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Abstract. Let X be an additive full subcategory of an abelian category. It is a classical fact that if X is
contravariantly finite, then the category modX of finitely presented right X -modules is abelian. In this
paper, we consider the question asking when the converse holds true for a resolving subcategory of the
category of finitely generated modules over a commutative noetherian henselian local ring. We give both
affirmative answers and negative answers to this question.
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1. Introduction

Let A be an abelian category. Let X be an additive full subcategory of A . It follows from
Auslander’s 1966 paper [4] that if X is contravariantly finite, then the category modX of finitely
presented X -modules is abelian. It is natural to ask whether the converse holds.

Question 1. When modX is abelian, is X contravariantly finite?

The main purpose of this paper is to study the above Question 1 for a resolving subcategory X

of the abelian category A =modR of finitely generated modules over a commutative noetherian
ring R. In what follows, we shall explain our main results. For simplicity, from here to the end of
this section, we assume that R is a complete local ring with residue field k.

The theorem below gives affirmative answers to Question 1. It is included in Corollaries 28,
31(1).

Theorem 2. Let X be a resolving subcategory of modR such that modX is an abelian category.
Then X is contravariantly finite if one of the following four conditions is satisfied.

(1) The ring R has (Krull) dimension at most one.
(2) The ring R is Cohen–Macaulay, and every R-module in X is maximal Cohen–Macaulay.
(3) Every R-module in X is Gorenstein projective.
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(4) There is an R-module outside X that admits a right X -approximation, and one of the
following holds.
(a) R is AB.
(b) X contains some syzygy of k.
(c) X is closed under cosyzygies.

Thus Question 1 has an affirmative answer in each of the above four cases.

Here, the notion of a Gorenstein projective module has been introduced by Enochs and
Jenda [15], which is the same as a totally reflexive module in the sense of Avramov and
Martsinkovsky [9], and a module of Gorenstein dimension at most zero in the sense of Auslan-
der and Bridger [5]. The notion of an AB ring has been introduced by Huneke and Jorgensen [18],
which is a Gorenstein local ring satisfying a certain condition on vanishing of Ext modules. A
typical example of an AB ring is a local complete intersection.

Theorem 2 would lead us to expect that Question 1 always has an affirmative answer, but we
shall observe in Corollary 34 that it is not true.

Theorem 3. Suppose that R has dimension at least two. Then there exists a proper resolving sub-
category X of modR which is closed under subobjects and provides only trivial right approxima-
tions. In particular, X is not contravariantly finite but modX is an abelian category. Thus such an
X gives a negative answer to Question 1.

Finally, we focus in Theorem 37 on the full subcategory GP(R) of modR consisting of Goren-
stein projective R-modules to relate the abelianity of modGP(R) with the Gorenstein property of
the ring R.

Theorem 4. The following four conditions are equivalent.

(1) The ring R is either Gorenstein or G-regular.
(2) The category modGP(R) is abelian.
(3) The subcategory GP(R) of modR is contravariantly finite.
(4) The evaluation functor modGP(R) →modR has a right adjoint.

Here, following [20], we say that R is G-regular if every finitely generated Gorenstein projective
R-module is projective (hence free). The evaluation functor modGP(R) → modR means the
functor defined by F 7→ F (R). Note that the abelianity of modGP(R) depends only on the structure
of GP(R) as an additive category. Thus Theorem 4 in particular says that the Gorensteinness of
the ring R is characterized only by the structure of GP(R) as an additive category in the case where
GP(R) 6= addR.

This paper is organized as follows. Section 2 states our convention, basic notions and their
basic properties for later use. Section 3 is the main section of this paper, where the proofs
of Theorems 2 and 3 are given. Section 4 is to state applications and more questions, where
Theorem 4 is proved.

2. Basic definitions and properties

This section is devoted to collecting the background materials of this paper. To be precise, we
state in this section the definitions of our basic notions and several known properties of them,
which are used in later sections. We begin with our convention.

Convention. Throughout this paper, we assume the following. All rings are commutative noe-
therian rings with identity, all modules are finitely generated, and all subcategories are strictly
full. We let R be a (commutative noetherian) ring. We denote by modR the category of (finitely
generated) R-modules, and by CM(R) the (full) subcategory of modR consisting of maximal
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Cohen–Macaulay R-modules. For an additive category E , we identify each object E ∈ E with the
subcategory of E consisting only of E . We may omit subscripts and superscripts unless there is a
danger of confusion.

This paper deals with a lot of closedness properties of subcategories. We state the precise
definitions.

Definition 5. Let E be an additive category, and let X be a subcategory of E . We say that X is:

(1) closed under finite direct sums provided that for any X1, . . . , Xn ∈X one has X1⊕·· ·⊕Xn ∈
X ;

(2) closed under direct summands provided that for any A1, . . . , An ∈ E with A1⊕·· ·⊕An ∈X

one has A1, . . . , An ∈X

We denote by addE X the additive closure of X , that is, the smallest subcategory of E that contains
X and is closed under finite direct sums and direct summands.

Definition 6. Let A be an abelian category, and let X be a subcategory of A . We say that X is:

(1) closed under subobjects (resp. closed under quotient objects) provided that for every
exact sequence 0 → A → B (resp. 0 ← A ← B) in A with B ∈X one has A ∈X ;

(2) closed under kernels (resp. closed under cokernels) provided that for every exact sequence
0 → A → B →C (resp. 0 ← A ← B ←C ) in A with B ,C ∈X one has A ∈X ;

(3) closed under kernels of epimorphisms (resp. closed under cokernels of monomorphisms)
provided that for every exact sequence 0 → A → B → C → 0 (resp. 0 ← A ← B ← C ← 0) in
A with B ,C ∈X one has A ∈X ;

(4) closed under extensions provided that for every exact sequence 0 → A → B →C → 0 in A

with A,C ∈X one has B ∈X . Clearly, when this is the case, X is closed under finite direct
sums.

