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Abstract. This paper deals with a class of scalar backward stochastic differential equations (BSDEs) with
L exp(µ0

√
2log(1+L))-integrable terminal values for a critical parameter µ0 > 0. We show that the solution of

these BSDEs is closely connected to the L1-solution of the BSDEs with integrable parameters. The key tool is
the Girsanov theorem. This idea leads to a new approach to the uniqueness of solution and we obtain a new
existence and uniqueness result under general assumptions.
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1. Introduction

Let (Ω,F ,P) be a complete probability space, T > 0 a finite time and W a standard d-dimensional
Brownian motion. Let F := {Ft }0≤ t ≤T be a completion of the augmented filtration generated by
the Brownian motion W . We consider the following backward stochastic differential equation
(BSDE for short):

Yt = ξ+
∫ T

t
f (s,Ys , Zs )d s −

∫ T

t
Zs dWs , t ∈ [0,T ], (1)

where the generator f :Ω×[0,T ]×R×R1×d →R is a predictable function and the terminal value ξ
is an FT -measurable random variable. The solution of (1) is denoted by a pair {(Yt , Zt ), t ∈ [0,T ]}
of predictable processes with values in R×R1×d such that P-a.s., t 7→ Yt is continuous, t 7→ Zt

belongs to L2(0,T ) and t 7→ f (t ,Yt , Zt ) is integrable, and P−a.s., (Y , Z ) verifies (1).
Pardoux and Peng [12] first introduced the notion of the nonlinear BSDEs and proved the

existence and uniqueness of L2−solutions. Afterwards, Briand et al. [1] generalized this result
in Lp−integrability setting. Hence, they proved the existence and uniqueness of Lp−solutions of
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BSDEs. However, in the case of p = 1, one needs to restrict the generator f to satisfy the sub-linear
growth assumption in z, i.e., with some q ∈ [0,1),∣∣ f

(
t , y, z

)− f (t ,0,0)
∣∣≤ a|y |+b|z|q ,

(
t , y, z

) ∈ [0,T ]×R×R1×d . (2)

for BSDE (1) to have a unique L1−solution.
Recently, Hu and Tang [10] studied the scalar BSDEs in L exp(µ

√
2log(1+L))-integrability

setting with µ > µ0 for a critical value µ0 = b
p

T . Hence, the terminal value is assumed to
be L exp(µ

√
2log(1+L))−integrable. This integrability is stronger than L logL-integrability and

weaker than Lp -integrability for any p > 1. They showed that these BSDEs admit a solution with-
out the sub-linear growth condition (2). Furthermore they provided counterpart examples which
show that L logL-integrability is not sufficient to guarantee the existence of the solution with-
out (2). Afterwards, Buckdahn, Hu and Tang [3] improved the existence result in [10], and gave
the uniqueness result for these BSDEs under the Lipschitz condition on generator. A remarkable
result for these BSDEs was established by Fan and Hu [8]. They proved the existence and unique-
ness of solution to scalar BSDEs with L exp(µ

√
2log(1+L))-integrable terminal values in the crit-

ical case: µ=µ0. However, the generator is still assumed to be Lipschitz. Note that if µ<µ0, then
the BSDE does not admit a solution in general (see [10]).

In [3, 8], the authors uses the classical linearization technique to prove the uniqueness result.
Hence, the Lipschitz condition (or more generally, monotonicity condition) plays a crucial role in
their argument.

In this paper, we prove a new existence and uniqueness result for scalar BSDEs with
L exp(µ0

√
2log(1+L))-integrable terminal values under general assumptions. More precisely, we

assume that the generator satisfies weak monotonicity and general growth conditions. The exis-
tence result under our assumptions can be just proved by following exactly the same method as
in [8]. In fact, this observation was already mentioned in [8, Remark 3.7]. For the reader’s con-
venience, we provide a detailed proof of the existence result. The main focus in this paper is on
to prove the uniqueness result. Since our generator is neither Lipschitz nor monotonic, the lin-
earization technique in [3, 8] does not work anymore. To overcome this difficulty, we propose an
L1−solution approach to the BSDEs with L exp(µ0

√
2log(1+L))-integrable terminal values. More

precisely, we associate the solution of these BSDEs with the L1-solutions of certain BSDEs with in-
tegrable parameters. The key tool is the Girsanov theorem. Then, we can easily obtain the unique-
ness result by using the known result on L1−solutions. Our approach does not require the lin-
earization argument so that the Lipschitz condition is not needed. With the help of L1−solution
approach, we also show that the second component of solution belongs to

⋂
β∈ (0,1) Mβ([0,T ])

(see Theorem 10). As far as we know, this fact was not observed in the literature.

2. Preliminaries

2.1. Notations and assumptions

For p ≥ 1, we define the following spaces.

