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Abstract. We propose a numerical method for the finite element simulation of micro-swimmers composed of
several rigid bodies moving relatively to each other. Three distinct formulations are proposed to impose the
relative velocities between the rigid bodies. We validate our model on the three-sphere swimmer, for which
analytical results are available.

Résumé. Dans cet article nous proposons une méthode numérique pour la simulation aux éléments finis
d’une classe de micro-nageurs. Ces nageurs sont composés par différents corps rigides qui peuvent bouger
les uns par rapport aux autres. Nous appliquons notre méthode sur un exemple de micro-nageur connu sous
le nom de Three-sphere swimmer.
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1. Introduction

The dynamics of immersed rigid and deformable bodies in low Reynolds number flows has been
extensively studied for its applications to suspension phenomena and the motion of biological
micro-organisms [7, 9].

Different numerical methods are used to study these dynamics, such as the Boundary Element
method, which discretizes the boundary integral form of Stokes equations [16]; Resistive Force
Theory, where the hydrodynamical interactions are approximated by suitable coefficients [1];
the Finite Element method, where the fluid domain is discretized and fitted [11] or unfitted [6]
meshes are used for the immersed bodies. In the following, the focus will be on the Finite Element
method with body-fitted mesh, where the Arbitrary Lagrangian–Eulerian formalism is used to
solve the motion of the fluid domain. The present article is concerned with the simulation of
swimmers composed of multiple rigid bodies that move relatively to each other. The advantage
of the finite element approach lies on the possibility to generalise the study of swimming micro-
organisms beyond the limits presented by other methods [13]. Differently from the finite element
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method, analytical descriptions of micro-swimmers are based on asymptotic expansions and
are valid in a limited range of the swimmer’s parameters; in terms of numerical simulations, the
boundary element method hardly generalises to consider complex environments, complex fluids
and elastic bodies. The main examples are micro-swimmers composed of spherical bodies, which
have been extensively studied via the fundamental solution associated with an immersed rigid
sphere [2, 10, 12]. Theoretical and numerical results make these swimmers ideal benchmarking
models.

In this paper we propose a numerical method, based on finite elements and the Arbitrary-
Lagrangian Eulerian formulation, that allows the simulation of micro-swimmers composed of
rigid parts moving relatively to each other, extending [11] to self-propelled swimmers. We illus-
trate our method by recovering the motion of the three-sphere swimmer, as reported in [12].

2. Mathematical formulation of the problem

In this section we recall the formulation of a generic swimming problem in Stokes flow. Let
F0 ⊆ Rd , d = 3, be the initial configuration of the fluid domain and At : F0 → Ft the smooth
function that maps the reference fluid domain onto the domain Ft occupied by the fluid at time
t . Let S0 ⊆Rd be the domain occupied by the swimmer at time t = 0 and St ⊆Rd be the domain
it occupies at time t . Let (u, p) be the fluid velocity and pressure defined over Ft , µ the viscosity,
f the fluid volume forces. We denote by U and ω the translational and angular velocities of the
swimmer, by xC M its centre of mass and by m and J its volume and geometric inertia tensor. The
coupled problem, expressing the kinematic and dynamic coupling of the fluid with the swimmer,
reads 

−µ∆u +∇p = f , in Ft ,

∇·u = 0, in Ft ,

u = U+ω× (x −xC M (t ))+ud (t , x)◦A −1
t , on ∂St ,

mU̇ =−Ffluid,

Jω̇=−Mfluid.

(1)

where Ffluid and Mfluid denote the net fluid forces and torques acting on the swimmer. They are
computed by integrating the fluid stress and torque on the boundary of the swimmer, where the
fluid and solid interact. The function ud (t , x) denotes the time derivative of body deformation,
and it is the driving mechanism of the whole motion, making the otherwise stationary problem
time-dependent. In (1), the function ud (t , x) is a known datum of the problem. It can have an
analytical form or come from a numerical model, but in this last case additional equations must
be added to (1) in order to describe the generation of ud (t , x).

The map At (x) is defined as At (x) = x +φt (x), where φt (x) is the solution of the following
Laplace problem{∇· ((1+τ)∇φt (x)) = 0 in F0,

φ̇t (x) = U+ω× (x −xC M (t ))+ud (t , x), on ∂S0 ,
(2)

where τ is a discontinuous function to be specified later.

