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1. Introduction

Let V be a variety of groups defined by the set of words (laws) V . Then for a given group G two
subgroups V (G) and V ∗(G) correspond to this variety are defined as follows:

V (G) = 〈
v(g1, g2, . . . , gr )

∣∣gi ∈G , v ∈V , 1 ≤ i ≤ r
〉

,

V ∗(G) = {
a ∈G

∣∣v(g1, g2, . . . , gi a, . . . , gr ) = v(g1, g2, . . . , gr ); g j ∈G , v ∈V , 1 ≤ i , j ≤ r
}
,

which are called the verbal and marginal subgroups of G , and these are fully invariant and
characteristic subgroups of G respectively; see [4, 8] for notion of variety of groups. Let N be a
normal subgroup of G . Then we define V (N ,G) to be the subgroup of G generated by the following
set: {

v(g1, g2, . . . , gi n, . . . , gr )v(g1, g2, . . . , gr )−1 ∣∣v ∈V , g j ∈G ,1 ≤ i , j ≤ r, n ∈ N
}
.

This is the least normal subgroup T of G contained in N such that N /T is contained in V ∗(G/T ).
Also V ∗(N ,G) is defined as N ∩V ∗(G).

The following preliminary lemma gives the basic properties of these subgroups; see [4] for
further information.

Lemma 1. Let V be a variety of groups defined by the set of words V and N be a normal subgroup
of a given group G. Then
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(i) G ∈ V ⇐⇒V (G) = {1} ⇐⇒V ∗(G) =G,
(ii) V (G/N ) =V (G)N /N and V ∗(G/N ) ⊇V ∗(G)N /N ,

(iii) N ⊆V ∗(G) ⇐⇒V (N ,G) = {1},
(iv) V (N ) ⊆V (N ,G) ⊆ N ∩V (G). In particular, V (G) =V (G ,G),
(v) V (V ∗(G)) = {1} and V ∗(G/V (G)) =G/V (G).

The following similar lemma is straightforward.

Lemma 2. Let V be a set of words, K and N be two normal subgroups of a group G such that K is
contained in N . Then

(i) V (V ∗(N ,G),G) = 1, in particular V (N ,G) = 1 if and only if V ∗(N ,G) = N ,
(ii) K ≤V ∗(N ,G) if and only if V (K ,G) = 1,

(iii) V (N /K ,G/K ) =V (N ,G)K /K .

In 1998, Ellis introduced the concept of pair of groups (G , N ), where N is normal subgroup of
a group G . He also established some related (co)homological and topological properties.

Let (G , N ) and (H ,K ) be two pairs of groups. Then ( f , f |) : (G , N ) → (H ,K ) is a homomorphism
if f : G → H is homomorphism and f (N ) ⊆ K . The series

N ≥ N0 ≥ N1 ≥ ·· · ≥ Nr ≥ ·· ·
is said to be VG -marginal series of N , or V - marginal series of the pair (G , N ) if Ni EG and
Ni /Ni+1 ≤ V ∗(G/Ni+1), for i ≥ 0. The subgroup N is said to be VG -nilpotent or, the pair (G , N ) is
said to be V -nilpotent if Nr = 1 for a positive integer r . The least such r is called the VG -nilpotency
class of N or V -nilpotency class of the pair (G , N ).

We have the following two series

N =V0(N ,G) ≥V1(N ,G) ≥ ·· · ≥Vi (N ,G) ≥ ·· · ,

where V1(N ,G) = V (N ,G) and Vi (N ,G) = V (Vi−1(N ,G),G), for i ≥ 1, which is called the lower V -
marginal series of (G , N ). The upper V -marginal series of (G , N ) is defined as

1 =V ∗
0 (N ,G) ≤V ∗

1 (N ,G) ≤ ·· · ≤V ∗
i (N ,G) ≤ ·· · ,

where V ∗
1 (N ,G) =V ∗(N ,G) and

V ∗
i+1(N ,G)/V ∗

i (N ,G) =V ∗(N /V ∗
i (N ,G),G/V ∗

i (N ,G)), i ≥ 1.

If one puts N = G , then he concept of V -marginal series and V -nilpotency of G is obtained;
see [2, 9]. In addition if V = {γ2}, where γ2 = [x1, x2] = x−1

1 x−1
2 x1x2, i.e. V is the variety of abelian

groups, one obtains the usual concepts of central series and nilpotency; see [12].
We need the following technical lemma.