• Sp ([0,T ];Q) denotes the space of all real-valued, càdlàg, adapted processes Y such that

EQ

[
sup

t ∈ [0,T ]
|Yt |p

]
<+∞,

and Sp ([0,T ]) := Sp ([0,T ];P).
• M p ([0,T ];Q) denotes the space of all predictable processes Z valued in R1×d such that

EQ

[(∫ T

0
|Zs |2 d s

)p/2
]1∧1/p

<+∞,
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and M p ([0,T ]) := M p ([0,T ];P).

We also use the following notations.

• For A ∈ F , F−measurable random variable η and probability measure Q, we define
EQ[η; A] := ∫

AηdQ. In particular, EQ[η] := EQ[η;Ω].
• T [0,T ] denotes the set of all stopping times τ such that 0 ≤ τ≤ T .
• E (·) stands for Doléans–Dade exponential. Hence, for any R1×d−valued predictable pro-

cess φ, E (φ•W ) := exp(
∫ ·

0φr dWr − 1
2

∫ ·
0 |φr |2dr ), where φ•W := ∫ ·

0φr dWr .
• We say that the process Y = {Yt }0≤ t ≤T belongs to class (D) if the family {Yτ,τ ∈ T [0,T ]}

is uniformly integrable.
• Following [1], we say that a pair (Y , Z ) is an L1−solution to the BSDE (1) if the equation (1)

holds for any t ∈ [0,T ], Y belongs to class (D) and for each β ∈ (0,1), (Y , Z ) belongs to the
space Sβ([0,T ])×Mβ([0,T ]).

• We denote by I A(·) the indicator of set A, and sgn(x) := 1x>0 −1x≤0.
• x1 ∧x2 := min{x1, x2}, x1 ∨x2 := max{x1, x2}, x− :=−(x ∧0), and x+ := (−x)−.

We work under the following assumptions on generator f .

(A1) f is weakly monotonic in y , that is, there exists a non-decreasing and concave function
ρ : R+ → R+ with ρ(0) = 0, ρ(t ) > 0 for t > 0 and

∫
0+

d t
ρ(t ) = +∞ such that for any y, y ′ ∈ R

and z ∈R1×d ,

sgn
(
y − y ′)( f

(
t , y, z

)− f
(
t , y ′, z

))≤ ρ (∣∣y − y ′∣∣) . (3)

(A2) f has a general growth with respect to y , i.e., dP×d t-a.e.,

∀ y ∈R,
∣∣ f

(
t , y,0

)∣∣≤ ∣∣ f (t ,0,0)
∣∣+Ψ(∣∣y

∣∣) ,

where Ψ : R+ → R+ is an increasing, continuous function. Furthermore, the map y 7→
f (t , y, z) is dP×d t−a.e., continuous.

(A3) f is uniformly Lipschitz in z, i.e., there exists a constant b > 0 such that for any y ∈R and
z, z ′ ∈R1×d , ∣∣ f

(
t , y, z

)− f
(
t , y, z ′)∣∣≤ b

∣∣z − z ′∣∣ .

Remark 1. Since ρ(·) is a non-decreasing and concave function with ρ(0) = 0, it increases at most
linearly, i.e., there exists a constant A > 0 such that ρ(x) ≤ A(1+ x) for each x ≥ 0. Therefore, (A1)
and (A3) imply the following one-sided linear growth condition:

sgn
(
y
)

f
(
t , y, z

)≤ h(t )+ A
∣∣y

∣∣+b|z|, (4)

with h(t ) := A + | f (t ,0,0)|. If ρ(x) = λx for some constant λ > 0, then (A1) implies the usual
monotonicity condition. On the other hand, our weak monotonicity condition (3) is stronger than
the standard weak monotonicity condition:(

y − y ′)( f
(
t , y, z

)− f
(
t , y ′, z

))≤ ρ (∣∣y − y ′∣∣2
)

,

(see [9, Remark 2.2] or [5, Proposition 1]).

2.2. Some auxiliary results

Lemma 2. Let us consider the following BSDE with generator that depends only on y, i.e.,

Yt = ξ+
∫ T

t
f (s,Ys )d s −

∫ T

t
Zs dWs , t ∈ [0,T ]. (5)

Let (Y , Z ) be a solution of the BSDE (5) such that Y belongs to class (D). Suppose that

sgn(y) f
(
t , y

)≤ h(t )+ A|y |, E

[
|ξ|+

∫ T

0
|h(s)|d s

]
<∞.

C. R. Mathématique — 2021, 359, n 9, 1085-1095
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Then we have (Y , Z ) ∈ Sβ([0,T ])×Mβ([0,T ]) for each β ∈ (0,1).

