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Abstract. Given a sequence (Xn ) of real or complex random variables and a sequence of numbers (an ), an
interesting problem is to determine the conditions under which the series

∑∞
n=1 an Xn is almost surely con-

vergent. This paper extends the classical Menshov–Rademacher theorem on the convergence of orthogonal
series to general series of dependent random variables and derives interesting sufficient conditions for the al-
most everywhere convergence of trigonometric series with respect to singular measures whose Fourier trans-
form decays to 0 at infinity with positive rate.

Résumé. Pour une suite de variables aléatoires réelles ou complexes (Xn ) et une suite de nombres (an ),
une question importante est de savoir sous quelles conditions la série aléatoire

∑∞
n=1 an Xn est convergente

presque sûrement. Cette note généralise le théorème classique de Menshov–Rademacher sur la convergence
de séries orthogonales aux séries plus générales de variables aléatoires dépendantes et en déduit des condi-
tions suffisantes pour la convergence presque sûre des séries trigonométriques par rapport à des mesures
singulières dont la transformée de Fourier tend vers 0 à l’infini avec un taux positif.

Manuscript received 15th February 2021, revised 1st May 2021 and 3rd May 2021, accepted 21st May 2021.

1. Introduction

A classical fundamental result obtained independently by Menshov and Rademacher in the
1920’s states that if the condition

∑∞
n=1 |an |2 log2

2(n + 1) < ∞ is satisfied for a given sequence
of real or complex numbers (an), then for any sequence of orthonormal sequence (ϕn) of
L2 functions on the unit circleT, the series

∑∞
k=1 anϕ(x) converges almost everywhere onT (with

respect to the Lebesgue measure). This condition has been extended to the L2 space of general
measure spaces and more recently Paszkiewicz [12,13] and Bednorz [1] obtained a necessary and
sufficient condition on the sequence (an) for the convergence a.e. of

∑∞
k=1 anϕ(x) (the condition

is expressed in terms of the existence of a majorising measure on the set {
∑n

k=1 a2
k : n ≥ 1}∪ {0}).

Menshov and Rademacher theorem was probably the first result related to random series of non-
independent random variables. The problem of convergence of random series with dependent
random variables and the problem of extending limit theorems of probability theory related to iid
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variables to dependent random variables has attracted a lot of attention since the introduction of
sequences of negatively associated random variables by Joag-Dev and Proschan [3]. However the
problem remains largely open.

The problem of dependent random variables is very wide and it is difficult to find a general
criteria that applies to all. In the literature the general approach is to delineate certain forms of
dependency and classes of random variables and determine an appropriate condition for the
a.s. convergence. Matuła [8] proved that if (Xn) are negatively associated real random variables
with finite second moments then the condition

∑∞
n=1E(|Xn |2) <∞ implies the a.s. convergence

of
∑∞

n=1 Xn . This has been extended to random vectors in a Hilbert space by Ko, Kim and Han [6].
Antonini, Kozachenko and Volodin [2] considered the case of sub-Gaussian random vari-

ables (Xn) exhibiting certain dependence structures (negative association, m-dependence and
m-acceptability) and derived interesting sufficient conditions for the a.s. convergence. It is shown
in [10] that if (Xn) can be expressed as linear combinations Xn =∑n

k=1 an,k Zk for a fixed sequence
(Zn) of i.i.d random variables (with zero mean and unit variance) and complex numbers (an,k ),
then the condition

∑∞
n=1(

∑∞
k=1 |an+k−1,k |2)1/2 <∞ is sufficient for the a.s. convergence of the se-

ries
∑∞

n=1 Xn . (For the problem of limit theorems of sequences of dependent random variables we
refer to Naderi et al. [11] and references therein for some recent developments.)

In this paper we consider the problem of convergence of the random series
∑∞

n=1 an Xn where
(an) is a sequence of real or complex numbers and (Xn) a sequence of real or complex random
variables in the most general dependence case. Our approach consists of extending the Menshov–
Rademacher theorem from the classical case of orthonormal series to general dependent random
variables. We thus obtain an explicit sufficient condition for the almost sure convergence of
random series in their most generality. This condition is also applied to study almost everywhere
convergence of trigonometric Fourier series on some subsets of the unit circle of Lebesgue
measure zero.