Lemma 3. Let V be a variety of groups defined by the set of words V , (G , N ) be a pair of groups and
let N = N0 ≥ N1 ≥ ·· · ≥ Nr ≥ ·· · be a V -marginal series of (G , N ). Then

(i) Vi (N ,G) ≤ Ni , i ≥ 0,
(ii) If c is the class of V -nilpotecy of (G , N ), then Nc−i ≤V ∗

i (N ,G) and hence

Vi (N ,G) ≤ Ni ≤V ∗
c−i (N ,G), 0 É i É c.

Let G be an arbitrary group and 1 → R → F
π→ G → 1 be a free presentation of G . Then the

Baer-invariant of the group G with respect to the variety V , is defined by

V M(G) = R ∩V (F )

V (R,F )
which is abelian and independent of the choice of free presentation of G ; see [7].

If V is the variety of abelian groups, then the Baer-invariant of the group G will be R∩F ′/[R,F ],
which by Hopf’s formula is the Schur multiplier M(G) of the group G and is isomorphic to H2(G)
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the second homology group of G ; see [5, 13, 14], see also [11] for c-nilpotent multiplier of Lie
algebras.

In 1998 Ellis [1], introduced the concept of Schur multiplier of a pair of groups (G , N ), where
N is a normal subgroup of G , as

M(G , N ) = R ∩ [S,F ]

[R,F ]

in which N ∼= S/R for a suitable normal subgroup S of F , i.e. S =π−1(N ). The Baer-invariant of the
pair (G , N ) with respect to the variety V is defined by

V M(G , N ) = R ∩V (S,F )

V (R,F )
.

Clearly if N =G , then M(G ,G) = M(G) and V M(G ,G) = V M(G).
In 1976 Leedham-Green and McKay [7], introduced the concept of the generalized Baer-

invariant of a group with respect to two varieties as follows. Let W be another variety of groups
defined by the set of words W and G ∈ W . Then by Lemma 1, {1} = W (G) = W (F )R/R and hence
W (F ) ⊆ R. Therefore,

1 −→ R/W (F ) −→ F /W (F ) −→G −→ 1

is a W -free presentation of the group G . The generalized Baer-invariant of the group G with
respect to the variety V is denoted by

W V M(G) = R/W (F )∩V (F /W (F ))

V (R/W (F ),F /W (F ))
∼= (R ∩V (F ))W (F )

V (R,F )W (F )

which is also abelian and independent of the choice of the free presentation of G . Similar to the
Baer-invariant of the pair, the generalized Baer-invariant of the pair (G , N ), where G ∈ W , with
respect to the variety V is defined by

W V M(G , N ) = (R ∩V (S,F ))W (F )

V (R,F )W (F )
.

If one puts W variety of all groups, then W (F ) = {1}. Thus W V M(G) = V M(G) and
W V M(G , N ) = V M(G , N ); see [7, 10].

In Section 2 we get a generalized version of the well-known 5-term exact sequence of ho-
mology groups and then obtain some isomorphisms between lower marginal factors of pairs of
groups, under special conditions. In Section 3, we study V -nilpotency of the pair (G , N ) and then
derive a result which has roots in the Philip Hall’s criterion on nilpotency.

2. Homological methods and generalized Baer-invariant of pair of groups

In this section using the concept of generalized Baer-invariant of a pair of groups, we obtain a
generalization of well-known 5-term exact sequence and then we establish some isomorphisms
which are wide generalization of some results of Stallings [15]. The following main result gener-
alizes [9, Theorem 3.2] extensively; see also [5].

Theorem 4. Let V and W be a varieties of groups defined by the set of laws V and W , respectively,
and E ∈W . If 1 → N

ı→ E
π→G → 1 is a group extension and L is a normal subgroup of E such that

1 → N
ı→ L

π|→ M → 1 is a group extension which ı is the inclusion map, then the following sequence
is exact:

W V M(E ,L)
ψ−→W V M(G , M)

ϕ−→ N

V (N ,E)
σ−→ L

V (L,E)
π′−→ M

V (M ,G)
−→ 1.

C. R. Mathématique — 2021, 359, n 5, 631-638
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Proof. We define the following maps

π′ :
L

V (L,E)
−→ M

V (M ,G)
σ :

N

V (N ,E)
−→ L

V (L,E)
xV (L,E) 7−→π(x)V (M ,G) nV (N ,E) 7−→ nV (L,E).

