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Abstract. Let (Mn )n be a discrete martingale in Lp for p in ]1,2] or p = 3. In this note, we give upper bounds
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1. Introduction

Throughout this note, we consider a nondecreasing filtration (Fn)n∈N and a real-valued mar-
tingale (Mn)n∈N adapted to this filtration. We use the notations Xn = Mn − Mn−1 and M∗

n =
max(M0, M1, . . . , Mn) for any positive integer n.

The tail and tail-quantile functions of a real-valued random variable X are defined by

HX (x) =P(X > x) for x ∈R, QX (u) = inf{x ∈R : HX (x) ≤ u} for u ∈]0,1]. (1)

Recall that HX is cadlag and nonincreasing and QX is the cadlag generalized inverse function of
HX . From the definition of QX , if U has the uniform law over [0,1], then QX (U ) has the same law
as X . The tail-quantile function QX is often called Value at Risk (VaR). The Conditional Value at
Risk or superquantile Q̃ X of X is defined by

Q̃ X (u) = u−1
∫ u

0
QX (t )d t =

∫ 1

0
QX (us)d s, for any u ∈]0,1]. (2)

Since QX is nonincreasing, Q̃ X ≥QX . From a result which goes back to [2],

QM∗
n

(u) ≤ Q̃Mn (u) for any u ∈]0,1]. (3)

We also refer to [6] for a proof of this result. Consequently any upper bound on the superquantiles
of Mn provides the same upper bound on the tail-quantiles of M∗

n . Furthermore (3) cannot be
improved without additional conditions, as proved by [5]. These facts motivate this note.
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Our approach to bound up Q̃Mn is based on the p-risks Qp (X , .) introduced in [11]. Let z+ and
z− denote respectively the positive and the negative part of the real z. The p-risk Qp (X , .) of a
real-valued random variable X or its law PX is defined in [11, Theorem 2.3] for p in ]0,∞[ by

Qp (X ,u) =Qp (PX ,u) = inf
{−t +u−1/p‖(X + t )+‖p : t ∈R}

for any u ∈]0,1]. (4)

These p-risks are nondecreasing with respect to p. The main feature is that they are easier to
bound up than the quantiles or superquantiles. Furthermore, in the case p = 1,

Q1(X ,u) =QX (u)+u−1E
(
(X −QX (u))+

)= Q̃ X (u) for any u ∈]0,1]. (5)

Hence Q1(X , .) is exactly the superquantile of X . Therefrom

Q̃ X (u) ≤Qp (X ,u) for any u ∈]0,1] and any p ≥ 1. (6)

We refer to [11] for more about the properties of the p-risks.
In order to bound up Q̃M∗

n
, we will introduce supersuperquantiles. Let U be a random vari-

able with uniform law over [0,1]. For a real-valued random variable X , the supersuperquantile
Q1,1(X , .) of X is defined by

Q1,1(X ,u) =Q1 (Q1(X ,U ),u) = Q̃Q1(X ,U )(u) = Q̃Q̃ X (U )(u) for any u ∈]0,1]. (7)

Then, from (3),
Q̃M∗

n
(u) ≤Q1,1(Mn ,u) for any u ∈]0,1], (8)

so that any upper bound on the supersuperquantile of Mn yields the same upper bound on
Q̃M∗

n
. Therefore the upper bounds on Q̃M∗

n
will be derived from the inequality below, proved in

Section 2: for any p > 1 and any u in ]0,1],

Q1,1(X ,u) ≤Qp

(
X ,

(
Π(q)

)1−p u
)

where q = p/(p −1), Π(q) =
∫ ∞

0
t q e−t d t . (9)

According to the above inequalities, it is enough to bound up the p-risks of Mn . For martin-
gales in Lp for some p in ]1,2], these upper bounds will be derived from one-sided von Bahr–
Esseen type inequalities stated in Section 3. In the case of martingales in L2 satisfying an addi-
tional condition of order 3, these upper bounds will be derived from Inequality (11) below. For
random variables Y and Z such that E(Y p

+ ) <∞ and E(Z p
+ ) <∞, let

D+
p (Y , Z ) = sup

{
E
(
(Z + t )p

+− (Y + t )p
+
)

: t ∈R}
. (10)

Then, from the definition (4) of the p-risks, it is immediate that, for any u in ]0,1],

Qp (Z ,u) ≤ inf

{
−t +u−1/p

(
E(Y + t )p

++D+
p (Y , Z )

)1/p
: t ∈R

}
≤Qp (Y ,u)+u−1/p

(
D+

p (Y , Z )
)1/p

.