3. The articulated micro-swimmer

The articulated micro-swimmer is composed of n rigid bodies among which a reference body
Bn is identified. This body is linked to all the other bodies Bi , for i ∈ {1 . . .n −1}, by arms which
are thin and have negligible hydrodynamic effects. The length of these links can be changed via
“internal motors” that impose a relative speed between the bodies, leading to self-propulsion.
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In principle, each Bi can have a different shape, but we choose to work with spheres for
benchmarking purposes. In fact, the motion of some multi-sphere swimmers can be analytically
expressed via asymptotic expansions, in the limit of small ratio between the size of the sphere
and their distance and small arm oscillations, by using the appropriate Green kernel of Stokes
equations [12, 15].

In this section the motion of n independent bodies is first described, by recalling the formu-
lation in [11]. After that, we present the modified formulation that takes into account the relative
velocities between the bodies. In the end, we propose three equivalent methods that allow the
imposition of the velocity constraints.

3.1. Motion of n independent bodies

Using the same notation as before, the problem of n independent bodies moving in a Stokes fluid
reads 

−µ∆u +∇p = f , in Ft ,

∇·u = 0, in Ft ,

u = Ui +ωi × (x −xC M
i (t )), i = 1. . .n, on ∂Bi ,

mi U̇i =−Ffluid, i = 1. . .n,

Ji ω̇i =−Mfluid, i = 1. . .n.

(3)

In this case ud (t , x) = 0, as the bodies move independently of each other and no deformation is
present. Hence, At (x) = x +φt (x), where φt (x) is the solution of the Laplace problem{∇· ((1+τ)∇φt (x)) = 0 in F0,

φ̇t (x) = Ui +ωi × (x −xC M
i (t )), on ∂Bi ,

(4)

where τ is a piecewise constant coefficient, defined on each element e of the domain’s discretiza-
tion as τ

∣∣
e = (1−Vmi n/Vmax )/(Ve /Vmax ) where Vmax , Vmi n and Ve are the volumes of the largest,

smallest and current element of the domain discretization [8].
In this formulation, the body motion is dictated by fluid stresses only. We now address the

variational formulation of (3) and look for a solution (u, p,Ui ,ωi ) ∈ [H 1(Ft )]d ×L2(Ft )× [Rd ]n ×
[Rd ]n to the weak formulation of the problem.

Let (ũ, p̃,Ũi ,ω̃i ) ∈ [H 1(Ft )]d ×L2(Ft )×[Rd ]n ×[Rd ]n denote the test functions. The variational
formulation reads

2µ
∫
Ft

D(u) : D(ũ)dx −
n∑

i=1

∫
∂Bi

(−pI +2µD(u))~n · ũ dS −
∫
Ft

p∇· ũ dx =
∫
Ft

f · ũ dx, (5)∫
Ft

p̃∇·u dx = 0, (6)

mi U̇i · Ũi =−
∫
∂Bi

(−pI +2µD(u))~n · Ũi dS, i = 1. . .n, (7)

Ji ω̇i · ω̃i =−
∫
∂Bi

(−pI +2µD(u))~n × (x −xC M
i ) · ω̃i dS, i = 1. . .n, (8)

where D(u) = 1
2 (∇u +∇uT ). We remark that the integrals in equations (7) and (8) coincide with

Ffluid and Mfluid respectively. The integration is performed over the boundary of the swimmer as
the dynamic continuity is required at the fluid-solid interface of the immersed bodies.
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Following [11], we choose (ũ,Ũi ,ω̃i ) ∈ [H 1(F )]d×[Rd ]n×[Rd ]n satisfying ũ = Ũi+ω̃i×(x−xC M
i )

on ∂Bi . These test functions form a subspace of [H 1(Ft )]d × [Rd ]n × [Rd ]n , and they satisfy the
relationship∫

∂Bi

(−pI +2µD(u))~n · ũ dS

=
∫
∂Bi

(−pI +2µD(u))~n · Ũi dS +
∫
∂Bi

(−pI +2µD(u))~n × (x −xC M
i ) · ω̃i dS, (9)

that combines the boundary terms in equations (5)-(7)-(8). The “compact” reformulation

2µ
∫
Ft

D(u) : D(ũ)dx −
∫
Ft

p∇· ũ dx +
n∑

i=1
mi Ui · Ũi + Jiωi · ω̃i =

∫
Ft

f · ũ dx. (10)

of equations (5)-(7)-(8) shows that boundary terms have been absorbed by the choice of the finite
element spaces.