Remark 7. Let A be an abelian category, and let X be a subcategory of A . Consider the
conditions that X is closed under

(1) subobjects,
(2) kernels,
(3) kernels of epimorphisms,
(4) quotient objects,
(5) cokernels,
(6) cokernels of monomorphisms, and
(7) direct summands.

Then one has that (1) ⇒ (2) ⇒ (3), that (4) ⇒ (5) ⇒ (6), and that (2) ⇒ (7) ⇐ (5). Indeed, the
only nontrivial implications are the last two. Suppose that (2) or (5) holds. Splicing the split exact
sequences 0 → A → A ⊕B → B → 0 and 0 → B → A ⊕B → A → 0 with A,B ∈ A , we get an exact
sequence 0 → A → A ⊕B → A ⊕B → A → 0. This shows that if A ⊕B ∈ X , then A ∈ X . Thus (7)
follows.

Next we recall the definitions of a syzygy and a resolving subcategory, the latter of which has
been introduced by Auslander and Bridger [5].

Definition 8. Let A be an abelian category with enough projective objects.

(1) We denote by projA the subcategory of A consisting of projective objects.
(2) Let M be an object of A . For an integer n > 0, the n-th syzygy of M is by definition an object

N of A that appears in an exact sequence 0 → N → Pn−1 → Pn−2 → ··· → P1 → P0 in A

with Pi ∈ projA for all 06 i 6 n −1, and it is denoted by Ωn
A

M. We set Ω0
A

M = M. For
each n > 0 we denote byΩnA the subcategory of A consisting of n-th syzygies. The object
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Ωn
A

M is uniquely determined up to projective summands, and any projective object is an
n-th syzygy for all n> 0, i.e., projA ⊆ΩnA .

(3) A subcategory X of A is said to be closed under syzygies if ΩA X ∈X for all X ∈X , that
is to say, if for every exact sequence 0 → Y → P → X → 0 in A with P ∈ projA and X ∈ X

one has Y ∈X .
(4) A subcategory X of A is called resolving if X contains projA and is closed under direct

summands, extensions and kernels of epimorphisms. Here, being closed under kernels of
epimorphisms can be replaced with being closed under syzygies, since an exact sequence
0 → A → B → C → 0 in A gives rise to an exact sequence 0 →ΩC → A ⊕P → B → 0 in A

with P ∈ projA .

We recall the definitions of a dominant subcategory, a semidualizing module and a Gorenstein
projective module over a commutative noetherian ring.

Definition 9.

(1) A subcategory X of modR is called dominant if for every prime ideal p of R there exists
an integer n> 0 such thatΩn

Rp
κ(p) belongs to addmodRp Xp. Here, κ(p) denotes the residue

field Rp/pRp of Rp, and Xp stands for the subcategory of modRp consisting of Rp-modules
of the form Xp with X ∈ X . Any subcategory of modR containing Ωn(modR) for some
n> 0 is dominant.

(2) An R-module C is called semidualizing if the natural map R → HomR (C ,C ) is an iso-
morphism and Ext>0

R (C ,C ) = 0. The R-module R is a typical example of a semidualizing
R-module. If R is a Cohen–Macaulay local ring with a canonical module ω, then ω is a
semidualizing R-module.

(3) Let C be a semidualizing R-module, and set ( · )† = HomR ( · ,C ). An R-module is called
Gorenstein C -projective (or totally C -reflexive) if the natural map M → M †† is an iso-
morphism and Ext>0

R (M ⊕M †,C ) = 0. We denote by GP(C ) the subcategory of modR con-
sisting of Gorenstein C -projective R-modules. Gorenstein R-projective R-modules are sim-
ply called Gorenstein projective R-modules. If R is a Cohen–Macaulay local ring with a
canonical module ω, then the Gorenstein ω-projective R-modules are precisely the maxi-
mal Cohen–Macaulay R-modules, that is to say, GP(ω) =CM(R).

There are indeed a lot of examples of a resolving subcategory. We present here some of them,
which appear later. Also, we mention that dominance can be interpreted quite simply in some
cases.

Example 10.

(1) If R is a Cohen–Macaulay local ring, then CM(R) is a resolving subcategory of modR.
(2) For a semidualizing R-module C the subcategory GP(C ) of modR is resolving by [3,

Theorem 2.1].
(3) Let R be a local ring. Denote by mod0 R the subcategory of modR consisting of R-modules

which are locally free on the punctured spectrum of R. Then mod0 R is a resolving
subcategory of modR.

(4) Let X be a resolving subcategory of modR. When R is Cohen–Macaulay, X is dominant
if and only if X contains CM(R). When d = dimR <∞, the dominance of X is equivalent
to saying that X contains Ωd (modR). These statements are none other than [22, Corol-
lary 1.2].

Now we recall the definitions of a right approximation and a contravariantly finite subcategory,
which are introduced by Auslander and Smalø [8].

Definition 11. Let E be an additive category, and let X be a subcategory of E .
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(1) A morphism f : X → E (in E ) with X ∈ X is called a right X -approximation (of E) if
for every morphism f ′ : X ′ → E with X ′ ∈ X there is a morphism g : X ′ → X such that
f ′ = f g . Note that for each M ∈X the identity morphism of M is a right X -approximation
of M. We denote by rapE X the subcategory of E consisting of objects admitting right X -
approximations. There are inclusions

X ⊆ rapX ⊆ E . (∗)

(2) We say that X is contravariantly finite if every object of E admits a right X -
approximation, that is to say, if the equality rapX = E holds, which is the equality of
the second inclusion in (∗).

