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Abstract. In [8], Bor has obtained a main theorem dealing with Riesz summability factors of infinite series and
Fourier series. In this paper, we generalized that theorem to |A,θn |k summability method for taking power
increasing sequence. Also some new and known results are obtained dealing with some basic summability
methods.
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1. Introduction

Let
∑

an be a given infinite series with partial sums (sn). By uα
n and tαn we denote the nth Cesàro

means of order α, with α>−1, of the sequence (sn) and (nan), respectively, that is (see [9])

uα
n = 1

Aα
n

n∑
v=0

Aα−1
n−v sv and tαn = 1

Aα
n

n∑
v=1

Aα−1
n−v vav , (1)

where

Aα
n = (α+1)(α+2) . . . (α+n)

n!
=O(nα), Aα

−n = 0 for n > 0. (2)

The series
∑

an is said to be summable |C ,α|k , k ≥ 1, if (see [11, 13])
∞∑

n=1
nk−1|uα

n −uα
n−1|k =

∞∑
n=1

1

n
|tαn |k <∞. (3)

If we take α= 1, then |C ,α|k summability reduces to |C ,1|k summability.
Let (pn) be a sequence of positive real numbers such that

Pn =
n∑

v=0
pv →∞ as n →∞, (P−i = p−i = 0, i ≥ 1). (4)

The sequence-to-sequence transformation

wn = 1

Pn

n∑
v=0

pv sv , Pn 6= 0. (5)

defines the sequence (wn) of the Riesz mean or simply the (N , pn) mean of the sequence (sn)
generated by the sequence of coefficients (pn) (see [12]).
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Let (θn) be any sequence of positive constants. The series
∑

an is said to be summable
|N , pn ;θn |k , k ≥ 1, if (see [18])

∞∑
n=1

θk−1
n |wn −wn−1|k <∞. (6)

In the special case if we take θn = Pn/pn , then |N , pn ;θn |k summability reduces to |N , pn |k
summability (see [2]). When θn = n and pn = 1 for all values of n, then we get |C ,1|k summability.
Furthermore, if we take θn = n, then |N , pn ;θn |k summability reduces to |R, pn |k summability
(see [3]).

For any sequence (λn) we write that

∆2λn =∆λn −∆λn+1 and ∆λn =λn −λn+1.

A sequence (λn) is said to be of bounded variation, denoted by (λn) ∈BV , if

∞∑
n=1

|∆λn | <∞.

Let A = (anv ) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries.
Then A defines the sequence-to-sequence transformation, mapping the sequence s = (sn) to
As = (An(s)), where

An(s) =
n∑

v=0
anv sv , n = 0,1, . . . (7)

Let (θn) be any sequence of positive real numbers. The series
∑

an is said to be summable |A,θn |k ,
k ≥ 1, if (see [16, 17])

∞∑
n=1

θk−1
n |∆An(s)|k <∞, (8)

where

∆An(s) = An(s)− An−1(s). (9)

If we take anv = pv
Pn

, then |A,θn |k summability reduces to |N , pn ;θn |k summability. If we take

θn = Pn
pn

, then |A,θn |k summability reduces to |A, pn |k summability (see [19]). And also if we take

θn = Pn
pn

and anv = pv
Pn

, then |A,θn |k summability reduces to |N , pn |k summability. Furthermore,

if we take θn = n, anv = pv
Pn

and pn = 1 for all values of n, then |A,θn |k summability reduces to

|C ,1|k summability (see [11]). Finally, if we take θn = n and anv = pv
Pn

, then |A,θn |k summability
reduces to |R, pn |k summability (see [3]).

Definition 1 (cf. [1]). A positive sequence (bn) is said to be an almost increasing sequence if
there exists a positive increasing sequence (cn) and two positive constants M and N such that
Mcn ≤ bn ≤ N cn .

Definition 2 (cf. [20]). A positive sequence X = (Xn) is said to be quasi- f -power increasing
sequence if there exists a constant K = K (X , f ) ≥ 1 such that K fn Xn ≥ fm Xm for all n ≥ m ≥ 1,
where f = { fn(σ,β)} = {nσ(l og n)β,β≥ 0,0 <σ< 1}.

