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Abstract. This Note studies a Rayleigh-Bénard system in an infinite layer, in the case of temperature-
dependent viscosity, with rigid boundary conditions for the velocity at the bottom and free-slip at a top of
the layer. It states the linearized problem in the relevant functional operator set-up and identifies, for each
nonzero transverse frequency k and Rayleigh number R the (finite) number of modes which are unstable in
time. This number is equal to the number of eigenvalues of a particular operator which are smaller than R.
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Version francaise abrégée

Nous nous intéressons dans cette Note au probléme des instabilités de Rayleigh-Bénard, décrites
ilyaplus d'un siecle par Bénard [1] du c6té expérimental et par Rayleigh [13]. Dans un article pré-
cédent [12] nous avons étudié la question de I’échange de stabilité (c’est a dire la détermination
de la valeur du nombre de Rayleigh R pour laquelle il apparait des instabilités pour le systéme
linéarisé) dans un cas présentant les deux caractéristiques suivantes : la viscosité est une fonc-
tion de la température dans la couche ot il y a convection, et la vitesse de I’écoulement corres-
pond a une surface inférieure rigide (1« = 0) et une surface supérieure libre (u.n = 0). Ayant li-
néarisé autour d'un profil de température Ty, solution stationnaire laminaire de 'équation de la
chaleur, et ayant noté v(z) := v(Ty(z)) nous avions obtenu un systeme d’équations différentielles
ordinaires et ses conditions aux limites (pour des solutions trés régulieres). Nous reformulons ce
probleme dans les espaces fonctionnels adéquats afin de pouvoir obtenir des résultats mathé-
matiques complétant les résultats numériques de [12] (les résultats mathématiques de [12, I'Ap-
pendice] n’étant pas écrits pour le probléme étudié dans 'article).
Nous supposons

(H) v aumoins de classe C?,v(z) = vy > 0,v"(z) = 0.
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1166 Olivier Lafitte

Le systeme considéré utilise 'approximation dite de Boussinesq, qui suppose que la variation
de densité est négligeable, sauf dans les termes ou elle est multipliée par g. On note Pr > 0 le
nombre de Prandtl associé a cet écoulement.

Nous considérons ainsi, apres écriture en modes normaux de la solution du systeme linéarisé
autour de I'écoulement (7, T, p) = (0, Tp — B(z + g), po—p18zI[1+ “Tﬁd + aTﬁz]) comme Ssuit :

(1,0,6p) = (Ux(2), Uy(2), W(2),0(2), 5P (2)) 7 +ilksx+ksy), (1)

Dans [12], apres introduction de k = 4/ k§ + kJZ,, nous avons obtenu un systeme d’équations
différentielles ordinaires et des conditions aux limites. Nous écrivons dans la présente Note sous
la forme d’un systéme d’équations ordinaires au sens faible :

ZZz =-%tz
FIW  =Rk*©0-2W - k*V'(2)W @)
0O+LO =W.

Comme on le verra, les espaces fonctionnels tiendront compte d'une partie des conditions aux
limites, les autres étant déduites de la formulation faible.
On ne considerera dans cette Note que le cas

k>0,R>0. 3)

Dans ce systeme, les opérateurs L, %, %" sont les opérateurs auto-adjoints coercifs sur
H (-3, 3D (etsur H'([-1,1]) a trace nulle en — pour #%) donnés par

Vo, yeHy([-5.5]) Loy =ff%l (0'y' + K2¢y) dz,
VoweH ([-3,3]) (Lo = [2 v [¢'y' + KPpy] dz, 4
Vo et ([-3.3]).0(=3) =v (-3) = 0.(LPw) = 7, v [¢'y' + K9y dz.

Notant H = {W € H*([-},31), W(£3) = 0,W'(-}) = 0}, sous-espace de Hilbert de H*([-3,3])

22
(muni de la norme induite), qui prend en compte le fait que le fond z = —% est rigide et la surface
est libre, on définit 'opérateur 2 de Hdans H :
1
Vo, we H(2¢,y)= f 21 v(2) [¢"y" + 2Ky + Koy dz. (5)
~2

Les conditions sur v et k impliquent qu’il existe a > P tel que, pour tout ¢ € H, (2¢, ¢) = al|¢p| I?LIZ.
Les opérateurs 2 et 2 + k2v" (z). sont coercifs sur H. On introduit aussi I'espace
11

Jf:zFIxHé([—E,E

) ©)

Le systeme (2) est alors posé pour Z € H'([-3,31), Z(-3) = 0, (W,©) € #, 7 donné par (6).
Notre Note concerne en particulier la recherche des valeurs propres instables (ou spectre
instable) de ce systeme de Rayleigh-Bénard, comme l'indique la