(11)
This inequality will be used in Section 4 to provide upper bounds on the superquantiles of

martingales under additional assumptions on the conditional variances of the increments and
the moments of order 3 of their positive parts.

2. Comparison inequalities for risks

In this section we prove the comparison inequality (9) and we give applications of this inequality
to upper bounds on the superquantiles of M∗

n . We now state the main results of this section.

Proposition 1. Let p in ]1,∞[ and X be an integrable real-valued random variable such that
E(X p

+ ) < ∞. Then Q1,1(X ,u) ≤ Qp (X , (Π(q))1−p u) for any u in ]0,1], where q = p/(p − 1) and
Π(q) = ∫ ∞

0 t q e−t d t.

From Proposition 1 and (8), we immediately get the result below.
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Corollary 2. Let (Mn)n be a martingale such that E(M p
n+) < ∞ for some p > 1. Set M∗

n =
max(M0, M1, . . . , Mn). Then Q1(M∗

n ,u) ≤Qp (Mn , (Π(q))1−p u) for any u in ]0,1].

Proof of Proposition 1. From the fact that Q̃ X is nonincreasing, QQ̃ X (U )(t ) = Q̃ X (t ) for any t in
]0,1]. Integrating this equality, we get from (2) and (7) that

Q1,1(X ,u) =
∫ 1

0
Q̃ X (us)d s =

∫ 1

0

∫ 1

0
QX (t )(us)−1It ≤us d sd t = u−1

∫ u

0
QX (t ) log(u/t )d t (12)

by the Fubini theorem, where log denotes the Neper logarithm. Now, V be a random variable with
uniform law over [0,1]. Using the change of variable v = t/u in the above integral, we get that

Q1,1(X ,u) =
∫ 1

0
QX (uv) log(1/v)d v = E(

QX (uV ) log(1/V )
)

. (13)

Next, since E log(1/V ) = 1,

Q1,1(X ,u) =−t +E(log(1/V ) (QX (uV )+ t )
)≤−t +E(log(1/V ) (QX (uV )+ t )+

)
. (14)

Now, applying the Hölder inequality, with exponents q = p/(p −1) and p,

E
(
log(1/V ) (QX (uV )+ t )+

)≤ ∥∥log(1/V )
∥∥

q

∥∥(QX (uV )+ t )+
∥∥

p .

Since log(1/V ) has the exponential law E(1), ‖ log(1/V )‖q = (Π(q))1/q and, setting w = uv ,∫ 1

0
(QX (uv)+ t )

p
+ d v = u−1

∫ u

0
(QX (w)+ t )

p
+ d w ≤ u−1

∫ 1

0
(QX (w)+ t )

p
+ d w.

Hence

E
(
log(1/V ) (QX (uV )+ t )+

)≤ (
Π(q)

)1/q u−1/p ‖(X + t )+‖p . (15)

Combining (14) and (15), we now get that, for any real t ,

Q1,1(X ,u) ≤−t + ((
Π(q)

)1−p u
)−1/p ‖(X + t )+‖p , (16)

which implies Proposition 1. �

Remark 3. From (4), Qp (Mn ,u) ≤ u−1/p‖Mn+‖p . Hence, if M0 = 0, Corollary 2 applied with
u = 1 implies the known inequality ‖M∗

n‖1 ≤ (Π(q))1/q‖Mn+‖p . The constant (Π(q))1/q in this
inequality is sharp, which proves that our constant is also sharp. We refer to [9, Theorem 7.8] for
more about this.

We now discuss Corollary 2. If the martingale (Mn)n is conditionally symmetric, then, by
the Lévy symmetrization inequality, HM∗

n
(x) ≤ 2HMn (x) for any real x, which implies that

Qp (M∗
n ,u) ≤ Qp (Mn ,u/2) for p ≥ 1 and u in ]0,1]. Therefrom, for conditionally symmetric mar-

tingales,

Q1
(
M∗

n ,u
)≤Qp (Mn ,u/2) for any p ≥ 1. (17)

If p = 2, Corollary 2 also yields Q1(M∗
n ,u) ≤ Q2(Mn ,u/2). Recall now that Π(q)

= E(τq ), if τ is a random variable with law E(1). Thus, if p > 2, then 1 < q < 2 and Π(q) =
E(τq ) < (Eτ)2−q (Eτ2)q−1 = 2q−1, which implies that (Π(q))1−p > 1/2, since (q − 1)(1 − p) = −1.
Consequently, for p > 2 Corollary 2 is more efficient than (17), because Qp (X ,u) is nonincreas-
ing in u for u in ]0,1]. For example, if p = 3, Q1(M∗

n ,u) ≤ Q3(Mn ,16u/(9π)) by Corollary 2, and
16/(9π) = 0.565 . . . > 1/2.

