Saminathan Ponnusamy and Ramakrishnan Vijayakumar

Generalized versions of Lipschitz conditions on the modulus of holomorphic functions

Volume 359, issue 5 (2021), p. 609-615

Published online: 13 July 2021

https://doi.org/10.5802/crmath.200

This article is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
Generalized versions of Lipschitz conditions on the modulus of holomorphic functions

Saminathan Ponnusamy and Ramakrishnan Vijayakumar

a Department of Mathematics, Indian Institute of Technology Madras, Chennai-600 036, India
E-mails: samy@iitm.ac.in, mathesvijay8@gmail.com

Abstract. In this paper, we establish Lipschitz conditions for the norm of holomorphic mappings between the unit ball B^n in \mathbb{C}^n and X, a complex normed space. This extends the work of Djordjević and Pavlović.

Manuscript received 15th September 2020, revised 9th February 2021, accepted 22nd March 2021.

1. Introduction and Preliminaries

Denote by \mathbb{C}^n, the n-dimensional complex Hilbert space with the inner product and the norm given by $\langle z, w \rangle := \sum_{j=1}^{n} z_j w_j$ and $\|z\| := \sqrt{\langle z, z \rangle}$, where $z, w \in \mathbb{C}^n$, respectively. Write $B^n := \{ z \in \mathbb{C}^n : \| z \| < 1 \}$ for the open unit ball in \mathbb{C}^n so that $B^1 = \mathbb{D}$ denotes the open unit disk in \mathbb{C}. If V and W are two normed spaces and $U \subset V$ is open, then the Fréchet derivative of a holomorphic mapping $f : U \to W$ is defined to be the unique linear map $A = f'(z) : V \to W$ such that

$$f(z + h) = f(z) + f'(z) \cdot h + o(\|h\|^2)$$

for h near the origin of V. The norm of such a map is defined by $\| A \| = \sup_{\|z\| = 1} \| Az \|$.

In 1975, Globevnik [6] introduced the notion of uniform c-convexity and proved that L^1-space possesses this property. Namely, a complex normed space X is said to be uniformly c-convex if there exists a positive increasing function $\Omega(\delta)$ ($\delta > 0$) with $\Omega(0^+) = 0$ such that for all $x, y \in X$ and $\delta > 0$ there holds the implication

$$\max_{\|A\| \leq 1} \|x + A y\| \leq 1 + \delta \implies \|y\| \leq \Omega(\delta).$$

The smallest of the functions Ω is denoted by Ω_X, i.e.,

$$\Omega_X(\delta) := \sup \left\{ \| y \| : \max_{\|A\| \leq 1} \| x + A y\| \leq 1 + \delta \right\}.$$
As mentioned in [3], it can be easily seen that
\[\Omega_C(\delta) = \delta \quad \text{and} \quad \Omega_H(\delta) = \sqrt{\delta(2+\delta)}, \]
where \(H \) is a Hilbert space of dimension at least two.

As in [4], we call a function \(\omega : [0, \infty) \to \mathbb{R} \) a majorant if \(\omega \) is continuous, increasing, \(\omega(0) = 0 \), and \(t^{-1}\omega(t) \) is nonincreasing on \((0, \infty)\). If, in addition, there is a constant \(C(\omega) > 0 \) such that
\[\int_0^\delta \frac{\omega(t)}{t} \, dt + \delta \int_\delta^\infty \frac{\omega(t)}{t^2} \, dt \leq C(\omega) \cdot \omega(\delta) \]
whenever \(0 < \delta < 1 \), then we say that \(\omega \) is a regular majorant.

Then the space \(\text{Lip}(\omega, G, X) \), where \(G \) is bounded subset of \(\mathbb{C}^n \), is defined to be the set of those functions \(g : G \to X \) for which
\[\|g(z) - g(w)\| \leq c \cdot \omega(\|z - w\|), \]
where \(c \) is a constant. If \(\omega(t) = t^\alpha \) for some \(\alpha \in (0, 1] \), then we write \(\text{Lip}(\omega, G, X) = \Lambda_\alpha(G, X) \). If \(X \) is uniformly \(c \)-convex, then \(\Omega_X \) is a majorant (cf. [2]). A majorant \(\omega \) is said to be a Dini majorant if \(\int_0^1 \omega(t) \, dt < \infty \). For a Dini majorant, we define the majorant \(\tilde{\omega} \) by
\[\tilde{\omega}(t) = \int_0^t \frac{\omega(x)}{x} \, dx = \int_0^1 \frac{\omega(tx)}{x} \, dx. \]
A majorant \(\omega \) is said to be fast [5] if
\[\int_0^\delta \frac{\omega(t)}{t} \, dt \leq \text{const} \cdot \omega(\delta), \quad 0 < \delta < \delta_0, \]
for some \(\delta_0 > 0 \). (Of course, if \(\omega \) is fast, then it is a Dini majorant).