(3) A left X -approximation and a covariantly finite subcategory are defined dually.

We present two examples of a contravariantly finite subcategory.

Example 12.

(1) The additive closure add X of an R-module X is a contravariantly finite subcategory of
modR. Indeed, for an R-module M , choose a system of generators f1, . . . , fn of the R-
module HomR (X , M). Then it is easy to see that the map ( f1, . . . , fn) : X ⊕n → M is a right
X -approximation of M . A dual argument shows that add X is also a covariantly finite
subcategory of modR.

(2) If R is a Cohen–Macaulay local ring with a canonical module, then CM(R) is a contravari-
antly finite subcategory of modR. This is a consequence of [6, Theorem 1.1].

The following easy lemma becomes necessary once in the next section.

Lemma 13. Let E be an additive category. Let X and Y be subcategories of E . If there are
inclusions X ⊆Y ⊆ rapX , then there is an inclusion rapY ⊆ rapX .

Proof. Let f : Y → E be a right Y -approximation of an object E ∈ E . Since Y ∈ Y ⊆ rapX , there
exists a right X -approximation g : X → Y . We claim that the composition f g : X → E is a right
X -approximation. Indeed, take a homomorphism a : X ′ → E with X ′ ∈ X . As f is a right Y -
approximation and X ′ ∈X ⊆Y , there is a homomorphism b : X ′ → Y such that a = f b. As g is a
right X -approximation, there exists a homomorphism c : X ′ → X such that b = g c. The equality
a = ( f g )c shows the claim. �

For a subcategory X of modR we denote by X ⊥ the subcategory of modR consisting of R-
modules M such that Ext>0

R (X , M) = 0 for all X ∈ X . It is straightforward that X ⊥ is closed
under extensions and cokernels of monomorphisms. The following lemma is a fundamental tool
throughout the paper, and this is why we need henselianity to obtain our main results.

Lemma 14. Let R be a henselian local ring. Let X be a resolving subcategory of modR. Let M
be an R-module. Then M possesses a right X -approximation if and only if there exists an exact

sequence 0 → Y → X
f→ M → 0 of R-modules such that X ∈X and Y ∈X ⊥.

Proof. The “only if” part is shown in [21, Lemma 3.8]. To show the “if” part, let X ′ ∈ X . The

induced sequence HomR (X ′, X )
g→ HomR (X ′, M) → Ext1

R (X ′,Y ) is exact, and Ext1
R (X ′,Y ) = 0 as

X ′ ∈ X and Y ∈ X ⊥. Therefore the map g is surjective, which means that the map f is a right
X -approximation. �

Now we recall the definitions of a module over an additive category, and its being finitely
generated and finitely presented. These notions have been introduced by Auslander [4].

C. R. Mathématique — 2021, 359, n 5, 577-592
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Definition 15. Let E be an additive category.

(1) We denote by ModE the functor category of E ; recall that the objects of ModE are additive
contravariant functors from E to the category of abelian groups, and the morphisms of
ModE are natural transformations. Note that ModE is an abelian category. An object
and a morphism of ModE are called a (right) E -module and an E -homomorphism,
respectively.

(2) An E -module F is said to be finitely generated if there exists an exact sequence
HomE ( · ,E0) → F → 0 of E -modules with E0 ∈ E . We say that F is finitely presented if
there exists an exact sequence

HomE ( · ,E1) → HomE ( · ,E0) → F → 0 (∗∗)

of E -modules with E0,E1 ∈ E . We call an exact sequence of the form (∗∗) a finite presenta-
tion of F . The subcategory of ModE consisting of finitely presented E -modules is denoted
by modE . This is called the Auslander category of E in [23, Chapter 4]. However, nowa-
days, this name is often used to mean a certain different category; see [11, Chapter 3] for
instance. Thus, in this paper, we call modE the finitely presented module category of E

so as not to confuse the reader.
(3) Let f : X → Y be a morphism in E . A morphism g : K → X is called a pseudo-kernel

of f provided that the induced sequence HomE ( · ,K ) → HomE ( · , X ) → HomE ( · ,Y ) of E -
homomorphisms is exact. We say that E has pseudo-kernels if every morphism in E admits
a pseudo-kernel.

The existence of right approximations is interpreted in terms of finite generation in the functor
category.

Lemma 16. Let E be an additive category. Let X be an additive subcategory of E . An object E ∈ E

admits a right X -approximation if and only if the functor HomE ( · ,E)|X is a finitely generated
X -module.

Proof. If f : X → E is a right X -approximation, then HomE ( · , f )|X is an epimorphism in
ModX . Ifφ : HomE ( · ,Y )|X → HomE ( · ,E)|X is a surjective X -homomorphism with Y ∈X , then
Yoneda’s lemma gives a morphism g : Y → E in E with φ = HomE ( · , g )|X , and g is seen to be a
right X -approximation. �

Remark 17. Let E be an additive category, and let X be an additive subcategory of E . By
Lemma 16 the contravariant finiteness of X means that HomR ( · ,E)|X is finitely generated for all
E ∈ E . Thus we may call X contravariantly infinite if the equality of the first inclusion in (∗) holds,
that is to say, X = rapX , because it means that HomR ( · ,E)|X is not finitely generated except
the trivial case where E ∈ X . In this paper, we shall consider both contravariant finiteness and
contravariant infiniteness. To make it simple and avoid confusion, we often say that rapX = E

(resp. X = rapX ) rather than that X is contravariantly finite (resp. X is contravariantly infinite).

The following lemma yields a criterion for the finitely presented module category to be
abelian.

Lemma 18. Let E be an additive category. Then the following assertions hold true.

(1) As a subcategory of ModE , the category modE is closed under cokernels and extensions.
(2) The category modE is abelian if and only if E has pseudo-kernels.