C. R. Mathématique — 2021, 359, n 7, 813-822
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3. Martingales in Lp for p in ]1,2]

In this section, p is any real in ]1,2] and (Mn)n is a martingale in Lp . Our aim is to obtain
upper bounds on the risks of Mn and M∗

n . From (4), these upper bounds can be derived from
upper bounds on the moments of order p of (Mn + t )+. At the present time, moment inequalities
with sharp constants are only available for the absolute value of Mn . More precisely, by [12,
Proposition 1.8],

IE
(|Mn |p

)≤ IE
(|M0|p

)+Kp E
(|X1|p + ·· · + |Xn |p

)
,

where Kp = sup
x∈ [0,1]

(
pxp−1 + (1−x)p −xp)

. (18)

As shown in [12], the constant Kp is sharp. The constant Kp is decreasing with respect to p,
K2 = 1 and limp↘1 Kp = 2. However, for conditionally symmetric martingales, it is known since a
long time that the constant in the above inequality is equal to 1 for any p in ]1,2]. So it seems clear
that the constants in the one-sided case are smaller than Kp . Below we give a new inequality.

Theorem 4. Let p be any real in ]1,2] and (Mn)n be a martingale in Lp . Then

E
(
M p

n+
)≤ E(

M p
0+

)+∆p , with ∆p = E(
X p

1++ ·· · +X p
n+

)+ (p −1)p−1E
(
X p

1−+ ·· · +X p
n−

)
. (19)

Before proving Theorem 4, we give an application to risks.

Corollary 5. Let p be any real in ]1,2] and (Mn)n be a martingale in Lp such that M0 = 0. Set
q = p/(p −1). Then Qp (Mn ,u) ≤∆1/p

p (u1−q −1)1/q and Q1(M∗
n ,u) ≤∆1/p

p (Π(q)u1−q −1)1/q for any
u in ]0,1].

Remark 6. If p = 2, q = 2 andΠ(q) = 2. Then we get from Corollary 5 that

Q2 (Mn ,u) ≤
√
E
(
M 2

n
)

(1/u −1), Q1
(
M∗

n ,u
)≤√

E
(
M 2

n
)

(2/u −1). (20)

The first inequality is a version of an inequality of Tchebichef [16], often called Cantelli’s
inequality. For p < 2, (p −1)p−1 < 1. In that case the results are new.

Proof of Corollary 5. We start by the first inequality. Let u be any real in ]0,1[. From Theorem 4
applied to (t + Mn)n , we get Qp (Mn ,u) ≤ −t + u−1/p (t p +∆p )1/p . Now the function f : t 7→
−t +u−1/p (∆p + t p )1/p has a unique minimum at point t = tu = ∆1/p

p (u1−q −1)−1/p and f (tu) =
∆

1/p
p (u1−q − 1)1/q , which completes the proof of the first inequality in the case u < 1. Since

Qp (Mn , .) is nonincreasing, the case u = 1 follows by taking the limit as u ↑ 1. The second part
follows from the first part, Corollary 2 and the fact that (1−p)(1−q) = 1. �

Proof of Theorem 4. Theorem 4 follows immediately from the Lemma below by induction on
n. �

Lemma 7. Let Z and X be real-valued random variables in Lp for some p in ]1,2]. If E(X | Z ) = 0,
then E((Z +X )p

+) ≤ E(Z p
+ )+E(X p

+ )+ (p −1)p−1E(X p− ).

Proof of Lemma 7. Define the function ϕ :R2 →R by

ϕ(z, x) = (z +x)p
+− zp

+−pzp−1
+ x. (21)

From the assumption E(X | Z ) = 0, E((Z +X )p
+)−E(Z p

+ ) = E(ϕ(Z , X )).
Consequently, Lemma 7 follows immediately from the upper bound

ϕ(z, x) ≤ xp
++ (p −1)p−1xp

− for any (x, z) ∈R×R. (22)

It only remains to prove (22). If z ≤ 0, then ϕ(z, x) = (z +x)p
+ ≤ xp

+, which proves (22) for z ≤ 0.