Definition 1. On appelle valeur propre instable du probleme ou valeur du spectre une valeur de
o = 0 telle quil existe une solution non triviale (W,0) dans # du probleme (2). Pour une telle
valeur propre, Z = 0 et (2) se résume au systeme sur (W, ©), qui sera, par abus de notations, assimilé
au systeme (2).
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Olivier Lafitte 1167

Nous obtenons le résultat suivant

Theorem 2. On suppose k,v vérifiant les conditions (H) et (3) données ci-dessus.

o Lopérateur L72[2 + k2L % est autoadjoint compact sur L*([-3,3]). On appelle
m la suite strictement décroissante de ses valeurs propres.

o Lorsque Rk? < r1(0,k), le systtme de Rayleigh-Bénard pour la fréquence transverse k est
linéairement stable, et si Rk* = r1(0,k), le systeme (2) muni des conditions aux limites
décrites ci-dessus admet une solution non triviale (01, Z,, W1,01) aveco; >0et Z; =0. La
valeur %Oz‘k) est la valeur dite d'échange de stabilité, et son minimum en k est le nombre
de Rayleigh critique R, du probleme.

e Lorsque RI? = r1(0,k), il existe un nombre fini N de valeurs de o vérifiant la Définition 1.
Ce nombre N est donné par ryn(0, k) < RI? < rn4+1(0, k).

Ce Théoréme est une conséquence des Lemmes 5 et 7 démontrés dans la version anglaise.

1. Introduction

This paper is the follow-up of the paper of E Pla, H. Herrero and O.L [12] where one studied
the thermal convection problem with temperature dependent viscosity problem, so called the
Rayleigh-Bénard convection problem (after [1] and [13]). This convection problem appears for
example in the mantle of the Earth. One could also think that it could also appear in a pond where
the bottom is the permafrost and the top is lighted by the sun in summer if the temperature
is not monotonous in the fluid (hypothese (H) is not fulfilled in this case). Detailed results on
this instability as well as others can be found in [2, 3]. The model is the Navier—Stokes system
of equations under a Boussinesq approximation with a viscosity depending on the temperature
between two infinite plates (which, by convention of choice of units, are labeled as z = i%).
In [12], we reduced the study of the linearized problem in to a system of ODEs through the normal
modes method, and solved numerically this system of ODEs with suitable initial conditions and
end conditions to obtain an eigenvalue as a root of a suitable determinant for finding the smallest
value Ry (k) for which an eigenvalue of the linearized problem is o = 0. Very often, on the other
side, a variational principle allows the study of the largest positive growth rate of the linearized
system (see Guo and Hwang [6], Guo and Tice [7] for example among many works). In [6], the
growth rate A is obtained such that ﬁ—f is the maximum value of a certain Rayleigh quotient. In [7],
the growth rate A is obtained through the infimum of a Rayleigh quotient depending on A.

In hydrodynamics, spectral theory of a celebrated equation (namely the Orr—Sommerfeld
equation) gives rise to numerous articles (to just quote three recent ones, mention that Sko-
rokhodov [14] performs a numerical analysis of the spectrum, Tan and Su [15] use a projection on
Fourier modes and Grenier, Guo and Nguyen [5] perform a construction of approximate modes
and an analysis of the dispersion equation for finding the spectrum). However, even if some
ideas are similar, Orr—Sommerfeld equation does not lead to a self-adjoint formulation and does
not lead to the analysis of a spectrum for a self-adjoint operator.

In [12, the Appendix], we described, using spectral analysis, a problem close to the one studied
in [12] (namely the case where W satisfies W(J_r%) = 0, that is rigid-rigid conditions u.n = 0 at
the top and the bottom) studied through an operator on HS,O([—%, %]) for which we obtained the
complete discrete spectrum. On the other side, the numerical study therein was done for a rigid-
free problem and did not use this spectral analysis. Moreover, we did not address in this Appendix
the consequences of having the description of the complete discrete spectrum.

Obtaining the spectral result in the rigid-free situation (where the Hilbert space used is less
classical) and counting the numero of unstable modes in terms of (R, k) are the aim of the
present Note.

C. R. Mathématique — 2021, 359, n°9, 1165-1178
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In the present paper, we prove that the spectral analysis of all the eigenmodes of the Rayleigh—
Bénard problem for a rigid-free boundary condition is a consequence of compactness of a 6"
operator (more complicated than the operator studied in [12, the Appendix] because of the
Hilbert space #* on which it acts). Indeed #* depends on o, because the rigid boundary
condition at the bottom expresses, for the vertical component of the velocity W, as W’(—%) =0.
As in Orr—-Sommerfeld equation, the growth rate (or a function of it) does not appear as an
eigenvalue of an operator independent on o, but one aims at finding a non trivial kernel for an
operator depending on o.

