Comptes Rendus

Mathématique

Saminathan Ponnusamy and Ramakrishnan Vijayakumar
 Generalized versions of Lipschitz conditions on the modulus of holomorphic functions

Volume 359, issue 5 (2021), p. 609-615
Published online: 13 July 2021
https://doi.org/10.5802/crmath. 200
(G) Er \quad This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l'édition scientifique ouverte
www.centre-mersenne.org
e-ISSN : 1778-3569

Generalized versions of Lipschitz conditions on the modulus of holomorphic functions

Saminathan Ponnusamy ${ }^{a}$ and Ramakrishnan Vijayakumar ${ }^{a}$

${ }^{a}$ Department of Mathematics, Indian Institute of Technology Madras, Chennai-600 036, India

E-mails: samy@iitm.ac.in, mathesvijay8@gmail.com

Abstract

In this paper, we establish Lipschitz conditions for the norm of holomorphic mappings between the unit ball \mathbb{B}^{n} in \mathbb{C}^{n} and X, a complex normed space. This extends the work of Djordjević and Pavlović.

Mathematical subject classification (2010). 30C80, 30H05, 32A10, 30G30, 46B20, 46E15, 46E40.
Manuscript received 15th September 2020, revised 9th February 2021, accepted 22nd March 2021.

1. Introduction and Preliminaries

Denote by \mathbb{C}^{n}, the n-dimensional complex Hilbert space with the inner product and the norm given by $\langle z, w\rangle:=\sum_{j=1}^{n} z_{j} \overline{w_{j}}$ and $\|z\|:=\sqrt{\langle z, z\rangle}$, where $z, w \in \mathbb{C}^{n}$, respectively. Write $\mathbb{B}^{n}:=\left\{z \in \mathbb{C}^{n}\right.$: $\|z\|<1\}$ for the open unit ball in \mathbb{C}^{n} so that $\mathbb{B}^{1}=: \mathbb{D}$ denotes the open unit disk in \mathbb{C}. If V and W are two normed spaces and $U \subset V$ is open, then the Fréchet derivative of a holomorphic mapping $f: U \rightarrow W$ is defined to be the unique linear map $A=f^{\prime}(z): V \rightarrow W$ such that

$$
f(z+h)=f(z)+f^{\prime}(z) \cdot h+o\left(\|h\|^{2}\right)
$$

for h near the origin of V. The norm of such a map is defined by $\|A\|=\sup _{\|z\|=1}\|A z\|$.
In 1975, Globevnik [6] introduced the notion of uniform c-convexity and proved that L^{1}-space possesses this property. Namely, a complex normed space X is said to be uniformly c-convex if there exists a positive increasing function $\Omega(\delta)(\delta>0)$ with $\Omega\left(0^{+}\right)=0$ such that for all $x, y \in X$ and $\delta>0$ there holds the implication

$$
\max _{\substack{|\lambda| \leq 1 \\\|x\|=1}}\|x+\lambda y\| \leq 1+\delta \Longrightarrow\|y\| \leq \Omega(\delta) .
$$

The smallest of the functions Ω is denoted by Ω_{X}, i.e.,

$$
\Omega_{X}(\delta):=\sup \left\{\|y\|: \max _{\substack{\lambda \mid \leq 1 \\\|x\|=1}}\|x+\lambda y\| \leq 1+\delta\right\} .
$$

As mentioned in [3], it can be easily seen that

$$
\Omega_{\mathbb{C}}(\delta)=\delta \quad \text { and } \quad \Omega_{H}(\delta)=\sqrt{\delta(2+\delta)}
$$

where H is a Hilbert space of dimension at least two.
As in [4], we call a function $\omega:[0, \infty) \rightarrow \mathbb{R}$ a majorant if ω is continuous, increasing, $\omega(0)=0$, and $t^{-1} \omega(t)$ is nonincreasing on $(0, \infty)$. If, in addition, there is a constant $C(\omega)>0$ such that

$$
\int_{0}^{\delta} \frac{\omega(t)}{t} \mathrm{~d} t+\delta \int_{\delta}^{\infty} \frac{\omega(t)}{t^{2}} \mathrm{~d} t \leq C(\omega) \cdot \omega(\delta)
$$