C. R. Mathématique — 2021, 359, n 7, 813-822
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Value of u 0.999 0.990 0.900 0.75 0.50 0.25 0.10 0.010 0.001
(24) 0.186 0.387 0.808 1.18 1.90 3.53 7.27 38.34 185.8
(25) 0.180 0.390 0.881 1.31 2.06 3.52 6.61 30.77 142.8

If z ≥ 0, let the function ηx be defined by ηx (z) = ϕ(z, x). The function ηx is continuous on
[0,∞[, differentiable on ]0,∞[, and η′x (z) = p((z + x)p−1

+ − zp−1 − (p −1)zp−2x) for z > 0. If z ≥ x−,
z + x ≥ x+ + x ≥ 0, which implies that (z + x)p−1

+ = (z + x)p−1. Then the concavity of t 7→ t p−1

ensures that η′x (z) ≤ 0. It follows that ηx is nonincreasing on [x−,∞[. If x ≥ 0, then x− = 0 and
ηx (z) ≤ ηx (0) = xp

+, which proves (22) for z ≥ 0 and x ≥ 0.
Finally, if z ≥ 0 and x < 0, z + x ≤ 0 for z in [0, x−]. Thus η′x (z) = pzp−2(−z + (p −1)x−) for z in

]0, x−]. Since ηx is nonincreasing on [x−,∞[, it follows that ηx has a unique maximum at point
z = (p −1)x− and, subsequently,

ηx (z) ≤ ηx
(
(p −1)x−

)= (−(p −1)p +p(p −1)p−1)xp
− = (p −1)p−1xp

−, (23)

which proves (22) for z ≥ 0 and x < 0, therefore completing the proof of (22). �

3.1. Numerical comparisons

To conclude this section, we compare the upper bounds given by Corollary 5 with the inequality
below, derived from (18) and [15, Theorem 4.1]:

Q1 (Mn ,u) ≤Σ1/p
p u−1/p (

1+ (1−u)1−p up−1)−1/p
, with Σp = Kp E

(|X1|p + · +|Xn |p
)

. (24)

For the numerical comparisons we assume that
n∑

k=1
E
(
X p

k+
)= n∑

k=1
E
(
X p

k−
)= 1.

Then Corollary 5 yields

Q1 (Mn ,u) ≤ (
1+ (p −1)p−1)1/p

u−1/p (
1−uq−1)1/q

, with q = p/(p −1), (25)

and Σp = 2Kp in (24). The table below gives values of the upper bounds (24) and (25) for p = 3/2,
in which case 2Kp = 2(1+1/

p
2)1/2 and 1+(p−1)p−1 = 1+1/

p
2. Here (25) provides better bounds

for u ≤ 0.25 and u ≥ 0.9922.

4. The case p = 3

In this section, (Mn)n is a martingale in L2 such that M0 = 0. We assume that, for some sequence
(σk )k>0 of nonrandom positive reals,

E
(
X 3

k+
)<∞ and E

(
X 2

k

∣∣Fk−1
)≤σ2

k almost surely, for any positive k. (26)

Although the above condition on the conditional variances is very strong, is is sometimes
fulfilled. For example, the second part of (26) holds for martingale decompositions associated to
dynamical systems or suprema of empirical processes. We refer to [3, Inequality (4.9), page 861],
for dynamical systems and to [8] for empirical processes. The main result of this section is the
following upper bound for E((Mn + t )3+).

Theorem 8. Let Y be a random variable with law N (0,1) and (Mn)n be a martingale such that
M0 = 0, satisfying (26). Set Vn =σ2

1 + ·· · +σ2
n . Then

E
(
(Mn + t )3

+
)≤ E((

Y
√

Vn + t
)3

+

)
+

n∑
k=1

E
(
X 3

k+
)

for any real t .
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Remark 9. From Theorem 8 with t = 0, E(M 3
n+) ≤ (2/π)1/2 V 3/2

n +∑n
k=1E(X 3

k+), which is is a one-
sided version of the Rosenthal inequality, with the optimal constants. We refer to [13] and the
references therein for more about the constants in the Rosenthal inequalities.

Proof of Theorem 8. Let (Yk )k >0 be a sequence of independent random variables with law
N (0,1), independent of the sequence (Mn)n . Define the random variables T n

k and the reals Dn
k

for k in [1,n] by

T n
k = t +Mk−1 + (σk+1Yk+1 + ·· · +σnYn) , Dn

k = E
((

T n
k +Xk

)3
+− (

T n
k +σk Yk

)3
+
)

, (27)

with the convention that T n
n = t +Mn−1. Then

E

(
(Mn + t )3

+−
(
Y

√
Vn + t

)3

+

)
= Dn

1 + ·· · +Dn
n . (28)

Now the functionϕ defined byϕ(x) = x3+ for x inR is two times continuously differentiable and
ϕ′(x) = 3x2+, ϕ′′(x) = 6x+. Hence, applying the Taylor integral formula at order 2 to the function ϕ
at point T n

k ,

Dn
k = 3E

((
T n

k+
)2

(Xk −σk Yk )
)
+3E

(
T n

k+
(
X 2

k −σ2
k Y 2

k

))+6
∫ 1

0
(1− s)Rk,n(s)d s, (29)

with Rk,n(s) = E(((
T n

k + sXk
)
+−T n

k+
)

