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1. Introduction and Preliminaries

Denote by Cn , the n-dimensional complex Hilbert space with the inner product and the norm
given by 〈z, w〉 :=∑n

j=1 z j w j and ‖z‖ :=p〈z, z〉, where z, w ∈Cn , respectively. Write Bn := {z ∈Cn :

‖z‖ < 1} for the open unit ball in Cn so that B1 =: D denotes the open unit disk in C. If V and W
are two normed spaces and U ⊂V is open, then the Fréchet derivative of a holomorphic mapping
f : U →W is defined to be the unique linear map A = f ′(z) : V →W such that

f (z +h) = f (z)+ f ′(z) ·h +o(‖h‖2)

for h near the origin of V . The norm of such a map is defined by ‖A‖ = sup‖z‖=1 ‖Az‖.
In 1975, Globevnik [6] introduced the notion of uniform c-convexity and proved that L1-space

possesses this property. Namely, a complex normed space X is said to be uniformly c-convex if
there exists a positive increasing functionΩ(δ) (δ> 0) withΩ(0+) = 0 such that for all x, y ∈ X and
δ> 0 there holds the implication

max
|λ|≤1
‖x‖=1

‖x +λy‖ ≤ 1+δ =⇒ ‖y‖ ≤Ω(δ).

The smallest of the functionsΩ is denoted byΩX , i.e.,

ΩX (δ) := sup

‖y‖ : max
|λ|≤1
‖x‖=1

‖x +λy‖ ≤ 1+δ
 .
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As mentioned in [3], it can be easily seen that

ΩC(δ) = δ and ΩH (δ) =
√
δ(2+δ),

where H is a Hilbert space of dimension at least two.
As in [4], we call a function ω : [0,∞) → R a majorant if ω is continuous, increasing, ω(0) = 0,

and t−1ω(t ) is nonincreasing on (0,∞). If, in addition, there is a constant C (ω) > 0 such that∫ δ

0

ω(t )

t
dt +δ

∫ ∞

δ

ω(t )

t 2 dt ≤C (ω) ·ω(δ)

whenever 0 < δ< 1, then we say that ω is a regular majorant.
Then the space Lip(ω,G , X ), where G is bounded subset of Cn , is defined to be the set of those

functions g : G → X for which

‖g (z)− g (w)‖ ≤ c ·ω(‖z −w‖),

where c is a constant. If ω(t ) = tα for some α ∈ (0,1], then we write Lip(ω,G , X ) =Λα(G , X ). If X is
uniformly c-convex, then ΩX is a majorant (cf. [2]). A majorant ω is said to be a Dini majorant if∫ 1

0
ω(t )

t dt <∞. For a Dini majorant, we define the majorant ω̃ by

ω̃(t ) =
∫ t

0

ω(x)

x
dx =

∫ 1

0

ω(t x)

x
dx.

A majorant ω is said to be fast [5] if∫ δ

0

ω(t )

t
dt ≤ const ·ω(δ), 0 < δ< δ0,

for some δ0 > 0. (Of course, if ω is fast, then it is a Dini majorant).
Dyakonov [4] gave some characterizations of the holomorphic functions of class Λω(D,C) in

terms of their moduli.

Theorem A (cf. [4]). Let ω be a regular majorant. A function f holomorphic in D is in Λω(D,C) if
and only if so is its modulus | f |.

The main ingredient in Dyakonov’s proof is a very complicated. However, Pavlovic [8] gave a
simple proof of Theorem A. The proof uses only the basic lemmas of [4] and the Schwarz lemma,
and is therefore considerably shorter than that of [4]. However, Theorem A does not extend to
Ck - valued functions (k ≥ 2). So we have to consider functions with additional properties (see
Theorems 5 and 6).

In [3], Djordjević and Pavlović extended to vector-valued functions of a theorem of
Dyakonov [4] on Lipschitz conditions for the modulus of holomorphic functions. Therefore,
it is natural for us to extend this result for holomorphic functions on Bn . Very recently, Kalaj [7]
established a Schwarz–Pick type inequality for holomorphic mappings between unit balls Bn

and Bm in the corresponding complex spaces.