Proof. We first prove the following estimate on Y :

|Yt | ≤ e A(T−t ) ·E
[
|ξ|+

∫ T

t
|h(s)|d s

∣∣∣∣Ft

]
. (6)

Define the stopping times τn by

τn := inf

{
t ∈ [0,T ],

∫ t

0
|Zs |2 d s ≥ n

}
∧T.

According to [1, Corollary 2.3], we get∣∣Yt ∧τn

∣∣≤ ∣∣Yτn

∣∣+∫ τn

t ∧τn

sgn(Ys ) f (s,Ys )d s −
∫ τn

t ∧τn

sgn(Ys )Zs dWs

≤ ∣∣Yτn

∣∣+∫ τn

t ∧τn

[A |Ys |+ |h(s)|]d s −
∫ τn

t ∧τn

sgn(Ys )Zs dWs .

By taking conditional expectations, it follows that for each 0 ≤ u ≤ t ≤ T ,

E
[∣∣Yt ∧τn

∣∣∣∣Fu
]≤ E[∣∣Yτn

∣∣+∫ τn

t ∧τn

[
A |Ys |+ |h(s)|]d s

∣∣∣∣Fu

]
. (7)

Since Y belongs to class (D), in view of Yt ∧τn → Yt , Yτn = YT ∧τn → YT = ξ, it follows that
E[Yt ∧τn |Fu] → E[Yt |Fu] and E[Yτn |Fu] → E[ξ|Fu]. Therefore, by sending n to +∞ in (7) (extract-
ing a subsequence if necessary), we obtain

E
[ |Yt |

∣∣Fu
]≤ E[

|ξ|+
∫ T

t
|h(s)|d s + A

∫ T

t
|Ys |d s

∣∣∣∣Fu

]
= E[|ξ|∣∣Fu

]+E[∫ T

t
|h(s)|d s

∣∣∣∣Fu

]
+ A

∫ T

t
E
[|Ys |

∣∣Fu
]
d s.

By the virtue of Gronwall inequality (see e.g. [4, Lemma 4.7]), we have

E
[ |Yt |

∣∣Fu
]≤ e A(T−t )E

[|ξ|∣∣Fu
]+E[∫ T

t
|h(s)|d s

∣∣∣∣Fu

]
+E

[∫ T

t
Ae A(r−t )

(∫ T

r
|h(s)|d s

)
dr

∣∣∣∣Fu

]
= e A(T−t )E

[|ξ|∣∣Fu
]+E[∫ T

t
e A(s−t )|h(s)|d s

∣∣∣∣Fu

]
≤ e A(T−t )E

[
|ξ|+

∫ T

t
|h(s)|d s

∣∣∣∣Fu

]
.

In particular, we obtain at u = t ,

|Yt | ≤ e A(T−t )E

[
|ξ|+

∫ T

t
|h(s)|d s

∣∣∣∣Ft

]
.

Therefore, (6) is proved. Using [1, Lemma 6.1], we have for each β ∈ (0,1),

E

[
sup

t ∈ [0,T ]
|Yt |β

]
≤ eβA(T−t )

1−β E

[
|ξ|+

∫ T

0
|h(s)|d s

]β
<∞.

On the other hand, for any y ∈R,

y f
(
s, y

)≤ ∣∣y
∣∣(h(s)+ A

∣∣y
∣∣)≤ |h(s)| · ∣∣y

∣∣+ A
∣∣y

∣∣2 .

By [5, Proposition 2], it follows that for each β ∈ (0,1),

E

[(∫ T

0
|Zs |2 d s

)β/2
]
≤C

(
E

[
sup

t ∈ [0,T ]
|Yt |β

]
+E

[(∫ T

0
|h(s)|d s

)β])
<∞,

for some constant C depending on A,β,T . So the result follows. �
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We now define the real function ψ:

ψ
(
x,µ

)
:= x exp

(
µ
√

2log(1+x)
)

,
(
x,µ

) ∈ [0,∞)× (0,+∞),

which is closely connected to our integrability assumption.
The function ψ has the following useful properties ( [10]).

Lemma 3. For any x ∈R, y ≥ 0 and µ> 0, we have

ex y ≤ e
x2

2µ2 +e2µ2
ψ

(
y,µ

)
.

Lemma 4. Let (qt )t ∈ [0,T ] be a d−dimensional progressively measurable process with |q·| ≤ b
almost surely. For each t ∈ [0,T ], if 0 ≤λ< 1

2b2(T−t )
, then

E

[
e
λ
∣∣∣∫ T

t qs dWs

∣∣∣2 ∣∣∣∣Ft

]
≤ 1√

1−2λb2(T − t )
.

Moreover, the following lemma holds (see [3, Proposition 2.3 and the proof of Theorem 2.5]).