Proof. Let A = ModE . Let P be the subcategory of A consisting of objects having the form
HomE ( · ,E) with E ∈ E . Using Yoneda’s lemma, we get P ⊆ projA . Apply [4, Proposition 2.1(a)(b)]
to A and P . �
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The result below gives sufficient conditions for the abelianity of the finitely presented module
category.

Proposition 19. Let A be an abelian category. Let X be an additive subcategory of A which is
either closed under kernels or contravariantly finite. Then modX is an abelian category.

Proof. According to Lemma 18(2), it is enough to prove that each morphism f : X → X ′ in X has

a pseudo-kernel. Take an exact sequence 0 → K
g→ X

f→ X ′ in A . If X is closed under kernels,
then K belongs to X , and the induced exact sequence 0 → HomA ( · ,K )|X → HomA ( · , X )|X →
HomA ( · , X ′)|X implies that g : K → X is a pseudo-kernel of f . If X is contravariantly finite, then
there is a right X -approximation h : X ′′ → K , and the induced exact sequence HomA ( · , X ′′)|X →
HomA ( · , X )|X → HomA ( · , X ′)|X implies that the composition g h : X ′′ → X is a pseudo-kernel
of f . �

Next we recall the definitions of the transpose and cosyzygy of a module over the ring R.

Definition 20. Let M be an R-module.

(1) Set ( · )∗ = HomR ( · ,R). Take an exact sequence P1
f→ P0 → M → 0 of R-modules with P0

and P1 projective. We denote by TrR M the cokernel of the map f ∗ : P∗
0 → P∗

1 , and call it the
(Auslander) transpose of M. This is uniquely determined up to projective summands. The
Gorenstein projectivity of M is equivalent to the vanishing Ext>0

R (M ⊕Tr M ,R) = 0. We refer
the reader to [5] for details.

(2) The (first) cosyzygy of M is defined as the cokernel of a left (addR)-approximation of M
(one exists as addR is covariantly finite by Example 12(1)) and denoted by Ω−1M. This is
uniquely determined up to projective summands. We say that a subcategory X of modR is
closed under cosyzygies provided thatΩ−1X ∈X for all X ∈X . There is an isomorphism
Ω−1M ∼= TrΩTr M of R-modules (up to projective summands) for every R-module M;
see [19, Lemma 4.1] for instance.

We close the section by reminding the reader of a well-known result, which is used several
times in this paper. This is a direct consequence of [10, Theorem 3.1.17, Corollary 9.6.2 and
Remarks 9.6.4(a)].

Lemma 21. Let R be a local ring. Let n be a nonnegative integer. Suppose that there exists a nonzero
R-module M such that idR M 6 n. Then R is a Cohen–Macaulay ring with dimR 6 n.

3. Affirmative and negative answers to Question 1

In this section we provide several sufficient conditions for Question 1 to be affirmative, and
present some cases where Question 1 is negative. Throughout this section, we fix the following
notation.

Notation 22. Let (R,m,k) be a henselian local ring. Let X be a resolving subcategory of modR.
Let C be the subcategory of modR consisting of modules C such that HomR ( · ,C )|X ∈modX . Let
B be the smallest subcategory of modR which contains C and is closed under direct summands
and extensions.

We make a list of properties of X , C , B and rapX , some of which are frequently used later.

Proposition 23.

(1) The subcategory rapX of modR is closed under direct summands and extensions.
(2) There are inclusions of subcategories: X ⊆C ⊆B ⊆ rapB ⊆ rapX ⊆modR.
(3) The subcategory C of modR is closed under finite direct sums.

C. R. Mathématique — 2021, 359, n 5, 577-592



584 Ryo Takahashi

(4) Suppose that modX is an abelian category. Then the following statements hold true.
(a) The subcategory C of modR is closed under kernels. Therefore, C is closed under direct

summands and syzygies, and containsΩ2(modR). In particular, C is dominant, and
so are B,rapB,rapX .

(b) Let M be an R-module. Let C be an R-module belonging to C . Then HomR (M ,C )
belongs to C .

(c) For any R-module C that belongs to C , the R-module Ext1
R (TrC ,R) also belongs to C .

(d) The subcategory B of modR is resolving.
(e) If the equality X = rapX holds, then the subcategory X of modR is closed under

kernels.
(5) If rapX is closed under kernels of epimorphisms (or equivalently, if rapX is resolving),

then it holds that C = rapX . In particular, the equality rapX =modR implies the equality
C =modR.

(6) If there is an equality X = rapX , then one has the inclusion X ⊥∩Ω(modR) ⊆ addR.

Proof. (1). If
( f

g

)
: X → M⊕N is a right X -approximation, then it can directly be verified that f , g

are right X -approximations. Hence rapX is closed under direct summands. We observe from
Lemma 14 and the proof of [7, Proposition 3.6] that rapX is closed under extensions.

(2). The only nontrivial inclusion is rapB ⊆ rapX . By Lemma 13, we have only to show B ⊆
rapX . In view of (1), it suffices to show C ⊆ rapX . This is a direct consequence of Lemma 16.

(3). Let C ,C ′ ∈ C . Then HomR ( · ,C )|X and HomR ( · ,C ′)|X are finitely presented X -modules.
Taking the direct sum of finite presentations of those two X -modules, we see that the X -
module HomR ( · ,C )|X ⊕ HomR ( · ,C ′)|X = HomR ( · ,C ⊕C ′)|X is also finitely presented. Hence
C ⊕C ′ belongs to C .