X 2
k − ((

T n
k + sσk Yk

)
+−T n

k+
)
σ2

k Y 2
k

)
. (30)

From the martingale assumption, the first term on right hand in (29) is equal to 0. Next

E
(
T n

k+
(
X 2

k −σ2
k Y 2

k

))= E(
T n

k+
(
E
(
X 2

k

∣∣Fk−1
)−σ2

k

))≤ 0,

since T n
k+ ≥ 0 and E(X 2

k |Fk−1)−σ2
k ≤ 0 almost surely.

From the above inequalities, the two first terms in (29) are nonpositive. It remains to bound
up the integral term in (29). First (Tk,n + sXk )+−Tk,n+ ≤ sX +

k for any s in [0,1], which implies that

E
(((

T n
k + sXk

)
+−T n

k+
)

X 2
k

)≤ sE
(
X 3

k+
)

. (31)

And second the normal law is symmetric, whence

E
(((

T n
k + sσk Yk

)
+−T n

k+
)

Y 2
k

)= 1
2 E

(((
T n

k + sσk Yk
)
++ (

T n
k − sσk Yk

)
+−2T n

k+
)

Y 2
k

)
.

Since the function x 7→ x+ is convex, (T n
k + sσk Yk )++ (T n

k − sσk Yk )+−2T n
k+ ≥ 0. It follows that

E
(((

T n
k + sσk Yk

)
+−T n

k+
)

Y 2
k

)≥ 0. (32)

Now (30), (31) and (32) imply that Rk,n(s) ≤ sE(X 3
k+). Finally, putting this inequality in (29) and

integrating, we get that Dn
k ≤ E(X 3

k+), which, by (28), implies Theorem 8. �

Remark 10. If (26) does not hold, the second term in decomposition (29) may fail to be nonpos-
itive. Nevertheless, choosing σ2

k = E(X 2
k ) in (27) and proceeding as in [4], one can prove that

n∑
k=1

E

(
T n

k+
(
E
(
X 2

k

∣∣Fk−1
)−σ2

k

)≤ n−1∑
j=1

E

(∣∣∣∣∣X j

n∑
k= j+1

(
E
(
X 2

k

∣∣F j
)−σ2

k

))∣∣∣∣∣
)

, (33)

which gives the upper bound

E
(
(Mn + t )3

+
)≤ E((

Y
√

Var Mn + t
)3

+

)
+

n∑
k=1

E
(
X 3

k+
)+3

n−1∑
j=1

E

(∣∣∣∣∣X j

n∑
k= j+1

(
E
(
X 2

k

∣∣F j
)−σ2

k

)∣∣∣∣∣
)

. (34)

This upper bound may be of interest in the case of dependent sequences, such as absolutely
regular Markov chains.

From Theorem 8, (11) and Corollary 2, we immediately get the following asymptotically
subGaussian upper bounds on the superquantiles of Mn and M∗

n .
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Corollary 11. Let Y be a random variable with law N (0,1) and (Mn)n be a martingale such that
M0 = 0, satisfying (26). Set Vn =σ2

1 +σ2
2 +·· ·+σ2

n . Then, for any p in [1,3] and any u in ]0,1]

Qp (Mn ,u) ≤ inf
t ∈R

−t +u− 1
3

(
E

((
Y

√
Vn + t

)3

+

)
+

n∑
k=1

E
(
X 3

k+
)) 1

3


≤

√
VnQ3(Y ,u)+u− 1

3

(
n∑

k=1
E
(
X 3

k+
)) 1

3

, (a)

xQ1
(
M∗

n ,u
)≤ inf

{
−t +

(
9π

16u

)1/3
(
E

((
Y

√
Vn + t

)3

+

)
+

n∑
k=1

E(X 3
k+)

)1/3

: t ∈R
}

. (b)

4.1. Numerical comparisons

To conclude this section, we compare Corollary 11(a) with previous results in two different cases.
First, we compare Corollary 11(a) in the independent case under the condition E(M 3

n) = 0 with
upper bounds derived from moment inequalities or estimates of the Kantorovich distance in the
central limit theorem. And second, we compare Corollary 11(a) with exponential inequalities in
the case of independent and bounded increments.