3.2. The constraints on relative velocities

Among the n bodies composing the articulated swimmer, we identify Bn as the reference body.
The velocities Ui of all the other bodies Bi , i = 1. . .n − 1, are expressed as functions of Un via
constraints of the form

Ui = Un +Wi n(t ), i = 1. . .n −1, (11)

where Wi n(t ) represents the relative velocity between Bi and Bn . The addition of these con-
straints to (3) completes the formulation of the swimming problem for the articulated swimmers.
We notice that the resulting system is a particular instance of the general case presented in (1),
where ud (t , x) is a function of the relative velocities Wi n(t ) in (11). More precisely, the Dirichlet
boundary conditions in (1) would read:

u = Un +ωi × (x −xC M
i (t ))+Wi n(t ), for i = 1, . . . ,n −1, on ∂Bi ,

u = Un +ωn × (x −xC M
n (t )), on ∂Bn ,

(12)

which gives ud (t , x) = Wi n(t ) for x ∈ ∂Bi , where we define Wnn(t ) = 0.
The formulation we just described applies directly to the three-sphere swimmer [12], an

articulated swimmer composed of three aligned spheres. Here the reference body Bn = B3 is
the central sphere, which is connected by extensible arms to the other two spheres B1 and B2.
The formulation can be applied as well to the planar three-sphere swimmer [10] or to the four-
sphere swimmer [2], whose spherical bodies are placed on the vertices of an equilateral triangle
or tetrahedron, respectively. In those cases, the relative velocity vectors Wi n should be carefully
computed, as each extensible arm connects Bi to the barycentre of the swimmer, and not to Bn

directly as in the case of the three-sphere swimmer.

3.3. Discrete and algebraic formulation

Let us consider a geometrical discretization Fh of the fluid domain using simplexes. The fluid
problem is then discretized using an inf-sup stable pair of conforming finite element spaces
Xh(Fh)×Bh(Fh) for (uh , ph) and (U j ,ω j ) ∈ [Rd ]n × [Rd ]n .

Since the fluid velocity satisfies u = Ui +ωi × (x − xC M
i ) on ∂Bi , the degrees of freedom u∂Bi

that lie on ∂Bi are treated differently from the remaining ones, that we denote by uI . Indeed, u∂Bi

are expressed as a function of (Ui ,ωi ).
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At first, equations (5)-(8) are discretized by ignoring the constraint u = Ui +ωi × (x − xC M
i ) on

∂Bi . Then, via the operator

P =


I 0 0 0
0 P̃ U P̃ω 0
0 I 0 0
0 0 I 0
0 0 0 I

 , (13)

that satifies the equation

(uI ,u∂Bi ,Ui ,ωi , p)T =P (uI ,Ui ,ωi , p)T , (14)

the change of finite element basis, from the standard formulation to the constrained one, is
performed. In (13), P̃ U and P̃ω contain the interpolation operators that allow to express u∂Bi

as a function of Ui and ωi . In particular, if one denotes by Di the number of velocity degrees of
freedom that lie on ∂Bi , one has

P̃ U =
 PU1 . . . 0D1×d . . . 0D1×d

0Di×d . . . PUi . . . 0Di×d

0Dn×d . . . 0Dn×d . . . PUn

 (15)

where PUi denotes the interpolation operator that expresses the velocity degrees of freedom on
∂Bi as a function of Ui .

The constraints on the relative velocities between the bodies can be imposed via Lagrange
multipliers, through a modification of the operator P or by modifying the matrix that results
from the discretization of the fluid problem.

The first method is the least invasive: additional equations and unknowns are added to a
pre-existing discretized problem of n independent bodies in a Stokes fluid, as described in (3).
Lagrange multipliers αi ∈ Rd , i = 1. . .n − 1 are introduced to impose the constraints on the
translational velocities Ui onto the differential formulation. The previous constraint will appear
in the equations that describe the rigid body motion of the solid bodies: equations (7) will be
substituted by

mi U̇i · Ũi +αi · Ũi =−
∫
∂Bi

(−pI +2µD(u))~n · Ũi dS, i = 1. . .n −1, (16)

mn U̇n · Ũn −
n−1∑
i=1

αi · Ũn =−
∫
∂Bn

(−pI +2µD(u))~n · Ũn dS, (17)

αi · (Ui −Un) =αi ·Wi n , i = 1. . .n −1. (18)

The addition of Lagrange multipliers entails the modification of P by providing an additional
identity matrix of size d(n −1)×d(n −1) on the diagonal.