(4a). Let 0 → L → M → N be an exact sequence of R-modules such that M , N ∈ C . An exact
sequence 0 → HomR ( · ,L)|X → HomR ( · , M)|X → HomR ( · , N )|X is induced, and HomR ( · , M)|X
and HomR ( · , N )|X belong to modX . Since modX is abelian, HomR ( · ,L)|X belongs to modX as
well. Thus L is in C . It follows that C is closed under kernels. Remark 7 implies that C is closed
under direct summands. As C contains X and X is resolving, C contains addR = proj(modR).
Combining this with the fact that C is closed under kernels, we see that C is closed under syzygies
and containsΩ2(modR).

(4b). Take an exact sequence P1 → P0 → M → 0 with P0,P1 ∈ addR. This induces an exact
sequence 0 → HomR (M ,C ) → HomR (P0,C ) → HomR (P1,C ). Since the modules HomR (P0,C ) and
HomR (P1,C ) belong to addC , they are in C . The fact that C is closed under kernels implies that
HomR (M ,C ) is in C .

(4c). Set ( · )∗ = HomR ( · ,R). There is an exact sequence 0 → Ext1
R (TrC ,R) → C → C∗∗ by [5,

Proposition 2.6(a)]. Note that M∗ is a second syzygy for each R-module M . As C contains
Ω2(modR), we have C∗∗ ∈ C . Since C is closed under kernels, the module Ext1

R (TrC ,R) belongs
to C .

(4d). Let D be the subcategory of modR consisting of modules M with ΩM ∈ B. Then C is
contained in D since C is closed under syzygies and contained in B. If N is a direct summand
of an R-module M , then ΩN is a direct summand of ΩM . If 0 → L → M → N → 0 is an exact
sequence of R-modules, then there is an exact sequence 0 → ΩL → ΩM → ΩN → 0. Using
these facts, we see that D is closed under direct summands and extensions. The definition of
B implies that D contains B, which means that B is closed under syzygies. We conclude that B

is a resolving subcategory of modR.
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(4e). As X ⊆ C ⊆ rapX , the equality X = rapX implies X = C . Hence X is closed under
kernels.

(5). We have C ⊆ rapX . Pick an R-module M ∈ rapX . There is a right X -approximation f : X →
M . As X contains the projective R-modules, we observe that f is surjective. By assumption, the
kernel K of f belongs to rapX . There is a right X -approximation Y → K . The induced sequence
HomR ( · ,Y )|X → HomR ( · , X )|X → HomR ( · , M)|X → 0 is seen to be exact, and it follows that M
belongs to C .

(6). Let M be an R-module in X ⊥∩Ω(modR). Then there is an exact sequence σ : 0 → M → F
f→

N → 0 of R-modules with F free. Since F ∈ X and M ∈ X ⊥, the proof of Lemma 14 shows that
f is a right X -approximation. Hence N ∈ rapX = X . Note that σ corresponds to an element of
Ext1

R (N , M), which vanishes as M ∈ X ⊥ and N ∈ X . Therefore the short exact sequence σ splits,
and M is free. �

To prove our next proposition, we establish a lemma.

Lemma 24. Let 0 → L → M → N → 0 be an exact sequence of R-modules. If L ∈ X ⊥ ∩C and
M ∈ C , then N ∈ C . In particular, the subcategory X ⊥∩C of modR is closed under cokernels of
monomorphisms.

Proof. An exact sequence 0 → HomR ( · ,L)|X → HomR ( · , M)|X → HomR ( · , N )|X → Ext1
R ( · ,L)|X

is induced. As the R-module L is in X ⊥, we have Ext1
R ( · ,L)|X = 0. Since the X -modules

HomR ( · ,L)|X and HomR ( · , M)|X belong to modX , so does HomR ( · , N )|X by Lemma 18(1),
which means N ∈C . �

We provide several sufficient conditions for the residue field k of R to belong to the subcate-
gory C .

Proposition 25. Assume modX is abelian. Suppose one of the following four conditions is
satisfied.

(1) C contains a module of depth 0.
(2) depthR = 0.
(3) C ∩mod0 R *Ω(modR).
(4) C 6=X .

Then the residue field k of R belongs to C . In particular, k admits a right X -approximation.

Proof. If k is in C , then there exists a right X -approximation of k by Proposition 23(2).

(1). Let C be an R-module in C of depth 0. Then HomR (k,C ) is a nonzero k-vector space, and
belongs to C by Proposition 23(4b). As C is closed under direct summands by Proposition 23(4a),
we have k ∈C .

(2). We have R ∈ X , while X ⊆ C by Proposition 23(2). We get R ∈ C . It follows from (1) that
k ∈C .

(3). Find an R-module C in C ∩mod0 R which is not a syzygy. Thus L := Ext1
R (TrC ,R) is nonzero

by [5, Proposition 2.6(a)] and [16, Lemma 3.4]. As C ∈ mod0 R (mod0 R is defined in Exam-
ple 10(3)]), the R-module L has finite length and depth 0. Proposition 23(4c) implies L ∈ C . We
obtain k ∈C by (1).
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(4). We find C ∈ C with C ∉ X . As C belongs to rapX by Proposition 23(2), there is an exact
sequence 0 → Y → X → C → 0 with X ∈ X and Y ∈ X ⊥ by Lemma 14. The subcategory C

contains X ,C and is closed under kernels by Proposition 23(2) and (4a), the module Y is in C ,
whence Y ∈ X ⊥∩C . Take a maximal regular sequence x = x1, . . . , xn on Y . There exists a family
of exact sequences of R-modules:

{0 → Y /(x1, . . . , xi−1)Y
xi→ Y /(x1, . . . , xi−1)Y → Y /(x1, . . . , xi )Y → 0}n

i=1.

Applying Lemma 24 repeatedly, we observe that Y /xY ∈ X ⊥ ∩C ⊆ C . It follows from (1) that
k ∈C . �

Proposition 26. Assume that d = dimR > 1 and modX is abelian. Suppose that k belongs to B

(this holds true under the assumption of Proposition 25). Then Ωd−1(modR) is contained in B.
Hence any (d −1)st syzygy has a right X -approximation. In particular, the equality rapX =modR
holds when d = 1.