Lemma 5. We have the following assertions on ψ:

(i) For each x ≥ 0, ψ(x, ·) is non-decreasing on [0,+∞).
(ii) For µ≥ 0, ψ(·,µ) is a positive, strictly increasing and strictly convex function on [0,+∞).

(iii) For c ≥ 1, we have ψ(cx,µ) ≤ψ(c,µ)ψ(x,µ), for all x,µ≥ 0.
(iv) For all x1, x2,µ≥ 0, we have ψ(x1 +x2,µ) ≤ 1

2ψ(2,µ)
[
ψ(x1,µ)+ψ(x2,µ)

]
.

Fix some constant T0 ∈ [0,T ] and consider the following BSDE with a null generator:

yt = YT0 −
∫ T0

t
zs dWs , t ∈ [0,T0], (8)

where YT0 is an FT0−measurable random variable.

Lemma 6. If E[ψ(|YT0 |,µ)] <+∞ for some constant µ> 0, then the BSDE (8) has a unique solution
(y, z) such that ψ(|y |,µ) belongs to class (D).

Proof. We first note that E[|YT0 |] ≤ E[ψ(|YT0 |,µ)] < +∞. Set yt := E[YT0 |Ft ], t ∈ [0,T0]. By the
martingale representation theorem (see e.g. [13, Theorem 2.46]), there exists a process {zt , t ∈
[0,T0]} such that

E
[
YT0

∣∣Ft
]= E[

YT0

]+∫ t

0
zs dWs , t ∈ [0,T0] .

Hence, the pair (y, z) satisfies (8). On the other hand, one has for any t ∈ [0,T0],

ψ
(∣∣yt

∣∣ ,µ
)≤ψ(

E
[∣∣YT0

∣∣∣∣Ft
]

,µ
)≤ E[

ψ
(∣∣YT0

∣∣ ,µ
)∣∣Ft

]
,

where we used the convexity of ψ(·,µ0). Therefore, ψ(|y |,µ) belongs to class (D). In particular, if
YT0 = 0, then we notice that (y, z) = (0,0). This proves the uniqueness. �

3. Main result

We consider the BSDE:

Yt = ξ+
∫ T

t
f (s,Ys , Zs )d s −

∫ T

t
Zs dWs , t ∈ [0,T ]. (9)

To reach our goal, we first study the relation between the solutions of BSDEs with L exp
(µ0

√
2log(1+L))−integrable terminal values and the L1−solutions of BSDEs with integrable

parameters.

C. R. Mathématique — 2021, 359, n 9, 1085-1095
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Proposition 7. Let the generator f satisfies (A3). Suppose that

E

[
ψ

(
|ξ|+

∫ T

0

∣∣ f (s,0,0)
∣∣d s,µ0

)]
<+∞, with µ0 = b

p
T .

Let (Y , Z ) be a solution of the BSDE (9) such that {ψ(|Yt |,b
p

t )} belongs to class (D). Set δ := T /4
and define a pair (Y ,Z ) by

(Yt ,Zt ) := I[0,T−δ)(t )
(
yt , zt

)+ I[T−δ,T ](t ) (Yt , Zt ) , (10)

where (y, z) is a solution of the BSDE (8) with T0 = T −δ and terminal condition yT−δ = YT−δ,
and {ψ(|yt |,b

p
T −δ), t ∈ [0,T −δ]} belongs to class (D). Then, there exists a probability measure Q

equivalent to P under which (Y ,Z ) is an L1-solution to the BSDE:

Yt = ξ+
∫ T

t
I[T−δ,T ](s) f (s,Ys ,0)d s −

∫ T

t
Zs dW Q

s ,Q−a.s., t ∈ [0,T ], (11)

where W Q is a Q−Brownian motion. Moreover, one has Z ∈⋂
β∈ (0,1) Mβ([0,T ]).

Proof. From definition, it is obvious that (Y ,Z ) satisfies the BSDE:

Yt = ξ+
∫ T

t
I[T−δ,T ](s) f (s,Ys ,Zs )d s −

∫ T

t
Zs dWs , t ∈ [0,T ]. (12)

Let us define

gs := g (s,Ys ,Zs ) , g
(
s, y, z

)
:= 1|z| 6=0

f (s, y, z)− f (s, y,0)

|z|2 z, (y, z) ∈R×R1×d .

Since I[T−δ,T ](s)|gs | ≤ |gs | ≤ b, {E (I[T−δ,T ]g •W )s , 0 ≤ s ≤ T } is a uniformly integrable martingale
which has moments of all orders (see e.g. [11, Theorem 1.5]).