Theorem B (cf. [7, Theorem 2.1]). If f is a holomorphic mapping of the unit ball Bn ⊂ Cn into
Bm ⊂Cm , then for z ∈Bn we have

‖ f ′(z)‖ ≤


√

1−‖ f (z)‖2

1−‖z‖2 for m ≥ 2,

1−‖ f (z)‖2

1−‖z‖2 for m = 1.

In [1], Dai and Pan proved the following theorem which establishes a Schwarz–Pick type
estimates for gradient of the modulus of holomorphic mappings.
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Theorem C (cf. [1, Theorem 1]). Let f : Bn →Bm be a holomorphic mapping. Then∣∣∇‖ f ‖(z)
∣∣≤ 1−‖ f (z)‖2

1−‖z‖2 for z ∈Bn .

For a holomorphic mapping f : Bn →Bm , we have∣∣∇‖ f ‖(z)
∣∣= 1

‖ f (z)‖
∥∥∥∥(〈

∂ f (z)

∂z1
, f (z)

〉
, . . . ,

〈
∂ f (z)

∂zn
, f (z)

〉)∥∥∥∥ if f (z) 6= 0. (1)

2. The main results

Theorem 1. Let X be uniformly c-convex and f : Bn → X be a holomorphic function satisfying∣∣‖ f (z)‖−‖ f (w)‖∣∣≤ c‖z −w‖α for z, w ∈Bn , (2)

where c ≥ 0 and α ∈ [0,1] are constants. Then

‖ f ′(z)‖ ≤ 2K
ΩX (cK −1(1−‖z‖)α)

1−‖z‖ for z ∈Bn , (3)

where K = ‖ f (0)‖+ c. Especially, if ‖ f (0)‖ = 1, then

‖ f ′(z)‖ ≤ 2(1+ c)
ΩX (c(1−‖z‖)α)

1−‖z‖ for z ∈Bn . (4)

Theorem 2. Let X be uniformly c-convex such that ΩX is a Dini majorant and f : Bn → X be a
holomorphic function such that the function ‖ f (z)‖ belongs to Λα(Bn ,R) for some α ∈ (0,1]. Then
f ∈ Lip(ωα,Bn , X ), where ωα(t ) = Ω̃X (tα).

In particular, the function f is uniformly continuous on Bn that has a continuous extension to
the closed disk.

Corollary 3. If ΩX is fast and f : Bn → X is a holomorphic function such that the function ‖ f (z)‖
belongs toΛα(Bn ,R) for some α ∈ (0,1]. Then f ∈ Lip(ωα,Bn , X ), where ωα(t ) =ΩX (tα).

Taking n = 1 and X =C, we get the following result of Dyakonov [4].

Corollary 4. If f : D→ C is a holomorphic function such that | f | belongs to Λα(D,R) for some
α ∈ (0,1]. Then f belongs toΛα(D,C).

Theorem 5. Let 0 <α≤ 1 and f : Bn →Cm be a holomorphic function such that

‖ f ′(z)‖‖ f (z)‖ ≤ K

∥∥∥∥(〈
∂ f (z)

∂z1
, f (z)

〉
, . . . ,

〈
∂ f (z)

∂zn
, f (z)

〉)∥∥∥∥ for z ∈Bn , (5)

where K is a constant independent of z. Then f ∈Λα(Bn ,Cm) if and only if ‖ f ‖ ∈Λα(Bn ,R).

Theorem 6. If f : Bn →Cm ,m ≥ 2, is holomorphic and if ‖ f ‖ ∈Λα(Bn ,R) for some α ∈ (0,1], then
we have f ∈Λα/2(Bn ,Cm).

The case n = 1 of Theorems 5 and 6 gives results of Pavlović [9].

3. Proofs of the Theorems

Theorem 1 is a direct consequence of the following lemma.