Proof. Taking Proposition 23(2) into account, we have only to show that Ωd−1M ∈ B for each
R-module M . Note from Proposition 23(4d) that B is a resolving subcategory of modR.

Step 1. Suppose that M has finite length. Then, since B is closed under extensions and contains
k, we see that M ∈B. Since B is closed under syzygies, we obtainΩd−1M ∈B.

Step 2. By Step 1 we may assume dim M > 0. Then there is an exact sequence 0 → L → M →
N → 0 of R-modules such that L has finite length and that N is nonzero and has positive
depth. Proposition 23(4a) says B is dominant. By [22, Corollary 4.6] we have Ωr N ∈ B, where
r = supp∈SpecR {depthRp − depth Np}. Note that 0 6 r 6 d . If r = d , then depthRp = d and
depth Np = 0 for some p ∈ SpecR, which implies p =m and depth N = 0, a contradiction. Hence
r 6 d −1, and Ωd−1N =Ωd−1−r (Ωr N ) ∈ B. There is an exact sequence 0 →Ωd−1L →Ωd−1M →
Ωd−1N → 0, andΩd−1L ∈B by Step 1. ThereforeΩd−1M ∈B. �

Now we state and prove the theorem below, which is one of the main results of this paper.

Theorem 27. Let C be a semidualizing R-module with X ⊆ GP(C ). If modX is abelian, rapX =
modR.

Proof. Recall by Example 10(2) that GP(C ) is a resolving subcategory of modR. We freely use this
fact.

We claim that GP(C ) is contained in rapX . Indeed, it follows from Proposition 23(2), (4a)
and (4d) that B is a dominant resolving subcategory of modR and contained in rapX . Fix a
Gorenstein C -projective R-module M . For each p ∈ SpecR, the localization Cp is a semidualizing
Rp-module, and the localization Mp is a Gorenstein Cp-projective Rp-module. It holds that
depth Mp > depthRp by [17, p. 68] (or [12, Theorem (3.14)]). Applying [22, Theorem 1.1], we see
that M belongs to B. Now, the claim follows.

It follows by Proposition 23(2) and (4a) that rapX contains Ω2(modR). So it suffices to show
that for an R-module M withΩM ∈ rapX one has M ∈ rapX . Take an exact sequence 0 →ΩM →
F → M → 0 with F free. Lemma 14 gives an exact sequence 0 → Y → X →ΩM → 0 with X ∈ X

and Y ∈ X ⊥. As X is in GP(C ), there is an exact sequence 0 → X → C ′ → G → 0 with C ′ ∈ addC
and G ∈ GP(C ) (we can get such an exact sequence by applying ( · )† = HomR ( · ,C ) to an exact
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sequence 0 → Ω(X †) → P → X † → 0 with P free). We obtain the left and middle commutative
diagrams below, which are pushout diagrams.

0

��

0

��
0 // Y // X //

��

ΩM //

��

0

0 // Y // C ′ //

��

Y ′ //

��

0

G

��

G

��
0 0

0

��

0

��
0 // ΩM //

��

F //

��

M // 0

0 // Y ′ //

��

G ′ //

��

M // 0

G

��

G

��
0 0

0

��

0

��
Y ′′

��

Y ′′

��
0 // Y ′′′ //

��

X ′ f //

��

M // 0

0 // Y ′ //

��

G ′ //

��

M // 0

0 0

The modules Y ,C ′ belong to X ⊥, and so does Y ′ by the middle row in the left diagram. The
modules F,G belong to GP(C ), and so does G ′ by the middle column in the middle diagram. The
claim and Lemma 14 yield an exact sequence 0 → Y ′′ → X ′ →G ′ → 0 with X ′ ∈ X and Y ′′ ∈ X ⊥.
We obtain the right commutative diagram displayed above, which is a pullback diagram. The
modules Y ′,Y ′′ belong to X ⊥, and so does Y ′′′ by the left column in the right diagram. The
middle row in the right diagram and the proof of Lemma 14 imply that the map f is a right X -
approximation of M , and thus M ∈ rapX . �

Applying the results stated above, we obtain the corollary below, which includes part of
Theorem 2.

Corollary 28. Assume modX is abelian. Then rapX = modR if one of the following statements
holds.

(1) The ring R is a homomorphic image of a Gorenstein ring and dimR 6 1.
(2) The ring R is a Cohen–Macaulay ring with a canonical module ω, and X is contained in

CM(R).
(3) The subcategory X is contained in GP(R).

Proof. We obtain (3) and (2) by applying Theorem 27 to C = R and C = ω, respectively. Let
us show (1). By (2) we may assume dimR = 1. By Propositions 25(1) and 26, we may assume
depthC > 0 for all C ∈C . Proposition 23(2) implies R ∈X ⊆C . We see that R is Cohen–Macaulay
and X ⊆ CM(R). As R is a homomorphic image of a Gorenstein ring, it has a canonical module.
By (2) we are done. �

Here we recall a notion introduced by Huneke and Jorgensen [18]. A local ring R is called
AB if R is Gorenstein and there exists an integer n > 0 such that ExtÀ0

R (M , N ) = 0 with M , N ∈
modR implies Ext>n

R (M , N ) = 0. We can show the following proposition, which gives a sufficient
condition for the resolving subcategory X to consist of maximal Cohen–Macaulay R-modules.
Note that the assumption of the first assertion of the proposition is satisfied if the subcategory X

is dominant.

Proposition 29. Assume that one has X 6= rapX . Then the following assertions hold true.