Our results can be summarised are as follows:
If

∑∞
m,n=1 |an | |am | |E(Xn Xm)| log2(n +1)log2(m +1) <∞, then the series

∑∞
n=1 an Xn converges

a.s. From this result, we derive the following: If the linear operator defined by the matrix
A = (|E(Xn Xm)|) in `2 is bounded, then Menshov–Rademacher condition

∑∞
n=1 |an |2 log2

2(n + 1)
< ∞ for the a.s. convergence of orthonormal series is also sufficient for the a.s. convergence
of the series

∑∞
n=1 an Xn . The same is true if (an) are real numbers and (Xn) are real random

variables such that E(Xn Xm) ≤ 0 for all m 6= n. If the matrix (n−bm−b An,m) is bounded for
some b ≥ 0, then the condition

∑∞
n=1 |an |2n2b log2

2(n + 1) < ∞ is sufficient for the a.s. conver-
gence of

∑∞
n=1 an Xn . Finally if µ is a Borel probability measure on the unit circle T such that its

Fourier transform satisfies |µ̂(n)| ≤ K |n|−a for some a ≥ 0 and there exists b > (1−a)/2 such that∑
n∈Z |an |2|n|2b log2

2(|n|+1) <∞, then the Fourier trigonometric series
∑

n∈Z an exp(2πi nt ) con-
verges µ-almost everywhere on T. This implies that the Fourier series of a well-behaved L2 func-
tion f on T in the sense that

∑
n∈Z | f̂ (n)|2n2b log2

2(|n|+1) <∞ for some number 0 ≤ b ≤ 1/2 can-
not diverge everywhere on a subset of Fourier dimension > 1−2b. In particular if a function be-
longs to the Sobolev space H p (T) for some 0 ≤ p ≤ 1/2, then its Fourier series converges µ-almost
everywhere on every subset E of T of Fourier dimension > 1− 2p where µ is a Borel measure
supported by E such that |µ̂(n)| = o(|n|−(1−2p)).

The paper concludes with a remark concerning the particular case of Gaussian random
variables were we prove (using the classical Sudakov–Fernique inequality) that the condition∑∞

m,n=1 |E(Xn Xm)| <∞ is enough for the a.s. convergence of
∑∞

n=1 Xn .
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2. An extension of Menshov–Rademacher theorem

For a sequence (an) of numbers the classical Menshov–Rademacher theorem says that if the
condition ∞∑

n=1
|an |2 log2

2(n +1) <∞, (1)

then the series
∑∞

n=1 anϕ(x) converges almost everywhere for any sequence (ϕn) of orthonormal
functions in L2(T). (Here T is the unit circle R/Z.) In this paper we relax the condition of
orthogonality and extend Menshov–Rademacher theorem to series

∑∞
n=1 anϕ(x) in that general

case. In general we consider random variables in the L2(Ω) space of a certain probability space.
The usual inner product in L2(Ω) is 〈X ,Y 〉 = E(X Y ).

Theorem 1. For any sequence of real or complex numbers (an) and a sequence (Xn) of real or
complex random variables such that E(|Xn |2) = 1 for all n, if

L :=
∞∑

n,m=1
|an | |am |

∣∣∣E(
Xn Xm

)∣∣∣ log2(n +1)log2(m +1) <∞,

then the series
∑∞

n=1 an Xn converges almost surely. Moreover,

E

(
sup
n∈N

|a1X1 +a2X2 + . . . +an Xn |2
)
≤ 8L.

The proof is based on the classical proof of the Menshov–Rademacher theorem as given in
Kashin and Saakyan [5, p. 251]. We have also used a proof given by Mikhailets and Murach [9].
The following lemma is also an extension of the classical Menshov–Rademacher lemma.

Lemma 2. With the hypothesis of the theorem we have the following inequality: For any integer
N > 0, let

S∗
N = max

1≤ j ≤N

∣∣∣∣∣ j∑
n=1

an Xn

∣∣∣∣∣ .

