Comptes Rendus

Mathématique

Jun-Yu Zhou and Quan-Hui Yang

On the structure of the \boldsymbol{h}-fold sumsets

Volume 359, issue 4 (2021), p. 493-500
Published online: 17 June 2021
https: //doi.org/10.5802/crmath. 191
(σ) Br \quad This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l'édition scientifique ouverte
www.centre-mersenne.org
e-ISSN : 1778-3569

Number theory / Théorie des nombres

On the structure of the h-fold sumsets

Jun-Yu Zhou ${ }^{a}$ and Quan-Hui Yang*, ${ }^{*}$

a School of Mathematics and Statistics, Nanjing University of Information Science
and Technology, Nanjing 210044, China
E-mails: $1045908839 @ q q . c o m$, yangquanhui01@163.com

Abstract

Let A be a set of nonnegative integers. Let $(h A)^{(t)}$ be the set of all integers in the sumset $h A$ that have at least t representations as a sum of h elements of A. In this paper, we prove that, if $k \geq 2$, and $A=\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$ is a finite set of integers such that $0=a_{0}<a_{1}<\cdots<a_{k}$ and $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)=1$, then there exist integers c_{t}, d_{t} and sets $C_{t} \subseteq\left[0, c_{t}-2\right], D_{t} \subseteq\left[0, d_{t}-2\right]$ such that $$
(h A)^{(t)}=C_{t} \cup\left[c_{t}, h a_{k}-d_{t}\right] \cup\left(h a_{k-1}-D_{t}\right)
$$ for all $h \geq \sum_{i=2}^{k}\left(t a_{i}-1\right)-1$. This improves a recent result of Nathanson with the bound $h \geq(k-1)\left(t a_{k}-1\right) a_{k}+1$. 2020 Mathematics Subject Classification. 11B13. Funding. This author was supported by the National Natural Science Foundation for Youth of China, Grant No. 11501299, the Natural Science Foundation of Jiangsu Province, Grant Nos. BK20150889, 15KJB110014.

Manuscript received 4th January 2021, revised 12th February 2021, accepted 15th February 2021.

1. Introduction

Let A and B be sets of integers. The sumsets and difference sets are defined by

$$
A+B=\{a+b: a \in A, b \in B\}, \quad A-B=\{a-b: a \in A, b \in B\}
$$

respectively. For any integer t, we define the sets

$$
t+A=\{t\}+A, \quad t-A=\{t\}-A .
$$

For $h \geq 2$, we denote by $h A$ the h-fold sumset of A, which is the set of all integers n of the form $n=a_{1}+a_{2}+\cdots+a_{h}$, where $a_{1}, a_{2}, \ldots, a_{h}$ are elements of A and not necessarily distinct.

In [3, 4], Nathanson proved the following fundamental beautiful theorem on the structure of h-fold sumsets.

[^0]Nathanson's Theorem A. Let $A=\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$ be a finite set of integers such that

$$
0=a_{0}<a_{1}<\cdots<a_{k} \quad \text { and } \quad \operatorname{gcd}(A)=1
$$

Let $h_{1}=(k-1)\left(a_{k}-1\right) a_{k}+1$. There are nonnegative integers c_{1} and d_{1} and finite sets C_{1} and D_{1} with $C_{1} \subseteq\left[0, c_{1}-2\right]$ and $D_{1} \subseteq\left[0, d_{1}-2\right]$ such that

$$
h A=C_{1} \cup\left[c_{1}, h a_{k}-d_{1}\right] \cup\left(h a_{k}-D_{1}\right)
$$

for all $h \geq h_{1}$.
Later, Wu, Chen and Chen [6] improved the lower bound of h_{1} to $\sum_{i=2}^{k} a_{i}-k$. Recently, Granville and Shakan [1], and Granville and Walker [2] gave some further results on this topic.