whenever $0<\delta<1$, then we say that ω is a regular majorant.
Then the space $\operatorname{Lip}(\omega, G, X)$, where G is bounded subset of \mathbb{C}^{n}, is defined to be the set of those functions $g: G \rightarrow X$ for which

$$
\|g(z)-g(w)\| \leq c \cdot \omega(\|z-w\|)
$$

where c is a constant. If $\omega(t)=t^{\alpha}$ for some $\alpha \in(0,1]$, then we write $\operatorname{Lip}(\omega, G, X)=\Lambda_{\alpha}(G, X)$. If X is uniformly c-convex, then Ω_{X} is a majorant (cf. [2]). A majorant ω is said to be a Dini majorant if $\int_{0}^{1} \frac{\omega(t)}{t} \mathrm{~d} t<\infty$. For a Dini majorant, we define the majorant $\widetilde{\omega}$ by

$$
\widetilde{\omega}(t)=\int_{0}^{t} \frac{\omega(x)}{x} \mathrm{~d} x=\int_{0}^{1} \frac{\omega(t x)}{x} \mathrm{~d} x
$$

A majorant ω is said to be fast [5] if

$$
\int_{0}^{\delta} \frac{\omega(t)}{t} \mathrm{~d} t \leq \operatorname{const} \cdot \omega(\delta), \quad 0<\delta<\delta_{0}
$$

for some $\delta_{0}>0$. (Of course, if ω is fast, then it is a Dini majorant).
Dyakonov [4] gave some characterizations of the holomorphic functions of class $\Lambda_{\omega}(\mathbb{D}, \mathbb{C})$ in terms of their moduli.

Theorem A (cf. [4]). Let ω be a regular majorant. A function f holomorphic in \mathbb{D} is in $\Lambda_{\omega}(\mathbb{D}, \mathbb{C})$ if and only if so is its modulus $|f|$.

The main ingredient in Dyakonov's proof is a very complicated. However, Pavlovic [8] gave a simple proof of Theorem A. The proof uses only the basic lemmas of [4] and the Schwarz lemma, and is therefore considerably shorter than that of [4]. However, Theorem A does not extend to \mathbb{C}^{k} - valued functions $(k \geq 2)$. So we have to consider functions with additional properties (see Theorems 5 and 6).

In [3], Djordjević and Pavlović extended to vector-valued functions of a theorem of Dyakonov [4] on Lipschitz conditions for the modulus of holomorphic functions. Therefore, it is natural for us to extend this result for holomorphic functions on \mathbb{B}^{n}. Very recently, Kalaj [7] established a Schwarz-Pick type inequality for holomorphic mappings between unit balls \mathbb{B}^{n} and \mathbb{B}^{m} in the corresponding complex spaces.

Theorem B (cf. [7, Theorem 2.1]). If f is a holomorphic mapping of the unit ball $\mathbb{B}^{n} \subset \mathbb{C}^{n}$ into $\mathbb{B}^{m} \subset \mathbb{C}^{m}$, then for $z \in \mathbb{B}^{n}$ we have

$$
\left\|f^{\prime}(z)\right\| \leq \begin{cases}\frac{\sqrt{1-\|f(z)\|^{2}}}{1-\|z\|^{2}} & \text { for } m \geq 2 \\ \frac{1-\|f(z)\|^{2}}{1-\|z\|^{2}} & \text { for } m=1\end{cases}
$$

In [1], Dai and Pan proved the following theorem which establishes a Schwarz-Pick type estimates for gradient of the modulus of holomorphic mappings.

Theorem C (cf. [1, Theorem 1]). Let $f: \mathbb{B}^{n} \rightarrow \mathbb{B}^{m}$ be a holomorphic mapping. Then

$$
|\nabla\|f\|(z)| \leq \frac{1-\|f(z)\|^{2}}{1-\|z\|^{2}} \quad \text { for } z \in \mathbb{B}^{n} .
$$

For a holomorphic mapping $f: \mathbb{B}^{n} \rightarrow \mathbb{B}^{m}$, we have

$$
\begin{equation*}
|\nabla\|f\|(z)|=\frac{1}{\|f(z)\|}\left\|\left(\left\langle\frac{\partial f(z)}{\partial z_{1}}, f(z)\right\rangle, \ldots,\left\langle\frac{\partial f(z)}{\partial z_{n}}, f(z)\right\rangle\right)\right\| \quad \text { if } f(z) \neq 0 \tag{1}
\end{equation*}
$$