Then

E
(
S∗

N

)2 ≤ (
2+ log2 N

)2
N∑

n,m=1
|an | |am |

∣∣∣E(
Xn Xm

)∣∣∣ .

Proof. The starting point is to assume that N = 2r for some integer r ≥ 1 and show that

E
(
S∗

N

)2 ≤ (
1+ log2 N

)2
N∑

n,m=1
|an | |am |

∣∣∣E(
Xn Xm

)∣∣∣ .

The case where 2r−1 < N ≤ 2r is reduced to the previous one by just taking an = 0 for all n such
that N < n ≤ 2r . Then this inequality holds for r −1 < logn N , that is,

E
(
S∗

N

)2 ≤ (
2+ log2 N

)2
N∑

n,m=1
|an | |am |

∣∣∣E(
Xn Xm

)∣∣∣ .

Now for N = 2r , consider for each number j ∈ {1,2, . . . , 2r } its dyadic representation

j =
r∑

k=0
ξk ( j )2r−k , with ξk ( j ) = 0 or 1, for all k.

Moreover for each such j , decompose the interval [0, j ] inN into subintervals

[1, j ] = ⋃
k :ξk ( j ) 6=0

Ik

where

Ik := Ik ( j ) =
{

n ∈N :
k−1∑
s=0

ξs ( j )2r−s < n ≤
k∑

s=0
ξs ( j )2r−s

}
.

C. R. Mathématique — 2021, 359, n 7, 861-870
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Now write
j∑

n=1
an Xn = ∑

k :ξk ( j ) 6=0

∑
n∈ Ik ( j )

an Xn .

Then ∣∣∣∣∣ j∑
n=1

an Xn

∣∣∣∣∣=
∣∣∣∣∣ ∑
k :ξk ( j ) 6=0

∑
n∈ Ik

an Xn

∣∣∣∣∣
≤ ∑

k :ξk ( j ) 6=0
1 ·

∣∣∣∣∣ ∑
n∈ Ik

an Xn

∣∣∣∣∣
≤

( ∑
k :ξk ( j ) 6=0

12

)1/2

·
( ∑

k:ξk ( j )6=0

∣∣∣∣∣ ∑
n∈ Ik ( j )

an Xn

∣∣∣∣∣
2)1/2

Clearly ∑
k :ξk ( j ) 6=0

1 ≤
r∑

k=0
1 = (1+ r )

and for all j ,

∑
k :ξk ( j ) 6=0

∣∣∣∣∣ ∑
n∈ Ik ( j )

an Xn

∣∣∣∣∣
2

≤
r∑

k=0

2k−1∑
p=0

∣∣∣∣∣∣
(p+1)2r−k∑

n=p2r−k+1

an Xn

∣∣∣∣∣∣
2

.

Hence simultaneously for all 1 ≤ j ≤ N ,∣∣∣∣∣ j∑
n=1

an Xn

∣∣∣∣∣
2

≤ (r +1)
r∑

k=0

2k−1∑
p=0

∣∣∣∣∣∣
(p+1)2r−k∑

n=p2r−k+1

an Xn

∣∣∣∣∣∣
2

.

Now assume

S∗
N =

∣∣∣∣∣ j∑
n=1

an Xn

∣∣∣∣∣ , j random .

Then (
S∗

N

)2 ≤ (r +1)
r∑

k=0

2k−1∑
p=0

∣∣∣∣∣∣
(p+1)2r−k∑

n=p2r−k+1

an Xn

∣∣∣∣∣∣
2

and hence

E
(
S∗

N

)2 ≤ (r +1)
r∑

k=0

2k−1∑
p=0

E

∣∣∣∣∣∣
(p+1)2r−k∑

n=p2r−k+1

an Xn

∣∣∣∣∣∣
2

= (r +1)
r∑

k=0

2k−1∑
p=0

(p+1)2r−k∑
n,m=p2r−k+1

an am E
(

Xn Xm

)