Let A be a set of integers. For every positive integer h, the h-fold representation function $r_{A, h}(n)$ counts the number of representations of n as the sum of h elements of A. Thus,

$$
r_{A, h}(n)=\sharp\left\{\left(a_{j_{1}}, \ldots, a_{j_{h}}\right) \in A^{h}: n=\sum_{i=1}^{h} a_{j_{i}} \text { and } a_{j_{1}} \leq \cdots \leq a_{j_{h}}\right\} .
$$

For every positive integer t, let $(h A)^{(t)}$ be the set of all integers n that have at least t representations as the sum of h elements of A, that is,

$$
(h A)^{(t)}=\left\{n \in \mathbf{Z}: r_{A, h}(n) \geq t\right\}
$$

Recently, Nathanson [5] found that the sumsets $(h A)^{(t)}$ have the same structure as the sumset $h A$ and proved the following theorem.

Nathanson's Theorem B. Let $k \geq 2$, and let $A=\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$ be a finite set of integers such that $0=a_{0}<a_{1}<\cdots<a_{k}$ and $\operatorname{gcd}(A)=1$. For every positive integer t, let $h_{t}=(k-1)\left(t a_{k}-1\right) a_{k}+1$. There are nonnegative integers c_{t} and d_{t}, and finite sets C_{t} and D_{t} with $C_{t} \subseteq\left[0, c_{t}-2\right]$ and $D_{t} \subseteq\left[0, d_{t}-2\right]$ such that

$$
(h A)^{(t)}=C_{t} \cup\left[c_{t}, h a_{k}-d_{t}\right] \cup\left(h a_{k}-D_{t}\right)
$$

for all $h \geq h_{t}$.
In this paper, motivated by the idea of Wu , Chen and Chen [6], we improved the lower bound of h in Nathanson's Theorem B.

Theorem 1. Let $k \geq 2$, and let $A=\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$ be a finite set of integers such that

$$
0=a_{0}<a_{1}<\cdots<a_{k} \quad \text { and } \quad \operatorname{gcd}(A)=1
$$

For every positive integer t, let

$$
h_{t}=\sum_{i=2}^{k}\left(t a_{i}-1\right)-1
$$

There are nonnegative integers c_{t} and d_{t} and finite sets C_{t} and D_{t} with

$$
C_{t} \subseteq\left[0, c_{t}-2\right] \quad \text { and } \quad D_{t} \subseteq\left[0, d_{t}-2\right]
$$

such that

$$
\begin{equation*}
(h A)^{(t)}=C_{t} \cup\left[c_{t}, h a_{k}-d_{t}\right] \cup\left(h a_{k}-D_{t}\right) \tag{1}
\end{equation*}
$$

for all $h \geq h_{t}$.
Remark 2. Theorem 1 is optimal.
We shall prove Theorem 1 and Remark 2 in Section 3. In Section 2, we give some lemmas.

2. Some Lemmas

Lemma 3 (see [5, Lemma 1]). Let A be a set of integers. For any positive integer h and t, we have

$$
(h A)^{(t)}+A \subseteq((h+1) A)^{(t)} .
$$

Lemma 4. Let $k \geq 2$, and let $A=\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$ be a set of integers satisfying $0=a_{0}<a_{1}<\cdots<a_{k}$ and $\operatorname{gcd}(A)=1$. For every positive integer t, let $h_{t}=\sum_{i=2}^{k}\left(t a_{i}-1\right)-1$ and $c_{t}^{\prime}=\sum_{i=1}^{k-1} a_{i}\left(t a_{i+1}-1\right)$. If $c_{t}^{\prime}-a_{k}<n<c_{t}^{\prime}$, then there exist at least t distinct nonnegative k-tuples $\left(x_{1, s}, x_{2, s}, \ldots, x_{k, s}\right)(1 \leq s \leq t)$ satisfying

$$
n=x_{1, s} a_{1}+x_{2, s} a_{2}+\cdots+x_{k, s} a_{k}
$$

and $x_{1, s}+x_{2, s}+\cdots+x_{k, s} \leq h_{t}$ for $s=1,2, \ldots, t$.
Proof. Since $\operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right)=1$, there exist integers x_{1}, \ldots, x_{k} such that