This is seemingly new for this problem with a variable viscosity (which prevents to perform
a direct spectral analysis using sinnn(z + %) as a basis of diagonalization of the problem), and
gives a criterion to identify the number of positives values of o (see Théoréme 2). Classically,
mathematicians and physicists interested by unstabilities aim at finding at least one unstable
mode for the linearized system, as it is enough to show that the problem is linearly unstable and
do not count them: the present Note gives additional information on growth rates.

Apart from the cases of constant coefficients systems (as it is the case in the classical Rayleigh—
Bénard problem with rigid-rigid, rigid-free, or free-free boundaries (as in the works of Drazin and
Reid [3], Reid and Harris [2, 8] among other authors) where the eigenmodes can be computed
easily using the boundary conditions), not much has been done on the complete set of unstable
values. The complete unstable spectrum for the classical Rayleigh-Taylor instability is for exam-
ple described in a paper with B. Helffer [9] (and references therein). Infinitely many growth rates
appear also in the seminal work of Erpenbeck on detonation stability ([4, Section Analytic treat-
ment], proved rigorously recently in [10]). One of the reasons of so few results on this sequence
of growth rates could be that linear instability relies on at least one unstable mode and nonlin-
ear results rely on a bound of any growth rate (by essentially the largest one) hence the sequence
of unstable modes is interesting, but not for applications. This spectral analysis is of one of the
themes of the ongoing thesis of Tien Tai Nguyen [11].

We rephrase the result of Théoréme 2:

Let R > 0 be the Reynolds number of the problem, Pr > 0 the Prandtl number of the system,
and assume that the laminar profile is (0, po(2), To + (z + $)(Ty — Tp)) in the infinite layer —}
<z< % Assume the transverse wave number of the perturbation of this profile (for which the
viscosity v(z) := v(Tp + (z + %)(Tl —Tp)) is k > 0, and v satisfies (H). We are able (as in the case
v(T) = v constant) to count the number of positive growth rates o for a given value of (k, R).
The number of positive distinct values of growth rates, for a given value of (k, R), is N such that
rn(0,k) < Rk? < rn+1(0, k).

This theorem is illustrated in the toy model (described for example in Reid and Harris [8]), that
we investigate in Section 3 of this Note in order to illustrate first this result. We recall in the first
section (Section 2) how the model was described and obtained in [12], then we write an operator
form of the problem of ODEs we adress using a variational formulation (Section 4), and describe
the spectrum m of a self-adjoint compact operator from which one shall deduce the growth
rates by studying the equations r, (g, k) = Rk? (Section 5).

Acknowledgments

The author wish to thank the anonymous referee for all the detailed remarks and suggestions
stated on the first version of this Note.

2. Formulation of the problem

We recall briefly the model (described in [12]) and perform the normal modes analysis. Details
are in [12, Section 2, 3].
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The governing equations are, on R2 x [-4 5 E] under the Boussinesq approximation:
V.0=0
0,0+ (W.V)U= _p(T)
0;T+0.VT =KAT

(Vp+pgés) +div(v(T) (Vi+ (VD)) @

where 7 is the velocity vector field, p is the pressure, T is the temperature, p is the density, and
v(T) the viscosity of the fluid (the Boussinesq approximation has been used here as v(T) = %).
The equation of state is

p(M)=p1(1-allf-1T)), 8

and the physical boundary conditions available are

le__g = T, T|z=% =T
Ul __a=0
-~ & 9
Vz; = z:%
0 = 0,0 =0
zVxl,_a sz|Z_%

From now on, we consider d = 1 through a change of units. After linearization in the neigh-
borhood of the laminar solution, one obtains the system of ODEs on the normal modes (where
the operator 3 * here is the differential operator! acting on C? functions, expressed as £* f(z)
= K2v(2) f(2) — L (v(2) )

j (kax +k,Uy))+W'=0
Pr —iky6P—L*Uy+ikV' ()W
PrUy——lkyé‘P—.,% Uy+l]€yV (2)W (10)
%W =—P) -L*W+V (2)W'+ RO
00 =0"-k*0+W.
This system is written as a classical system of ODEs on regular functions. It was deduced
in [12] that the system of ODEs (10) implies the following partly decoupled system, denoting by
Z =ikyUy—ikyUy.
57— 4 (v %)+ kzv(z)Z =0
£ (Rw-w") = R0 - L (v L)+ 2k & (v £ W) - Kv@W - V(W (1)
K-L)o=w.
(a Ty ) = W.
Our purpose is to state the problem as a problem for Z € H (-1 3 2]) Z(— 2) =0and (W,0) € A&
to apply spectral results on operators on Hilbert spaces, and to derive properly the additional
boundary condition in this weaker set-up. This type of analysis is well known for linear elasticity
problems in the domain of strength of materials.

Before this spectral analysis, we treat the toy model of v(z) constant, in order to illustrate the
third item of Theorem 2.