2. The main results

Theorem 1. Let X be uniformly c-convex and $f: \mathbb{B}^{n} \rightarrow X$ be a holomorphic function satisfying

$$
\begin{equation*}
|\|f(z)\|-\|f(w)\|| \leq c\|z-w\|^{\alpha} \quad \text { for } z, w \in \mathbb{B}^{n}, \tag{2}
\end{equation*}
$$

where $c \geq 0$ and $\alpha \in[0,1]$ are constants. Then

$$
\begin{equation*}
\left\|f^{\prime}(z)\right\| \leq 2 K \frac{\Omega_{X}\left(c K^{-1}(1-\|z\|)^{\alpha}\right)}{1-\|z\|} \quad \text { for } z \in \mathbb{B}^{n}, \tag{3}
\end{equation*}
$$

where $K=\|f(0)\|+c$. Especially, if $\|f(0)\|=1$, then

$$
\begin{equation*}
\left\|f^{\prime}(z)\right\| \leq 2(1+c) \frac{\Omega_{X}\left(c(1-\|z\|)^{\alpha}\right)}{1-\|z\|} \quad \text { for } z \in \mathbb{B}^{n} . \tag{4}
\end{equation*}
$$

Theorem 2. Let X be uniformly c-convex such that Ω_{X} is a Dini majorant and $f: \mathbb{B}^{n} \rightarrow X$ be a holomorphic function such that the function $\|f(z)\|$ belongs to $\Lambda_{\alpha}\left(\mathbb{B}^{n}, \mathbb{R}\right)$ for some $\alpha \in(0,1]$. Then $f \in \operatorname{Lip}\left(\bar{\omega}_{\alpha}, \mathbb{B}^{n}, X\right)$, where $\bar{\omega}_{\alpha}(t)=\widetilde{\Omega}_{X}\left(t^{\alpha}\right)$.

In particular, the function f is uniformly continuous on \mathbb{B}^{n} that has a continuous extension to the closed disk.

Corollary 3. If Ω_{X} is fast and $f: \mathbb{B}^{n} \rightarrow X$ is a holomorphic function such that the function $\|f(z)\|$ belongs to $\Lambda_{\alpha}\left(\mathbb{B}^{n}, \mathbb{R}\right)$ for some $\alpha \in(0,1]$. Then $f \in \operatorname{Lip}\left(\omega_{\alpha}, \mathbb{B}^{n}, X\right)$, where $\omega_{\alpha}(t)=\Omega_{X}\left(t^{\alpha}\right)$.

Taking $n=1$ and $X=\mathbb{C}$, we get the following result of Dyakonov [4].
Corollary 4. If $f: \mathbb{D} \rightarrow \mathbb{C}$ is a holomorphic function such that $|f|$ belongs to $\Lambda_{\alpha}(\mathbb{D}, \mathbb{R})$ for some $\alpha \in(0,1]$. Then f belongs to $\Lambda_{\alpha}(\mathbb{D}, \mathbb{C})$.
Theorem 5. Let $0<\alpha \leq 1$ and $f: \mathbb{B}^{n} \rightarrow \mathbb{C}^{m}$ be a holomorphic function such that

$$
\begin{equation*}
\left\|f^{\prime}(z)\right\|\|f(z)\| \leq K\left\|\left(\left\langle\frac{\partial f(z)}{\partial z_{1}}, f(z)\right\rangle, \ldots,\left\langle\frac{\partial f(z)}{\partial z_{n}}, f(z)\right\rangle\right)\right\| \text { for } z \in \mathbb{B}^{n}, \tag{5}
\end{equation*}
$$

where K is a constant independent of z. Then $f \in \Lambda_{\alpha}\left(\mathbb{B}^{n}, \mathbb{C}^{m}\right)$ if and only if $\|f\| \in \Lambda_{\alpha}\left(\mathbb{B}^{n}, \mathbb{R}\right)$.
Theorem 6. If $f: \mathbb{B}^{n} \rightarrow \mathbb{C}^{m}, m \geq 2$, is holomorphic and if $\|f\| \in \Lambda_{\alpha}\left(\mathbb{B}^{n}, \mathbb{R}\right)$ for some $\alpha \in(0,1]$, then we have $f \in \Lambda_{\alpha / 2}\left(\mathbb{B}^{n}, \mathbb{C}^{m}\right)$.