Clearly, π′ is an epimorphism with the kernel NV (L,E)
V (L,E) . The image and the kernel of σ are NV (L,E)

V (L,E)

and N∩V (L,E)
V (N ,E) , respectively. So, the exactness at L

V (L,E) and M
V (M ,G) follows immediately. Now, let

1 → R → F
π1→ E → 1 be a free presentation of E and L ∼= T /R for a normal subgroup T of the free

group F . Then π ◦π1 : F → G is a free presentation of G . Put ker π ◦π1 = S. Therefore, S is the
inverse image of N under π1. Hence, R ⊆ S ⊆ T , N ∼= S/R and M ∼= T /S. Also,

W V M(E ,L) = (R ∩V (T,F ))W (F )

V (R,F )W (F )
W V M(G , M) = (S ∩V (T,F ))W (F )

V (S,F )W (F )
.

Now, we define the maps

ϕ : W V M(G , M) −→ N

V (N ,E)
ψ : W V M(E ,L) −→W V M(G , M)

xV (S,F )W (F ) 7−→π1(x)V (N ,E) xV (R,F )W (F ) 7−→π(x)V (S,F )W (F ).

It can be easily checked that the image of ϕ is N∩V (L,E)
V (N ,E) which is the same as the kernel of σ. Also,

the kernel of ϕ is (R∩V (T,F ))V (S,F )W (F )
V (S,F )W (F ) which is the same as the image of ψ. Thus, the sequence is

exact and the proof is completed. �

The above lemma has the following important corollary, which generalizes [15, Theorem 2.1].

Corollary 5. Let G be a group with two normal subgroups K and N such that K ⊆ N . Then the
following sequence is exact:

W V M(G , N ) −→W V M(G/K , N /K ) −→ K

V (K ,G)
−→ N

V (N ,G)
−→ N

V (N ,G)K
−→ 1.

By using Corollary 5, we have the following theorem, which generalizes [5, Theorem 7.9.1]; see
also [15, Theorem 3.4].

Theorem 6. Let ( f , f |) : (G , N ) → (H ,K ) be a homomorphism, where G , H ∈W . Suppose f induces
isomorphisms f0 : G/N → H/K and f1| : N /V (N ,G) → K /V (K , H), and that f∗ : W V M(G , N ) →
W V M(H ,K ) is an epimorphism. Then f induces isomorphisms

( fn , fn |) : (G/Vn(N ,G), N /Vn(N ,G))
'−→ (H/Vn(K , H),K /Vn(K , H)), ∀ n ≥ 0.

Proof. Let us define Pn = Vn(N ,G) and Qn = Vn(K , H). We proceed by induction. For n = 0, the
assertion is trivial. For n = 1, consider the following diagram:

1 // N /V (N ,G) //

f1|
��

G/V (N ,G) //

f1

��

G/N //

f0

��

1

1 // K /V (K , H) // H/V (K , H) // H/K // 1.

By the hypothesis, f1| and f0 are isomorphism. Hence, f1 is an isomorphism. Assume that
n ≥ 2. By considering Corollary 5, we can conclude the following diagram:

W V M(G , N ) //

α1��

W V M(G/Pn−1, N /Pn−1) //

α2��

Pn−1/Pn //

α3
��

N /V (N ,G) //

α4
��

N /V (N ,G)Pn−1
//

α5
��

1

W V M(H ,K ) // W V M(H/Qn−1,K /Qn−1) // Qn−1/Qn
// K /V (K , H) // K /V (K , H)Qn−1

// 1.

Note that the naturallity of the map f induces homomorphisms αi , i = 1,2, . . . ,5 such that the
above diagram is commutative. By hypothesis, α1 is an epimorphism, α4 and α5 are isomor-
phisms. Also, by considering the induction hypothesis and definition of the Baer-invariant of the
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pair of groups, α2 is an isomorphism. Hence, by the well-known five lemma, α3 is an isomor-
phism. Now, consider the following diagram:

1 // Pn−1/Pn
//

α3

��

N /Pn
//

fn |
��

N /Pn−1
//

fn−1|
��

1

1 // Qn−1/Qn
// K /Qn

// K /Qn−1
// 1.

By the above discussion, α3 is an isomorphism and by induction hypothesis, fn−1| is an
isomorphism. Therefore, fn | is an isomorphism. Finally, by the following diagram:

1 // N /Pn
//

fn |
��

G/Pn
//

fn

��

G/N //

f1

��

1

1 // K /Qn
// H/Qn

// H/K // 1

and in the same way, fn is an isomorphism. �

Now we obtain the following corollary, which generalizes [15, Corollary 3.5] and [9, Corol-
lary 3.4].