If we take β = 0, then we have a quasi-σ-power increasing sequence (see [15]). Every almost
increasing sequence is a quasi-σ-power increasing sequence for any non-negative σ, but the
converse is not true for σ> 0.
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2. The Known Results

Recently, many papers have been done for absolute matrix summability factors of infinite series
and Fourier series (see [5–7, 14, 22, 23]). From these, in [14], Lee explained history of summability
of infinite series and Hüseyin Bor briefly. Now we also used Bor’s new theorem dealing with the
Fourier series and we will extend following theorem.

Theorem 3 (cf. [8]). Let (θn pn/Pn) be a non-increasing sequence. Let (pn) be a sequence of positive
numbers such that

Pn =O(npn) as n →∞. (10)

Let (Xn) be a positive increasing sequence. If the conditions

λn = o(1) as n →∞, (11)
m∑

n=1
nXn |∆2λn | =O(1) as m →∞, (12)

m∑
n=1

θk−1
n

(
pn

Pn

)k |tn |k
X k−1

n

=O(Xm) as m →∞, (13)

are satisfied, then the series
∑

anλn is summable |N , pn ,θn |k , k ≥ 1.

If we take θn = Pn/pn , then we get a theorem dealing with |N , pn |k summability (see [6]).

3. The Main Result

Given a normal matrix A = (anv ), we associate two lower semimatrices A = (anv ) and Â = (ânv )
as follows:

anv =
n∑

i=v
ani , n, v = 0,1, . . . (14)

and

â00 = a00 = a00, ânv = anv −an−1,v , n = 1,2, . . . (15)

It may be noted that A and Â are the well-known matrices of series-to-sequence and series-to-
series transformations, respectively. Then, we have

An(s) =
n∑

v=0
anv sv =

n∑
v=0

anv av (16)

and

∆An(s) =
n∑

v=0
ânv av . (17)

By using above notations, we generalize Theorem 3 for |A,θn |k summability method by taking
(Xn) as a quasi- f - power increasing sequence.

Theorem 4. Let k ≥ 1 and A = (anv ) be a positive normal matrix such that

an0 = 1, n = 0,1, . . . , (18)

an−1,v ≥ anv , for n ≥ v +1, (19)

1 =O(nann), (20)
n−1∑
v=1

av v |ân,v+1| =O(ann). (21)
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Let (θn ann) be a non-increasing sequence and (Xn) be a quasi- f -power increasing sequence for
some σ (0 < σ < 1). If the conditions (11)–(12) of Theorem 3 and (θn) holds for the following
condition,

m∑
n=1

θk−1
n ak

nn
|tn |k
X k−1

n

=O(Xm) as m →∞, (22)

are satisfied, then the series
∑

anλn is summable |A,θn |k , k ≥ 1.

We need the following lemmas for the proof of Theorem 4.

Lemma 5 (cf. [21]). By using conditions (14), (15), (18) and (19), we have

n−1∑
v=1

|∆v (ânv )| ≤ ann , (23)

m+1∑
n=v+1

|∆v (ânv )| ≤ av v , (24)

m+1∑
n=v+1

|ân,v+1| =O(1). (25)

Lemma 6 (cf. [4]). Under the conditions of Theorem 3 we have the following

nXn |∆λn | =O(1) as n →∞, (26)
∞∑

n=1
Xn |∆λn | <∞, (27)

Xn |λn | =O(1) as n →∞. (28)

Proof of Theorem 4. Let (In) denotes the A-transform of the series
∑∞

n=1 anλn . Then, by (16) and
(17), we have

∆In =
n∑

v=1
ânv avλv .

Applying Abel’s transformation to this sum, we have that

∆In =
n∑

v=1
ânv avλv

v

v
=

n−1∑
v=1

∆

(
ânvλv

v

) v∑
r=1

r ar + ânnλn

n

n∑
v=1

vav

=
n−1∑
v=1

∆

(
ânvλv

v

)
(v +1)tv + ânnλn

n +1

n
tn

=
n−1∑
v=1

∆v (ânv )λv tv
v +1

v
+

n−1∑
v=1

ân,v+1∆λv tv
v +1

v
+

n−1∑
v=1

ân,v+1λv+1
tv

v
+annλn tn

n +1

n

= In,1 + In,2 + In,3 + In,4.

