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1. Introduction

Let Y a, be a given infinite series with the partial sums (s,). By ¢ we denote the nth Cesaro mean
of order a, with a > —1, of the sequence (na;), thatis (see [21])

1 & _
= Z()Az_bvay, (tn" = 1n) (1)
where (@+D)(@+2)...@+n)
a a (a+n
A% = ' =0(n%, A%,=0 for n>0. )
n!
The series Y a,, is said to be summable |C, a|;, k = 1, if (see [23])
o 1 otk
2 ] <oo. 3)
n=11

If we take a = 1, then |C, a|; summability reduces to |C, 1|} summability. Let (p,,) be a sequence

of positive real numbers such that
n

P,=) py—oo as n—oo, (P_i=p_;=0, iz1). 4)
v=0
The sequence-to-sequence transformation (s,) — (v,) with
1 n
Un=—7— Z PvSv (5)
PVl v=0

defines the sequence (v,) of weighted arithmetic mean or simply the (N,p,) mean of the

sequence (s;), generated by the sequence of coefficients (p,) (see [24]). If we write X, = ¥"'_, %’
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then (X,,) is a positive increasing sequence tending to infinity as n — oco. The series }_ a,, is said
to be summable | N, p,lx, k = 1, if (see [3])
() Pn k-1 B
(_) |vp — Vp—1|” <oo.
=1\Pn
In the special case when p, =1 for all n (resp. k = 1), IN, Pnlx summability is the same as |C, 1|
(resp. IN, pnl (see [35]) summability. Also if we take p,, = ﬁ and k = 1, then we obtain |R,logn, 1|
summability (see [1]).
For any sequence (A,) we write that A20, =Ad, —AA,1 and Ad, = A, — A,41. The sequence
(Ay) is said to be of bounded variation, denoted by (1,,) € BV, if Ziozl [AA L] < oo.

2. The known result

Many works dealing with the absolute summability factors of infinite series and Fourier series
have been done (see [2,4-20,25-34,36-40]). Among them, in [12], the following theorem has been
proved.

Theorem 1. Let (X,) be a positive increasing sequence and let (p,) be a sequence of positive
numbers such that

P,=0(np,) as n—oo. (6)
If the conditions
Am=0(1) as m— oo, (7)
m
Y nXulA%A,l=001) as m—oo (8)
=1

tnlk

n

m
P

Zp,x,

hold, then the series Y a,A,, is summable IN, Puli, k= 1.

=0(X,;) as m— oo, 9)

Remark. It should be noted that, in Theorem 1, there is a restriction on the sequence (py).

Therefore, due to restriction (6) on (p,) no result for p, = ﬁ can be deduced from Theorem 1.

3. The main result

The aim of this paper is to obtain a further generalization of Theorem 1 under weaker conditions.
In this case, there is not any restriction on the sequence (pj,). It is clear that (6) and (9) imply the
following formula

m k
Z '”' -=0(Xp) as m—oo. (10)

Also(6) implies that
m
It should be remarked that (6) implies (11) but the converse needs not be true (see [27]).
Now we shall prove the following general theorem.

Py
7:O(Pm) as m— oo. (11)

Theorem 2. If the sequences (Xy), (An), and (pn) satisfy the conditions (7)~(11), then the series
Y anAy is summable |N, pyli, k= 1.

We need the following lemma for the proof of Theorem 2.
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Lemma 3 (cf. [6]). Under the conditions of Theorem 2, we get
nX,|Al,l=0Q1), as n—oo
o0
Y XnlAAp| < 0o
n=1

XulApl=01) as n—oo.

4. Proof of Theorem 2

Let (Ty) be the sequence of (]TI , pn) mean of the series }_ a,A,. Then, by definition, we have

vazar/lr—P_Z(Pn Py_DayAy.