(a) Independent increments with finite third moments

From Theorem 8 applied with t = 0 and the Hölder inequality,

Q1 (Mn ,u) ≤ u−1/3
(p

2/πV 3/2
n +E(

X 3
1++ ·· · +X 3

n+
))1/3

. (35)

Such a result is called weak L3 concentration inequality in [3]. If furthermore the increments
Xk are in L3, then, by [7, Theorem 1.1], for any 1-Lipschitz function f ,

E
(

f (Mn)− f
(
Y

√
Vn

))
≤V −1

n E
(|X1|3 + ·· · + |Xn |3

)
, with Vn = Var Mn . (36)

Now, since E(Mn) = E(Y ) = 0, by (36) and the elementary equality x+ = (x +|x|)/2,

E
(
(Mn + t )+−

(
Y

√
Vn + t

)
+

)
≤ 1

2 V −1
n E

(|X1|3 + ·· · + |Xn |3
)

for any real t . Hence, by (11) applied with p = 1, for any u in ]0,1],

Q1 (Mn ,u) ≤
√

Vn Q1(Y ,u)+ (2uVn)−1E
(|X1|3 +·· ·+ |Xn |3

)
. (37)

The table below gives numerical values for the upper bounds of (37), Corollary 11(a), their
respective limits Q1(Y ,u) and Q3(Y ,u) (as the Liapounov ratio tends to 0) and (35) in the case
Vn = 1 and L+

3 := E( X 3
1+ + ·· · + X 3

n+) = E( X 3
1− + ·· · + X 3

n−) := L−
3 , for L+

3 = 10−m , m = 1,2,3 and
u = 2k−2 10−k , k = 0,1,2. For sake of completeness, the values of the usual subGaussian bound√

2| logu| (which is larger than Qp (Y ,u), as shown in [11]) are also included. One can observe
that the convergence to the limit is much faster in Corollary 11(a) than in (37). As a by-product,
Corollary 11(a) still provides better bounds for u ≤ 1/20 if L+

3 = 10−2, which is in the range of
normal approximation, since the Liapounov ratio L3 := L+

3 + L−
3 is equal to 2.10−2. For all the

values of the Liapounov ratio in the table, Inequality (35) is of poor quality for u = 1/20 and very
poor quality for u = 10−2, which shows that moment inequalities are not a suitable tool to achieve
efficient concentration inequalities if the Liapounov ratio is small.
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Value of (k,m) (0,1) (1,1) (2,1) (0,2) (1,2) (2,2) (0,3) (1,3) (2,3)
Value of Q1(Y ,u) 1.27 2.06 2.67 1.27 2.06 2.67 1.27 2.06 2.67
Inequality (37) 1.67 4.06 12.67 1.31 2.26 3.67 1.274 2.08 2.77
Inequality (35) 1.53 2.62 4.48 1.478 2.53 4.32 1.473 2.52 4.31
Corollary 11(a) 1.50 2.48 3.67 1.467 2.26 3.01 1.463 2.23 2.84
Value of Q3(Y ,u) 1.462 2.22 2.81 1.462 2.22 2.81 1.462 2.22 2.81
Value of

√
2| logu| 1.665 2.447 3.035 1.665 2.447 3.035 1.665 2.447 3.035

(b) Sums of bounded random variables

Let v be a real in ]0,1[ and (ξk )k >0 be a sequence of independent random variables such that
P(ξk = 1) = v/(1+ v) and P(ξk = −v) = 1/(1+ v). Let us consider a sequence (ak )k >0 of positive
weights. Define the sequence (Mn)n∈N by M0 = 0 and Mn = a1ξ1 + ·· · +anξn for n > 0. Then

Var Mn = v
n∑

k=1
a2

k ,
n∑

k=1
E
(
X 3

k+
)= v

1+ v

n∑
k=1

a3
k and

n∑
k=1

E
(|Xk |3

)= v(1+ v2)

1+ v

n∑
k=1

a3
k . (38)

Since the increments of Mn are bounded, Mn has a finite Laplace transform. Let ` denote the
logarithm of the Laplace transform of Mn , defined by `(t ) = logE(e t Mn ) for any real t . By [11,
Theorem 3.3], for any p ≥ 1,

Qp (Mn ,u) ≤ inf
{

t−1 (∣∣logu
∣∣+`(t )

)
: t > 0

}
for any u ∈]0,1]. (39)

Assume now that

Var Mn = 1 and E
(
X 3

1++ ·· · +X 3
n+

)= L+
3 . (40)

Under (40), classical estimates of the subGaussian constant of binary random variables (see [1,
Section 2.5]) yield the upper bound `(t ) ≤ (1− v2)t 2/(4v | log v |). Hence, by (39), for any p ≥ 1,