By the virtue of Girsanov theorem, we have

Yt = ξ+
∫ T

t
I[T−δ,T ](s) f (s,Ys ,0)d s −

∫ T

t
Zs dW Q

s , t ∈ [0,T ], (13)

where

Q := [
E

(
I[T−δ,T ]g •W

)]
T ·P= exp

(∫ T

T−δ
gr dWr − 1

2

∫ T

T−δ

∣∣gr
∣∣2 dr

)
·P

and W Q· :=W −∫ ·
0 I[T−δ,T ](s)gs d s.

Note that Q is a probability measure equivalent to P and W Q is a Q−Brownian motion.
Recalling that δ= T /4, we notice that T > 3δ and (1− 2δ

T−δ )−1/4 = 31/4.
From Lemmata 3 and 4, it follows that for any τ ∈T [T −δ,T ] and A ∈FT ,

EQ (|Yτ| ; A) = EQ (|Yτ| ; A) ≤ E
[
|Yτ|exp

(∫ T

T−δ
gs dWs

)
; A

]

≤ E

exp


∣∣∣∫ T

T−δ gs dWs

∣∣∣2

2(b
p
τ)2

 ; A

+E
[

e2(b
p
τ)2

ψ
(|Yτ| ,b

p
τ
)

; A
]

≤ E

exp


∣∣∣∫ T

T−δ
p

2gs dWs

∣∣∣2

2
(
b
p

T −δ
)2




1/2

·P(A)1/2 +E
[

e2(b
p
τ)2

ψ
(|Yτ| ,b

p
τ
)

; A
]

≤
(
1− 2δ

T −δ
)−1/4

·P(A)1/2 +E
[

e2b2τψ
(|Yτ| ,b

p
τ
)

; A
]

≤ 31/4 ·P(A)1/2 +e2b2T ·E[
ψ

(|Yτ| ,b
p
τ
)

; A
]

.

(14)

C. R. Mathématique — 2021, 359, n 9, 1085-1095



Hun O, Mun-Chol Kim and Chol-Gyu Pak 1091

On the other hand, one has for any τ ∈T [0,T −δ] and A ∈FT ,

EQ (|Yτ| ; A) = EQ (∣∣yτ
∣∣ ; A

)≤ E[∣∣yτ
∣∣exp

(∫ T

T−δ
gs dWs

)
; A

]

≤ E

exp


∣∣∣∫ T

T−δ gs dWs

∣∣∣2

2b2(T −δ)

 ; A

+E
[

e2b2(T−δ)ψ
(∣∣yτ

∣∣ ,b
p

T −δ
)

; A
]

≤ E

exp


∣∣∣∫ T

T−δ
p

2gs dWs

∣∣∣2

2b2(T −δ)




1/2

·P(A)1/2 +E
[

e2b2 (T−δ)ψ
(∣∣yτ

∣∣ ,b
p

T −δ
)

; A
]

≤
(
1− 2δ

T −δ
)−1/4

·P(A)1/2 +e2b2 (T−δ) ·E
[
ψ

(∣∣yτ
∣∣ ,b

p
T −δ

)
; A

]
≤ 31/4 ·P(A)1/2 +e2b2T ·E

[
ψ

(∣∣yτ
∣∣ ,b

p
T −δ

)
; A

]
.

(15)

We also observe that

sup
τ∈T [0,T ]

EQ (|Yτ| ; A) ≤ sup
τ∈T [0,T ]

EQ
(∣∣Yτ∧(T−δ)

∣∣+ ∣∣Yτ∨ (T−δ)
∣∣ ; A

)
≤ sup
τ∈T [0,T ]

EQ
(∣∣Yτ∧ (T−δ)

∣∣ ; A
)+ sup

τ∈T [0,T ]
EQ

(∣∣Yτ∨ (T−δ)
∣∣ ; A

)
≤ sup
τ∈T [0,T−δ]

EQ (|Yτ| ; A)+ sup
τ∈T [T−δ,T ]

EQ (|Yτ| ; A) .

Using (14), (15), and the last inequality, we can prove that Y belongs to class (D) underQ. Indeed,
since both {ψ(|Yt |,b

p
t ), t ∈ [T −δ,T ]} and {ψ(|yt |,b

p
T −δ), t ∈ [0,T −δ]} belong to class (D),

sup
τ∈T [0,T ]

EQ [|Yτ|]

≤ sup
τ∈T [0,T−δ]

EQ [|Yτ|]+ sup
τ∈T [T−δ,T ]

EQ [|Yτ|]

≤ 2 ·31/4 +e2b2T ·
(

sup
τ∈T [0,T−δ]

E
[
ψ

(∣∣yτ
∣∣ ,b

p
T −δ

)]
+ sup
τ∈T [T−δ,T ]

E
[
ψ

(|Yτ| ,b
p
τ
)])<+∞.