$$
n=x_{1} a_{1}+\cdots+x_{k} a_{k} .
$$

For any positive integer $s,\left[(s-1) a_{2}, s a_{2}-1\right]$ is a complete residue system modulo a_{2}. Hence there exists an integer q such that $x_{1}=a_{2} q+x_{1, s}$ with $(s-1) a_{2} \leq x_{1, s} \leq s a_{2}-1$. This gives

$$
n=x_{1, s} a_{1}+\left(a_{1} q+x_{2}\right) a_{2}+\cdots+x_{k} a_{k} .
$$

Let $x_{2}^{\prime}=a_{1} q+x_{2}$. Similarly, there exists an integer q^{\prime} such that $x_{2}^{\prime}=a_{3} q^{\prime}+x_{2, s}$ with $(s-1) a_{3} \leq$ $x_{2, s} \leq s a_{3}-1$. Now we have

$$
n=x_{1, s} a_{1}+x_{2, s} x_{2}+\left(a_{2} q^{\prime}+x_{3}\right) a_{3}+\cdots+x_{k} a_{k} .
$$

By continuing this process, we obtain

$$
n=x_{1, s} a_{1}+x_{2, s} a_{2}+\cdots+x_{k, s} a_{k}
$$

with $(s-1) a_{i+1} \leq x_{i, s} \leq s a_{i+1}-1$ for $i=1, \ldots, k-1$ and $x_{k, s}$ is some integer. Hence, for any integer $s \in[1, t]$, we have

$$
0 \leq x_{i, s} \leq t a_{i+1}-1 .
$$

Since $n>c_{t}^{\prime}-a_{k}$, it follows that

$$
\begin{aligned}
x_{k, s} a_{k} & =n-\left(x_{1, s} a_{1}+x_{2, s} a_{2}+\cdots+x_{k-1, s} a_{k-1}\right) \\
& \geq n-\left(t a_{2}-1\right) a_{1}-\cdots-\left(t a_{k}-1\right) a_{k-1}=n-c_{t}^{\prime}>-a_{k},
\end{aligned}
$$

and then $x_{k, s}>-1$. Noting that $x_{k, s}$ is an integer, we have $x_{k, s} \geq 0$. By the bound of $x_{i, s}$, the following nonnegative k-tuples

$$
\left(x_{1, s}, x_{2, s}, \ldots, x_{k-1, s}, x_{k, s}\right) \quad(1 \leq s \leq t)
$$

are distinct.
Next, we shall prove that $x_{1, s}+x_{2, s}+\cdots+x_{k, s} \leq h_{t}$ for $s=1,2, \ldots, t$.
For any integer $s \in[1, t]$, let $x_{1, s}+x_{2, s}+\cdots+x_{k, s}=u_{s}$. Since $n<c_{t}^{\prime}$, it follows that

$$
\begin{aligned}
n & =x_{1, s} a_{1}+x_{2, s} a_{2}+\cdots+x_{k, s} a_{k} \\
& =x_{1, s} a_{1}+\cdots+x_{k-1, s} a_{k-1}+\left(u_{s}-x_{1, s}-x_{2, s}-\cdots-x_{k-1, s}\right) a_{k} \\
& =u_{s} a_{k}-x_{1, s}\left(a_{k}-a_{1}\right)-\cdots-x_{k-1, s}\left(a_{k}-a_{k-1}\right) \\
& \geq u_{s} a_{k}-\left(t a_{2}-1\right)\left(a_{k}-a_{1}\right)-\cdots-\left(t a_{k}-1\right)\left(a_{k}-a_{k-1}\right) \\
& =u_{s} a_{k}-a_{k}\left[\left(t a_{2}-1\right)+\cdots+\left(t a_{k}-1\right)\right]+a_{1}\left(t a_{2}-1\right)+\cdots+a_{k-1}\left(t a_{k}-1\right) \\
& =u_{s} a_{k}-\left(h_{t}+1\right) a_{k}+c_{t}^{\prime} \\
& >u_{s} a_{k}-\left(h_{t}+1\right) a_{k}+n .
\end{aligned}
$$

Hence $u_{s} a_{k}-\left(h_{t}+1\right) a_{k}<0$, and then $u_{s}<h_{t}+1$. Therefore, $u_{s} \leq h_{t}$.
This completes the proof of Lemma 4.