Qp (Mn ,u) ≤
√

2κ(v)
∣∣logu

∣∣ for any u ∈]0,1], with κ(v) = (1− v2)/(2v | log v |). (41)

The constant κ(v) is larger than 1, which induces a loss. For example, κ(v) = 2.0227 . . . if
v = 1/9. In order to avoid this loss on the variance factor, one can use Bennett type inequalities.
Define the p-norm |a|p of (a1, . . . , an) by

|a|p = (|a1|p + ·· · + |an |p
)1/p for p ∈ [1,∞[ and |a|∞ = sup(|a1|, . . . , |an |) . (42)

Then |a|∞ ≤ min(|a|2, |a|3). Therefrom, under (40), by (38),

|a|∞ ≤ min
(
v−1/2,

(
L+

3 (1+ v)/v
)1/3

)
:= K (43)

The above inequality cannot be improved under condition (40). From (43),

`(t ) ≤ K −2 (
eK t −1−K t

)= (
t 2/2

)+K
(
t 3/6

)+ ·· · for any t > 0 (44)

(see [1, Section 2.4]). It follows that, for p ≥ 1 and u in ]0,1],

Qp (Mn ,u) ≤ inf
{

t−1 (∣∣logu
∣∣+K −2 (

eK t −1−K t
))

: t > 0
}≤√

2| logu|+K | logu|/3. (45)

In the above inequality, the first order term
√

2| logu| is the optimal one. However K is large,
which induces a big loss in the second order term. In order to reduce this loss, one can use [14,
Theorem 2.1]. Define `v (t ) by `v (t ) = logE(e tξ1 ). Then, by [14, Theorem 2.1],

`(t ) ≤ v

(
n∑

k=1
a2

k

)
t 2

2
+γ(v)

(
n∑

k=1
a3

k

)
t 3

6
, with γ(v) = 6sup

t>0

(
`v (t )− v t 2/2

t 3

)
. (46)

For example, if v = 1/9, then γ(v) ≤ 0.1176. From (46) and (39), for any p ≥ 1 and any u in ]0,1],

Qp (Mn ,u) ≤ inf
{

t−1 (| logu|+ (
t 2/2

)+η(v)L+
3

(
t 3/6

))
: t > 0

}
, with η(v) = γ(v)(1+ v)/v. (47)
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Value of (k,m) (0,0) (1,0) (2,0) (0,1) (1,1) (2,1)
Inequality (37) 3.29 12.18 52.67 1.47 3.07 7.73
Corollary 11(a) 1.73 3.30 5.54 1.50 2.48 3.67
Inequality (47) 2.04 3.17 4.08 1.72 2.56 3.20
Inequality (45) 2.49 4.15 5.58 2.08 3.32 4.34
Inequality (41) 2.37 3.48 4.32 2.37 3.48 4.32
Value of

√
2| logu| 1.665 2.447 3.035 1.665 2.447 3.035

The table below gives numerical values for the upper bounds of (37), Corollary 11(a), (47), (45)
and (41) in the case v = 1/9 and Vn = 1 for L+

3 = 10−m , m = 0,1 and u = 2k−2 10−k , k = 0,1,2. For
sake of completeness, the values of the usual subGaussian bound

√
2| logu| are also included. For

all the values of L+
3 and u in the table, (45) and (41) are of very poor quality. Inequality (37) is also

of very poor quality, except in the case u = 1/4 and L+
3 = 1/10. One can observe that (47) is more

efficient than Corollary 11(a) for u = 1/20 and u = 10−2 if L+
3 = 1 and for u = 10−2 if L+

3 = 1/10.

5. Concluding remarks and comments

5.1. About Section 4

I consider Section 4 as the most relevant of this note. Clearly the assumptions of Corollary 11
cannot be used to provide a rate of convergence in the global central limit theorem, since the
negative parts of the increments Xk have only a finite moment of ordre 2. Nevertheless, one
can still recover partly the missing factor in the deviation inequalities on the right, by using the
techniques introduced in [11]. It would be of interest to obtain lower bounds in the independent
and identically distributed case. For example, if L2,3+(1,m) denotes the class of probability laws
on the real line such that∫

R xdµ(x) = 0,
∫
R x2dµ(x) = 1,

∫
[0,∞[ x3dµ(x) ≤ m,

and γ denotes the standard normal law, I conjecture that, for any positive m and any u in ]0,1],

liminf
n→∞ sup

µ∈L2,3+(1,m)
n−1/2Q1

(
µ∗n ,u

)≥Q2(γ,u). (48)

Such a result would prove that the asymptotic lower bound cannot be equal to the usual
superquantile. However I have no idea of an outline of proof for such a result.