Instead of using Lagrange multipliers to constrain the translational velocities, a modification
of the operator P could give the same results. In terms of finite element spaces, this consists in
reducing the constrained finite element space to basis functions that satisfy u = Un +ωi × (x −
xC M

i (t ))+ud (t , x) on ∂Bi , with ud (t , x) function of Wi n . Equation (14) becomes

(uI ,u∂Bi ,Ui ,ωi , p)T = P̃ (uI ,Un ,ωi , p)T +ud , (19)

where P̃ is given by

P̃ =


I 0 0 0

0 ˜̃PU P̃ω 0
0 E 0 0
0 0 I 0
0 0 0 I

 . (20)

C. R. Mathématique — 2021, 359, n 9, 1119-1127
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The dn ×dn block that corresponded to the translational speeds, is presently substituted by the
dn ×d matrix

B1

{
...

Bi

{
...

Bn

{



Id
...

Id
...

Id

= E , (21)

and matrix P̃ U is substituted by

˜̃PU =



P̃ U1

...
P̃ Ui

...
P̃ Un

 . (22)

This modification must be applied directly to the construction of P , because an a posteriori
change of the operator would be too costly in terms of operations on the compactly stored matrix.
The relative velocities will then be imposed on the right-hand side of the problem, as the known
part of the body velocity.

The last modification is even more invasive, and it consists in modifying the system matrix
and right-hand side by substituting (7) with

(Ui −Un) · Ũi = Wi n(t ) · Ũi , i = 1. . .n −1,

mn U̇n · Ũn =−
∫
∂Bn

(−pI +2µD(u))~n · Ũn dS.
(23)

Among the three formulations just presented, we implemented the first two.
The numerical solution of the algebraic system is performed iteratively. The block precon-

ditioning strategy is based on algebraic factorisation and approximation of the Schur comple-
ment. The block containing the velocities of the fluid and bodies is block-preconditioned using
an incomplete Gauss–Seidel approach, where the fluid velocity is preconditioned via an alge-
braic multigrid approach and the body velocity block using an LU preconditioning. The pressure
block, instead, is preconditioned using the pressure mass matrix [5]. If the Lagrange multiplier
formulation is chosen, the Lagrange multipliers are assigned to the body velocity block and pre-
conditioned analogously.

Table 1 presents the algebraic solution strategy and runtime per time iteration for the sim-
ulation of a three-sphere swimmer on 8 cores. It is shown that block preconditioning (fieldsplit)
leads to faster solution and that the formulation based on P̃ is slightly more efficient than the ap-
proach based on Lagrange multipliers as the mesh is refined. Block preconditioners are built us-
ing PETSc fieldsplit, and a comparison is performed with MUMPS LU preconditioning and PETSc
gasm+LU preconditioners based on Additive Schwarz domain decomposition with LU precon-
ditioning on the sub-domains. We note that the gasm+LU preconditioner fails on the Lagrange
Multiplier formulation while LU becomes very expensive as we refine the mesh. The results show
that it is necessary to have a solution strategy as generic strategies are not scaling well (or not at
all) either in iteration count or computing time. Our solution strategy, based on block precondi-
tioning, is almost optimal in the sense that the number of iterations increases only slightly as the
number of unknowns increases.

C. R. Mathématique — 2021, 359, n 9, 1119-1127
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Table 1. Numerical study on the algebraic solution of the three-sphere swimmer problem.
The simulation was launched on 8 cores, and “Time” is the runtime for one time iteration.
For the three meshes, the average element size is 3, 2 and 1.5 respectively. For the second
and third mesh, in parentheses, we reported the ratio of degrees of freedom, number of
iterations and time with respect to the first mesh.

Degrees of freedom (u +p) Formulation Preconditioner N. iterations Time
311000 Lagrange multipliers LU - 190s
311000 Lagrange multipliers fieldsplit 41 33s
311000 Lagrange multipliers gasm+LU - ∞
311000 Matrix P̃ LU - 190s
311000 Matrix P̃ fieldsplit 36 30s
311000 Matrix P̃ gasm+LU 170 80s

888000 (2.85) Lagrange multipliers fieldsplit 50 (1.22) 110s (3.33)
888000 (2.85) Lagrange multipliers gasm+LU - ∞
888000 (2.85) Matrix P̃ fieldsplit 43 (1.19) 97s (3.23)
888000 (2.85) Matrix P̃ gasm+LU 350(2.06) 505s (6.31)

2094000 (6.73) Lagrange multipliers fieldsplit 66 (1.60) 350s (10.6)
2094000 (6.73) Lagrange multipliers gasm+LU - ∞
2094000 (6.73) Matrix P̃ fieldsplit 53 (1.47) 293s (9.76)
2094000 (6.73) Matrix P̃ gasm+LU 395(2.32) 2550s (31.87)