Dyakonov [4] gave some characterizations of the holomorphic functions of class \(\Lambda_\omega(D, \mathbb{C}) \) in terms of their moduli.

Theorem A (cf. [4]). Let \(\omega \) be a regular majorant. A function \(f \) holomorphic in \(D \) is in \(\Lambda_\omega(D, \mathbb{C}) \) if and only if so is its modulus \(|f| \).

The main ingredient in Dyakonov’s proof is a very complicated. However, Pavlovic [8] gave a simple proof of Theorem A. The proof uses only the basic lemmas of [4] and the Schwarz lemma, and is therefore considerably shorter than that of [4]. However, Theorem A does not extend to \(\mathbb{C}^k \)-valued functions (\(k \geq 2 \)). So we have to consider functions with additional properties (see Theorems 5 and 6).

In [3], Djordjević and Pavlović extended to vector-valued functions of a theorem of Dyakonov [4] on Lipschitz conditions for the modulus of holomorphic functions. Therefore, it is natural for us to extend this result for holomorphic functions on \(\mathbb{B}^n \). Very recently, Kalaj [7] established a Schwarz–Pick type inequality for holomorphic mappings between unit balls \(\mathbb{B}^n \) and \(\mathbb{B}^m \) in the corresponding complex spaces.

Theorem B (cf. [7, Theorem 2.1]). If \(f \) is a holomorphic mapping of the unit ball \(\mathbb{B}^n \subset \mathbb{C}^n \) into \(\mathbb{B}^m \subset \mathbb{C}^m \), then for \(z \in \mathbb{B}^n \) we have
\[\|f'(z)\| \leq \begin{cases} \sqrt{1 - \|f(z)\|^2} & \text{for } m \geq 2, \\ \frac{1 - \|z\|^2}{1 - \|f(z)\|^2} & \text{for } m = 1. \end{cases} \]

In [1], Dai and Pan proved the following theorem which establishes a Schwarz–Pick type estimates for gradient of the modulus of holomorphic mappings.
Theorem C (cf. [1, Theorem 1]). Let \(f : \mathbb{B}^n \to \mathbb{B}^n \) be a holomorphic mapping. Then
\[
|\nabla \|f\|(z)| \leq \frac{1 - \|f(z)\|^2}{1 - \|z\|^2} \quad \text{for } z \in \mathbb{B}^n.
\]

For a holomorphic mapping \(f : \mathbb{B}^n \to \mathbb{B}^m \), we have
\[
|\nabla \|f\|(z)| = \frac{1}{\|f(z)\|} \left\| \left(\frac{\partial f(z)}{\partial z_1}, f(z), \ldots, \frac{\partial f(z)}{\partial z_n}, f(z) \right) \right\| \quad \text{if } f(z) \neq 0. \tag{1}
\]

2. The main results

Theorem 1. Let \(X \) be uniformly \(\alpha \)-convex and \(f : \mathbb{B}^n \to X \) be a holomorphic function such that the function \(\|f(z)\| \) belongs to \(\Lambda_\alpha(\mathbb{B}^n, \mathbb{R}) \) for some \(\alpha \in (0, 1] \). Then \(f \in \operatorname{Lip}(\tilde{m}_\alpha, \mathbb{B}^n, X) \), where \(\tilde{m}_\alpha(t) = \Omega_X(t^\alpha) \).

In particular, the function \(f \) is uniformly continuous on \(\mathbb{B}^n \) that has a continuous extension to the closed disk.

Corollary 3. If \(\Omega_X \) is fast and \(f : \mathbb{B}^n \to X \) is a holomorphic function such that the function \(\|f(z)\| \) belongs to \(\Lambda_\alpha(\mathbb{B}^n, \mathbb{R}) \) for some \(\alpha \in (0, 1] \). Then \(f \in \operatorname{Lip}(\tilde{m}_\alpha, \mathbb{B}^n, X) \), where \(\tilde{m}_\alpha(t) = \Omega_X(t^\alpha) \).