(16)

On the other hand, for any ε> 0,

∃ θ1 > 0, ∀ A ∈FT (P(A) < θ1) ; sup
τ∈T [T−δ,T ]

E
[
ψ

(|Yτ| ,b
p
τ
)

; A
]< ε

4e2b2T
,

and

∃ θ2 > 0, ∀ A ∈FT (P(A) < θ2) ; sup
τ∈T [0,T−δ]

E
[
ψ

(∣∣yτ
∣∣ ,b

p
T −δ

)
; A

]
< ε

4e2b2T
.

Set θ := θ1 ∧θ2 ∧ ε2

16
p

3
. Then we have 31/4 ·θ1/2 ≤ ε

4 , and

∀ A ∈FT (P(A) < θ) ; sup
τ∈T [0,T−δ]

E
[
ψ

(∣∣yτ
∣∣ ,b

p
T −δ

)
; A

]
+ sup
τ∈T [T−δ,T ]

E
[
ψ

(|Yτ| ,b
p
τ
)

; A
]< ε

2e2b2T
.

Since Q is equivalent to P, we also have

∃ϑ> 0, ∀ A (Q(A) <ϑ) ; P(A) < θ.
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Consequently, we obtain

∀ ε> 0, ∃ϑ> 0 ∀ A (Q(A) <ϑ)

sup
τ∈T [0,T ]

EQ (|Yτ| ; A) ≤ 2 ·31/4 ·P(A)1/2 +e2b2T · ε

2e2b2T
< ε

2
+ ε

2
≤ ε. (17)

In view of (16) and (17), we deduce that Y belongs to class (D) under Q.
Using Lemmata 3 and 4 again, we obtain

EQ
[
|ξ|+

∫ T

0
I[T−δ,T ](s)

∣∣ f (s,0,0)
∣∣d s

]
≤

(
1− b2

µ2
0

δ

)−1/2

+e2µ2
0E

[
ψ

(
|ξ|+

∫ T

T−δ

∣∣ f (s,0,0)
∣∣d s,µ0

)]
<∞.

By Lemma 2, it follows that (Y ,Z ) ∈ Sβ([0,T ];Q)× Mβ([0,T ];Q) for any β ∈ (0,1). So (Y ,Z ) is
an L1-solution to the BSDE (13) under Q. It remains to show that Z ∈ ⋂

β∈ (0,1) Mβ([0,T ]). Using
Hölder’s inequality, one has for any β ∈ (0,1),

E

[(∫ T

0
|Zs |2 d s

)β/2
]
= EQ

[
E (I[T−δ,T ]g •W )−1

T

(∫ T

0
|Zs |2 d s

)β/2
]

≤ EQ
[(

E (I[T−δ,T ]g •W )−1
T

)α]1/α ·EQ
[(∫ T

0
|Zs |2 d s

)β′/2
]β/β′

,

where β′ and α be the numbers such that β<β′ < 1 and 1
α + β

β′ = 1. On the other hand,

EQ
[(

E
(
I[T−δ,T ]g •W

)−1
T

)α]
= E

{[
exp

(
−

∫ T

T−δ
gs dWs + 1

2

∫ T

T−δ
|gs |2d s

)]α}
= E

{[
exp

(
−

∫ T

T−δ
gs dWs − 1

2

∫ T

T−δ
|gs |2d s

)
·exp

(∫ T

T−δ
|gs |2d s

)]α}
≤ E[

E
((−g I[T−δ,T ]

)•W
)α

T

] ·eb2δα <+∞.

Hence, we obtain E
[(∫ T

0 |Zs |2d s
)β/2]

<+∞. The proof of Proposition 7 is then complete. �

We first recover the existence of Fan and Hu [8] under our general assumptions.

Theorem 8. Suppose that the generator f satisfies (A1)–(A3). We further assume that with µ0 :=
b
p

T ,

E

[
ψ

(
|ξ|+

∫ T

0

∣∣ f (t ,0,0)
∣∣ d t ,µ0

)]
<+∞.

Then the BSDE (9) admits a solution (Y , Z ) such that ψ(|Yt |,b
p

t ) belongs to class (D) and P−a.s.,
for each t ∈ [0,T ],

|Yt | ≤ψ
(|Yt | ,b

p
t
)≤CE

[
ψ

(
|ξ|+

∫ T

0

∣∣ f (t ,0,0)
∣∣d t ,b

p
T

)∣∣∣∣Ft

]
+C , (18)

for some constant C > 0. Moreover, Z belongs to
⋂
β∈ (0,1) Mβ([0,T ]).

