B_{\mathcal{O}(d-1),\mathcal{Q}}] = [\mathcal{O}_{\mathcal{Q}}(1)] + (d-1)[x]$. Now recall that given $x \in \mathbb{P}^1$, [x] is the class of the divisor in $C^{(d)}$ whose underlying set consists of effective divisors of degree d containing x (see (4)). Hence, [x] is the class of the hyperplane section

$$\mathbb{P}\left(H^0\left(\mathbb{P}^1, \mathcal{O}(d) \otimes \mathcal{O}(-x)\right)^*\right) \subset \mathbb{P}\left(H^0\left(\mathbb{P}^1, \mathcal{O}(d)\right)^*\right) = C^{(d)}.$$

Therefore $[x] = [\mathcal{O}_{\mathbb{P}^1}(1)]$ and this completes the proof of the second equality.

Theorem 34. Let $C = \mathbb{P}^1$. Let $E = \bigoplus_{i=1}^k \mathscr{O}(a_i)$ with $a_i \le a_j$ for i < j. Let $d \ge 1$. Let $L = \mathscr{O}(-a_1 + d - 1)$.

$$\begin{split} \operatorname{Nef}(\mathcal{Q}(E,d)) = & \mathbb{R}_{\geq 0} \left[B_{L,\mathcal{Q}(E,d)} \right] + \mathbb{R}_{\geq 0} \left[\mathcal{O}_{\mathbb{P}^d}(1) \right] \\ = & \mathbb{R}_{\geq 0} \left(\left[\mathcal{O}_{\mathcal{Q}(E,d)}(1) \right] + \left(-a_1 + d - 1 \right) \left[\mathcal{O}_{\mathbb{P}^d}(1) \right] \right) + \mathbb{R}_{\geq 0} \left[\mathcal{O}_{\mathbb{P}^d}(1) \right]. \end{split}$$

Proof. By Corollary 13 we get that $N^1(\mathcal{Q}(E,d))$ is 2-dimensional. Hence it is enough to give two line bundles which are nef but not ample. Clearly $\Phi_{\mathcal{Q}(E,d)}^*\mathcal{O}_{\mathbb{P}^d}(1)$ is nef but not ample. So it is enough to show that $B_{I_*,\mathcal{Q}(E,d)}$ is nef but not ample.

Since $a_j - a_1 \ge 0 \ \forall \ j \ge 1$, we get that $E(-a_1)$ is globally generated. Let $V := H^0(C, E(-a_1))$ and let dim V = n. Then we have a surjection $V \otimes \mathcal{O}_C \to E(-a_1)$. Then gives us a surjection

$$V \otimes \mathcal{O}_C \to p_C^* E(-a_1) \to \mathscr{B}_{\mathscr{Q}(E,d)} \otimes p_C^* \mathcal{O}_C(-a_1) \to 0.$$

This defines a map $f: \mathcal{Q}(E, d) \to \mathcal{Q}(n, d)$. By Lemma 16 we get that

$$f^*B_{\mathcal{O}(d-1),\mathcal{Q}(n,d)} = B_{L,\mathcal{Q}(E,d)} = \det\left(p_{\mathcal{Q}(E,d)*}\left(\mathcal{B}_{\mathcal{Q}(E,d)}\otimes p_C^*L\right)\right).$$

Since $B_{\mathcal{O}(d-1),\mathcal{Q}(n,d)}$ is nef we get that $B_{L,\mathcal{Q}(E,d)}$ is nef. We next show that the $B_{L,\mathcal{Q}(E,d)}$ is not ample. Consider the section $\eta_{\mathcal{Q}(E,d)}$ of $\Phi_{\mathcal{Q}(E,d)}:\mathcal{Q}(E,d)\to C^{(d)}$ defined by the quotient $p_C^*E\to p_C^*\mathcal{O}(a_1)\otimes\mathcal{O}_\Sigma$ on $C\times C^{(d)}$ (see (7)). Then $f\circ\eta_{\mathcal{Q}(E,d)}$ is a section of $\Phi:\mathcal{Q}(n,d)\to C^{(d)}$ defined by a quotient $\mathcal{O}_C^n\to\mathcal{O}_\Sigma\to 0$ on $C\times C^{(d)}$. Therefore $\eta_{\mathcal{Q}(E,d)}^*B_{L,\mathcal{Q}(E,d)}=\eta^*B_{\mathcal{O}(d-1),\mathcal{Q}(n,d)}$. As $\eta^*B_{\mathcal{O}(d-1),\mathcal{Q}(n,d)}$ is not ample, we get that $B_{L,\mathcal{Q}(E,d)}$ is not ample. The second equality follows again from the fact that $[x]=[\mathcal{O}_{\mathbb{P}^d}(1)]$.