Taking \(n = 1 \) and \(X = \mathbb{C} \), we get the following result of Dyakonov [4].

Corollary 4. If \(f : \mathbb{D} \to \mathbb{C} \) is a holomorphic function such that \(|f| \) belongs to \(\Lambda_\alpha(\mathbb{D}, \mathbb{R}) \) for some \(\alpha \in (0, 1] \). Then \(f \) belongs to \(\Lambda_\alpha(\mathbb{D}, \mathbb{C}) \).

Theorem 5. Let \(0 < \alpha \leq 1 \) and \(f : \mathbb{B}^n \to \mathbb{C}^m \) be a holomorphic function such that
\[
\frac{\|f'(z)\|}{\|f(z)\|} \leq K \left\| \left(\frac{\partial f(z)}{\partial z_1}, f(z), \ldots, \frac{\partial f(z)}{\partial z_n}, f(z) \right) \right\| \quad \text{for } z \in \mathbb{B}^n, \tag{5}
\]
where \(K \) is a constant independent of \(z \). Then \(f \in \Lambda_\alpha(\mathbb{B}^n, \mathbb{C}^m) \) if and only if \(\|f\| \in \Lambda_\alpha(\mathbb{B}^n, \mathbb{R}) \).

Theorem 6. If \(f : \mathbb{B}^n \to \mathbb{C}^m \), \(m \geq 2 \), is holomorphic and if \(\|f\| \in \Lambda_\alpha(\mathbb{B}^n, \mathbb{R}) \) for some \(\alpha \in (0, 1] \), then we have \(f \in \Lambda_{\alpha/2}(\mathbb{B}^n, \mathbb{C}^m) \).

The case \(n = 1 \) of Theorems 5 and 6 gives results of Pavlović [9].

3. Proofs of the Theorems

Theorem 1 is a direct consequence of the following lemma.

Lemma 7. If \(f : \mathbb{B}^n \to X \) is a holomorphic function satisfying the condition
\[
\|f(z)\| - \|f(w)\| \leq c(1 - \|z\|)^\alpha \quad \text{whenever } \|w - z\| \leq 1 - \|z\|, \tag{6}
\]
then there holds (3).
Proof. Fix \(z \in \mathbb{B}^n \) with \(f(z) \neq 0 \), and fix \(\beta \in \mathbb{C}^n \) with \(\|\beta\| = 1 \). Let \(L \in X^\ast, \|L\| = 1 \), where \(X^\ast \) is the dual of \(X \). Consider the scalar valued function

\[
\phi(z) = L \circ f(z),
\]

and introduce the following set for the given \(z \in \mathbb{B}^n \),

\[
D_z := \{ w \in \mathbb{C}^n : \|w - z\| < 1 - \|z\| \} \quad \text{and} \quad M_z := \sup\{\|f(w)\| : w \in D_z\}.
\]

If \(z = 0 \) and \(M_0 = 1 \), then the Schwarz–Pick lemma (see Theorem B) gives

\[
|\phi'(0)| \leq 1 - |\phi(0)|^2 \leq 2(1 - |\phi(0)|),
\]

which is our inequality in this special case. The general case follows by applying the special case to the function \(\Phi \) defined by

\[
\Phi(\zeta) = \frac{\phi(z + (1 - \|z\|)\beta\zeta)}{M_z} \quad \text{for} \ \zeta \in \mathbb{B}^n.
\]

As

\[
\Phi(0) = \frac{L(f(z))}{M_z} \quad \text{and} \quad \Phi'(0) = \frac{1 - \|z\|)}{M_z}L(f'(z)\beta),
\]

we deduce from (7) that

\[
(1 - \|z\|)||L(f'(z)\beta/2)| + |L(f(z))| \leq M_z.
\]

Hence, for every \(\lambda \in \mathbb{D} \), we obtain

\[
|\lambda(1 - \|z\|)||L(f'(z)\beta/2) + L(f(z))| \leq M_z.
\]

Since this holds for every \(L \) of norm 1, by taking the supremum over all \(L \) with \(\|L\| = 1 \) and by applying the Hahn–Banach theorem, we get

\[
\left\| \frac{(1 - \|z\|)}{2} f'(z)\beta + f(z) \right\| \leq M_z, \quad \text{i.e.,} \quad \left\| f(z) \frac{1 - \|z\|}{2f(z)} + \frac{(1 - \|z\|)}{2} f'(z)\beta \right\| \leq \frac{M_z}{\|f(z)\|}.
\]