≤ (r +1)
r∑

k=0

2k−1∑
p=0

(p+1)2r−k∑
n,m=p2r−k+1

|an | |am |
∣∣∣E(

Xn Xm

)∣∣∣
≤ (r +1)

r∑
k=0

2r∑
n,m=0

|an | |am |
∣∣∣E(

Xn Xm

)∣∣∣
≤ (r +1)2

N∑
n,m=1

|an | |am |
∣∣∣E(

Xn Xm

)∣∣∣ .
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Therefore,

E
(
S∗

N

)2 ≤ (
1+ log2 N

)2
N∑

n,m=1
|an | |am |

∣∣∣E(
Xn Xm

)∣∣∣ . �

3. Proof of Theorem 1

The first step is to consider the sequence of partial sums of the form

S2k =
2k∑

n=1
an Xn , for k = 1,2,3, . . .

and show that (S2k ) converges almost surely and write

S∗ = sup
0≤k <∞

∣∣S2k

∣∣ .

Set

χk =
2k+1−1∑
n=2k

an Xn ,k = 0,1,2,3, . . .

and then

E
(∣∣χk

∣∣2
)
≤

2k+1−1∑
n,m=2k

|an | |am |
∣∣∣E(

Xn Xm

)∣∣∣ .

Then,

∞∑
k=0

E
(∣∣χk

∣∣2
)

(k +1)2 ≤
∞∑

k=0
(k +1)2

2k+1−1∑
n,m=2k

|an | |am |
∣∣∣E(

Xn Xm

)∣∣∣
≤

∞∑
k=0

2k+1−1∑
n,m=2k

|an | |am |
∣∣∣E(

Xn Xm

)∣∣∣(1+ log2 n
)(

1+ log2 m
)

because for k fixed and n ≥ 2k , then (1 + k) ≤ (1 + log2 n) and similarly, (1 + k) ≤ (1 + log2 m).
Moreover since clearly (1+ log2 n) ≤p

2log2(n +1), it follows that

∞∑
k=0

E
(∣∣χk

∣∣2
)

(k +1)2 ≤ 2
∞∑

k=0

2k+1−1∑
n,m=2k

|an | |am |
∣∣∣E(

Xn Xm

)∣∣∣ log2(n +1)log2(m +1).

Hence ∞∑
k=0

E
(∣∣χk

∣∣2
)

(k +1)2 ≤ 2L <∞.

Moreover by the Cauchy–Schwarz inequality,
∞∑

k=0

(
E
(∣∣χk

∣∣2
))1/2 =

∞∑
k=0

(
E
(∣∣χk

∣∣2
))1/2

(k +1)(k +1)−1

≤
( ∞∑

k=0
E
(∣∣χk

∣∣2
)

(k +1)2

)1/2 ( ∞∑
k=0

(k +1)−2

)1/2

≤ 2
p

L.

This implies
∞∑

k=0
E
(∣∣χk

∣∣)≤ ∞∑
k=0

(
E
(∣∣χk

∣∣2
))1/2 ≤ 2

p
L

and hence Beppo Levi theorem implies that
∑∞

k=0 |χk | < ∞ almost surely. Hence the sequence
(S2k ) is a Cauchy sequence and therefore it converges almost surely. Moreover,

E
((

S∗)2
)
≤

∞∑
k=0

E
(∣∣χk

∣∣2
)
≤ 4L.

C. R. Mathématique — 2021, 359, n 7, 861-870
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Let us now consider

S◦
k = max

2k ≤ j <2k+1

∣∣∣∣∣ j∑
n=2k

an Xn

∣∣∣∣∣ , k = 1,2,3, . . . and S◦ = sup
1≤k <∞

S◦
k .

By the lemma,

E
((

S◦
k

)2)≤ (
2+ log2

(
2k+1 −2k

))2 2k+1−1∑
n,m=2k

|an | |am |
∣∣∣E(

Xn Xm

)∣∣∣ .