(1) If Ωnk ∈ X for some n > 0, then the ring R is Cohen–Macaulay, and X is contained in
CM(R).

(2) If R is an AB ring, then X is contained in CM(R).

Proof. Choose an R-module M such that M ∈ rapX and M ∉ X . Lemma 14 yields an exact
sequence 0 → B → A → M → 0 of R-modules with A ∈ X and B ∈ X ⊥. Since M is not in X ,
we have B 6= 0.
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(1). We have Ext>0
R (Ωnk,B) = 0. It follows that Ext>n

R (k,B) = 0, which implies idR B 6 n. Lemma 21
deduces that R is Cohen–Macaulay. Let X ∈ X be a nonzero R-module. Then Ext>0

R (X ,B) = 0.
It is observed from [10, Exercise 3.1.24] that X is a maximal Cohen–Macaulay R-module. Thus
X ⊆CM(R).

(2). Let 0 6= X ∈ X . Then Ext>0
R (X ,B) = 0. By [2, Lemma 2.5] we get depthR − depth X = 0.

Since an AB ring is Cohen–Macaulay, we see that X is maximal Cohen–Macaulay. We obtain
X ⊆CM(R). �

Remark 30. The latter half of the proof of Proposition 29(1) can be replaced with the following
argument using methods in [14]. Suppose X is not contained in CM(R). Then there exists X ∈X

with e := depth X < dimR =: d . By [14, Proposition 4.2] we getΩe k ∈X . Hence Ext>0
R (Ωe k,B) = 0,

which implies idR N 6 e. Lemma 21 gives d 6 e. This contradiction shows that X is contained in
CM(R).

We obtain the following corollary, which includes part of Theorem 2.

Corollary 31.

(1) Assume that modX is an abelian category. Suppose
(i) R is AB, or

(ii) X containsΩnk for some n> 0, or
(iii) X is closed under cosyzygies.
Then either X = rapX or rapX =modR.

(2) Consider the following two conditions for a subcategory Y of modR.
(a) The subcategory Y is resolving, closed under kernels, and satisfies Y 6= rapY .
(b) The ring R is Cohen–Macaulay and has dimension 1 or 2, and Y =CM(R).

Then (a) implies (b). If R is a homomorphic image of a Gorenstein ring, (a) and (b) are
equivalent.

Proof. (1). Use Proposition 29 and Corollary 28(2) for (i), (ii). For (iii), either k ∈X or X ⊆GP(R)
holds by [19, Theorem 1.3]. The former case is included in (ii). In the latter case Corollary 28(3)
applies.

(2). Assume that (a) holds. Since Y contains addR and is closed under kernels, it contains
Ω2(modR). Proposition 29(1) implies that R is Cohen–Macaulay and Y is contained in CM(R).
As Y is dominant, it contains CM(R) by [14, Theorem 4.5] or Example 10(4). The equality
Y = CM(R) follows. We thus have Ω2(modR) ⊆ Y = CM(R), which implies dimR 6 2. If R is
artinian, then Y =CM(R) =modR, which contradicts the assumption that Y 6= rapY . Therefore
R has dimension 1 or 2. Thus (b) holds.

Suppose that R is a homomorphic image of a Gorenstein ring and (b) holds. Then R admits a
canonical module. Examples 10(1) and 12(2) imply that Y is resolving with rapY =modR. Since
dimR > 0, we have Y 6= rapY . Since dimR 6 2, by the depth lemma Y is closed under kernels.
Therefore (a) holds. �

Corollary 32. Assume that R is a homomorphic image of a Gorenstein ring and modX is abelian.

(1) One has X = rapX if and only if X =C .
(2) If X 6= rapX , one then has k ∈C ⊆B ⊆ rapX .
(3) There is an equality B = rapB.

Proof. (1). Proposition 23(2) gives the inclusions X ⊆C ⊆ rapX , which show the “only if” part.
The “if” part will follow if we get a contradiction by assuming C =X 6= rapX . Proposition 23(4a)
says X = C is closed under kernels. Corollary 31(2) and its proof imply R is Cohen–Macaulay,
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X = CM(R) and rapX = modR. Proposition 23(5) yields C = modR. Then X = modR, and
X = rapX , a contradiction.

(2). It follows from (1) that X 6=C . We get k ∈C ⊆B ⊆ rapX by Propositions 23(2) and 25(4).

(3). If X = rapX , then B = rapB by Proposition 23(2). Let X 6= rapX . Then k ∈B by (2). We will
be done once we derive a contradiction by assuming B 6= rapB. Choose an R-module M ∈ rapB

with M ∉B. Lemma 14 gives an exact sequence 0 → N → B → M → 0 with B ∈B and 0 6= N ∈B⊥.
As k ∈ B, we have Ext>0

R (k, N ) = 0. Lemma 21 shows R is artinian. As B contains k and is closed
under extensions, it coincides with modR. Therefore we have B = rapB. This gives a desired
contradiction. �

The condition that a subcategory of modR is both resolving and closed under kernels looks so
restrictive that we may wonder if there exists no such example except trivial ones. The following
proposition gives rise to such a subcategory, even satisfying more restrictive conditions.

Proposition 33. Let Φ be a subset of SpecR containing AssR. Let Y be the subcategory of modR
consisting of modules M such that Ass M is contained inΦ.

(1) One has that Y is a resolving subcategory of modR closed under subobjects. In particular,
the subcategory Y containsΩ(modR) and modY is an abelian category.

(2) Suppose Y 6= rapY . Then R is a Cohen–Macaulay ring of dimension 1, and Y coincides
with CM(R).

Proof. (1). Using basic properties of associated prime ideals, we see that Y is closed under
subobjects and extensions. As Φ contains AssR, we have R ∈ Y . Thus Y is resolving. Since a
syzygy is a submodule of a projective R-module, Y contains Ω(modR). By Proposition 19 (and
Remark 7), modY is abelian.