The case $n=1$ of Theorems 5 and 6 gives results of Pavlović [9].

3. Proofs of the Theorems

Theorem 1 is a direct consequence of the following lemma.
Lemma 7. If $f: \mathbb{B}^{n} \rightarrow X$ is a holomorphic function satisfying the condition

$$
\begin{equation*}
|\|f(z)\|-\|f(w)\|| \leq c(1-\|z\|)^{\alpha} \quad \text { whenever }\|w-z\| \leq 1-\|z\|, \tag{6}
\end{equation*}
$$

then there holds (3).

Proof. Fix $z \in \mathbb{B}^{n}$ with $f(z) \neq 0$, and fix $\beta \in \mathbb{C}^{n}$ with $\|\beta\|=1$. Let $L \in X^{*},\|L\|=1$, where X^{*} is the dual of X. Consider the scalar valued function

$$
\phi(z)=L \circ f(z)
$$

and introduce the following set for the given $z \in \mathbb{B}^{n}$,

$$
D_{z}:=\left\{w \in \mathbb{C}^{n}:\|w-z\|<1-\|z\|\right\} \quad \text { and } \quad M_{z}:=\sup \left\{\|f(w)\|: w \in D_{z}\right\}
$$

If $z=0$ and $M_{0}=1$, then the Schwarz-Pick lemma (see Theorem B) gives

$$
\begin{equation*}
\left|\phi^{\prime}(0)\right| \leq 1-|\phi(0)|^{2} \leq 2(1-|\phi(0)|) \tag{7}
\end{equation*}
$$

which is our inequality in this special case. The general case follows by applying the special case to the function Φ defined by

$$
\Phi(\zeta)=\frac{\phi(z+(1-\|z\|) \beta \zeta)}{M_{z}} \quad \text { for } \zeta \in \mathbb{B}^{n}
$$

As

$$
\Phi(0)=\frac{L(f(z))}{M_{z}} \quad \text { and } \quad \Phi^{\prime}(0)=\frac{(1-\|z\|)}{M_{z}} L\left(f^{\prime}(z) \beta\right)
$$

we deduce from (7) that

$$
(1-\|z\|)\left|L\left(f^{\prime}(z) \beta / 2\right)\right|+|L(f(z))| \leq M_{z}
$$

Hence, for every $\lambda \in \mathbb{D}$, we obtain

$$
\left|\lambda(1-\|z\|) L\left(f^{\prime}(z) \beta / 2\right)+L(f(z))\right| \leq M_{z}
$$

Since this holds for every L of norm 1, by taking the supremum over all L with $\|L\|=1$ and by applying the Hahn-Banach theorem, we get

$$
\left\|\lambda \frac{(1-\|z\|) f^{\prime}(z) \beta}{2}+f(z)\right\| \leq M_{z}, \quad \text { i.e., }\left\|\frac{f(z)}{\|f(z)\|}+\lambda \frac{(1-\|z\|) f^{\prime}(z) \beta}{2\|f(z)\|}\right\| \leq \frac{M_{z}}{\|f(z)\|}
$$

Now denoting

$$
x=\frac{f(z)}{\|f(z)\|}, \quad y=\frac{(1-\|z\|) f^{\prime}(z) \beta}{2\|f(z)\|} \quad \text { and } \quad \delta=\frac{M_{z}-\|f(z)\|}{\|f(z)\|}
$$

we see from the definition of Ω_{X} that

$$
(1-\|z\|)\left\|f^{\prime}(z) \beta\right\| \leq 2\|f(z)\| \Omega_{X}\left(\frac{M_{z}-\|f(z)\|}{\|f(z)\|}\right)
$$

Hence, the last inequality holds for every $\beta \in \mathbb{C}^{n}$ with $\|\beta\|=1$, we get

$$
\begin{equation*}
(1-\|z\|)\left\|f^{\prime}(z)\right\| \leq 2\|f(z)\| \Omega_{X}\left(\frac{M_{z}-\|f(z)\|}{\|f(z)\|}\right) \tag{8}
\end{equation*}
$$

Therefore by (6) and (8), we obtain that

$$
(1-\|z\|)\left\|f^{\prime}(z)\right\| \leq 2\|f(z)\| \Omega_{X}\left(\frac{c(1-\|z\|)^{\alpha}}{\|f(z)\|}\right)
$$

Now (3) follows from the fact that $\Omega_{X}(t) / t$ is a decreasing function and the inequality $\|f(z)\| \leq K$. The proof is complete.