Then

∞∑
k=0

E
((

S◦
k

)2)≤ ∞∑
k=0

(
2+ log2 2k

)2 2k+1−1∑
n,m=2k

|an | |am |
∣∣∣E(

Xn Xm

)∣∣∣
≤

∞∑
k=0

(
2+ log2 2k

)2 2k+1−1∑
n,m=2k

|an | |am |
∣∣∣E(

Xn Xm

)∣∣∣
≤

∞∑
k=0

2k+1−1∑
n,m=2k

|an | |am |
∣∣∣E(

Xn Xm

)∣∣∣(2+ log2 n
)(

2+ log2 m
)

≤
∞∑

n,m=1
|an | |am |

∣∣∣E(
Xn Xm

)∣∣∣(2+ log2 n
)(

2+ log2 m
)

≤ 4L <∞.

As previously Beppo Levy theorem implies that

E

( ∞∑
k=0

(
S◦

k

)2

)
=

∞∑
k=0

(
E
(
S◦

k

)2
)
≤ 4L <∞.

Therefore limk →∞ S◦
k = 0 almost surely. This together with the convergence of the sequence (S2k )

implies that the series
∑∞

n=1 an Xn converges almost surely. Finally, since

sup
m∈N

|an X1 +a2X2 + . . . +an Xn |2 ≤
(
S∗)2 + (

S◦)2 and
(
S◦)2 ≤

∞∑
k=0

(
S◦

k

)2 ,

it follows that

E

(
sup
m∈N

|an X1 +a2X2 + . . . +an Xn |2
)
≤

(
E
(
S∗)2

)
+

(
E
(
S◦)2

)
≤ 8L.

4. Some important particular cases

Corollary 3. Let (an) be a sequence of real or complex numbers and (Xn) be a sequence of real
random variables such that E(X 2

n) = 1 for all n and E(Xn Xm) ≤ 0 for all n 6= m.
If

∑∞
n=1 |an |2 log2

2(n +1) < ∞, then the series
∑∞

n=1 an Xn converges almost surely.

Proof. Let cn = an log2(n +1) for all n. Since E(Xn Xm) ≤ 0 for n 6= m, then∑
n 6=m

|cn | |cm | |E (Xn Xm)| = − ∑
n 6=m

|cn | |cm |E (Xn Xm) .

Hence ∞∑
n,m=1

|cn | |cm | |E (Xn Xm)| =
∞∑

n=1
c2

n − ∑
n 6=m

|cn | |cm |E (Xn Xm) ≥ 0.

This yields ∑
n 6=m

|cn | |cm | |E (Xn Xm)| ≤
∞∑

n=1
c2

n

C. R. Mathématique — 2021, 359, n 7, 861-870
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and hence ∞∑
n,m=1

|cn | |cm | |E (Xn Xm)| ≤ 2
∞∑

n=1
c2

n

and the conclusion follows by the theorem. �

Corollary 3 generalises previous results of Matuła [8] and Antonini, Kozachenko and
Volodin [2] on the a.s. convergence of series of linear combinations of negatively correlated
random variables. It indicates that with respect to a.s. convergence, sequences of real random
variables that are negatively correlated behave like sequences of uncorrelated random variables.

Corollary 4. Let (an) be a sequence of real or complex numbers and (Xn) be a sequence of real or
complex random variables with covariance matrix (γ(n,m)). Assume that there exists b ≥ 0 such
that the linear operator defined by the matrix (βn,m) with

βn,m = |γ(n,m)|n−bm−b

in `2(N) is bounded. If
∞∑

n=1
|an |2n2b log2

n(n +1) <∞, (2)

then the series
∑∞

n=1 an Xn converges almost surely.

In particular if b = 0, that is, the covariance matrix (γ(n,m)) defines a bounded operator, then
we retrieve that

∑∞
n=1 |an |2 log2

n(n +1) <∞ implies the almost surely convergence of
∑∞

n=1 an Xn .
This is an extension of the Menshov–Rademacher theorem from sequences of orthogonal func-
tions to sequences of functions (ϕn(x)) such that the “covariance matrix” ((γ(n,m)) given by:

γ(n,m) =
∫
T
ϕn(x)ϕm(x)d x

defines a bounded operator in `2.