Lemma 5. Let c_{t}^{\prime} and h_{t} be defined in Lemma 4. Then

$$
c_{t}^{\prime}=\sum_{i=1}^{k-1} a_{i}\left(t a_{i+1}-1\right) \in\left(\left(h_{t}+1\right) A\right)^{(t)} .
$$

Proof. For $i=1,2, \ldots, k-1$, let $p_{i}=t a_{i+1}-1$. Then

$$
c_{t}^{\prime}=\left(t a_{2}-1\right) a_{1}+\cdots+\left(t a_{k}-1\right) a_{k-1}=p_{1} a_{1}+\cdots+p_{k-1} a_{k-1} .
$$

Noting that

$$
p_{1}+\cdots+p_{k-1}=\sum_{i=2}^{k}\left(t a_{i}-1\right)=h_{t}+1,
$$

we have $c_{t}^{\prime} \in\left(h_{t}+1\right) A$.
Moreover, for any integer $r \in[0, t-1]$, we have

$$
\begin{aligned}
c_{t}^{\prime} & =\sum_{i=1}^{k-1}\left(t a_{i+1}-1\right) a_{i}=\sum_{i=1}^{k-1}\left((t-r) a_{i+1}-1\right) a_{i}+r \sum_{i=1}^{k-1} a_{i} a_{i+1} \\
& =\left((t-r) a_{2}-1\right) a_{1}+\sum_{i=2}^{k-1}\left((t-r) a_{i+1}-1+r a_{i-1}\right) a_{i}+r a_{k-1} a_{k} \\
& :=p_{1, r} a_{1}+p_{2, r} a_{2}+\cdots+p_{k-1, r} a_{k-1}+p_{k, r} a_{k}
\end{aligned}
$$

where $p_{1, r}=(t-r) a_{2}-1, p_{k, r}=r a_{k-1}$ and $p_{i, r}=(t-r) a_{i+1}-1+r a_{i-1}(2 \leq i \leq k-1)$. Hence $p_{i, r} \geq 0$ for all $i \in[1, k]$ and

$$
\begin{aligned}
\sum_{i=1}^{k} p_{i, r} & =(t-r) a_{2}-1+(t-r) a_{3}-1+r a_{1}+\cdots+(t-r) a_{k}-1+r a_{k-2}+r a_{k-1} \\
& =h_{t}+1-r\left(a_{2}+\cdots+a_{k}\right)+r\left(a_{1}+\cdots+a_{k-1}\right) \\
& =h_{t}+1-r\left(a_{k}-a_{1}\right) \leq h_{t}+1
\end{aligned}
$$

Thus, $r_{A, h_{t}+1}\left(c_{t}^{\prime}\right) \geq t$, and so $c_{t}^{\prime} \in\left(\left(h_{t}+1\right) A\right)^{(t)}$.
Lemma 6. Let n and a_{1}, a_{2} be positive integers with $\operatorname{gcd}\left(a_{1}, a_{2}\right)=1$. For any positive integer t, if $n>t a_{1} a_{2}-a_{1}-a_{2}$, then the diophantine equation

$$
\begin{equation*}
a_{1} x+a_{2} y=n \tag{2}
\end{equation*}
$$

has at least t nonnegative integer solutions. The lower bound of n is also best possible.
Proof. Suppose that $n>t a_{1} a_{2}-a_{1}-a_{2}$. Let (x_{0}, y_{0}) be a solution of the equation (2). Then all the integer solutions of the equation (2) is

$$
\left\{\begin{array}{l}
x=x_{0}+k a_{2}, \tag{3}\\
y=y_{0}-k a_{1},
\end{array} \quad k \in \mathbb{Z} .\right.
$$

In order to have $x \geq 0$ and $y \geq 0$, we only need $x>-1$ and $y>-1$, that is,

$$
\begin{equation*}
\frac{-1-x_{0}}{a_{2}}<k<\frac{y_{0}+1}{a_{1}} . \tag{4}
\end{equation*}
$$

Since

$$
\frac{y_{0}+1}{a_{1}}-\frac{-1-x_{0}}{a_{2}}=\frac{a_{1}+a_{2}+a_{1} x_{0}+a_{2} y_{0}}{a_{1} a_{2}}=\frac{a_{1}+a_{2}+n}{a_{1} a_{2}}>\frac{a_{1}+a_{2}+t a_{1} a_{2}-a_{1}-a_{2}}{a_{1} a_{2}}=t,
$$

there exist at least t integers k such that (4) holds.
Therefore, the equation (2) has at least t nonnegative integer solutions.