7. Some cases of equality

Now we are back to the assumption that the genus of the curve satisfies $g(C) \ge 1$ and if $g(C) \ge 2$ then we also assume that C is very general.

Definition 35. Let $U' \subset \mathcal{Q}$ be the open set consisting of quotients $\mathcal{O}_C^n \to B \to 0$ such that the induced map $H^0(C, \mathcal{O}_C^n) \to H^0(C, B)$ is surjective.

Lemma 36. Consider the Quot scheme $\mathcal{Q} = \mathcal{Q}(n,d)$. Let D be a smooth projective curve and let $D \to \mathcal{Q}$ be a morphism such that its image intersects U'. Then $[\mathcal{O}_{\mathcal{Q}}(1)] \cdot [D] \geq 0$.

Proof. We continue with the notations of Lemma 26. Let $p_D: C \times D \to D$ be the projection. Then applying $(p_D)_*$ to the quotient $\mathcal{O}_{C \times \mathcal{Q}}^n \to \mathcal{B}_D$ we get that the morphism

$$(p_D)_*\mathcal{O}^n_{C\times D}=\mathcal{O}^n_D\to (p_D)_*\mathcal{B}_D$$

is generically surjective by our assumption and Lemma 8. Hence we get that

$$[\mathscr{O}_{\mathscr{Q}}(1)] \cdot [D] = \deg((p_D)_* \mathscr{B}_D) \ge 0.$$

One extremal ray in Nef($C^{(2)}$) is given by L_0 . Let other extremal ray of Nef($C^{(2)}$) be given by

$$\alpha_t = (t+1)x - \Delta_2/2,\tag{9}$$

(see [12, page 75]). Then using Lemma 7, we get that

$$\Delta_2/2 = \frac{t+1}{g+t} L_0 - \frac{g-1}{g+t} \alpha_t. \tag{10}$$

Theorem 37. Let d = 2. Consider the Quot scheme $\mathcal{Q} = \mathcal{Q}(n,2)$. Then

$$\operatorname{Nef}(\mathcal{Q}) = \mathbb{R}_{\geq 0} \left[\left[\mathcal{O}_{\mathcal{Q}}(1) \right] + \frac{t+1}{g+t} [L_0] \right] + \mathbb{R}_{\geq 0} [L_0] + \mathbb{R}_{\geq 0} [\alpha_t].$$

Proof. We first prove that $[\mathcal{O}_{\mathcal{Q}}(1)] + \frac{t+1}{g+t}[L_0]$ is nef. Since d=2, then there are only three types of quotients:

(1)
$$\mathcal{O}_C^n \to \frac{\mathcal{O}_{C,c_1}}{\mathfrak{m}_{C,c_1}} \oplus \frac{\mathcal{O}_{C,c_2}}{\mathfrak{m}_{C,c_2}}$$
 with $c_1 \neq c_2$,

$$(2) \ \mathscr{O}_C^n \to \frac{\mathscr{O}_{C,c_1}}{\mathfrak{m}_{C,c_1}^2} ,$$

$$(2) \quad \mathcal{O}_{C}^{n} \to \frac{\mathcal{O}_{C,c_{1}}}{\mathfrak{m}_{C,c_{1}}^{2}},$$

$$(3) \quad \mathcal{O}_{C}^{n} \to \frac{\mathcal{O}_{C,c}}{\mathfrak{m}_{C,c}} \oplus \frac{\mathcal{O}_{C,c}}{\mathfrak{m}_{C,c}}.$$

The first two quotients are in U while the third one is in U', that is, we get $U \cup U' = \mathcal{Q}$. Now let D be a smooth projective curve and $D \to \mathcal{Q}$ be a morphism. If its image intersects U, then by Corollary 27, $([\mathcal{O}_{\mathcal{Q}}(1)] + \Delta_2/2) \cdot [D] \geq 0$. Using (10) and the fact that α_t is nef, we get that $([\mathcal{O}_{\mathcal{Q}}(1)] + \frac{t+1}{g+t}[L_0]) \cdot [D] \ge 0$. If D does not intersect U then $D \subset U'$. Hence by Lemma 36, we

$$[\mathcal{O}_{\mathcal{Q}}(1)] \cdot [D] \geq 0.$$

Since $[L_0]$ is nef we have that

$$\left(\left[\mathcal{O}_{\mathcal{Q}}(1) \right] + \frac{t+1}{g+t} [L_0] \right) \cdot [D] \ge 0.$$