Proof. Set cn = an log2(n +1) so that condition (2) becomes
∑∞

n=1 |cn |2n2b <∞. Write

∞∑
n,m=1

|cn | |cm |
∣∣∣E(

Xn Xm

)∣∣∣= ∞∑
n,m=1

|cn | |cm | |γ(n,m)| =
∞∑

n,m=1
|cn | |cm |nbmbβnm .

Now the boundedness of (βn,m) implies that for some fixed K > 0,
∞∑

n,m=1
|cn | |cm |

∣∣∣E(
Xn Xm

)∣∣∣≤ K
∞∑

n,m=1
|cn |2n2b <∞.

That is,
∞∑

n,m=1
|an | |am |

∣∣∣E(
Xn Xm

)∣∣∣ log2(n +1)log2(m +1) <∞

and the conclusion follows. �

Corollary 5. Assume that the covariance matrix is such that |γ(n,m)| ≤ K |n−m|−a for some fixed
constants K > 0 and a ≥ 0. Then if there exists b > (1−a)/2, such that

∞∑
n=1

|an |2n2b log2
n(n +1) <∞,

then the series
∑∞

n=1 an Xn converges almost surely.

It is so because one can show that the matrix (βn,m) given by βn,m = |n − m|−an−bm−b is
bounded. (This can be obtained by using the Schur test to the vector x = (xn) with xn = n−c

for some constant c ≥ 0 such that a +b + c > 1.)

C. R. Mathématique — 2021, 359, n 7, 861-870
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5. Application to a.e. convergence of trigonometric series

In particular consider a Borel probability measure µ on T and the trigonometric sequence (en)
given by en(x) = exp(2πi nx), (n ∈Z). Clearly,

〈en ,em〉 =
∫
T

en(x)em(x)dµ(x) = µ̂(n −m).

Then if ∑
n∈Z

|an | |am | ∣∣µ̂(n −m)
∣∣ log2(|n|+1)log2(|m|+1) <∞,

then the trigonometric series
∑

n∈Z an exp(2πi nx) converges µ-a.e. in T. Then Corollary 5 imme-
diately implies the following:

Corollary 6. Assume that for constant K > 0 and a ≥ 0,∣∣µ̂(n)
∣∣≤ K |n|−a for all n 6= 0. (3)

If there exists b > (1−a)/2 such that
∑

n∈Z |an |2|n|2b log2
2(|n|+1) < ∞, then the trigonometric series∑

n∈Z an exp(2πi nt ) converges µ-almost everywhere on T.

Consider now a compact subset E ofT of Lebesgue measure zero which supports a probability
measure µ such that inequality (3) holds. Let f ∈ L2(T) such that

∑
n∈Z | f̂ (n)|2|n|2b log2

2(n+1) <∞
for some b > (1 − a)/2. Then the Fourier series

∑
n∈Z f̂ (n)exp(2πni t ) of f converges µ-a.e.

on E . In particular if f is in the Sobolev space H p (T) for some p > (1 − a)/2 with 0 ≤ a ≤ 1
(that is,

∑
n∈Z | f̂ (n)|2(1 + n2)p < ∞), then we can choose b with (1 − a)/2 < b < p so that∑

n∈Z | f̂ (n)|2|n|2b log2
2(n +1) <∞ and obtain that the Fourier series of f converges µ-a.e. on E .

We recall that for a Lebesgue measurable subset E of T, the Fourier dimension of E is the
supremum of the numbers 0 ≤ α ≤ 1 such that E supports a Borel probability measure µ such
that |µ̂(u)|2 = o(|u|−α) for u →∞. It is well known that the Fourier dimension is always less than
or equal to the Hausdorff dimension and the two can be different (see e.g. Kahane [4, p. 250] and
Mattila [7, p. 40]).

A classical result by Katznelson and Kahane says that if E is a subset of T of Lebesgue measure
0, then there exists a continuous function f on T such that its Fourier series diverges everywhere
on E . But now our observation here is that if E has positive Fourier dimension α, 0 <α≤ 1, such
function must be such that∑

n∈Z

∣∣ f̂ (n)
∣∣2 |n|2b log2

2(|n|+1) =∞ for all b > (1−α)/2.

