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Abstract. Five binomial sums are extended by a free parameter m, that are shown, through the generating
function method, to have the same value. These sums generalize the ones by Ruehr (1980), who discovered
them in the study of two unexpected equalities between definite integrals.
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In 1980, Kimura [14] proposed a monthly problem about two curious identities of definite
integrals. If f is continuous on [− 1

2 , 3
2 ], then for δ= 0, 1, prove that∫ 3

2

− 1
2

xδ f
(
3x2 −2x3)dx = 2

∫ 1

0
xδ f

(
3x2 −2x3)dx.

In his (trigonometric) proof, Ruehr [14] observed by linearity that to prove these identities, it is
enough to verify them for monomials f (x) = xn . This led him to discover the following interesting
identities

An =Cn and Bn = Dn ,

where for a natural number n, the four binomial sums are defined by

An =
n∑

j=0
3 j

(
3n − j

2n

)
,

Bn =
n∑

j=0
2 j

(
3n +1

2n + j +1

)
,

Cn =
2n∑
j=0

(−3) j

(
3n − j

n

)
,

Dn =
2n∑
j=0

(−4) j

(
3n +1

n + j +1

)
.
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Allouche [1, 2] examined the related integrals and reviewed these identities in a more elegant
manner. These identities were also reconfirmed by Meehan et al [16] who found, through the
WZ-algorithm, that these four sequences satisfy also the common recurrence relation:

X0 = 1 and Xn+1 = 27

4
Xn − 3

(3n+1
n

)
4(n +1)

.

By introducing a variable, Alzer and Prodinger [3] recently considered the polynomial analogues,
that were also examined by Kilic–Arikan [13] through bijections.

By applying the generating function approach to the binomial convolutions

Ωn =
n∑

k=0

(
3k

k

)(
3n −3k

n −k

)
the authors [4] not only confirmed the identities

Ωn = An = Bn =Cn = Dn ; (1)

but also found the two additional ones

Ωn = En = Fn , (2)

where

En =
n∑

k=0
3k

(
3n −k

2n

)
2k(k +1)

3n −k
,

Fn =
n∑

k=0
2k

(
3n +2

n −k

)
(k +1)(3k +2)

3n +2
.

Recall the following two binomial series due to Lambert [15] (see also [5–7, 11], [12, §5.4] and [17,
§5.4]):

∞∑
n=0

α

α+nβ

(
α+nβ

n

)
xn = (1+ y)α, (3)

∞∑
n=0

(
α+nβ

n

)
xn = (1+ y)α+1

1+ y −βy
; (4)

where x and y are related by the equation x = y/(1+ y)β. According to the Lagrange inversion
theorem (cf. Comtet [8, §3.8]), both (3) and (4) can be considered as “formal power series”
equations in the variable x.

For two natural integers m and n, define the binomial sum

Ωm(n) =
n∑

k=0

(
mk

k

)(
mn −mk

n −k

)
.

Then we can compute, in view of (4), its generating function

Ωm[x] :=
∞∑

n=0
Ωm(n)xn =

∞∑
n=0

xn
n∑

k=0

(
mk

k

)(
mn −mk

n −k

)

=
∞∑

k=0

(
mk

k

)
xk

∞∑
n=k

(
mn −mk

n −k

)
xn−k

= (1+ y)2

(1+ y −my)2 , where x = y

(1+ y)m .

By manipulating the above function, we shall prove that

Ωm(n) = Am(n) = Bm(n) = Em(n) = Fm(n), (5)
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where the four binomial sums are defined by

Am(n) =
n∑

j=0
m j

(
nm − j

n − j

)
,

Bm(n) =
n∑

j=0
(m −1) j

(
nm +1

n − j

)
,

Em(n) =
n∑

k=0
mk

(
mn −k

mn −n

)
(m −1)k(k +1)

mn −k
,

Fm(n) =
n∑

k=0
(m −1)k

(
mn +2

n −k

)
(1+k)(2+mk)

2+mn
.

When m = 3, we recover the previously known results

Ωn = An = Bn = En = Fn .