Also $([\mathcal{O}_{\mathcal{Q}}(1)] + \frac{t+1}{g+t}[L_0]) \cdot [\widetilde{\delta}] = 0$. Hence any convex linear combination of $[\mathcal{O}_{\mathcal{Q}}(1)] + \frac{t+1}{g+t}[L_0]$ and $[L_0]$ is nef but not ample. By (10) $\eta^*([\mathscr{O}_{\mathscr{Q}}(1)] + \frac{t+1}{g+t}[L_0]) = \frac{g-1}{g+t}\alpha_t$. Hence any convex linear combination of $[\mathcal{O}_{\mathcal{Q}}(1)] + \frac{t+1}{g+t}[L_0]$ and $[\alpha_t]$ is not ample. Hence the result follows.

Precise values for t depending on g are known when

- (1) When g = 1, t = 1.
- (2) When g = 2, t = 2.
- (3) When g = 3, t = 9/5.
- (4) When g is a perfect square $t = \sqrt{g}$, see [11, Theorem 2].
- (5) In [5, Proposition 3.2], when $g \ge 9$, assuming the Nagata conjecture, they prove that

Thus, in all these cases using Theorem 37 we get the Nef cone of $\mathcal{Q}(n,2)$.

7.1. Criterion for nefness

In the remainder of this section, we will need to work with $C^{(d)}$ for different values of d. The line bundles L_0 on $C^{(d)}$ will therefore be denoted by $L_0^{(d)}$ when we want to emphasize the d. Similarly, we will denote $\mu_0^{(d)} = \frac{d+g-1}{dg}$. Let $\mathscr{P}_{(d)}^{\leq n}$ be the set of all partitions (d_1, d_2, \ldots, d_k) of d of length at most n. Given an element $\mathbf{d} \in \mathscr{P}_{(d)}^{\leq n}$ define

$$C^{(\mathbf{d})} := C^{(d_1)} \times C^{(d_2)} \times \dots \times C^{(d_k)}$$

and if $p_i: C^{(\mathbf{d})} \to C^{(d_i)}$ is the i^{th} projection we define a class

$$[\mathscr{O}(-\Delta_{\mathbf{d}}/2)] := \left[\sum p_i^* \mathscr{O}\left(-\Delta_{d_i}/2\right)\right] \in N^1 \left(C^{(\mathbf{d})}\right).$$

Note that we have a natural addition

$$\pi_{\mathbf{d}}: C^{(\mathbf{d})} \to C^{(d)}$$
.

For a partition $\mathbf{d} \in \mathscr{P}_d^{\leq n}$ define a morphism

$$\eta_{\mathbf{d}}: C^{(\mathbf{d})} \to \mathcal{Q}$$

as follows. For any $l \ge 1$, we define the universal subscheme of $C^{(l)}$ over $C \times C^{(l)}$ by Σ_l . Then over $C \times C^{(\mathbf{d})}$ we have the subschemes $(id \times p_i)^* \Sigma_{d_i}$. We have a quotient

$$q_{\mathbf{d}}: \mathcal{O}_{C \times C^{(d)}}^n \to \bigoplus_i \mathcal{O}_{(id \times p_{i,\mathbf{d}})^* \Sigma_{d_i}}$$

defined by taking direct sum of morphisms $\mathscr{O}_{C \times C^{(d)}} \to \mathscr{O}_{(id \times p_{i,\mathbf{d}})^* \Sigma_{d_i}}$. Then $q_{\mathbf{d}}$ defines a map $C^{(\mathbf{d})} \to \mathscr{Q}$. By Lemma 16, we have

$$\left[\eta_{\mathbf{d}}^* \mathcal{O}_{\mathcal{Q}}(1)\right] = \left[\mathcal{O}\left(-\Delta_{\mathbf{d}}/2\right)\right]. \tag{11}$$

Lemma 38. Let D be a smooth projective curve. Let $D \to \mathcal{Q}$ be a morphism. Then there exists a partition $\mathbf{d} \in \mathcal{P}^{\leq n}_{(d)}$ such that the composition $D \to \mathcal{Q} \to C^{(d)}$ factors as $D \to C^{(\mathbf{d})} \to C^{(\mathbf{d})}$ and $[\mathcal{O}_{\mathcal{Q}}(1)] \cdot [D] \geq [\mathcal{O}(-\Delta_{\mathbf{d}}/2)] \cdot [D]$.

Proof. We will proceed by induction on d. When d = 1 the statement is obvious.