5.2. About the p-risks of the standard normal law.

For any real-valued random variable Y , let Hp (Y , .) denote the generalized inverse function of
Qp (Y , .). If the tail function of Y is log-concave on R, then, for any real x and any positive p,

Hp (Y , x) ≤Π(p)(e/p)pP(Y > x) (49)

(we refer to [10, Theorem 1.2] for an available reference). The above inequality shows that the p-
risks can be used to partly recover the missing factor. From the above inequality, one immediately
gets that, for any positive p and any u in ]0,1],

Qp (Y ,u) ≤QY

((
Π(p)

)−1 (p/e)p u
)

. (50)

The above inequality holds, in particular, for the standard Gaussian law. However, in the case
p = 3, this upper bound is significantly larger than the exact value for usual values of u, as shown
in the numerical table below.
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Value of u 0.250 0.050 0.010
Value of Q3(Y ,u) 1.462 2.22 2.81
(50) with p = 3 1.588 2.283 2.85
Value of

√
2| logu| 1.665 2.447 3.035

References

[1] B. Bercu, B. Delyon, E. Rio, Concentration inequalities for sums and martingales, SpringerBriefs in Mathematics,
Springer, 2015.

[2] D. H. Blackwell, L. E. Dubins, “A converse to the dominated convergence theorem”, Ill. J. Math. 7 (1963), p. 508-514.
[3] J.-R. Chazottes, S. Gouëzel, “Optimal concentration inequalities for dynamical systems”, Commun. Math. Phys. 316

(2012), no. 3, p. 843-889.
[4] J. Dedecker, F. Merlevède, E. Rio, “Rates of convergence in the central limit theorem for martingales in the non

stationary setting”, https://hal.archives-ouvertes.fr/hal-03112369v1, 2021.
[5] L. E. Dubins, D. Gilat, “On the distribution of maxima of martingales”, Proc. Am. Math. Soc. 68 (1978), no. 3, p. 337-

338.
[6] D. Gilat, I. Meilijson, “A simple proof of a theorem of Blackwell & Dubins on the maximum of a uniformly integrable

martingale”, in Séminaire de Probabilitées, Strasbourg / France XXII, Lecture Notes in Mathematics, vol. 1321,
Springer, 1988, p. 214-216.

[7] L. Goldstein, “Bounds on the constant in the mean central limit theorem”, Ann. Probab. 38 (2010), no. 4, p. 1672-1689.
[8] A. Marchina, “Concentration inequalities for suprema of unbounded empirical processes”, to appear in Annales

Henri Lebesgue, https://hal.archives-ouvertes.fr/hal-01545101/, 2021.
[9] A. Osekowski, Sharp martingale and semimartingale inequalities, Monografie Matematyczne. Instytut Matematy-

czny PAN (New Series), vol. 72, Birkhäuser/Springer, 2012.
[10] I. Pinelis, “On normal domination of (super)martingales”, Electron. J. Probab. 11 (2006), no. 39, p. 1049-1070.
[11] ——— , “An Optimal Three-Way Stable and Monotonic Spectrum of Bounds on Quantiles: A Spectrum of Coherent

Measures of Financial Risk and Economic Inequality”, Risks 2 (2014), no. 3, p. 349-392.
[12] ——— , “Best possible bounds of the von Bahr–Esseen type”, Ann. Funct. Anal. 6 (2015), no. 4, p. 1-29.
[13] ——— , “Exact Rosenthal-type bounds”, Ann. Probab. 43 (2015), no. 5, p. 2511-2544.
[14] E. Rio, “Exponential inequalities for weighted sums of bounded random variables”, Electron. Commun. Probab. 20

(2015), article no. 77 (10 pages).
[15] ——— , “About Doob’s inequality, entropy and Tchebichef”, Electron. Commun. Probab. 23 (2018), article no. 78

(12 pages).
[16] P. L. Tchebichef, “Sur les valeurs limites des intégrales”, Liouville J. 19 (1874), p. 157-160.

C. R. Mathématique — 2021, 359, n 7, 813-822

https://hal.archives-ouvertes.fr/hal-03112369v1
https://hal.archives-ouvertes.fr/hal-01545101/

	1. Introduction
	2. Comparison inequalities for risks
	3. Martingales in Lp for p in ]1,2]
	3.1. Numerical comparisons

	4. The case p=3
	4.1. Numerical comparisons
	(a) Independent increments with finite third moments
	(b) Sums of bounded random variables


	5. Concluding remarks and comments
	5.1. About Section 4
	5.2. About the p-risks of the standard normal law.

	References