Lemma 7. If f : Bn → X is a holomorphic function satisfying the condition∣∣‖ f (z)‖−‖ f (w)‖∣∣≤ c(1−‖z‖)α whenever ‖w − z‖ ≤ 1−‖z‖, (6)

then there holds (3).

C. R. Mathématique — 2021, 359, n 5, 609-615
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Proof. Fix z ∈ Bn with f (z) 6= 0, and fix β ∈ Cn with ‖β‖ = 1. Let L ∈ X ∗, ‖L‖ = 1, where X ∗ is the
dual of X . Consider the scalar valued function

φ(z) = L ◦ f (z),

and introduce the following set for the given z ∈Bn ,

Dz := {w ∈Cn : ‖w − z‖ < 1−‖z‖} and Mz := sup{‖ f (w)‖ : w ∈ Dz }.

If z = 0 and M0 = 1, then the Schwarz–Pick lemma (see Theorem B) gives

|φ′(0)| ≤ 1−|φ(0)|2 ≤ 2(1−|φ(0)|), (7)

which is our inequality in this special case. The general case follows by applying the special case
to the functionΦ defined by

Φ(ζ) = φ(z + (1−‖z‖)βζ)

Mz
for ζ ∈Bn .

As

Φ(0) = L( f (z))

Mz
and Φ′(0) = (1−‖z‖)

Mz
L( f ′(z)β),

we deduce from (7) that

(1−‖z‖)|L( f ′(z)β/2)|+ |L( f (z))| ≤ Mz .

Hence, for every λ ∈D, we obtain

|λ(1−‖z‖)L( f ′(z)β/2)+L( f (z))| ≤ Mz .

Since this holds for every L of norm 1, by taking the supremum over all L with ‖L‖ = 1 and by
applying the Hahn–Banach theorem, we get∥∥∥∥λ (1−‖z‖) f ′(z)β

2
+ f (z)

∥∥∥∥≤ Mz , i.e.,

∥∥∥∥ f (z)

‖ f (z)‖ +λ (1−‖z‖) f ′(z)β

2‖ f (z)‖
∥∥∥∥≤ Mz

‖ f (z)‖ .

Now denoting

x = f (z)

‖ f (z)‖ , y = (1−‖z‖) f ′(z)β

2‖ f (z)‖ and δ= Mz −‖ f (z)‖
‖ f (z)‖ ,

we see from the definition ofΩX that

(1−‖z‖)‖ f ′(z)β‖ ≤ 2‖ f (z)‖ΩX

(
Mz −‖ f (z)‖

‖ f (z)‖
)

.

Hence, the last inequality holds for every β ∈Cn with ‖β‖ = 1, we get

(1−‖z‖)‖ f ′(z)‖ ≤ 2‖ f (z)‖ΩX

(
Mz −‖ f (z)‖

‖ f (z)‖
)

. (8)

Therefore by (6) and (8), we obtain that

(1−‖z‖)‖ f ′(z)‖ ≤ 2‖ f (z)‖ΩX

(
c(1−‖z‖)α

‖ f (z)‖
)

.

Now (3) follows from the fact thatΩX (t )/t is a decreasing function and the inequality ‖ f (z)‖ ≤ K .
The proof is complete. �

Lemma 8. If a C 1-function u : Bn →R satisfies

‖∇u(z)‖ ≤ ω(1−‖z‖)

1−‖z‖ for z ∈Bn ,

where ω is a Dini majorant, then

|u(a)−u(b)| ≤ 3 ω̃(‖a −b‖) for a,b ∈Bn .

C. R. Mathématique — 2021, 359, n 5, 609-615
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Proof. We begin the proof with the following observation: ω≤ ω̃. In fact, we let t0 ∈ (0,∞). Since
ω(t )

t is decreasing on (0,∞), we have

ω(t0)

t0
≤ ω(t0x)

t0x
for x ∈ (0,1].

Integrating on both sides of the last inequality from 0 to 1, we obtain by definition of ω̃ that
ω(t0) ≤ ω̃(t0).