Let us denote the pullback of the universal quotient on $C \times \mathcal{Q}$ to $C \times D$ by \mathcal{B}_D and let $f: C \times D \to D$ be the natural projection. Consider a section such that the composite $\mathcal{O}_{C \times D} \to \mathcal{O}_{C \times D}^n \to \mathcal{B}_D$ is non-zero and let \mathcal{F} denote the cokernel of the composite map. We have a commutative diagram

$$0 \longrightarrow \mathcal{O}_{C \times D} \longrightarrow \mathcal{O}_{C \times D}^{n} \longrightarrow \mathcal{O}_{C \times D}^{n-1} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \mathcal{O}_{\Gamma'} \longrightarrow \mathcal{B}_{D} \longrightarrow \mathcal{F} \longrightarrow 0$$

$$(12)$$

Let $T_0(\mathscr{F}) \subset \mathscr{F}$ denote the maximal subsheaf of dimension 0, see [10, Definition 1.1.4]. Define $\mathscr{F}' := \mathscr{F}/T_0(\mathscr{F})$. Now, either $\mathscr{F}' = 0$ or \mathscr{F}' is torsion free over D, and hence, flat over D. In the first case, it follows that D meets the open set U in Lemma 26. Then we take $\mathbf{d} = (d)$ and the statement follows from Lemma 26. So we assume \mathscr{F}' is flat over D and let d' be the degree of $\mathscr{F}'|_{C \times X}$, for $X \in D$. So 0 < d' < d. By (12) we have

$$\deg f_* \mathscr{B}_D = \deg f_* \mathscr{O}_{\Gamma'} + \deg f_* \mathscr{F}.$$

Since $T_0(\mathcal{F})$ is supported on finitely many points, we have deg $\mathcal{F} \ge \deg \mathcal{F}'$. In other words, we have

$$\deg f_* \mathscr{B}_D \ge \deg f_* \mathscr{O}_{\Gamma'} + f_* \mathscr{F}'. \tag{13}$$

Now Γ' defines a morphism $D \to C^{(d-d')}$ and note that

$$\deg f_* \mathcal{O}_{\Gamma'} = [\mathcal{O}(-\Delta_{d-d'}/2)] \cdot [D].$$

The quotient $\mathcal{O}_{C \times D}^{n-1} \to \mathcal{F}' \to 0$ defines a map $D \to \mathcal{Q}(n-1,d')$. By induction hypothesis, we get that there exists a partition $\mathbf{d}' \in \mathcal{P}_{d'}^{\leq n-1}$ such that the composition $D \to \mathcal{Q}(n-1,d') \to C^{(d')}$ factors as $D \to C^{(\mathbf{d}')} \to C^{(d')}$ and

$$\left[\mathcal{O}_{\mathcal{Q}(n-1,d')}(1)\right] \cdot [D] \geq \left[\mathcal{O}\left(-\Delta_{\mathbf{d}'}/2\right)\right] \cdot [D].$$

Since deg $f_*\mathscr{F}' = [\mathscr{O}_{\mathscr{Q}(n-1,d')}(1)] \cdot [D]$ we have that deg $f_*\mathscr{F}' \geq [\mathscr{O}(-\Delta_{\mathbf{d}'}/2)] \cdot [D]$. From (13) we get that

$$[\mathcal{O}_{\mathcal{Q}}(1)] \cdot [D] \geq [\mathcal{O}\left(-\Delta_{\boldsymbol{d}-\boldsymbol{d}'}/2\right)] \cdot D + [\mathcal{O}\left(-\Delta_{\boldsymbol{d}'}/2\right)] \cdot [D]\,.$$

Now we define $\mathbf{d} := (d - d', \mathbf{d}')$ and the statement follows from the above inequality.

Theorem 39. Let $\beta \in N^1(C^{(d)})$. Then the class $[\mathcal{O}_{\mathcal{Q}}(1)] + \beta \in N^1(\mathcal{Q})$ is nef iff the class $[\mathcal{O}(-\Delta_{\mathbf{d}}/2)] + \pi_{\mathbf{d}}^*\beta \in N^1(C^{(\mathbf{d})})$ is nef for all $\mathbf{d} \in \mathcal{P}_d^{\leq n}$.