Corollary 7. Let ( f , f |) : (G , N ) → (H ,K ) be a homomorphism which satisfies the hypotheses of
Theorem 6. Suppose further that (G , N ) and (H ,K ) are V -nilpotent. Then ( f , f |) is an isomorphism.

Proof. There exists n ≥ 0 such that Vn(N ,G) = {1} and Vn(K , H) = {1}. So, the assertion follows
from Theorem 6. �

As a final result we have the following theorem, which is of interest in its own account.

Theorem 8. Let ( f , f |) : (G , N ) → (H ,K ) be an epimorphism of pairs of groups, where G , H ∈ W .
Let (G , N ) be a V -nilpotent pair. If ker f ⊆ V (N ,G) and W V M(H ,K ) is trivial, then ( f , f |) is an
isomorphism.

Proof. Put M = ker f . Then N
V (N ,G)

∼= K
V (K ,H) , G

N
∼= H

K and Vn (N ,G)M
M = Vn(K , H) for all n ≥ 0. Now,

the result follows from Corollary 7. �

3. Ultra Hall pair

The concept of a Schur pair was first introduced by Philip Hall [3] in 1940. Then in 1976, Hulse
and Lennox [6] studied more properties of this pair and introduced the notion of an ultra Schur
pair, a persistent pair and an ultra persistent pair. In 1977, Fung introduced the notion of a Hall
pair as the following.

Definition 9. Let X be a class of groups and V be a variety of groups. If for every group G and
normal V -nilpotent subgroup N of G, G/V (N ) ∈X implies that G ∈X , then the pair (V ,X ) is said
to be a Hall pair.

In the special case if V is the variety of abelian groups and X is the class of nilpotent groups,
we observe that this notion has roots in the well-known nilpotency criterion of Philip Hall; see [12,
Theorem 5.2.10].

Let F∞ be the free group with the set of free generators {x1, x2, x3, . . .}. The outer commutator
words (henceforth o.c. words) are defined inductively as follows. The word xi is an o.c. word of
weight one. If U = U (x1, . . . , xm) and V = V (xm+1, . . . , xm+n) are o.c. words of weight m and n,
respectively, then

W (x1, . . . , xm+n) = [U (x1, . . . , xm),V (xm+1, . . . , xm+n)],

C. R. Mathématique — 2021, 359, n 5, 631-638
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the commutator of U and V , is an o.c. word of weight m + n. Let V = V (x1, . . . , xm) and W =
W (x1, . . . , xn) be two arbitrary words. Then V oW , the composite of V and W , is defined as
V oW =V (y1, . . . , ym), where yi =W (x(i−1)n+1, . . . , xi n), 1 ≤ i ≤ m. In the sequel, V .W is the variety
of groups defined by the word V oW .

Theorem 10 (cf. [2, Theorem 3]). Let V be variety of groups defined by an o.c. word V of weight
at least two and let W be a variety of groups defined by a single word W . Then the assumption that
(V ,X ) is a Hall pair always implies that (V .W ,X ) is also a Hall pair.

In the following we state the definition of ultra Hall pair and derive a result which is a
generalization of [2, Theorem 3].

Definition 11. Let X be a class of groups and V be a variety of groups defined by the set of words
V . If for every normal subgroups K and N of a given group G such that K is VN -nilpotent, the
assumption G/V (K , N ) ∈X implies that G ∈X , then (V ,X ) is called an ultra Hall pair.

The following lemma will be useful for the proof of our results; see [2, Lemma 2.6].

Lemma 12. Let V and W be two words of distinct variables and U = [V ,W ]. Then for every normal
subgroup N of a given group G, the following statements hold

(i) U (N ,G) = [V (N ,G),W (G)][W (N ,G),V (G)],
(ii) If V is an o.c. word, then

V oW (N ,G) =V (W (N ,G),W (G)).

The following easy lemma is useful in the next result.

Lemma 13. Let V be an o.c. word of weight at least two. Then for every normal subgroup N of a
given group G, V (N ,G) ≤ [N ,G].

Proof. Let c be the weight of V . For c = 2, V = γ2, then V (N ,G) = [N ,G]. Let the result holds for
o.c. words of weight less than c. Then V = [V1,V2], where V1 and V2 are o.c. words of weight less
than c. By Lemma 12(i)

V (N ,G) = [V1(N ,G),V2(G)][V2(N ,G),V1(G)]

≤ [[N ,G],V2(G)][[N ,G],V1(G)]

≤ [N ,G]. �

The following theorem gives a necessary and sufficient condition for a normal subgroup N of
a group G to be UG -nilpotent, where U is the variety of groups defined by the word V oW .