Now denoting

\[
x = \frac{f(z)}{\|f(z)\|}, \quad y = \frac{(1 - \|z\|)}{2} f'(z)\beta \quad \text{and} \quad \delta = \frac{M_z - \|f(z)\|}{\|f(z)\|},
\]

we see from the definition of \(\Omega_X \) that

\[
(1 - \|z\|)||f'(z)\beta\| \leq 2\|f(z)\|\Omega_X \left(\frac{M_z - \|f(z)\|}{\|f(z)\|} \right).
\]

Hence, the last inequality holds for every \(\beta \in \mathbb{C}^n \) with \(\|\beta\| = 1 \), we get

\[
(1 - \|z\|)||f'(z)\| \leq 2\|f(z)\|\Omega_X \left(\frac{M_z - \|f(z)\|}{\|f(z)\|} \right).
\]

Therefore by (6) and (8), we obtain that

\[
(1 - \|z\|)||f'(z)\| \leq 2\|f(z)\|\Omega_X \left(\frac{c(1 - \|z\|)^a}{\|f(z)\|} \right).
\]

Now (3) follows from the fact that \(\Omega_X(t)/t \) is a decreasing function and the inequality \(\|f(z)\| \leq K \). The proof is complete. \(\square \)

Lemma 8. If a \(C^1 \)-function \(u : \mathbb{B}^n \to \mathbb{R} \) satisfies

\[
\| \nabla u(z) \| \leq \frac{\omega(1 - \|z\|)}{1 - \|z\|} \quad \text{for} \ z \in \mathbb{B}^n,
\]

where \(\omega \) is a Dini majorant, then

\[
|u(a) - u(b)| \leq 3 \tilde{\omega}(\|a - b\|) \quad \text{for} \ a, b \in \mathbb{B}^n.
\]
Lemma 9. If f is an X-valued holomorphic function in \mathbb{B}^n and $\operatorname{Im}(a)$ as in Theorem 1. Fix $z \in \mathbb{B}^n$. Finally, if $\delta > 1 - \|a\|$, we use the inequality

$$|u(a) - u(b)| \leq |u(a) - u(a')| + |u(a') - u(b')| + |u(b') - u(b)|,$$

where $a' = \frac{(1-\delta)a}{\|a\|}$, and then proceed in a similar way as above, using the inequality $\|a' - b'\| \leq \|a - b\|$.

Lemma 9 can easily be proved by applying the previous lemma to the functions $\operatorname{Re}(L \circ f(z))$ and $\operatorname{Im}(L \circ f(z))$, where $L \in X^*$ and $\|L\| = 1$.

Lemma 9. If f is an X-valued holomorphic function in \mathbb{B}^n and satisfies the condition

$$\|f'(z)\| \leq \frac{\omega(1 - \|z\|)}{1 - \|z\|}$$

for $z \in \mathbb{B}^n$, where ω is a Dini majorant, then $f \in \operatorname{Lip}(\tilde{\omega}, \mathbb{B}^n, X)$.

Proof of Theorem 2. Let f satisfy the hypotheses of the theorem. Then

$$\|f'(z)/2K\| \leq \frac{\omega(1 - \|z\|)}{1 - \|z\|},$$

by Theorem 1, where $\omega(t) = \Omega_X(cK^{-1}ta)$. But a simple calculation shows that $\tilde{\omega}(t) = a^{-1}\Omega_X(cK^{-1}ta)$ and so we can appeal to Lemma 9 to conclude the proof.

Proof of Theorem 5. The “only if” part is trivial. Assume that $\|f(z)\| \in \Lambda_\omega(\mathbb{B}^n, \mathbb{R})$ and we proceed as in Theorem 1. Fix $z \in \mathbb{B}^n$ with $f(z) \neq 0$, and consider the following sets for a given $z \in \mathbb{B}^n$,

$$D_z := \{w \in C^n : \|w - z\| < 1 - \|z\|\} \quad \text{and} \quad M_z := \sup\{\|f(w)\| : w \in D_z\}.$$