Lthe notation used is different from £: & is the extension of £* on Hé‘

C. R. Mathématique — 2021, 359, n°9, 1165-1178
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3. The toy model where v is independent on z

We illustrate one of the aims of this short Note in the case of a toy model. This toy model is
classical, as mentioned above, and is described in [3, Section 8.3, Section 10]. The eigenmodes
are known for the free-free boundary conditions, and for free-rigid boundaries (see [8]). Recall
that, in this case, one studies the system, for (W, ) € (Cw([—%, %]))2,

o 2 - 2
1020, ($-L+VvL*)W = Rk*©
(c+L)O=W

with the boundary conditions @(i%) =0, W(i%) =0, W —%) =0, W”(%) = 0 (the last condition
being the one stated in the physics literature).
This constant coefficient system of ODE yields

1 1 1
O(z) =AjcosT) (z+ 5) + Ay CcOST) (z+ E) + A3C0ST3 (z+ >

)

1
+ By sint; (Z+ E

1
+ Apsint) (Z+ E

1
+ Azsintg (Z+ E

where
71 (0, k, RK?*) € R, 74 (0, k, RK?) = —a (0, k, Rk*) + i (0, k, Rk*) € C
are respectively given by 75 = X; — k?, 72 = X2 — k* where Xj, X; € R solve
o 2 2
(5-x+vX?)(@+X) - RE* = 0. (12)
Pr
We prove
Proposition 3. Introduce ngy such that

2
(k2 + n2n?)’ < % < (k2 + (no + 12m%)*.

For all n < ny, there exists at least one value of X € (k? + n?n?, k? + (n+1)?>n?), solution of (13). An
associated growth rate is given by

g =

1+6 N Xf’—szR (1+9

20 ! 0X, 20

which is an admissible growth rate for the Rayleigh-Bénard problem in the toy case. There is no
admissible value of o coming from the solutions of (13) greater than (k* + nin*)3.

2
) X2>0

Proof. As W = (o + L)O, the boundary conditions write
Al+A+A_=0,(0+X)A1+(0+X) A, +(0+X_)A_=0,
@+X)TIAI+(0+X)TEA +(0+ X)TEA_=0

(Ajcosty+B;sint))+ (AL cost, +Bysint, )+ (A_cosT_+B_sint_) =0,
(0+X1)(Ajcosty +B;sint)) +(0+ X, ) (AycosT, + BysinTty)
+(0+X_)(A_cost_+B_sint_) =0,
c+X))t11Bi+(0+X)1+By+(0c+X_)7_B_=0.

A X3, X5, X_ are distinct, the eigenvalue equation of the system is
T1 T4+

T-

o+ X 2 - +0+X 2 -1+ (0+ X_ 212 =0,
( 1)tanrl( FmTe) +) tanr+( =T )tanr_( e
that is
(0 + X)) — (r2 —7%) +2R | (0 + X3) L (2 -73)| =o.
tant; tant.,

C. R. Mathématique — 2021, 359, n°9, 1165-1178
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Figure 2. A zoom on the two previous cases.

As one can express 7. in terms of 7} := \/X12 — k2, this equation becomes a real transcendental
equation, which poles are 7; = nn. This equation is

12 [0+ X0) gt (12 - 73)| .
tant; (2 -12)11(0+X1)

One shows that there exists a unique solution 7} (R, o, k) of this equation in (n7, (n + 1)7) for all
n = 0. In particular 7; = 7 cannot be a solution of this equation. It is associated with X{“ (0,k)
=Ik%+ (T?(U, k)2, and ¢ can be recovered through (12). Note that the two solutions of (12) are
real, and that they are both strictly negative when X; > RTICZ, hence for (n+1)27% +k?)3 = RTICZ, the
value of o obtained from X; = (n+1)?7% + k% = RT’CZ is strictly negative. The proposition is proven,
and gives rise to a finite number of number of values of o. g
vk +(T(0,k)%)°

We have, in addition, for o = 0, va’ = Rk?. We obtain the sequence 1, (k) = 2

which will be used for the count of growth rates.

Lemma 5 in Section 5 proves that r, (o, k) is strictly increasing in o, goes to +co when o — +oo,
for each n (and this is not easily deduced from the function appearing in the right hand side
of (13)). In this band, X]'(0, k) converges to (n+1)?7* + k* when 0 — +oo. In two cases we graph
(Figure 1), using Matematica, the equation (13) for X; > k2, with

1% 3

(1+0)X; ((1+9)X1)2 B _ X3
=\/X1-k2,0=— Y . 14
i 1=a 20 20 ) T ox (14)

This illustrates the calculation of XI” (o,k).