Theorem 14. Let V and W be two words of distinct variables such that V is an o.c. word of weight
at least two. Then for any normal subgroup N of a group G, the subgroup N is UG -nilpotent if and
only if W (N ,G) is VW (G)-nilpotent.

Proof. Let W (N ,G) be VW (G)-nilpotent. By considering U = V oW , since V is an o.c. word, then
U (N ,G) = V oW (N ,G) = V (W (N ,G),W (G)). Using induction on k, we prove that for any positive
integer k, Uk (N ,G) ≤ Vk (W (N ,G),W (G)). The result is true for k = 1. Suppose that for k = i the
statement holds. Then

Ui+1(N ,G) =U (Ui (N ,G),G)

=V (W (Ui (N ,G),G),W (G))

≤V (W (Vi (W (N ,G),W (G)),G),W (G))

≤V (Vi (W (N ,G),W (G)),W (G))

=Vi+1(W (N ,G),W (G)),

(1)
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where (1) follows from Lemma 1(iv). Since W (N ,G) is VW (G)-nilpotent, then

Vr (W (N ,G),W (G)) = 1

for a positive integer r . Thus Ur (N ,G) = 1, which implies that N is UG -nilpotent.
Now, let N be UG -nilpotent. By induction we will prove that

Vk (W (N ,G),W (G)) ≤U[
k+1

2

](N ,G), (2)

for any positive integer k, where
[ k+1

2

]
is the integer part of k+1

2 . Clearly the result holds for k = 1.
Suppose the statement holds for every i , where i É k. Then

Vk (W (N ,G),W (G)) =V (Vk−1(W (N ,G),W (G)),W (G)).

Since V is an o.c. word, by the above lemma the right hand of equality is contained in
[Vk−1(W (N ,G),W (G)),W (G)]. This subgroup is contained in

V (Vk−1(W (N ,G),W (G)),G) ≤W (U[ k
2 ](N ,G),G),

by Lemma 1(v). So

Vk+1(W (N ,G),W (G)) =V (Vk (W (N ,G),W (G)),W (G))

≤V (W (U[ k
2 ](N ,G),G),W (G))

=U[ k
2 ]+1(N ,G)

=U[ k+3
2 ](N ,G).

Thus for every positive integer k, (2) holds. As N is UG -nilpotent, Ur (N ,G) = 1 for a positive
integer r . So, V2r−1(W (N ,G),W (G)) = 1, i.e. W (N ,G) is VW (G)-nilpotent. �

The following result generalizes [2, Theorem 3].

Theorem 15. Let V and W be two varieties of groups as in the above theorem. Then the assumption
that (V ,X ) is an ultra Hall pair, implies that (V .W ,X ) is also an ultra Hall pair.

Proof. Let K and N be two normal subgroups of G such that K is UN -nilpotent, where U = V .W ,
and G/U (K , N ) ∈ X . So, G/V (W (K , N ),W (N )) ∈ X . By the above theorem, W (K , N ) is VW (N )-
nilpotent. Since (V ,X ) is an ultra Hall pair, then G ∈X . �

If one puts K = N , then the result that of Fung yields. The following result generalizes [9,
Theorem 2.4].

Theorem 16. Let V be a variety of groups and N be a VG -nilpotent subgroup of G. If K is nontrivial
normal subgroup of G, contained in N , then K ∩V ∗(N ,G) 6= 1.

Proof. Let the VG -nilpotency class of N be c. Then by Lemma 3(ii), V ∗
c (N ,G) = N . So, there exists

a least integer i such that K ∩V ∗
i (N ,G) 6= 1. Clearly

V (K ∩V ∗
i (N ,G),G) ≤ K ∩V (V ∗

i (N ,G),G).

On the other hand by Lemma 1(iv) and Lemma 2,

V

(
V ∗

i (N ,G)

V ∗
i−1(N ,G)

,
G

V ∗
i−1(N ,G)

)
=V

(
V ∗

(
N

V ∗
i−1(N ,G)

,
G

V ∗
i−1(N ,G)

)
,

G

V ∗
i−1(N ,G)

)
= 1G/V ∗

i−1(N ,G).

Therefore, V (K ∩V ∗
i (N .G),G) ≤ K ∩V ∗

i−1(N ,G) = 1. Hence,

K ∩V ∗
i (N ,G) ≤ K ∩V ∗(N ,G),

our required result. �
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If one puts N =G and considers V as the variety of abelian groups, then the well-known result
of Philip Hall is obtained; see [8, Theorem 31.26].
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