(2). It follows by (1) and Corollary 31(2) that R is a Cohen–Macaulay ring with dimension 1 or 2
and Y coincides with CM(R). As Y contains Ω(modR) by (1) again, the case dimR = 2 does not
occur. �

The above proposition yields the corollary below, which is none other than Theorem 3 and
gives a negative answer to Question 1.

Corollary 34. Assume that R is neither a 1-dimensional Cohen–Macaulay ring nor satisfies
AssR = SpecR. Then there exists a proper resolving subcategory Y of modR which is closed under
subobjects and satisfies Y = rapY . In particular, one has both that modY is abelian and that
rapY 6=modR.

Proof. Choose any subset Φ of SpecR such that AssR ⊆ Φ 6= SpecR. Let Y be a subcategory
of modR consisting of modules M with Ass M ⊆ Φ. Since Φ 6= SpecR, we see that Y 6= modR.
By Proposition 33(1) et (2) we have that Y is resolving and closed under subobjects, modY is
abelian, and Y = rapY . �

As an application of the above corollary, we present two examples.

Example 35. Suppose that the ring R has dimension at least two.

(1) Assume that R has positive depth. Let Y be the subcategory of modR consisting of R-
modules that have positive depth. Then Y is such a subcategory as in Corollary 34 and
satisfies k ∉Y . This is observed by taking the punctured spectrum of R as Φ in the proof
of the corollary.
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(2) Assume R satisfies Serre’s condition (S1). Let Y be the subcategory of modR consisting
of R-modules none of whose associated prime ideal has height 1. Then Y is such a
subcategory as in Corollary 34 and satisfies k ∈Y . This is seen by lettingΦ= {p ∈ SpecR |
htp 6= 1} in the proof of the corollary.

4. Applications and further questions

In this short section, we first apply our results in the previous sections to the subcategory of
Gorenstein projective modules. We then present two questions related to Question 1 and give
some observations.

Proposition 36. Let X be an additive subcategory of modR containing R. Then rapX =modR if
and only if the functor ev : modX →modR given by ev(F ) = F (R) has a right adjoint.

Proof. The “only if” part follows from [1, Theorem 3.4(1)]. We prove the “if” part. Fix an R-
module M . Let φ : modR →modX be a right adjoint to the functor ev. Then there is a functorial
isomorphism HomR (F (R), M) ∼= HommodX (F,φ(M)), where F ∈ modX . For each X ∈ X , the
functor HomR ( · , X )|X belongs to modX . Since R is assumed to belong to X , we get functorial
isomorphisms

HomR (X , M) ∼= HomR (HomR (R, X ), M) ∼= HommodX (HomR ( · , X )|X ,φ(M)) ∼=φ(M)(X ),

where to get the last isomorphism we apply Yoneda’s lemma. We thus obtain an isomorphism of
functors HomR ( · , M)|X ∼= φ(M). Since φ(M) belongs to modX , it follows from Lemma 16 that
the R-module M admits a right X -approximation. Consequently, the equality rapX = modR
holds. �

Using the above proposition, we can get the theorem below. We should remark that condi-
tion (2) in the theorem depends only on the structure of GP(R) as an additive category.

Theorem 37. Let R be a henselian local ring. The following are equivalent.

(1) The ring R is Gorenstein or G-regular.
(2) The category modGP(R) is abelian.
(3) One has rapGP(R) =modR.
(4) The functor ev : modGP(R) →modR has a right adjoint.

Proof. First of all, GP(R) is a resolving subcategory of modR by Example 10(2). The equivalence
(2) ⇔ (3) (resp. (3) ⇔ (4)) follows from Proposition 19 and Corollary 28(3) (resp. Proposition 36).
If R is Gorenstein (resp. G-regular), then GP(R) coincides with CM(R) (resp. addR) and there is an
equality rapGP(R) = modR by Example 12. Hence, the implication (1) ⇒ (3) holds. The opposite
implication (3) ⇒ (1) is a consequence of [13, Theorem C] (see also [21, Corollary 1.5]). �

The following question naturally arises in view of Propositions 25, 26 and Corollary 32(2).

Question 38. Let R be a henselian local ring with residue field k. Let X be a resolving subcategory
of modR. Assume that k is not in X but admits a right X -approximation. Is then X contravari-
antly finite?

Remark 39.

(1) Question 38 has an affirmative answer if R is artinian. Indeed, Proposition 23(1) says
rapX is closed under extensions. If rapX contains k and R is artinian, then we have
rapX =modR.
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(2) The assumption in Question 38 that the residue field k of R does not belong to X is
indispensable. In fact, X :=mod0 R is a resolving subcategory of modR by Example 10(3)
and we have k ∈ X ⊆ rapX . However, X is not necessarily contravariantly finite. For
example, if the ring R is Gorenstein and X is contravariantly finite, then X coincides
with addR or CM(R) or modR; see [21, Theorem 1.2].

In view of Corollary 34 and Example 35, our Question 1 is not always affirmative, and we should
modify it. It would be reasonable to make the additional assumption that there exists a nontrivial
object which admits a right approximation. Thus our modified question is the following.

Question 40. Let R be a henselian local ring. Let X be a resolving subcategory of modR such that
the category modX is abelian. Assume that there exists an R-module which does not belong to X

but admits a right X -approximation. Is then X contravariantly finite?

Remark 41. Question 40 has an affirmative answer if we replace the abelianity of modX with
the stronger condition that X is closed under kernels (see Proposition 19) and assume further
that R is a homomorphic image of a Gorenstein ring. Indeed, Corollary 31(2) shows that R is
Cohen–Macaulay and X =CM(R). It follows from Example 12(2) that rapX =modR.
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