4. The three-sphere micro-swimmer

The three-sphere micro-swimmer [12] is a three-dimensional swimmer composed of three
aligned spheres having the same radius R. The two outer spheres are connected to the central one
by extensible links, and the propulsion of the swimmer is ensured by changing the lengths of the
connecting arms between two fixed values. The arm shrinkage is performed in a non-reversible
fashion, in order to break the time-reversal symmetry of the Stokes equations, with a constant
relative speed between the central sphere and the approaching one. For example, if the left arm
is shrinking and the right arm keeps its length fixed, the translational speed U3 and U2 of the cen-
tral and right sphere coincide, while the speed of the left sphere, moving with relative speed W13

with respect to the centre sphere, will be U3 +W13. The (non-reciprocal) stroke is composed of 4
steps, as shown in Figure 1, where the lengths of the two arms are alternatively modified.

A quantitative example of swimming is presented in [12]: if L = 10R is the length of each link
in its rest position and a = 4R is the maximal variation for the length of each arm (leaving a link
length of 6R when the arms are completely shrunk), the centre sphere is displaced by 0.16R in the
positive direction at the end of the 4-step stroke. In the first step, the travelled distance is 1.35R
in the negative direction; in the second step, it is 1.44R in the positive direction; in the third step,
it is 1.44R in the positive direction; in the fourth step, it is 1.35R in the negative direction.

Using the aforementioned Lagrange multipliers formulation, we are able to recover the dis-
placement at each step of the 4-step stroke reported in [12]. Figure 2, on the left, translates
the steps of the body deformation in terms of relative velocities between the central and lateral
spheres. Figure 2, on the right, represents the motion of B3 during several repetitions of the 4-step
stroke.

The results were obtained using the library Feel++ [3] and in particular its toolbox for the so-
lution of Navier–Stokes equations in moving domains including moving rigid bodies. The im-
plementations of Lagrange multiplier and P modification formulations are available in Feel++
GitHub repository [4] and can be used to reproduce the results in sequential and parallel. The

C. R. Mathématique — 2021, 359, n 9, 1119-1127



1126 Luca Berti, Vincent Chabannes, Laetitia Giraldi and Christophe Prud’homme

L L
B1 B2B3

L-a L

L-a L-a

L L-a

L L

Figure 1. Representation of the three-sphere swimmer and its swimming gait. The gait is
composed of four strokes in which one of the arms is alternatively shrunk or elongated. The
alternation guarantees the non-reciprocity of the motion.

Figure 2. The left figure presents the relative speed W13, between the central and left
sphere, and the relative speed W23, between the central and right sphere, as functions of
time. The right figure shows, in blue, the position of the central sphere during the 4-step
stroke. The red line intersects the trajectory of the central sphere at the red circles, which
mark the 0.08R and 0.16R displacements predicted in [12] after 2 and 4 steps composing
the swimming stroke.

computational domain was discretized using a variable element size, finer on the surface of the
spheres, generating a total number of 13500 nodes and 78000 tetrahedra. During the simulation,
the mesh quality degrades but this does not stop the simulation or affect the results we obtain.
The mesh adaptation is performed with a variation of the Laplacian smoothing [8], as a piecewise
constant coefficient, depending on the size of the element, is designed to mainly deform larger
tetrahedra as opposed to smaller ones. The boundaries of the fluid domain were sufficiently far
from the three-sphere swimmer in order compare our results to the analytical ones. However,
we remark that the interest of the finite element approach is that the geometry of the fluid do-
main can be easily modified and the effects of boundaries on the motion of the swimmer can be
studied.

5. Conclusion

In this paper, we provide a numerical method to simulate a self-propelled micro-swimmer
composed of rigid bodies. Different formulations are proposed, including one based on Lagrange

C. R. Mathématique — 2021, 359, n 9, 1119-1127
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multipliers, to impose the relative motion between its components. The correctness of our
formulations is verified on the three-sphere micro-swimmer by comparing the displacements
obtained numerically to the ones in [12], even if only the results based on Lagrange multipliers
are presented here. The numerical method that was proposed can be applied to study the effects
that complex environments (obstacles, boundaries) have on the swimming of micro-organisms.
Also, it can be used as a basis to study gait optimization via machine learning methods to
improve propulsion, similarly to [14], or to escape the attractive effects that originate from the
interaction with solid boundaries. Current work includes the treatment of other multi-body
swimmers like the planar 3-sphere swimmer [10] or the 4-sphere swimmer [2], formulating the
ALE framework with mesh adaptation, the extension to other fluid models, e.g. Navier–Stokes
and non-Newtonian, and the coupling with elasticity models to handle deformable bodies, i.e.
swimmers.
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