Lemma 8. If a C^{1}-function $u: \mathbb{B}^{n} \rightarrow \mathbb{R}$ satisfies

$$
\|\nabla u(z)\| \leq \frac{\omega(1-\|z\|)}{1-\|z\|} \quad \text { for } z \in \mathbb{B}^{n},
$$

where ω is a Dini majorant, then

$$
|u(a)-u(b)| \leq 3 \widetilde{\omega}(\|a-b\|) \quad \text { for } a, b \in \mathbb{B}^{n}
$$

Proof. We begin the proof with the following observation: $\omega \leq \widetilde{\omega}$. In fact, we let $t_{0} \in(0, \infty)$. Since $\frac{\omega(t)}{t}$ is decreasing on $(0, \infty)$, we have

$$
\frac{\omega\left(t_{0}\right)}{t_{0}} \leq \frac{\omega\left(t_{0} x\right)}{t_{0} x} \quad \text { for } x \in(0,1]
$$

Integrating on both sides of the last inequality from 0 to 1 , we obtain by definition of $\widetilde{\omega}$ that $\omega\left(t_{0}\right) \leq \widetilde{\omega}\left(t_{0}\right)$.

Let $\|a\| \leq\|b\| \leq 1$. By Lagrange's mean-value theorem,

$$
|u(a)-u(b)| \leq\|\nabla u(c)\|\|a-b\|,
$$

where $c=(1-\lambda) a+\lambda b$ for some $\lambda \in(0,1)$. Since $\|c\| \leq\|b\|$ and $\omega(t) / t$ decreases, we see that

$$
\frac{\omega(1-\|c\|)}{1-\|c\|} \leq \frac{\omega(1-\|b\|)}{1-\|b\|}
$$

and hence,

$$
|u(a)-u(b)| \leq \omega(\|a-b\|) \leq \widetilde{\omega}(\|a-b\|)
$$

under the condition $\|a-b\| \leq 1-\|b\|$.
If $1-\|b\| \leq\|a-b\| \leq 1-\|a\|$, then

$$
|u(a)-u(b)| \leq\left|u(a)-u\left(b^{\prime}\right)\right|+\left|u\left(b^{\prime}\right)-u(b)\right|
$$

where $b^{\prime}=\frac{(1-\delta) b}{\|b\|}$ and $\delta=\|a-b\|$. Using the Lagrange's mean-value theorem as above we get

$$
\left|u(a)-u\left(b^{\prime}\right)\right| \leq \frac{\omega\left(1-\left\|b^{\prime}\right\|\right)}{1-\left\|b^{\prime}\right\|}\left\|a-b^{\prime}\right\|=\frac{\omega(\delta)}{\delta}\left\|a-b^{\prime}\right\| \leq \omega(\delta) \leq \widetilde{\omega}(\delta)
$$

In the case of $\left|u\left(b^{\prime}\right)-u(b)\right|$, we have

$$
\left|u\left(b^{\prime}\right)-u(b)\right| \leq \int_{\left\|b^{\prime}\right\|}^{\|b\|} \frac{\omega(1-t)}{1-t} \mathrm{~d} t \leq \int_{1-\delta}^{1} \frac{\omega(1-t)}{1-t} \mathrm{~d} t=\widetilde{\omega}(\delta)
$$

Finally, if $\delta>1-\|a\|$, we use the inequality

$$
|u(a)-u(b)| \leq\left|u(a)-u\left(a^{\prime}\right)\right|+\left|u\left(a^{\prime}\right)-u\left(b^{\prime}\right)\right|+\left|u\left(b^{\prime}\right)-u(b)\right|
$$

where $a^{\prime}=\frac{(1-\delta) a}{\|a\|}$, and then proceed in a similar way as above, using the inequality $\left\|a^{\prime}-b^{\prime}\right\| \leq$ $\|a-b\|$.