C. R. Mathématique — 2021, 359, n°9, 1165-1178
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To have a better view at the first modes, we show, in the same cases, a zoom for the first values.
Using FindRoot in Matematica:

R

1
k=3, = 3 1 Xy,1 =22.1762, X3,» = 109.832, X7,3 = 183.107, X1, 4 = 276.077,

1
=——1:X3,; =111.136, X;,» = 143.931, X} 3 = 197.367.

v
R
k=10,—

v 1000

4. A self-adjoint equation through a variational formulation

The systems of ODEs on W and O is, in the Physics literature, implicitely stated with strong
derivatives for W and © respectively in C4([—2, 1) and Cz([—z, 31). Introduce ¢ € C4( —%, %])

and deduce, as it was done in [12], a variational formulation of the problem. Observe that

1
—le (g*w’)’<pdz=—[$*w’<p]i 1.56 W'¢'dz
T2 T2

1
vizYW'¢p'dz— [vw”</>]2 f viyW"¢" dz.

1
2

-|&* w¢>]2 +k2f11

We insist that, even though

flv(z)W<p dz+f ) vizYW'¢"dz

2 2

is well defined for W, ¢ € H2(-1 5 2), we have to use caution to define the boundary terms, if
needed.
The second equation of (11) implies, all (W, ¢) € C4([—§, zD) andfor®€ CO([—%, %])

1
f_z [% (W' + KEW) — RK2Op + KV (D W+ v(2) (W' + 2k W' + k4w¢>)] dz

D=

:Pir[W’qb]% —[(vW”)¢ W' +2k2vw¢] e

_1
2

I\)

The last equation of (2) yields, for all (0, ¥) € CZ([—%, %]) and for W € CO([—%, %])

1 1
5 3 l
: w%&:f‘ (o +K)0v+0'¥)dz-[0'P]’

1-
1 2
3 2

1
2
In [12], for regular solutions, weused W =W'=0=00onz=~3, W=0=00nz=3 ! and added
the additional condition W” =0 on z = 1 . This condition can be deﬁned for aregular (more than
H?) solution, but cannot be written if one wants to use a weak formulation assuming W € H2. We
propose here to adress this question by considering the system on (W,0) € #: VY (¢, V) € A,

1 1
; W\Ildzzf2 (0 + k) 0¥ +0'¥)dz,

1 1
2 2

szf O¢pdz = (15)

I

Asin [12, Theorem 4], it can be proven that all possible values of o are real, and that o = 0 implies
Z =0for k> 0. System (2) on (Z =0, W, 0) is (15) thanks to the definition of ¥h 2 L.

Nl=

DI—

[Pl (W'¢' + P W) +v(2) (K WP+ 2K W'p' + W) + K>V (o)W | d.z.
;

C. R. Mathématique — 2021, 359, n°9, 1165-1178
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Lemma 4. The system (15) (equivalent to (2)) is equivalent to the second and third equations
of (11), with W e H* © € H?, supplemented by the boundary conditions W = © =0 for z = i;,
W'=0forz=-3,W'=0forz=1

Proof. We shall omit the mention of the interval [— 2, 2] in the Sobolev spaces in this proof.
Assume that there exists o = 0 such that (W, ®) € ./ is a non trivial solution of (2). The relation
(c+L)O=W,for®¢ H1 implies ®" € 12, from which one deduces © € H2.
Considering ¥ € C°°([ 2, 2]) we obtain the ODE in 2':
P— (KW -w") = RE*O+ (vW")" =2 (vW') + K* W — K>V W.
-
This equality on W yields 2W € L? thanks to LW € L2. As

_.flv(z) (—2W'¢ + K* W) dz
2

can be extended as a linear form on ¢ € L? thanks to v and v/ continuous, one is left with
~(viaw")":=ge 12

Let us introduce h € H? such that —1" = g. One deduces there exists two constants Aand B such

that, in 2', v(z2) W" = h+ Az + B, which proves that W” € H? (thanks to -~ ( ; continuous), hence

We H.

The ODE in 2’ is thus in L? and one can replace © by its expression in W in the second
equality of (15). The integration by parts formulae are valid because W € H*,¢ € H? and one
can use (*). The only boundary terms left in (*), using the boundary conditions for ¢, W € H is
v(%)W"(%)(/)’(%) —0 (where W € H* allows to write the trace of W at %). One has thus

(1) (1) (1
VYeH v -|W' =|d'|=],
2 2 2
from which, with a suitable choice of ¢ one deduces the boundary condition

w” (1) =0 (16)
5] =0
The ODE in L? on © comes directly. Note that the boundary conditions ®(+2) =0, W(+2),
w' (—l) = 0 are in the space where the variational formulation is written.

We deduce that (W,®) is a H* x H? solution of (11), supplemented with the boundary condi-
tions stated in Lemma 4.

Notice that the equality (5. + £ byZ =0 implies, for Z € H'([-
on Z of (11), for Z € H?, hence the equality V v € Hl([—z, s w(

el

from which one deduces Z’ (%) = 0, hence recovering from the variational formulation chosen the
boundary conditions 4, Uy = d,U, = 0. Coercivity of %P on H'N {Z(—%)} =0and o = 0 imply
Z =0 (it is similar to Lemma 10 in [12] for other boundary conditions). Note that one did not
need Poincaré inequality thanks to k > 0.