Proof. From (11) it is clear that if $[\mathscr{O}_{\mathscr{Q}}(1)] + \beta$ is nef, then $\eta_{\mathbf{d}}^*([\mathscr{O}_{\mathscr{Q}}(1)] + \beta) = [\mathscr{O}(-\Delta_{\mathbf{d}}/2)] + \pi_{\mathbf{d}}^*\beta$ is nef

For the converse, we assume $[\mathcal{O}(-\Delta_{\mathbf{d}}/2)] + \pi_{\mathbf{d}}^*\beta$ is nef for all $\mathbf{d} \in \mathscr{P}_d^{\leq n}$. Let D be a smooth projective curve and $D \to \mathscr{Q}$ be a morphism. By Lemma 38 we have that there exists $\mathbf{d} \in \mathscr{P}_d^{\leq n}$ such that $D \to C^{(d)}$ factors as $D \to C^{(\mathbf{d})} \to C^{(d)}$ and

$$[\mathcal{O}_{\mathcal{Q}}(1)] \cdot [D] \ge [\mathcal{O}(-\Delta_{\mathbf{d}}/2)] \cdot [D].$$

Now by assumption we have that

$$[\mathcal{O}(-\Delta_{\mathbf{d}}/2)] \cdot [D] \ge -\beta \cdot [D]$$
.

Therefore we get

$$[\mathcal{O}_{\mathcal{Q}}(1)] \cdot [D] \geq -\beta \cdot [D].$$

Hence we get that the class $[\mathcal{O}_{\mathcal{Q}}(1)] + \beta$ is nef.

Lemma 40. Suppose we are given a map $D \to C^{(\mathbf{d})} \xrightarrow{\pi_{\mathbf{d}}} C^{(d)}$. Then we have

$$\left[L_0^{(d)}\right] \cdot [D] \ge \sum_i \left[L_0^{(d_i)}\right] \cdot [D].$$

Proof. By $[L_0^{d_i}] \cdot [D]$ we mean the degree of the pullback of $[L_0^{(d_i)}]$ along $D \to C^{(\mathbf{d})} \xrightarrow{p_i} C^{(d_i)}$. The lemma follows easily from the definition of $L_0^{(d)}$ and is left to the reader.

Proposition 41. Let $n \ge 1$, $g \ge 1$ and $\mathcal{Q} = \mathcal{Q}(n,d)$. Then the class $\kappa_2 := [\mathcal{O}_{\mathcal{Q}}(1)] + \frac{g+1}{2g}[L_0^{(d)}] \in N^1(\mathcal{Q})$ is nef. As a consequence we get that

$$\operatorname{Nef}(\mathcal{Q}) \supset \mathbb{R}_{\geq 0} \kappa_1 + \mathbb{R}_{\geq 0} \kappa_2 + \mathbb{R}_{\geq 0} [\theta_d] + \mathbb{R}_{\geq 0} [L_0^{(d)}].$$

Proof. Recall $\mu_0^{(2)} = \frac{g+1}{2g}$. By Theorem 39 it suffices to show that for all $\mathbf{d} \in \mathscr{P}^{\leq n}_{(d)}$ we have $[\mathscr{O}(-\Delta_{\mathbf{d}}/2)] + \mu_0^{(2)} \pi_{\mathbf{d}}^*[L_0^{(d)}]$ is nef. Using Lemma 7, $[L_0^{(1)}] = 0$ and Lemma 40 we get

$$\begin{split} \left(\left[\mathcal{O} \left(-\Delta_{\mathbf{d}}/2 \right) \right] + \mu_0^{(2)} \pi_{\mathbf{d}}^* \left[L_0^{(d)} \right] \right) \cdot [D] \\ &= \left(\sum_i \left(1 - \mu_0^{(d_i)} \right) \left[\theta_{d_i} \right] - \mu_0^{(d_i)} \left[L_0^{d_i} \right] \right) \cdot [D] + \mu_0^{(2)} \left[L_0^{(d)} \right] \cdot [D] \geq \sum_i \left(\mu_0^{(2)} - \mu_0^{(d_i)} \right) \left[L_0^{d_i} \right] \cdot [D] \,. \end{split}$$

This proves that κ_2 is nef. That κ_1 is nef is proved in Proposition 29. This completes the proof of the theorem.

Corollary 42. Let $n \ge d$. Then the class $[\mathcal{O}_{\mathcal{Q}}(1)] + \mu_0^{(2)}[L_0^{(d)}] \in N^1(\mathcal{Q})$ is nef but not ample.