Lemma 9 can easily be proved by applying the previous lemma to the functions $\operatorname{Re}(L \circ f(z))$ and $\operatorname{Im}(L \circ f(z))$, where $L \in X^{*}$ and $\|L\|=1$.
Lemma 9. If f is an X-valued holomorphic function in \mathbb{B}^{n} and satisfies the condition

$$
\left\|f^{\prime}(z)\right\| \leq \frac{\omega(1-\|z\|)}{1-\|z\|} \quad \text { for } z \in \mathbb{B}^{n}
$$

where ω is a Dini majorant, then $f \in \operatorname{Lip}\left(\widetilde{\omega}, \mathbb{B}^{n}, X\right)$.
Proof of Theorem 2. Let f satisfy the hypotheses of the theorem. Then

$$
\left\|f^{\prime}(z) / 2 K\right\| \leq \frac{\omega(1-\|z\|)}{1-\|z\|}
$$

by Theorem 1, where $\omega(t)=\Omega_{X}\left(c K^{-1} t^{\alpha}\right)$. But a simple calculation shows that $\widetilde{\omega}(t)=$ $\alpha^{-1} \widetilde{\Omega}_{X}\left(c K^{-1} t^{\alpha}\right)$ and so we can appeal to Lemma 9 to conclude the proof.

Proof of Theorem 5. The "only if" part is trivial. Assume that $\|f(z)\| \in \Lambda_{\alpha}\left(\mathbb{B}^{n}, \mathbb{R}\right)$ and we proceed as in Theorem 1. Fix $z \in \mathbb{B}^{n}$ with $f(z) \neq 0$, and consider the following sets for a given $z \in \mathbb{B}^{n}$,

$$
D_{z}:=\left\{w \in \mathbb{C}^{n}:\|w-z\|<1-\|z\|\right\} \quad \text { and } \quad M_{z}:=\sup \left\{\|f(w)\|: w \in D_{z}\right\}
$$

If $z=0$ and $M_{0}=1$, Theorem C gives

$$
|\nabla\|f\|(0)| \leq 1-\|f(0)\|^{2} \leq 2(1-\|f(0)\|)
$$

Therefore, from (5) and the formula (1), we have that

$$
\left\|f^{\prime}(0)\right\| \leq 2 K(1-\|f(0)\|)
$$

which is our inequality in this special case. The general case follows by applying the special case to the function F defined by

$$
\begin{equation*}
F(\zeta)=\frac{f(z+\zeta(1-\|z\|))}{M_{z}} \quad \text { for } \zeta \in \mathbb{B}^{n} \tag{9}
\end{equation*}
$$

and obtain

$$
\begin{equation*}
\frac{1}{2 K}(1-\|z\|)\left\|f^{\prime}(z)\right\|+\|f(z)\| \leq M_{z} \quad \text { for } z \in \mathbb{B}^{n} \tag{10}
\end{equation*}
$$

Since $\|f\| \in \Lambda_{\alpha}\left(\mathbb{B}^{n}, \mathbb{R}\right)$, we have

$$
\|f(w)\|-\|f(z)\| \leq c\|w-z\|^{\alpha} \leq c(1-\|z\|)^{\alpha}
$$

for $z \in \mathbb{B}^{n}$ and $w \in D_{z}$. Taking the supremum over all $w \in D_{z}$ and then using the inequality (10), we get

$$
\left\|f^{\prime}(z)\right\| \leq C \frac{\omega(1-\|z\|)}{1-\|z\|}
$$

where C is a constant and $\omega(t)=t^{\alpha}$. The desired conclusion follows from Lemma 9.
Proof of Theorem 6. Let $z \in \mathbb{B}^{n}$ and proceed the steps as in the above proof. If $z=0$ and $M_{0}=1$, then the higher dimensional version of Schwarz-Pick lemma (Theorem C) gives

$$
\left\|f^{\prime}(0)\right\| \leq \sqrt{1-\|f(0)\|^{2}} \leq \sqrt{2} \sqrt{1-\|f(0)\|}
$$

which is our inequality in this special case. The general case follows by applying the special case to the function F defined by (9). Indeed, we obtain

$$
\begin{equation*}
(1-\|z\|)\left\|f^{\prime}(z)\right\| \leq c \sqrt{M_{z}-\|f(z)\|} \tag{11}
\end{equation*}
$$