Proof. The existence result under our assumptions can be proved by following exactly the same
method as in [8] (see Remark 3.7 therein). For the reader’s convenience, we provide a detailed
proof here. Let us fix n, p ∈N. Set

ξn,p := ξ+∧n −ξ−∧p, f0 := f (·,0,0), f n,p
0 := f +

0 ∧n − f −
0 ∧p, f n,p := f − f0 + f n,p

0 .
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Since ξn,p and f n,p (s,0,0) are bounded and f n,p satisfies assumptions (A1)–(A3), in view of the
existence result in [9], the BSDE (ξn,p , f n,p ) has a unique L2-solution (Y n,p , Z n,p ). Noting that
f n,p (s, y, z) is weakly monotonic in y and Lipschitz in z, in view of Remark 1, we have

sgn(y) f n, p (
s, y, z

)≤ A+ ∣∣ f n, p
0 (t )

∣∣+ A
∣∣y

∣∣+b|z|.

Using [8, Proposition 3.5] (more precisely, regarding its proof), we deduce that

∣∣Y n, p
t

∣∣≤ψ(∣∣Y n, p
t

∣∣ ,b
p

t
)≤C ·E

[
ψ

(∣∣ξn ,p ∣∣+∫ T

0

(
A+ ∣∣ f n, p

0 (t )
∣∣)d t ,b

p
T

)∣∣∣∣Ft

]
+C ,

for some constant C > 0. Using Lemma 5, this is not bigger than

C ·E
[

1

2
ψ

(
2,µ

) ·(ψ(∣∣ξn, p ∣∣+∫ T

0

∣∣ f n, p
0 (t )

∣∣d t ,b
p

T

)
+ψ

(
A ·T,b

p
T

))∣∣∣∣Ft

]
+C (19)

≤C ·E
[
ψ

(∣∣ξn, p ∣∣+∫ T

0

∣∣ f n, p
0 (t )

∣∣d t ,b
p

T

)∣∣∣∣Ft

]
+C , (20)

≤C ·E
[
ψ

(
|ξ|+

∫ T

0

∣∣ f0(t )
∣∣d t ,b

p
T

)∣∣∣∣Ft

]
+C , (21)

for some constant C > 0. Henceforth,

∣∣Y n, p
t

∣∣≤ψ(∣∣Y n, p
t

∣∣ ,b
p

t
)≤C ·E

[
ψ

(
|ξ|+

∫ T

0

∣∣ f0(t )
∣∣d t ,b

p
T

)∣∣∣∣Ft

]
+C , (22)

for some constant C > 0. Since Y n, p is non-decreasing in n and non-increasing in p thanks to
comparison theorem (see [9, Theorem 5.1] or [5, Theorem 3]), by the localization method in [2],
there exists some process Z ∈ L2(0,T ) such that (Y := infp supn Y n, p , Z ) is an adapted solution
of (9). Moreover, sending n and p to infinity in (22) yields the inequality (18), and thenψ(|Yt |,b

p
t )

belongs to class (D). With the help of Proposition 7, we can also prove that Z ∈⋂
β∈ (0,1) Mβ([0,T ])

(as far as we know, this fact was not yet observed in the literature). Indeed, one has for any
β ∈ (0,1),

E

[(∫ T

0
|Zs |2 d s

)β/2
]
≤ E

[(∫ T

T−δ
|Zs |2 d s

)β/2
]
+E

[(∫ T−δ

T−2δ
|Zs |2 d s

)β/2]
+·· · ,

and the each term on the right-hand side is finite thanks to Proposition 7. Hence,

E

[(∫ T

0
|Zs |2 d s

)β/2
]
<+∞. �

Remark 9. If we assume the following stronger integrability condition:

E

[
ψ

(
|ξ|+

∫ T

0

∣∣ f (s,0,0)
∣∣d s,µ

)]
<+∞, withµ>µ0,

then, we can follow the argument in [3] to show that ψ(|Y |,c0) belongs to class (D) for some
constant c0 > 0. Indeed, in view of the estimate (18), one has for b

p
T < a <µ,

|Yt | ≤CE

[
ψ

(
|ξ|+

∫ T

0

∣∣ f (t ,0,0)
∣∣d t , a

)∣∣∣∣Ft

]
+C ,
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Using this estimate and Lemma 5, we then deduce that

ψ (|Yt | ,c0) ≤ψ
(
CE

[
ψ

(
|ξ|+

∫ T

0

∣∣ f (t ,0,0)
∣∣d t , a

)∣∣∣∣Ft

]
+C ,c0

)
(23)

≤ 1

2
ψ (2,c0)

[
ψ

(
CE

[
ψ

(
|ξ|+

∫ T

0

∣∣ f (t ,0,0)
∣∣d t , a

)∣∣∣∣Ft

]
,c0

)
+ψ (C ,c0)

]
(24)

≤ 1

2
ψ (2,c0)

[
ψ (C ,c0)ψ

(
E

[
ψ

(
|ξ|+

∫ T

0

∣∣ f (t ,0,0)
∣∣d t , a

)∣∣∣∣Ft

]
,c0

)
+ψ (C ,c0)