To complete the proof of Theorem 4, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

θk−1
n |In,r |k <∞, for r = 1,2,3,4. (29)
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First, by applying Hölder’s inequality with indices k and k ′, where k > 1 and 1
k + 1

k ′ = 1, we have
that

m+1∑
n=2

θk−1
n |In,1|k ≤

m+1∑
n=2

θk−1
n

{
n−1∑
v=1

∣∣∣∣ v +1

v

∣∣∣∣ |∆v (ânv )||λv ||tv |
}k

=O(1)
m+1∑
n=2

θk−1
n

{
n−1∑
v=1

|∆v (ânv )||λv |k |tv |k
}
×

{
n−1∑
v=1

|∆v (ânv )|
}k−1

=O(1)
m+1∑
n=2

(θn ann)k−1

{
n−1∑
v=1

|∆v (ânv )||λv |k |tv |k
}

=O(1)
m∑

v=1
|λv |k−1|λv ||tv |k

m+1∑
n=v+1

(θn ann)k−1|∆v (ânv )|

=O(1)
m∑

v=1
(θv av v )k−1 1

X k−1
v

|λv ||tv |k
m+1∑

n=v+1
|∆v (ânv )|

=O(1)
m∑

v=1
(θv av v )k−1 1

X k−1
v

|λv ||tv |k av v

=O(1)
m−1∑
v=1

∆|λv |
v∑

r=1
θk−1

r ak
r r

|tr |k
X k−1

r

+O(1)|λm |
m∑

v=1
θk−1

v ak
v v

|tv |k
X k−1

v

=O(1)
m−1∑
v=1

|∆λv |Xv +O(1)|λm |Xm

=O(1) as m →∞,

by virtue of the hypotheses of Theorem 4, Lemma 5, and Lemma 6. Now using Hölder’s inequality,
we have that

m+1∑
n=2

θk−1
n |In,2|k ≤

m+1∑
n=2

θk−1
n

{
n−1∑
v=1

|v +1

v
||ân,v+1||∆λv ||tv |

}k

=O(1)
m+1∑
n=2

θk−1
n

{
n−1∑
v=1

|ân,v+1||∆λv ||tv |
}k

=O(1)
m+1∑
n=2

θk−1
n

{
n−1∑
v=1

a1−k
v v |ân,v+1||∆λv |k |tv |k

}
×

{
n−1∑
v=1

av v |ân,v+1|
}k−1

=O(1)
m+1∑
n=2

(θn ann)k−1
n−1∑
v=1

|∆λv |k a1−k
v v |ân,v+1||tv |k

=O(1)
m∑

v=1
|tv |k a1−k

v v |∆λv |k
m+1∑

n=v+1
(θn ann)k−1|ân,v+1|

=O(1)
m∑

v=1
(θv av v )k−1|tv |k a1−k

v v |∆λv |k
m+1∑

n=v+1
|ân,v+1|

=O(1)
m∑

v=1
(θv av v )k−1|tv |k a1−k

v v |∆λv |k

=O(1)
m∑

v=1
θk−1

v ak
v v |tv |k (v |∆λv |)k−1(v |∆λv |)

=O(1)
m∑

v=1
θk−1

v ak
v v

1

X k−1
v

|tv |k (v |∆λv |)

C. R. Mathématique — 2021, 359, n 5, 555-562
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=O(1)
m−1∑
v=1

∆(v |∆λv |)
v∑

r=1
θk−1

r ak
r r

1

X k−1
r

|tr |k +O(1)m|∆λm |
m∑

v=1
θk−1

v ak
v v

1

X k−1
v

|tv |k

=O(1)
m−1∑
v=1

|∆(v |∆λv |)|Xv +O(1)m|∆λm |Xm

=O(1)
m−1∑
v=1

v Xv |∆2λv |+O(1)
m−1∑
v=1

Xv |∆λv |+O(1)m|∆λm |Xm

=O(1) as m →∞,

by virtue of the hypotheses of Theorem 4, Lemma 5, and Lemma 6. Again, as in In,1, we have that