for some constant c. Since $\|f\| \in \Lambda_{\alpha}\left(\mathbb{B}^{n}, \mathbb{R}\right)$, we have

$$
\|f(w)\|-\|f(z)\| \leq c\|w-z\|^{\alpha} \leq c(1-\|z\|)^{\alpha}
$$

for $z \in \mathbb{B}^{n}$ and $w \in D_{z}$. Taking the supremum over $w \in D_{z}$ and then using the inequality (11), we get

$$
\left\|f^{\prime}(z)\right\| \leq C \frac{\omega(1-\|z\|)}{1-\|z\|}
$$

where C is a constant and $\omega(t)=t^{\alpha / 2}$. Now the result follows from Lemma 9.
Remark 10. The index $\alpha / 2$ in Theorem 6 is optimal as demonstrated by the following example (see [9]). Consider the function $f: \mathbb{D} \rightarrow \mathbb{C}^{2}$ by $f(z)=\left(1,(1-z)^{\alpha / 2}\right), 0<\alpha \leq 1$. We have

$$
\begin{aligned}
|\|f(z)\|-\|f(w)\|| & =\left|\sqrt{\|1-z\|^{\alpha}+1}-\sqrt{\|1-w\|^{\alpha}+1}\right| \\
& \leq\left|\|1-w\|^{\alpha}-\|1-z\|^{\alpha}\right| \leq\|z-w\|^{\alpha}
\end{aligned}
$$

while $\|f(1)-f(r)\|=(1-r)^{\alpha / 2}, 0<r<1$. This shows that the index $\alpha / 2$ is optimal.

4. Concluding Remarks

As mentioned in [3], the inequality (4) is in a sense optimal for the case $n=1$. To see this, let $\omega(t)>0$ be an arbitrary increasing function on $(0, \infty)$ such that $\omega\left(0^{+}\right)=0$. We say that a Banach space X has the property $\mathscr{L}(\omega, \alpha)$, if the following holds: For every $c \in(0,1)$ and every analytic function $f: \mathbb{D} \rightarrow X$ with $\|f(0)\|=1$, the inequality (2) implies that

$$
\left\|f^{\prime}(\lambda)\right\| \leq \frac{\omega\left(c(1-|\lambda|)^{\alpha}\right)}{1-|\lambda|} \quad \text { for } \lambda \in \mathbb{D} .
$$

It is well-known that, if the Banach space X has the property $\mathscr{L}(\omega, \alpha)$ (see [3, Proposition 10]), then X is uniformly c-convex and $\Omega_{X}(\delta) \leq B \omega(\delta)$ for $0<\delta<1$, where B is a constant. This result is to emphasize the fact that $\|f(0)\|=1$ provides condition for uniformly c-convexity of the Banach space X.

References

[1] S. Dai, Y. Pan, "A Schwarz-Pick lemma for the modulus of holomorphic mappings", Complex Var. Elliptic Equ. 60 (2015), no. 6, p. 864-874.
[2] W. J. Davis, D. J. H. Garling, N. Tomczak-Jaegermann, "The complex convexity of quasi-normed spaces", J. Funct. Anal. 55 (1984), p. 110-150.
[3] O. Djordjević, M. Pavlović, "Lipschitz conditions for the norm of a vector valued analytic function", Houston J. Math. 34 (2008), no. 3, p. 817-826.
[4] K. M. Dyakonov, "Equivalent norms on Lipschitz type spaces of holomorphic functions", Acta Math. 178 (1997), no. 2, p. 143-167.
[5] - "Holomorphic functions and quasiconformal mappings with smooth moduli", Adv. Math. 187 (2004), no. 1, p. 146-172.
[6] J. Globevnik, "On complex strict and uniform convexity", Proc. Am. Math. Soc. 47 (1975), p. 175-178.
[7] D. Kalaj, "Schwarz lemma for holomorphic mappings in the unit ball", Glasg. Math. J. 60 (2018), no. 1, p. 219-224.
[8] M. Pavlović, "On K.M. Dyakonov's paper: "Equivalent norms on Lipschitz type spaces of holomorphic functions"", Acta Math. 183 (1999), no. 1, p. 141-143.
[9] _ , "Schwarz lemma for the modulus of a vector-valued analytic function", Proc. Am. Math. Soc. 139 (2011), no. 3, p. 969-973.