Now suppose that $l=t a_{1} a_{2}-a_{1}-a_{2}$. Then $\left(t a_{2}-1,-1\right)$ is a solution of (2). Take $x_{0}=t a_{2}-1$ and $y_{0}=-1$. Then (3) becomes

$$
\left\{\begin{array}{l}
x=t a_{2}-1-k a_{2}, \\
y=-1+k a_{1},
\end{array} \quad k \in \mathbb{Z}\right.
$$

Since $x \geq 0$ and $y \geq 0$, it follows that $1 \leq k \leq t-1$. Hence there exist at most $t-1$ nonnegative integer solutions.

This completes the proof of Lemma 6.

3. Proofs

Proof of Theorem 1. Let $c_{t}^{\prime}=\sum_{i=1}^{k-1} a_{i}\left(t a_{i+1}-1\right)$. By Lemma 4, there exist smallest integers c_{t} and d_{t} satisfying

$$
\left[c_{t}^{\prime}-a_{k}+1, c_{t}^{\prime}-1\right] \subseteq\left[c_{t}, h_{t} a_{k}-d_{t}\right] \subseteq\left(h_{t} A\right)^{(t)}
$$

It follows that $c_{t}-1 \notin\left(h_{t} A\right)^{(t)}$ and $h_{t} a_{k}-d_{t}+1 \notin\left(h_{t} A\right)^{(t)}$. Additionally

$$
\begin{gather*}
c_{t} \leq c_{t}^{\prime}-a_{k}+1 \tag{5}\\
c_{t}^{\prime}-1 \leq h_{t} a_{k}-d_{t} \tag{6}
\end{gather*}
$$

Define the finite sets C_{t} and D_{t} by

$$
C_{t}=\left(h_{t} A\right)^{(t)} \cap\left[0, c_{t}-2\right]
$$

and

$$
h_{t} a_{k}-D_{t}=\left(h_{t} A\right)^{(t)} \cap\left[h_{t} a_{k}-\left(d_{t}-2\right), h_{t} a_{k}\right]
$$

Then

$$
\begin{equation*}
\left(h_{t} A\right)^{(t)}=C_{t} \cup\left[c_{t}, h_{t} a_{k}-d_{t}\right] \cup\left(h_{t} a_{k}-D_{t}\right) \tag{7}
\end{equation*}
$$

Therefore, (1) holds for $h=h_{t}$.
Now we prove (1) by induction on h. Suppose that (1) holds for some $h \geq h_{t}$. Define

$$
B^{(t)}=C_{t} \cup\left[c_{t},(h+1) a_{k}-d_{t}\right] \cup\left((h+1) a_{k}-D_{t}\right)
$$

Firstly we prove that $B^{(t)} \subseteq((h+1) A)^{(t)}$.
Take an arbitrary integer $b \in B^{(t)}$.
Case 1: $b \in C_{t} \cup\left[c_{t}, h_{t} a_{k}-d_{t}\right]$. By (7), we have

$$
b \in\left(h_{t} A\right)^{(t)} \subseteq((h+1) A)^{(t)}
$$

Case 2: $b \in\left[c_{t}+a_{k},(h+1) a_{k}-d_{t}\right] \cup\left((h+1) a_{k}-D_{t}\right)$. It follows that

$$
b-a_{k} \in\left[c_{t}, h a_{k}-d_{t}\right] \cup\left(h a_{k}-D_{t}\right) \subseteq(h A)^{(t)}
$$