Let us now consider (W, ®) € H* x H2 n # solution of (11) satisfying the boundary conditions
of Lemma 4. Multiplying by ¢ € Ci°, one deduces

%]), Z(-3) =0, the usual ODE
)

RI? 1@)(pdz f[ (W' + I2We) +v(2) (KW +2k*W'p' + W)

2

+k nu"(z)W(p]dz—v(%) W”(%)([)’(%).
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After using W” ( ) = 0 (the boundary condltlon of Lemma 4 allowed because W € H?), the
extension of this equahty to ¢ € H?, (p(+ )=0, ¢ (— ) = 0 yields the first equality of (15). The
second equality of (15) follows similarly. The equlvalence is proven. U

This result allows us to state the eigenvalue problem as a spectral problem for an operator on
/€ (an operator depending on ¢ for which we want to find 0 in its spectrum), the extra regularity
of an eigenmode allowing to write the boundary condition W" (%) =0.

5. An eigenvalue formulation

In this section, we identify three eigenvalue formulations of the problem, one of them where
W is an elgenvector of an operator denoted by Z; ,, another one where O is an eigenvector of
the operator Z » (neither operator being self-adjoint). We identify finally a third operator, self
adjoint, for Wthh we can perform the spectral analysis. The operator Z.  is

Ziop=lo+1L] [Euc@ + V' (2)] ¢.

We obtain the ODE (in the distributional sense) Zy ;W = RI2W
Similarly, applying [5 L+ 2 + k?v"(2)] to the equation on G) one deduces (again in 2')

P—L+Q +iV'(2)| (@0 + 1O = Z{ ,0 = Rk?®.

However, the operator Zj  is not self-adjoint because £ and ~ do not commute, hence one
needs to use a symmetrization of the problem. It is similar to [12, the Appendix], but the Sobolev
spaces chosen in [12] did not lead to the boundary conditions of the present Note (which was,
though, the boundary conditions used in the numerical study of [12]). Here, the set of boundary
conditions is distinct. This does not allow to use the spaces described in [12, the Appendix] and
the space needed is slightly more difficult to describe (see (17) below).

Considering [ L+2 + k*v" (2)]W = Rk?®©, one observes that [ L+2 + k*v"(2)] ! is applied
on 0. and yields W. We should thus have

® -1
=(U+L)7%fandW: £L+9+k2vu (0'+L)7%f,
Pr

Thus f = (o + L)%G and, through (c+ L)@ =W, W = (o + L)% f. It seems then reasonable to

construct a space for which, for f in this space, (o + L)‘% feHy( (= é, é]) (function denoted by ©)

and (0 + L)? f € H (function denoted by W).
One can thus introduce

SE* {¢€H3( L ),((0+L)_%¢)

1
+—|=
2

0,((0+D)?g) (J_rl) =0,((0+1)? gb)' (—l) = 0}.

2’2 2 2
Note that this space depends on 4 through the boundary conditions (and more precisely through
the boundary condition ((o + L)Z(/)) (——) = 0). Introduce the base of Hl([ 5 Z]) (en)n=1, en(2)
= sinnm(z + 1). This base is a base of eigenvectors of o + L, the assoc1ated eigenvalues are
(0 + k% + n®n?) = k% + n2.

Consider ¢ in #*. One has (o + L)2(/> € Hl([—z, 51 hence (o + L)Z([) Y n>1bnen, with
Yas1(1+ nz)bfl < +o00. We have, successively,

by b,
¢p=Y —————=en (0+1) ip=Y

—e .
2 2,21
n=1 Vo +k?+ n?n? n=10 +k*+n°n

As 5
1+n?)’ b
('beHg’ Z w<+00.

2 ¢ 272
ns10+ke+nm
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One deduces

! 1
((U+L)%) &(z) = Z nnb, cos nmw z+—).
nx1 2
Note that
2 2)3 2.2, 1.2) 52,2
227 b5 (1+ n?) .(a+nn +k)nn’
" o+ nin?+k? (1+n2)®
hence Y, -1 nnb,cosnn(z + %) is normally converging, and its value at z = —% isn) ,=1nby.
Denoting by
b ! 1
an = —",((0+L)%) f(__) =0
Vo + k? + n?n? 2
corresponds to
1 1
(c+k+7%)2a1== ) n(o+k*+n*n?)? ay,.

n=2

This induces the idea of showing the equality

Jf*:{ ,Z(1+n2)3ai<+oo,(0+k2+n2)%a1

1
z— Z ansinnﬂ(z+ —)
nx=sl 2
1 17)
==Y (o+k*+n*n?)? nan.}.
n=2
Proof. We have constructed above a Fourier representation of /#* such that c is true in (17).
Conversely, let

o]