In other words the Fourier series of a well-behaved L2 function f in the sense that∑
n∈Z

∣∣ f̂ (n)
∣∣2

n2b log2
2(|n|+1) <∞

for some number 0 ≤ b ≤ 1/2 cannot diverge everywhere on a subset of Fourier dimension
> 1− 2b. Or again, the Fourier series of a function f ∈ H p (T) converges µ-a.e. for every Borel
probability measure µ such that |µ̂(n)|2 ≤ K |n|−β for some β> 1−2p.

6. Remark for Gaussian random series

In the particular case of Gaussian random variables, we obtain that we can get rid of the factor
log2

2(1+n) thanks to the Sudakov–Fernique lemma. We have the following:

Theorem 7. Let (Xn) be a sequence of real or complex jointly Gaussian random variables with zero
mean. If ∞∑

n,m=1

∣∣∣E(
Xn Xm

)∣∣∣<∞, (4)

then the series
∑∞

n=1 Xn converges almost surely.
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Proof. We shall first prove the following inequality:

E

(
sup

1≤n≤N
|X1 +X2 + . . . +Xn |

)
≤ 2

(
N∑

n,m=1

∣∣∣E(
Xn Xm

)∣∣∣)1/2

. (5)

Let Z1, Z2, . . . , ZN be i.i.d Gaussian random variables with zero mean and unit variance. Consider
the sequence of random variables (Yn), 1 ≤ n ≤ N , given by

Yn =
(

N∑
j=1

∣∣∣E(
Xn X j

)∣∣∣)1/2

Zn .

Clearly for all 1 ≤ n ≤ m ≤ N ,

E
(|Xn +Xn+1 + . . . +Xm |2)≤ E(|Yn +Yn+1 + . . . +Ym |2) .

Then by the classical Sudakov–Fernique inequality

E

(
sup

1≤n≤N
|X1 +X2 + . . . +Xn |

)
≤ E

(
sup

1≤n≤N
|Y1 +Y2 + . . . +Yn |

)
.

Now since the variables (Yn) are independent, it is well-known that

E

(
sup

1≤n≤N
|Y1 +Y2 + . . . +Yn |

)
≤ 2E (|Y1 +Y2 + . . . +YN |) .

Since obviously (E|X |)2 ≤ E(|X |2), this yields,

E

(
sup

1≤n≤N
|X1 +X2 + . . . +Xn |

)
≤ 2

(
E
(|Y1 +Y2 + . . . +YN |2))1/2

.

Hence

E

(
sup

1≤n≤N
|X1 +X2 + . . . +Xn |

)
≤ 2

(
N∑

k, j=1

∣∣∣E(
Xk X j

)∣∣∣)1/2

.

Now fix a real number r > 0 and m ∈N. Then

P

(
sup

1≤ j <∞

∣∣Xm +Xm+1 + . . . +Xm+ j
∣∣1/2 > r

)
≤ 1

r 2 E

(
sup

1≤ j <∞

∣∣Xm +Xm+1 + . . . +Xm+ j
∣∣)

≤ 2

r 2

( ∞∑
k, j=m

∣∣∣E(
Xk X j

)∣∣∣)1/2

.

Since
∑∞

k, j=1 |E(Xk X j )| <∞, then

lim
m→∞

∞∑
k, j=m

∣∣∣E(
Xk X j

)∣∣∣= 0.

Hence

lim
m→∞P

(
sup

1≤ j <∞

∣∣Xm +Xm+1 + . . . +Xm+ j
∣∣1/2 > r

)
= 0.

Since r can be taken arbitrary small, this yields

lim
m→∞P

(
sup

1≤ j <∞

∣∣Xm +Xm+1 + . . . +Xm+ j
∣∣1/2 > 0

)
= 0.

This implies by an application of Fatou’s lemma (as in Kahane [4, p. 30]) that the series
∑∞

n=1 Xn

converges almost surely. �
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