]
(25)

≤ 1

2
ψ (2,c0)

[
ψ (C ,c0)E

[
ψ

(
ψ

(
|ξ|+

∫ T

0

∣∣ f (t ,0,0)
∣∣d t , a

)
,c0

)∣∣∣∣Ft

]
+ψ (C ,c0)

]
(26)

≤ 1

2
ψ (2,c0)

[
e

a ·c2
0

d ψ (C ,c0)E

[
ψ

(
|ξ|+

∫ T

0

∣∣ f (t ,0,0)
∣∣d t , a + c0 +d

)∣∣∣∣Ft

]
+ψ (C ,c0)

]
(27)

≤CE

[
ψ

(
|ξ|+

∫ T

0

∣∣ f (t ,0,0)
∣∣d t ,µ

)∣∣∣∣Ft

]
+C , (28)

where c0 > 0,d > 0 is chosen so that a + c0 +d = µ. Hence, it follows that ψ(|Y |,c0) belongs to
class (D).

We are now in a position to state the main result in this paper.

Theorem 10. Suppose that the generator f satisfies assumptions (A1)-(A3). We further assume
that

E

[
ψ

(
|ξ|+

∫ T

0

∣∣ f (t ,0,0)
∣∣ d t ,µ0

)]
<+∞,

with µ0 := b
p

T . Then the BSDE (9) admits a unique solution (Y , Z ) such that ψ(|Yt |,b
p

t ) belongs
to class (D). Moreover, Z belongs to

⋂
β∈ (0,1) Mβ([0,T ]).

Proof. The existence was already proved in Theorem 8. We now prove the uniqueness which
is the main contribution in this paper. For i = 1,2, let (Y i , Z i ) be a solution to BSDE (9) such
that ψ(|Y i

t |,b
p

t ) belongs to the class (D). Define (Ȳ , Z̄ ) := (Y 1 −Y 2, Z 1 − Z 2). We have thanks to
Lemma 5,

ψ
(∣∣Ȳt

∣∣ ,b
p

t
)≤ψ(∣∣Y 1

t

∣∣+ ∣∣Y 2
t

∣∣ ,b
p

t
)≤ 1

2
ψ

(
2,b

p
t
)[
ψ

(∣∣Y 1
t

∣∣ ,b
p

t
)+ψ(∣∣Y 2

t

∣∣ ,b
p

t
)]

.

Therefore, ψ(|Ȳ |,b
p

t ) belongs to class (D). Obviously, (Ȳ , Z̄ ) satisfies the following equation.

Ȳt =
∫ T

t
f̄
(
s, Ȳs , Z̄s

)
d s −

∫ T

t
Z̄s dWs , t ∈ [0,T ], (29)

where f̄ (s, y, z) := f (s, y + Y 2
s , z + Z 2

s )− f (s,Y 2
s , Z 2

s ). It is easy to check that f̄ satisfies assump-
tions (A1) and (A3). Moreover, one has f̄ (s,0,0) = 0. Set δ := T /4. Let {(yt , zt ), t ∈ [0,T −δ]} be
a solution to BSDE (8), with T0 := T − δ and the terminal condition yT−δ = ȲT−δ, By Proposi-
tion 7, there exists a probability measureQ equivalent toP such that (Yt ,Zt ) := I[0,T−δ](t )(yt , zt )+
I[T−δ,T ](t )(Ȳt , Z̄t ) is an L1-solution to the BSDE:

Yt =
∫ T

t
I[T−δ,T ](s) f̄ (s,Ys ,0)d s −

∫ T

t
Zs dW Q

s , t ∈ [0,T ], (30)

where W Q is a Q−Brownian motion. On the other hand, one can easily check that (0,0)
also becomes a solution to BSDE (30). Therefore, according to the uniqueness of L1-solutions
to BSDEs with weakly monotonic generators (see [6, Theorem 6.5] or [7, Theorem 1]), we
have (Yt ,Zt ) = (0,0) for all t ∈ [0,T ], Q− a.s. Hence, (Ȳt , Z̄t ) = (0,0) for all t ∈ [T − δ,T ] =
[3/4T,T ], Q − a.s. Since Q is equivalent to P, it follows that (Ȳt , Z̄t ) = (0,0) for all t ∈
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[3/4T,T ], P− a.s. In an identical way, we successively have the uniqueness on the intervals
[32T /42,3T /4], [33T /43,32T /42], · · · , [3p T /4p ,3p−1T /4p−1], · · · . Finally, in view of the continuity
of process Ȳt with respect to t , we obtain the uniqueness on the whole interval [0,T ] by sending
p to infinity. The proof of Theorem 10 is then complete. �
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