Proof. By Proposition 41 we have that $[\mathscr{O}_{\mathscr{Q}}(1)] + \mu_0^{(2)}[L_0^{(d)}]$ is nef. Now recall that when $n \geq d$ we have the curve $\widetilde{\delta} \hookrightarrow \mathscr{Q}$ (8). From the definition of $\widetilde{\delta}$ and Lemma 16 we have $[\mathscr{O}_{\mathscr{Q}}(1)] \cdot [\widetilde{\delta}] = 0$. Also $\Phi_*\widetilde{\delta} = \delta$. Hence $[L_0^{(d)}] \cdot [\widetilde{\delta}] = [L_0^{(d)}] \cdot [\delta] = 0$. From this we get $[\mathscr{O}_{\mathscr{Q}}(1)] + \mu_0^{(2)}[L_0^{(d)}] \cdot [\widetilde{\delta}] = 0$ and hence $[\mathscr{O}_{\mathscr{Q}}(1)] + \mu_0^{(2)}[L_0^{(d)}]$ is not ample.

As a corollary we get the following result. When g=1 note that $\mu_0^{(2)}=1$.

Theorem 43. Let g = 1, $n \ge 1$ and $\mathcal{Q} = \mathcal{Q}(n, d)$. Then the class $[\mathcal{O}_{\mathcal{Q}}(1)] + [\Delta_d/2] \in N^1(\mathcal{Q})$ is nef. Moreover,

$$\operatorname{Nef}(\mathcal{Q}) = \mathbb{R}_{\geq 0} \left([\mathcal{O}_{\mathcal{Q}}(1)] + [\Delta_d/2] \right) + \mathbb{R}_{\geq 0} [\theta_d] + \mathbb{R}_{\geq 0} [\Delta_d/2] .$$

8. Curves over the small diagonal

Throughout this section the genus of the curve C will be $g(C) \ge 2$ and C is a very general curve. Recall that $\Phi: \mathcal{Q} \to C^{(d)}$ is the Hilbert–Chow map.

Proposition 44. Let $f: D \to \mathcal{Q}(n,d)$ be such that $\Phi \circ f$ factors through the small diagonal. Then $[\mathcal{O}_{\mathcal{Q}}(1)] \cdot [D] \geq 0$.

Proof. Since $\Phi \circ f$ factors through the small diagonal, there is a map $g: D \to C$ such that if $\Gamma := \Gamma_g$ denotes the graph of g in $C \times D$, and $\mathcal{O}_{C \times D}^n \to \mathcal{B}_D$ is the quotient on $C \times D$, then \mathcal{B}_D is supported on $\mathcal{O}_{C \times D}/\mathscr{I}(\Gamma)^d$. Denote $\mathscr{I} := \mathscr{I}(\Gamma)$. Then $\mathscr{B}_D/\mathscr{I}\mathscr{B}_D$ is a globally generated sheaf on D and so its determinant has degree ≥ 0 . Now consider the sheaf

$$\mathcal{I}^{i}\mathcal{B}_{D}/\mathcal{I}^{i+1}\mathcal{B}_{D} \cong (\mathcal{I}/\mathcal{I}^{2})^{\otimes i} \otimes \mathcal{B}_{D}/\mathcal{I}\mathcal{B}_{D}.$$

Using adjunction it is easily seen that $\mathscr{I}/\mathscr{I}^2 \cong g^*\omega_C$. Since $\det(\mathscr{B}_D/\mathscr{I}\mathscr{B}_D)$ has degree ≥ 0 , it follows that $\det(\mathscr{I}^i\mathscr{B}_D/\mathscr{I}^{i+1}\mathscr{B}_D)$ has degree ≥ 0 . From the filtration

$$\mathcal{B}_D\supset\mathcal{I}\mathcal{B}_D\supset\mathcal{I}^2\mathcal{B}_D\supset\cdots\supset\mathcal{I}^d\mathcal{B}_D=0$$

we easily conclude that $[\mathcal{O}_{\mathcal{Q}}(1)] \cdot [D] \geq 0$.

Lemma 45. Let $D \to C^{(d)}$ be a morphism. Then we can find a cover $\widetilde{D} \to D$ such that the composite $\widetilde{D} \to D \to C^{(d)}$ factors through C^d .

Proof. Let D_1 be a component of $D \times_{C^{(d)}} C^d$ which dominates D. Take \widetilde{D} to be a resolution of D_1 .

Corollary 46. Let $D \to \mathcal{Q}$ be a morphism. Replacing D by a cover \widetilde{D} we may assume that the map $\widetilde{D} \to D \to \mathcal{Q} \to C^{(d)}$ factors through C^d .