Thus, By Lemma 3, $b \in(h A)^{(t)}+a_{k} \subseteq((h+1) A)^{(t)}$.
Case 3: $h_{t} a_{k}-d_{t}+1 \leq b \leq c_{t}+a_{k}-1$. By (5) and (6), we have

$$
\begin{equation*}
c_{t}+a_{k}-1 \leq c_{t}^{\prime} \leq h_{t} a_{k}-d_{t}+1 \tag{8}
\end{equation*}
$$

Thus $b=c_{t}^{\prime}$. By Lemma 5, we have

$$
b=c_{t}^{\prime} \in\left(\left(h_{t}+1\right) A\right)^{(t)} \subseteq((h+1) A)^{(t)}
$$

Therefore, $B^{(t)} \subseteq((h+1) A)^{(t)}$.
Next we shall prove that $((h+1) A)^{(t)} \subseteq B^{(t)}$. Take an arbitrary integer $a \in((h+1) A)^{(t)}$.

Case 1: $a=c_{t}^{\prime}$. By (8) and $h \geq h_{t}$, we have

$$
c_{t} \leq c_{t}^{\prime} \leq h_{t} a_{k}-d_{t}+1 \leq(h+1) a_{k}-d_{t}
$$

Hence $a=c_{t}^{\prime} \in B^{(t)}$.
Case 2: $a \neq c_{t}^{\prime}$ and $a \notin(h A)^{(t)}$. Since $a \in((h+1) A)^{(t)}$, there exist t nonnegative integer k-tuples $\left(x_{1, s}, x_{2, s}, \ldots x_{k, s}\right)(1 \leq s \leq t)$ satisfying

$$
a=x_{1, s} a_{1}+x_{2, s} a_{2}+\cdots+x_{k, s} a_{k} \quad \text { and } \quad x_{1, s}+x_{2, s}+\cdots+x_{k, s} \leq h+1
$$

Furthermore, we can get

$$
\begin{equation*}
0 \leq x_{i, s} \leq t a_{i+1}-1,1 \leq i \leq k-1,1 \leq s \leq t \tag{9}
\end{equation*}
$$

Otherwise, without loss of generality, assume that $x_{1,1} \geq t a_{2}$, then for $j=1,2, \ldots, t$, we have

$$
\begin{aligned}
a & =x_{1,1} a_{1}+x_{2,1} a_{2}+\cdots+x_{k, 1} a_{k} \\
& =\left(x_{1,1}-j a_{2}\right) a_{1}+\left(x_{2,1}+j a_{1}\right) a_{2}+\cdots+x_{k, 1} a_{k}
\end{aligned}
$$

Noting that for $j=1,2, \ldots, t$,

$$
\left(x_{1,1}-j a_{2}\right)+\left(x_{2,1}+j a_{1}\right)+x_{3,1}+\cdots+x_{k, 1}=h+1-j\left(a_{2}-a_{1}\right)<h+1
$$

we have $a \in(h A)^{(t)}$, a contradiction. Hence the inequality (9) holds.
By $a \notin(h A)^{(t)}$, there exists $s \in[1, t]$ such that $a=x_{1, s} a_{1}+x_{2, s} a_{2}+\cdots+x_{k, s} a_{k}$ and

$$
x_{1, s}+x_{2, s}+\cdots+x_{k, s}=h+1
$$

By (9), we have

$$
\begin{aligned}
a & =x_{1, s} a_{1}+x_{2, s} a_{2}+\cdots+x_{k, s} a_{k} \\
& =x_{1, s} a_{1}+\cdots+x_{k-1, s} a_{k-1}+\left(h+1-x_{1, s}-x_{2, s}-\cdots-x_{k-1, s}\right) a_{k} \\
& =(h+1) a_{k}-x_{1, s}\left(a_{k}-a_{1}\right)-\cdots-x_{k-1, s}\left(a_{k}-a_{k-1}\right) \\
& \geq(h+1) a_{k}-\left(t a_{2}-1\right)\left(a_{k}-a_{1}\right)-\cdots-\left(t a_{k}-1\right)\left(a_{k}-a_{k-1}\right) \\
& =(h+1) a_{k}-a_{k}\left[\left(t a_{2}-1\right)+\cdots+\left(t a_{k}-1\right)\right]+a_{1}\left(t a_{2}-1\right)+\cdots+a_{k-1}\left(t a_{k}-1\right) \\
& =(h+1) a_{k}-\left(h_{t}+1\right) a_{k}+c_{t}^{\prime} \\
& \geq c_{t}^{\prime} .
\end{aligned}
$$