Let ‖a‖ ≤ ‖b‖ ≤ 1. By Lagrange’s mean-value theorem,

|u(a)−u(b)| ≤ ‖∇u(c)‖‖a −b‖,

where c = (1−λ)a +λb for some λ ∈ (0,1). Since ‖c‖ ≤ ‖b‖ and ω(t )/t decreases, we see that
ω(1−‖c‖)

1−‖c‖ ≤ ω(1−‖b‖)

1−‖b‖
and hence,

|u(a)−u(b)| ≤ω(‖a −b‖) ≤ ω̃(‖a −b‖),

under the condition ‖a −b‖ ≤ 1−‖b‖.
If 1−‖b‖ ≤ ‖a −b‖ ≤ 1−‖a‖, then

|u(a)−u(b)| ≤ |u(a)−u(b′)|+ |u(b′)−u(b)|,
where b′ = (1−δ)b

‖b‖ and δ= ‖a −b‖. Using the Lagrange’s mean-value theorem as above we get

|u(a)−u(b′)| ≤ ω(1−‖b′‖)

1−‖b′‖ ‖a −b′‖ = ω(δ)

δ
‖a −b′‖ ≤ω(δ) ≤ ω̃(δ).

In the case of |u(b′)−u(b)|, we have

|u(b′)−u(b)| ≤
∫ ‖b‖

‖b′‖
ω(1− t )

1− t
dt ≤

∫ 1

1−δ
ω(1− t )

1− t
dt = ω̃(δ).

Finally, if δ> 1−‖a‖, we use the inequality

|u(a)−u(b)| ≤ |u(a)−u(a′)|+ |u(a′)−u(b′)|+ |u(b′)−u(b)|,
where a′ = (1−δ)a

‖a‖ , and then proceed in a similar way as above, using the inequality ‖a′ −b′‖ ≤
‖a −b‖. �

Lemma 9 can easily be proved by applying the previous lemma to the functions Re(L ◦ f (z))
and Im(L ◦ f (z)), where L ∈ X ∗ and ‖L‖ = 1.

Lemma 9. If f is an X -valued holomorphic function in Bn and satisfies the condition

‖ f ′(z)‖ ≤ ω(1−‖z‖)

1−‖z‖ for z ∈Bn ,

where ω is a Dini majorant, then f ∈ Lip(ω̃,Bn , X ).

Proof of Theorem 2. Let f satisfy the hypotheses of the theorem. Then

‖ f ′(z)/2K ‖ ≤ ω(1−‖z‖)

1−‖z‖ ,

by Theorem 1, where ω(t ) = ΩX (cK −1tα). But a simple calculation shows that ω̃(t ) =
α−1Ω̃X (cK −1tα) and so we can appeal to Lemma 9 to conclude the proof. �

Proof of Theorem 5. The “only if” part is trivial. Assume that ‖ f (z)‖ ∈Λα(Bn ,R) and we proceed
as in Theorem 1. Fix z ∈Bn with f (z) 6= 0, and consider the following sets for a given z ∈Bn ,

Dz := {w ∈Cn : ‖w − z‖ < 1−‖z‖} and Mz := sup{‖ f (w)‖ : w ∈ Dz }.

If z = 0 and M0 = 1, Theorem C gives

|∇‖ f ‖(0)| ≤ 1−‖ f (0)‖2 ≤ 2(1−‖ f (0)‖).