In view of the above, given a map $D \to Q$ we may assume that the composite $D \to \mathcal{Q} \to C^{(d)}$ factors through C^d . Let each component be given by a map $f_i:D\to C$. Denote by $i_D:\Gamma\hookrightarrow C\times D$ the pullback of the universal subscheme $\Sigma\hookrightarrow C\times C^{(d)}$ to $C\times D$. The ideal sheaf of Γ is the product $\mathscr{I}(\Gamma_{f_i})$, the ideal sheaves of the graphs $\Gamma_{f_i}\subset C\times D$. Moreover, \mathscr{B}_D is supported on Γ . Let g_1,g_2,\ldots,g_r be the distinct maps in the set $\{f_1,f_2,\ldots,f_d\}$ and assume that g_i occurs d_i many times. Then we have $\mathscr{I}(\Gamma)=\prod_{i=1}^r\mathscr{I}(\Gamma_{g_i})^{d_i}$. There is a natural map

$$\psi:\mathcal{B}_D\to \bigoplus \mathcal{B}_D/\mathcal{I}(\Gamma_{g_i})^{d_i}\mathcal{B}_D\,.$$

Lemma 47. Let $f: D \to \mathcal{Q}$ be such that $\Phi \circ f$ factors through $C^d \to C^{(d)}$. If ψ is an isomorphism then $[\mathcal{O}_{\mathcal{Q}}(1)] \cdot [D] \geq 0$.

Proof. Since \mathscr{B}_D is a quotient of $\mathscr{O}^n_{C \times D}$ it follows that each $\mathscr{B}_D/\mathscr{I}(\Gamma_{g_i})^{d_i}\mathscr{B}_D$ is a quotient of $\mathscr{O}^n_{C \times D}$. Thus, each $\mathscr{B}_D/\mathscr{I}(\Gamma_{g_i})^{d_i}\mathscr{B}_D$ defines a map $D \to \mathscr{Q}(n,d_i')$ such that the image under the map $\Phi: \mathscr{Q}(n,d_i') \to C^{(d_i')}$ is the small diagonal. By Proposition 44 it follows that degree of $\det(p_{D*}(\mathscr{B}_D/\mathscr{I}(\Gamma_{g_i})^{d_i}\mathscr{B}_D))$ is ≥ 0 . Since ψ is an isomorphism it follows that degree of $\det(p_{D*}(\mathscr{B}_D))$ is ≥ 0 .

We can use the above method to prove a result similar to Theorem 37 when d = 3.

Corollary 48. Let d = 3. Consider the Quot scheme $\mathcal{Q} = \mathcal{Q}(n,3)$. Let $\mu_0^{(3)} = \frac{g+2}{3g}$. Then $[\mathcal{O}_{\mathcal{Q}}(1)] + \mu_0^{(3)}[L_0^{(3)}]$ is nef.

Proof. If d = 3 there are only these types of quotients:

(1)
$$\mathcal{O}_C^n \to \mathcal{O}_C/\mathfrak{m}_{C,c_1}\mathfrak{m}_{C,c_2}\mathfrak{m}_{C,c_3}$$
,

(2)
$$\mathcal{O}_C^n \to \mathcal{O}_{C, c_1}/\mathfrak{m}_{C, c_1} \oplus \mathcal{O}_C/\mathfrak{m}_{C, c_1}\mathfrak{m}_{C, c_2}$$
,

$$(3) \ \mathscr{O}_{C}^{n} \to \frac{\mathscr{O}_{C,c}}{\mathfrak{m}_{C,c}} \oplus \frac{\mathscr{O}_{C,c}}{\mathfrak{m}_{C,c}} \oplus \frac{\mathscr{O}_{C,c}}{\mathfrak{m}_{C,c}}$$

(3) $\mathcal{O}_C^n \to \frac{\mathcal{O}_{C,c}}{\mathfrak{m}_{C,c}} \oplus \frac{\mathcal{O}_{C,c}}{\mathfrak{m}_{C,c}} \oplus \frac{\mathcal{O}_{C,c}}{\mathfrak{m}_{C,c}}$. Let $f: D \to \mathcal{Q}$ be a map. If D contains a quotient of type (1) or (3) then D meets U or U' (see Definition 24 and Definition 35). Thus, in these cases $([\mathcal{O}_{\mathcal{Q}}(1)] + \mu_0^{(3)}[L_0^{(3)}]) \cdot [D] \ge 0$ by Corollary 27 and Lemma 36.