,Z(1+n2)3ai<+oo,(o+k2+n2)%a1

1
z— Z ansinnﬂ(z+ 5)

n=1

== [o+k2+n2n2)% nan.}.

n=2
One checks that (o + L)*%¢(J_r%) =0 and (o + L)%(p(i%) = 0 because the two sums defining

(0+1L) z ¢, (0+ L)‘%(p are normally convergent. In addition

((0’+L)% (/))’ =) (o+ K+ nznz)% NI a, cos ni (z+ %)
n

converges in L? hence

1
may=- Y (o+k*+n*n%)?nna,
n=2

is possible thanks to the Cauchy-Schwartz inequality. Hence ((o + L)%c/))’ (—%) = 0. This proves
that ¢ belongs to #*. Equality (17) is proven (and gives a simpler expression of .#*). O

Consider o € R,, and recall that v satisfies (H). Introduce the operator R(o, k) given by
1o 2.1 1
R(o,k)f=(c+L)2 P—L+Q+k vi(c+ D)z f.
r
We state now the second additional result to [12], which is the key for obtaining Théoreme 2:

Lemma 5. The operator R(o,k) is self-adjoint coercive on #*, and R(o,k)™! is self-adjoint

compact on Lz([—%, %]). The spectrum of R(o, o lisa decreasing sequence, which is denoted by

1
(m)nzl-
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Proof. Consider the operator (o + L)% [2 + k2v"]}(¢ + [)"2. It is well defined (through Lax-
Milgram lemma) from (#*)' to #*. For all o = 0, (o0 + L)”2 sends Lz([—%, %]) to H&([—%, %]).
The operator [%L +2+ k2" is self-adjoint coercive on H and sends H on its dual (H)'. Hence

[ZL+2+k*"]"! sends (H)' to H, hence it sends 2(-1, 1) to He 12(1-1,1). As (0 + 1)

sends I2([-1,1]) to HL((-1,1)), (0 + D)"2[2 + k2v"](0 + )% sends L*(-1,1]) to HL (-4, 1))
and one concludes by using the compactness of the canonical injection from H 1([—5, E]) to

L( ——,2]) The result on the spectrum of R(c, k)~ = (cr+L)_i[Q+k2 "o+ L)~ 2 follows. [J

1
2
1
2

Lemma 6 It is equivalent to find an eigenvector in #€* of (R(c, k)~ associated with the eigen-

value —— o (U o0 and find a solution (W,0) € 7 of the system

{[%L+Q+k2v”]W=rn(0,k)® 18)

(c+L)B=W.
In other words, it is equivalent to find a nontrivial solution (W, ®) € # of
{ [ZL+2+k*V'|W = Rk*©
(c+L)B=W
and to solve all equations r,, (0, k) = Rk?.
Proof. Let f; 'k be an eigenvector of norm 1 in L? associated with the eigenvalue r, (o, k), so-
lution of (R(a, k)" f'k = - ((lf 5/ 'k The manipulation of (o + L)2 £* is not easy, hence

we consider the functions wi* = @+ D27 and 02F = (0 + 1) f2F. We have fO*
= (0 +L1)"2 (0 +L)8%*. one obtains

1 o -1
+D7 || —L+2+K| 99k- +0)0%% =0
(0+1) “P L k)(a )
hence r,(0, k) [ L+ 2 + kK*v"=1e% k —(c+L)0Y k= 0. One deduces (0+L)0” k — 0 e Hbecause
HZ ke 12. One apphes [ rL+Q +k%v"] to this equality and, thanks to w (U+L)0” ke H, one
gets the first equality of (18).
In a similar way, as
O’ k 2.1 -1 0k L ok
S, —L+Q+k +L)2f,) "= +1)2
c ] @+D) 2] (0, k) @+ L2

From (o +L)? 7k ¢ f because f0* e 7%, onecanapply[PlL+£)2+k2 "1. As

H03rn(0',k)(0+L) 2 [—L+Q+k2 " Z,k

one can apply (o + L) to this equality, hence r, (o, k) (0 + L) 2 wn' =ru(o,k)(0+ L)% p k= (o+L)
[L+2+k*V'] w?*in H! and in H; thanks to the left hand side of this equality. The second
equality of (18) is proven.

Conversely, if one considers a solution of (18) it is straightforward to construct an eigenvector

of (R(a, k))~! associated with the eigenvalue m Lemma 6 is proven. U

We prove in addition that w%'* and 69

[ZL+2+ k"] (0+L0)05 " =r,(0,005"
0+D[FL+2+ k2v'"] wz’k =r,(0,k) wg'k

are solutions of
(19)

thanks to w3'* € H through 7% € #* and 69* € Hy.

Lemma?7. Assumek >0 ando =0.