C. R. Mathématique — 2021, 359, n 5, 609-615
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Therefore, from (5) and the formula (1), we have that

‖ f ′(0)‖ ≤ 2K (1−‖ f (0)‖),

which is our inequality in this special case. The general case follows by applying the special case
to the function F defined by

F (ζ) = f (z +ζ(1−‖z‖))

Mz
for ζ ∈Bn , (9)

and obtain
1

2K
(1−‖z‖)‖ f ′(z)‖+‖ f (z)‖ ≤ Mz for z ∈Bn . (10)

Since ‖ f ‖ ∈Λα(Bn ,R), we have

‖ f (w)‖−‖ f (z)‖ ≤ c‖w − z‖α ≤ c(1−‖z‖)α,

for z ∈ Bn and w ∈ Dz . Taking the supremum over all w ∈ Dz and then using the inequality (10),
we get

‖ f ′(z)‖ ≤C
ω(1−‖z‖)

1−‖z‖ ,

where C is a constant and ω(t ) = tα. The desired conclusion follows from Lemma 9. �

Proof of Theorem 6. Let z ∈ Bn and proceed the steps as in the above proof. If z = 0 and M0 = 1,
then the higher dimensional version of Schwarz–Pick lemma (Theorem C) gives

‖ f ′(0)‖ ≤
√

1−‖ f (0)‖2 ≤p
2
√

1−‖ f (0)‖,

which is our inequality in this special case. The general case follows by applying the special case
to the function F defined by (9). Indeed, we obtain

(1−‖z‖)‖ f ′(z)‖ ≤ c
√

Mz −‖ f (z)‖, (11)

for some constant c. Since ‖ f ‖ ∈Λα(Bn ,R), we have

‖ f (w)‖−‖ f (z)‖ ≤ c‖w − z‖α ≤ c(1−‖z‖)α,

for z ∈ Bn and w ∈ Dz . Taking the supremum over w ∈ Dz and then using the inequality (11),
we get

‖ f ′(z)‖ ≤C
ω(1−‖z‖)

1−‖z‖ ,

where C is a constant and ω(t ) = tα/2. Now the result follows from Lemma 9. �

Remark 10. The index α/2 in Theorem 6 is optimal as demonstrated by the following example
(see [9]). Consider the function f : D→C2 by f (z) = (1, (1− z)α/2), 0 <α≤ 1. We have∣∣∣‖ f (z)‖−‖ f (w)‖

∣∣∣= ∣∣∣√‖1− z‖α+1−
√
‖1−w‖α+1

∣∣∣
≤

∣∣∣‖1−w‖α−‖1− z‖α
∣∣∣≤ ‖z −w‖α,

while ‖ f (1)− f (r )‖ = (1− r )α/2,0 < r < 1. This shows that the index α/2 is optimal.
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4. Concluding Remarks

As mentioned in [3], the inequality (4) is in a sense optimal for the case n = 1. To see this, let
ω(t ) > 0 be an arbitrary increasing function on (0,∞) such that ω(0+) = 0. We say that a Banach
space X has the property L (ω,α), if the following holds: For every c ∈ (0,1) and every analytic
function f : D→ X with ‖ f (0)‖ = 1, the inequality (2) implies that

‖ f ′(λ)‖ ≤ ω(c(1−|λ|)α)

1−|λ| for λ ∈D.

It is well-known that, if the Banach space X has the property L (ω,α) (see [3, Proposition 10]),
then X is uniformly c-convex andΩX (δ) ≤ Bω(δ) for 0 < δ< 1, where B is a constant. This result is
to emphasize the fact that ‖ f (0)‖ = 1 provides condition for uniformly c-convexity of the Banach
space X .
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[3] O. Djordjević, M. Pavlović, “Lipschitz conditions for the norm of a vector valued analytic function”, Houston J. Math.
34 (2008), no. 3, p. 817-826.

[4] K. M. Dyakonov, “Equivalent norms on Lipschitz type spaces of holomorphic functions”, Acta Math. 178 (1997), no. 2,
p. 143-167.

[5] ——— , “Holomorphic functions and quasiconformal mappings with smooth moduli”, Adv. Math. 187 (2004), no. 1,
p. 146-172.

[6] J. Globevnik, “On complex strict and uniform convexity”, Proc. Am. Math. Soc. 47 (1975), p. 175-178.
[7] D. Kalaj, “Schwarz lemma for holomorphic mappings in the unit ball”, Glasg. Math. J. 60 (2018), no. 1, p. 219-224.
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