Now consider the case when all points in the image of D are of type (2). After replacing D by a cover, using Corollary 46, we may assume that the map $D \to \mathcal{Q}$ factors through C^3 . Since the images of points of D represent quotients of type (2), we may assume that the map from $D \to C^3$ looks like $d \mapsto (g_1(d), g_1(d), g_2(d))$. Now consider a general section $\mathcal{O}_{C \times D} \to \mathcal{B}_D$. Arguing as in the proof of Lemma 26 we get a diagram as in equation (12), such that $\mathcal{O}_{\Gamma'}$ defines a map $D \to C^{(2)}$ and $\mathcal{F}' = \mathcal{F}/T_0(\mathcal{F})$ is a line bundle on D which is globally generated. Hence

$$\begin{split} [\mathcal{O}_{\mathcal{Q}}(1)] \cdot [D] &\geq [\mathcal{O}\left(-\Delta_2/2\right)] \cdot [D] + \left[c_1\left(p_{D*}(\mathcal{F})\right)\right] \cdot [D] \\ &\geq -\mu_0^{(2)}\left[L_0^{(2)}\right] \cdot [D] \,. \end{split}$$

One easily checks using the definition of L_0 that in this case $[L_0^{(3)}] \cdot [D] = 2[L_0^{(2)}] \cdot [D]$. Thus,

$$\left(\left[\mathcal{O}_{\mathcal{Q}}(1) \right] + \mu_0^{(3)} \left[L_0^{(3)} \right] \right) \cdot [D] \geq \left(2\mu_0^{(3)} - \mu_0^{(2)} \right) \left[L_0^{(2)} \right] \cdot [D] \geq 0.$$

This completes the proof of the Corollary 48.

Combining this with Proposition 20 we get the following result.

Theorem 49. Let C be a very general curve of genus $2 \le g(C) \le 4$. Let $n \ge 3$ and let $\mathcal{Q} = \mathcal{Q}(n,3)$. Let $\mu_0 = \frac{g+2}{3g}$ Then

$$\operatorname{Nef}(\mathcal{Q}) = \mathbb{R}_{\geq 0} \left(\left[\mathcal{O}_{\mathcal{Q}}(1) \right] + \mu_0 \left[L_0^{(3)} \right] \right) + \mathbb{R}_{\geq 0} \left[\theta_d \right] + \mathbb{R}_{\geq 0} \left[L_0^{(3)} \right].$$

References

- [1] E. Bifet, F. Ghione, M. Letizia, "On the Abel-Jacobi map for divisors of higher rank on a curve", Math. Ann. 299 (1994), no. 4, p. 641-672.
- [2] I. Biswas, A. Dhillon, J. Hurtubise, "Automorphisms of the quot schemes associated to compact Riemann surfaces", Int. Math. Res. Not. 2015 (2015), no. 6, p. 1445-1460.
- [3] —, "Brauer groups of Quot schemes", Mich. Math. J. 64 (2015), no. 3, p. 493-508.
- [4] I. Biswas, A. J. Parameswaran, "Nef cone of flag bundles over a curve", Kyoto J. Math. 54 (2014), no. 2, p. 353-366.
- [5] C. Ciliberto, A. Kouvidakis, "On the symmetric product of a curve with general moduli", Geom. Dedicata 78 (1999), no. 3, p. 327-343.
- [6] B. Fantechi, L. Göttsche, L. Illusie, S. L. Kleiman, N. Nitsure, A. Vistoli, Fundamental algebraic geometry: Grothendieck's FGA explained, Mathematical Surveys and Monographs, vol. 123, American Mathematical Society,
- [7] C. Gangopadhyay, "Automorphisms of relative Quot schemes", Proc. Indian Acad. Sci., Math. Sci. 129 (2019), no. 5, article no. 85 (11 pages).
- [8] C. Gangopadhyay, R. Sebastian, "Fundamental group schemes of some quot schemes on a smooth projective curve", J. Algebra 562 (2020), p. 290-305.
- [9] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol. 52, Springer, 1977.
- [10] D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, second ed., Cambridge Mathematical Library, Cambridge University Press, 2010.
- [11] A. Kouvidakis, "Divisors on symmetric products of curves", Trans. Am. Math. Soc. 337 (1993), no. 1, p. 117-128.
- [12] R. Lazarsfeld, Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer, 2004.
- [13] V. B. Mehta, A. Ramanathan, "Semistable sheaves on projective varieties and their restriction to curves", Math. Ann. 258 (1981), no. 3, p. 213-224.

- [14] Y. Miyaoka, "The Chern classes and Kodaira dimension of a minimal variety", in Algebraic geometry, Sendai, 1985, Advanced Studies in Pure Mathematics, vol. 10, North-Holland, 1985, p. 449-476.
- [15] G. Pacienza, "On the nef cone of symmetric products of a generic curve", Am. J. Math. 125 (2003), no. 5, p. 1117-1135.
- [16] S. A. Strømme, "On parametrized rational curves in Grassmann varieties", in *Space curves (Rocca di Papa, 1985)*, Lecture Notes in Mathematics, vol. 1266, Springer, 1985, p. 251-272.