m+1∑
n=2

θk−1
n |In,3|k =

m+1∑
n=2

θk−1
n

∣∣∣∣∣n−1∑
v=1

ân,v+1λv+1
tv

v

∣∣∣∣∣
k

≤
m+1∑
n=2

θk−1
n

{
n−1∑
v=1

|ân,v+1||λv+1| |tv |
v

}k

=O(1)
m+1∑
n=2

θk−1
n

{
n−1∑
v=1

a1−k
v v

1

vk
|ân,v+1||λv+1|k |tv |k

}
×

{
n−1∑
v=1

av v |ân,v+1|
}k−1

=O(1)
m+1∑
n=2

(θn ann)k−1
n−1∑
v=1

a1−k
v v

1

vk
|ân,v+1||λv+1|k |tv |k

=O(1)
m∑

v=1
av v |λv+1|k |tv |k

m+1∑
n=v+1

(θn ann)k−1|ân,v+1|

=O(1)
m∑

v=1
(θv av v )k−1av v |λv+1|k |tv |k

m+1∑
n=v+1

|ân,v+1|

=O(1)
m∑

v=1
θk−1

v ak
v v |λv+1|k |tv |k

=O(1)
m∑

v=1
θk−1

v ak
v v |tv |k |λv+1|k−1|λv+1|

=O(1)
m∑

v=1
θk−1

v ak
v v

1

X k−1
v

|λv+1||tv |k

=O(1) as m →∞,

by virtue of the hypotheses of Theorem 4, Lemma 5, and Lemma 6. Finally, as in In,1, we have that
m∑

n=1
θk−1

n |In,4|k =O(1)
m∑

n=1
θk−1

n ak
nn |λn |k |tn |k =O(1)

m∑
n=1

θk−1
n ak

nn |λn |k−1|λn ||tn |k

=O(1)
m∑

n=1
θk−1

n ak
nn

1

X k−1
n

|λn ||tn |k =O(1) as m →∞,

by virtue of hypotheses of Theorem 4, Lemma 5, and Lemma 6. This completes the proof of
Theorem 4. �

4. An application of absolute matrix summability to Fourier series

Let f be a periodic function with period 2π and integrable (L) over (−π,π). The trigonometric
Fourier series of f is defined as

f (x) ∼ 1

2
a0 +

∞∑
n=1

(an cosnx +bn sinnx) =
∞∑

n=0
Cn(x). (30)
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Set

φ(t ) = 1

2
{ f (x + t )+ f (x − t )}, (31)

φα(t ) = α

tα

∫ t

0
(t −u)α−1φ(u)du, (α> 0). (32)

It is well known that if φ1(t ) ∈ BV (0,π), then tn(x) = O(1), where tn(x) is the (C ,1) mean of the
sequence (nCn(x)) (see [10]).

The following theorem is known dealing with |N , pn ,θn |k summability factors of Fourier series.

Theorem 7 (cf. [8]). Let
( θn pn

Pn

)
be a non-increasing sequence. Ifφ1(t ) ∈BV (0,π) and the sequences

(pn), (λn), and (Xn) satisfy the conditions of Theorem 3,then the series
∑

Cn(x)λn is summable
|N , pn ,θn |k , k ≥ 1.

Now, we generalize Theorem 7 for |A,θn |k summability method in the following form.

Theorem 8. Let (θn ann) be a non-increasing sequence, and A be a positive normal matrix as in
Theorem 4, and (Xn) be a quasi- f -power increasing sequence for some σ (0 < σ < 1). If φ1(t ) ∈
BV (0,π), and the sequences (pn), (λn), and (Xn) satisfy the conditions of Theorem 4, then the series∑

Cn(x)λn is summable |A,θn |k , k ≥ 1.

It should be noted that if we take (Xn) as a positive increasing sequence and anv = pv
Pn

in
Theorem 8, then we have Theorem 7.

Applications.

(1) If we write
∑n

v=0 pv /Pv , then (Xn) is a positive increasing sequence tending to infinity as
n → ∞. In this case, if we take (Xn) is a positive increasing sequence and anv = pv

Pn
in

Theorem 4, then we have Theorem 3.
(2) If we take θn = n, anv = pv

Pn
and pn = 1 for all values of n in Theorem 4, then we have a

new result concerning |C ,1|k summability method.
(3) If we take θn = n and anv = pv

Pn
in Theorem 4, then we get a new result dealing with |R, pn |k

summability method.
(4) If we take β = 0 and anv = pv

Pn
in Theorem 4, then we have new theorem dealing with

quasi-σ-power increasing sequence.
(5) If we take β = 0 and anv = pv

Pn
in Theorem 8, then we have new theorem dealing with

quasi-σ-power increasing sequence and Fourier series.
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