Since $a \neq c_{t}^{\prime}$, it follows that $a \geq c_{t}^{\prime}+1$. By (5), we have $a \geq c_{t}^{\prime}+1 \geq c_{t}+a_{k}$.
If $x_{k, s}=0$ for some s with $1 \leq s \leq t$, by (9), then

$$
a \leq\left(t a_{2}-1\right) a_{1}+\cdots+\left(t a_{k}-1\right) a_{k-1}=c_{t}^{\prime}
$$

a contradiction.
Hence $x_{k, s} \geq 1$ for all integers $s=1,2, \ldots, t$.
Therefore, $a-a_{k} \in(h A)^{(t)}$ and $a-a_{k} \geq c_{t}$. By the induction hypothesis,

$$
a \in a_{k}+\left[c_{t}, h a_{k}-d_{t}\right] \cup\left(h a_{k}-D_{t}\right)=\left[c_{t}+a_{k},(h+1) a_{k}-d_{t}\right] \cup\left((h+1) a_{k}-D_{t}\right) \subseteq B^{(t)}
$$

Case 3: $a \neq c_{t}^{\prime}$ and $a \in(h A)^{(t)}$. By the induction hypothesis, we have

$$
(h A)^{(t)}=C_{t} \cup\left[c_{t}, h a_{k}-d_{t}\right] \cup\left(h a_{k}-D_{t}\right)
$$

Since $C_{t} \cup\left[c_{t},(h+1) a_{k}-d_{t}\right] \subseteq B^{(t)}$, we can suppose that $a>(h+1) a_{k}-d_{t}$. By $a \in(h A)^{(t)}$, there exist at least t distinct nonnegative k-tuples $\left(x_{1, s}, x_{2, s}, \ldots, x_{k, s}\right)(1 \leq s \leq t)$ such that

$$
a=x_{1, s} a_{1}+x_{2, s} a_{2}+\cdots+x_{k, s} a_{k}
$$

and

$$
x_{1, s}+x_{2, s}+\cdots+x_{k, s} \leq h
$$

As in the proof of Lemma 4, assume that $0 \leq x_{i, s} \leq t a_{i+1}-1$ for $i=1,2, \ldots, k-1$. If $x_{k, s} \leq 0$, then by (6) we have

$$
\begin{aligned}
a & \leq x_{1, s} a_{1}+x_{2, s} a_{2}+\cdots+x_{k-1, s} a_{k-1} \\
& \leq a_{1}\left(t a_{2}-1\right)+\cdots+a_{k-1}\left(t a_{k}-1\right) \\
& =c_{t}^{\prime} \leq h_{t} a_{k}-d_{t}+1 \\
& \leq\left(h_{t}+1\right) a_{k}-d_{t} \leq(h+1) a_{k}-d_{t}
\end{aligned}
$$

which contradicts with $a>(h+1) a_{k}-d_{t}$. Therefore $x_{k, s} \geq 1$ and $a-a_{k} \in(h A)^{(t)}$. Since $a>$ $(h+1) a_{k}-d_{t}$, it follows that $a-a_{k} \in h a_{k}-D_{t}$. Hence

$$
a \in(h+1) a_{k}-D_{t} \subseteq B^{(t)}
$$

and so $((h+1) A)^{(t)} \subseteq B^{(t)}$.
This completes the proof of Theorem 1.
Proof of Remark 2. Let $n \geq 3$ be an integer and $A=\{0, n, n+1\}$. By Theorem 1, there exist integers c_{t}, d_{t} and sets $C_{t} \subseteq\left[0, c_{t}-2\right], D_{t} \subseteq\left[0, d_{t}-2\right]$ such that

$$
(h A)^{(t)}=C_{t} \cup\left[c_{t}, h a_{k}-d_{t}\right] \cup\left(h a_{k}-D_{t}\right)
$$

for all $h \geq h_{t}=t(n+1)-2$.
For any integer $m \geq c_{t}$, choose an integer $h^{\prime} \geq t(n+1)-2$ such that $h^{\prime} a_{k}-d_{t} \geq m$, then we have $m \in\left(h^{\prime} A\right)^{(t)}$.