If $z = 0$ and $M_0 = 1$, Theorem C gives

$$|\nabla f(0)|^2 \leq 1 - \|f(0)\|^2 \leq 2(1 - \|f(0)\|).$$
Therefore, from (5) and the formula (1), we have that
\[\| f'(0) \| \leq 2K(1 - \| f(0) \|), \]
which is our inequality in this special case. The general case follows by applying the special case to the function \(F \) defined by
\[F(\zeta) = \frac{f(z + \zeta(1 - \| z \|))}{M_z} \quad \text{for} \quad \zeta \in \mathbb{B}^n, \tag{9} \]
and obtain
\[\frac{1}{2K} (1 - \| z \|) \| f'(z) \| + \| f(z) \| \leq M_z \quad \text{for} \quad z \in \mathbb{B}^n. \tag{10} \]
Since \(\| f \| \in \Lambda_\alpha(\mathbb{B}^n, \mathbb{R}) \), we have
\[\| f(w) \| - \| f(z) \| \leq c\| w - z \|^\alpha \leq c(1 - \| z \|)^\alpha, \]
for \(z \in \mathbb{B}^n \) and \(w \in D_z \). Taking the supremum over all \(w \in D_z \) and then using the inequality (10), we get
\[\| f'(z) \| \leq C \frac{\omega(1 - \| z \|)}{1 - \| z \|}, \]
where \(C \) is a constant and \(\omega(t) = t^{\alpha/2} \). The desired conclusion follows from Lemma 9. \(\square \)

Proof of Theorem 6. Let \(z \in \mathbb{B}^n \) and proceed the steps as in the above proof. If \(z = 0 \) and \(M_0 = 1 \), then the higher dimensional version of Schwarz–Pick lemma (Theorem C) gives
\[\| f'(0) \| \leq \sqrt{1 - \| f(0) \|^2} \leq \sqrt{2} \sqrt{1 - \| f(0) \|}, \]
which is our inequality in this special case. The general case follows by applying the special case to the function \(F \) defined by (9). Indeed, we obtain
\[(1 - \| z \|) \| f'(z) \| \leq c \sqrt{M_z - \| f(z) \|}, \tag{11} \]
for some constant \(c \). Since \(\| f \| \in \Lambda_\alpha(\mathbb{B}^n, \mathbb{R}) \), we have
\[\| f(w) \| - \| f(z) \| \leq c\| w - z \|^\alpha \leq c(1 - \| z \|)^\alpha, \]
for \(z \in \mathbb{B}^n \) and \(w \in D_z \). Taking the supremum over \(w \in D_z \) and then using the inequality (11), we get
\[\| f'(z) \| \leq C \frac{\omega(1 - \| z \|)}{1 - \| z \|}, \]
where \(C \) is a constant and \(\omega(t) = t^{\alpha/2} \). Now the result follows from Lemma 9. \(\square \)

Remark 10. The index \(\alpha/2 \) in Theorem 6 is optimal as demonstrated by the following example (see [9]). Consider the function \(f : \mathbb{D} \rightarrow \mathbb{C}^2 \) by \(f(z) = (1, (1 - z)^{\alpha/2}) \), \(0 < \alpha \leq 1 \). We have
\[\| f(z) \| - \| f(w) \| = \sqrt{\| 1 - z \|^\alpha + 1 - \sqrt{\| 1 - w \|^\alpha + 1}} \leq \| 1 - w \|^\alpha - \| 1 - z \|^\alpha \leq \| z - w \|^\alpha, \]
while \(\| f(1) - f(r) \| = (1 - r)^{\alpha/2}, 0 < r < 1 \). This shows that the index \(\alpha/2 \) is optimal.
4. Concluding Remarks

As mentioned in [3], the inequality (4) is in a sense optimal for the case \(n = 1 \). To see this, let \(\omega(t) > 0 \) be an arbitrary increasing function on \((0, \infty)\) such that \(\omega(0^+) = 0 \). We say that a Banach space \(X \) has the property \(\mathcal{L}(\omega, \alpha) \), if the following holds: For every \(c \in (0, 1) \) and every analytic function \(f : \mathbb{D} \to X \) with \(\| f(0) \| = 1 \), the inequality (2) implies that

\[
\| f'(\lambda) \| \leq \frac{\omega(c(1 - |\lambda|)^{\alpha})}{1 - |\lambda|} \quad \text{for} \quad \lambda \in \mathbb{D}.
\]

It is well-known that, if the Banach space \(X \) has the property \(\mathcal{L}(\omega, \alpha) \) (see [3, Proposition 10]), then \(X \) is uniformly \(c \)-convex and \(\Omega_X(\delta) \leq B\omega(\delta) \) for \(0 < \delta < 1 \), where \(B \) is a constant. This result is to emphasize the fact that \(\| f(0) \| = 1 \) provides condition for uniformly \(c \)-convexity of the Banach space \(X \).

References