(1) The sequence m is the sequence of eigenvalues of (L% (2 + k2" ]L%)‘l,
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(2) For each n, the function is strictly decreasing to 0 when o — +oo thanks to

1

oK),
Born(0,K) = (2 (w2 + k%) + TE 1] 4 vkt

Item (ii) of Lemma 7 shows uniqueness (if existence) for all R = 22 "(ISZ’ B of the solution of

rn(o, k) = Rk?. Using (r,,(0, k)), we can count the number of positive solutions of r,(c, k) = Rk?

for at least one n.

Proof of item (i). (it is a consequence of the continuity of the discrete spectrum)
Let f7'* € I2 be an eigenvector of (R(c, k))™%, of norm 1 in I2, associated with the eigenvalue
- Forany f € I?, one has

F=YXAr 15
and by considering tlhe limit Wherll og—0, f,?'k belonging to #* (for o =0), f =Y.(f, f,?'k)f,g’k.
Note that R(0,k) = L2 [2 + k*v""]L2.
As RO, k) f = XAf, f,?’k)R(O, k)f,?’k = Z(f,f,?‘k)rn(o, k)f,?’k, we have a decomposition of
(R(0,k))"! f as well on the orthonormal basis f,?'k, which yields the spectrum of (R(0,k))~! as
announced. O

Proof of item (ii). Introduce P, = 5-L, Py = 3-L*+ 2+ k*V"(2), Py = L(2 + k*v" (2)). System (19)
rewrites
{(UZPZ +0Py +Pp) wg’k =ru(0,k) wg'k,

(02Py+ 0Py +PL) 0% = 1y(0, 007 F.
Differentiating these equalities with respect to o yield
QR0 Py+ P w3+ (02 Py + 0Py + Py) 0g wS X = 0,7, (0, k) Wk + 1, (0, k) 05 wT ¥, (20)
Q20 Py+ P) 0K + (0%Py+ 0Py + PL) 0,09 % = 051 (0, k) 05K + 1 (0, K)0,05 . 1)
One calculates ((20),9Z'k) +(2D), w‘,{'k y and uses
(FR 10 E) = (wik 005y =1, 0 (f75 £7Fy = 0= (w0500 ) + (9, wi ¥, 00F),
from which one obtains
(wik,@oPy+ P)OGE) + (@o P+ Py WK, 00F)
+(Zng0g w5055 ) + (71,0505, w,)
=20,1,(0,k) <wg'k,92‘k> .
As
(2 05075, wn) = (0507°%, Zio wn ) = 1a(0,0) (3605 K, w, ),
(21005 w7 ,00%) = (0,05 *, 2L 05 ) = a0, ) (9, wi ¥, 00F),
one gets finally

<wgvk, Q0P +Py) 9‘,{v’“> + <(20P2 +P) wg"‘,e‘,{vk> =20, 1(0, k). 22)

1
The terms containing only L commute with (o +L)2 and are diagonal on the Fourier basis chosen,
hence their contribution to (22) is in < w3~ 2o P, + P1)0%'* >. It yields, for each mode

(n?n? + k2)2 (7% + k2)2

20 2
Pr Pr

o (n®7? + k%) +
Pr Pr

>

+ k%) +

The term ((2 + kzv”(zl))e‘,{"“, w2k rewrites (o + L)2(2 + k2v'(2).) (0 + L)"2 £7%, £9%y. An
eigenvalue p of (0 + L)2 (2 + k2v"(z).) (0 + L)"2 is also an eigenvalue of the conjugate operator
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(2 + k?v"(z).), all eigenvalues of (2 + k*v"(z).) are thus (thanks to v"(z) = 0 and v(z) = vq > 0),
greater than vok*. This yields

2 72+ k?)?
<wZ’k, (20 P, + Pl)BZ’k> > p_a (2% + k%) + e E) +vok?.
r
Inequality of (ii) on 0,1, (0, k) is obtained. Each eigenvalue satisfies r, (o, k) — +oco when o —
+00. L

Proving Théoréme 2 relies on studying each equation r, (o, k) = Rk?.

One proved that (2) has a non trivial solution with o = 0 if and only if there exists n, o such that
r,(0,k) = Rk%. Thanks to Lemma 7, (ii), the function ¢ — ry (0, k) is a continuous increasing
function from R, onto [r,(0,k),+00). Hence, when R < k~2r(0, k), there is no n such that
ra(o, k) = Rk® for o = 0.

For each R = k2r1(0, k), denote by N the integer such that
alm=N+1, msm<
function ﬁ is decreasing from ——

™~ 1(0 5 <me s rN(o o As for
k2’ there is no o = 0 such that el . For n < N, the

™ (o o o 0 =limg — 400, hence there ex1$ts a unlque value of o
such that ——

T TR k2 Counting, there exists exactly N positive values of o for which system (2)
has a non trivial solution in .7 with Z = 0. This proves the third item of Théoréme 2.
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