Hence, there exist t nonnegative integer tuples $\left(u_{i}, v_{i}\right)(1 \leq i \leq t)$ such that $m=u_{i} n+v_{i}(n+1)$.
On the other hand, there does not exist t nonnegative integer tuples (u_{i}, v_{i}) ($1 \leq i \leq t$) such that $c_{t}-1=u_{i} n+v_{i}(n+1)$. Otherwise, if exist, choose $h>\max _{1 \leq i \leq t}\left\{u_{i}+v_{i}\right\}$, then we have $c_{t}-1 \in(h A)^{(t)}$, a contradiction. Hence, by Lemma 6, it follows that $c_{t}-1=t a_{1} a_{2}-a_{1}-a_{2}=$ $\operatorname{tn}(n+1)-n-(n+1)$, and then $c_{t}=\operatorname{tn}(n+1)-2 n$.

Let $p \in\left(\left(h_{t}-1\right) A\right)^{(t)}$. Then there exist t nonnegative integer tuples $\left(u_{i}, v_{i}\right)(1 \leq i \leq t)$ such that $p=u_{i} n+v_{i}(n+1)$ and $u_{1}>u_{2}>\cdots>u_{t}$ are the maximal t numbers in all the representations. Hence

$$
\begin{aligned}
p=u_{1} n+v_{1}(n+1) & =\left[u_{1}-(n+1)\right] n+\left(v_{1}+n\right)(n+1) \\
& =\left[u_{1}-2(n+1)\right] n+\left(v_{1}+2 n\right)(n+1) \\
& =\ldots \\
& =\left[u_{1}-(t-1)(n+1)\right] n+\left[v_{1}+(t-1) n\right](n+1)
\end{aligned}
$$

It follows that $u_{t}=u_{1}-(t-1)(n+1), v_{t}=v_{1}+(t-1) n$. Noting that

$$
u_{t}+v_{t}<u_{t-1}+v_{t-1}<\cdots<u_{1}+v_{1} \leq h_{t}-1
$$

we have

$$
\begin{aligned}
u_{t}+v_{t} & =u_{1}-(t-1)(n+1)+v_{1}+(t-1) n \\
& =u_{1}+v_{1}-(t-1) \leq h_{t}-1-(t-1)=t n-2
\end{aligned}
$$

Hence, for every $p \in\left(\left(h_{t}-1\right) A\right)^{(t)}$,

$$
\begin{aligned}
p & =u_{t} n+v_{t}(n+1) \leq\left(u_{t}+v_{t}\right)(n+1) \leq(t n-2)(n+1) \\
& =\operatorname{tn}(n+1)-2(n+1)<\operatorname{tn}(n+1)-2 n=c_{t}
\end{aligned}
$$

By (1), it follows that

$$
\left(\left(h_{t}-1\right) A\right)^{(t)} \subseteq[0, \operatorname{tn}(n+1)-2(n+1)]
$$

Therefore, (1) cannot hold for $h=h_{t}-1$, and so Theorem 1 is optimal.

Acknowledgement

We would like to thank the referee for their useful comments.

References

[1] A. Granville, G. Shakan, "The Frobenius postage stamp problem, and beyond", https://arxiv.org/abs/2003.04076, 2020.
[2] A. Granville, A. Walker, "A tight structure theorem for sumsets", https://arxiv.org/abs/2006.01041, 2020.
[3] M. B. Nathanson, "Sums of finite sets of integers", Am. Math. Mon. 79 (1972), p. 1010-1012.
[4] _, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Graduate Texts in Mathematics, vol. 165, Springer, 1996.
[5] ——, "Sums of finite sets of integers, II", https://arxiv.org/abs/2005.10809v3, 2020.
[6] J. Wu, F. Chen, Y. Chen, "On the structure of the sumsets", Discrete Math. 311 (2011), no. 6, p. 408-412.

[^0]: * Corresponding author.