As done by Ekhad and Zeilberger [10] for the above identities, it should also be possible to give,
by the WZ-method, “automated” proofs for those displayed in (5).

§1. Firstly, we can reformulate the generating functionΩm[x] as

Ωm[x] = (1+ y)2

(1+ y −my)2 = 1+ y

1+ y −my
× 1

1−my/(1+ y)

= 1+ y

1+ y −my
× 1

1−mx(1+ y)m−1 y = x(1+ y)m

=
∞∑

j=0
(mx) j (1+ y)(m−1) j+1

1+ y −my
.

Letting α= (m −1) j and β= m in (4), we have further

Ωm[x] =
∞∑

j=0
(mx) j

∞∑
k=0

xk

(
(m −1) j +km

k

)

=
∞∑

n=0
xn

n∑
j=0

m j

(
nm − j

n − j

)
n = k + j

which implies thatΩm(n) = Am(n). �

§2. Secondly, the generating functionΩm[x] can also be restated as

Ωm[x] = (1+ y)2

(1+ y −my)2 = (1+ y)2

1+ y −my
× 1

1+ y −my

= (1+ y)2

1+ y −my
× 1

1−x(1+ y)m(m −1)
y = x(1+ y)m

=
∞∑

j=0
(m −1) j x j (1+ y)2+m j

1+ y −my
.

By letting α= 1+m j and β= m in (4), we can expand further

Ωm[x] =
∞∑

j=0
(m −1) j x j

∞∑
k=0

xk

(
m j +km +1

k

)

=
∞∑

n=0
xn

n∑
j=0

(m −1) j

(
nm +1

n − j

)
. n = k + j .

This shows thatΩm(n) = Bm(n). �
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§3. Thirdly, rewrite the generating functionΩm[x] as

Ωm[x] = (1+ y)2

(1+ y −my)2 = 1(
1− my

1+y

)2

= 1

(1−mx(1+ y)m−1)2 y = x(1+ y)m

=
∞∑

k=0
(k +1)(mx)k (1+ y)(m−1)k .

Letting α= (m −1)k,β= m in (3), we have further

Ωm[x] =
∞∑

k=0
(mx)k

∞∑
i=0

xi

(
(m −1)k +mi

i

)
(m −1)k(k +1)

(m −1)k +mi

=
∞∑

n=0
xn

n∑
k=0

mk

(
mn −k

mn −n

)
(m −1)k(k +1)

mn −k
. n = k + i

This gives rise to the equalityΩm(n) = Em(n). �

§4. Finally, the generating functionΩm[x] can be expressed alternatively as

Ωm[x] = (1+ y)2

(1+ y −my)2 = (1+ y)2

(1− (m −1)x(1+ y)m)2

=
∞∑

k=0
(k +1)(m −1)k xk (1+ y)mk+2. y = x(1+ y)m

By making use of (3) with α= 2+mk and β= m, we deduce that

Ωm[x] =
∞∑

k=0
(m −1)k xk

∞∑
i=0

xi

(
2+mk + i m

i

)
(k +1)(mk +2)

2+mk + i m

=
∞∑

n=0
xn

n∑
k=0

(m −1)k

(
2+mn

n −k

)
(k +1)(2+mk)

2+mn
n = k + i

which leads us to the fourth identityΩm(n) = Fm(n). �

§5. Before concluding the paper, it is worthwhile making the following comments.

• As done by Duarte and Guedes de Oliveira [9], for an arbitrary real number λ, we have the
identity

Ωm(n) =
n∑

k=0

(
mk +λ

k

)(
mn −mk −λ

n −k

)
.

This can be justified easily by the functional relation

Ωm[x] = (1+ y)2

(1+ y −my)2 = (1+ y)1+λ

1+ y −my
× (1+ y)1−λ

1+ y −my
.

• Observe that the equalities in (5) hold for infinitely many integers m. According to the
fundamental theorem of polynomial algebra, these identities are valid also when m is
replaced by a variable and any complex number.

• For the remaining two sequences Cn and Dn , we failed to find their generalized expres-
sions Cm(n) and Dm(n). The interested reader is encouraged to make further attempts.

�
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