T, =
P ny=0

Then, for n =1, we get
Pn L Py v

T,—Th-1=
n n-1 Pnpn—l = "

v

Applying Abel’s transformation to the right-hand side of (16), we have

Pn nl (PU—IAI}) v Pnln &
Ty—Tp-1= Al ——— ra,+ va
n n-1 PpPp1 yZ::l v ;1 r nP, Z v

_(n+1)pntn/1n Pn ZP g Ut v+1
- vipy—

nPy PyPy-1

Pn 1
+ PA/lt PyAyit
Ppnl;v vlhv—™ — v PPnlyz: vv+1v

= Tn,l + Tn,2 + Tn'3 + Tn,4.

To complete the proof of Theorem 2, by Minkowski’s inequality, it is sufficient to show that

.

k-1
) |Tr|* <00, for r=1,2,3,4.
=1\Pn

Firstly, we have that

Z(—”) TyalF = O 3 Aal 1A |””|tn|’“ om 'Y 1A |p"X” -

=1\Pn n=1 n=1 n
tyl t
—muZmMZ’”” '” +0(1)|Am|2p” '”'1
U PVl X
m-1
=0 ) Al Xp+OM)[Ap|Xm=01) as m— oo,
n=1

by the hypotheses of Theorem 2 and Lemma 3. Also, as in T},;, we have that

m+1 P, k-1 i Pn i n-1 k-1
— [Th2l" =01) 61514
n;z(pn) w2 Z 5 PpPp- I(va Y (Pnl yz::lpv)
K . m+1 Pn
:0(1)Z|Av| Tulpoll® Y, ——"—
v=1 n=v+1 PnPn—l
pv | y|

—O(l)ZM Irn

=1

=0(1) as m—oo.
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Again, by using (11), we obtain that

m+l(p k-1 . m+1 - k
> (p—) I Tnal" =0(1) ). {Z vIAAy ||tu}
n =1

n=2 n=2 n—l
k
m+1 n—lp
—om y. (Z —”vmynm)
n=2 PnPn = v
k-1
m+1 n—1 n—1
Pn Py ki, ik by
=001 — (v|AA t —
();P (u;v(' D1ty o o e

m P -1 m+1 Pn
=0(1) Y. 2 wIAr D oA itk Y
p=1 V n=v+1 PnPyy

mn 1
—0(1)ZV|M | =
=1
~ 4 | r|’c m g |F
=0(1) ZA(UIM |)Z - +0()m |AAm|Z T
v=1 v= X
m—1
=0(1) ) IAWIAA NI Xy + O m|AA,| Xy,
v=1

m-1 m-1
=0(1) Y vXyIA% 2,1+ 0() Y. XylAA, |+ O mIAA | X,
v=1 v=1

=0(1) as m— oo,

by the hypotheses of Theorem 2 and Lemma 3. Finally by using (11), as in T},;, we have that

m+lp k-1 m+1 n-1p k
N S D]
n

n=2 n=2 PnP,]g_l v=1
k-1
m+1 n—1 n-1
Pn P, k k 1 P,
=0(1) — Ay l*l 1 | x —_—
n;z PyPpy (,; v T Y Py ,; v
m P m+1 p
=0 Y, 1 Apst T Al -
Ugl v v+ v+ v n:Zv+1 PnPn,I
o |t u|k
=0(M) ) Apsil——5=0(1) as m—oo.
v=1 X

This completes the proof of Theorem 2.

If we take p, = 1 for all n, then we obtain a new result dealing with |C,1|; summability
factors of infinite series. Also if we set k = 1, then we obtain a new result concerning the |N, p,,|
summability factors of infinite series. Finally, if we take p, = ﬁ and k = 1, then we obtain a new
result for |R,logn, 1| summability of factored infinite series.

5. An application to trigonometric Fourier series

Let f be a periodic function with period 27 and Lebesgue integrable over (-, ). The trigono-
metric Fourier series of f is defined as

o0

flx) ~ %ao+ Y (anpcosnx+bysinnx) = ) A,(x),

n=1
where

ap = %f fdx, a,= %f fx)cos(nx)dx, and b, = %[ f(x)sin(nx)dx.
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Write ¢(t) = %{f(x+ O+ f(x—10},and pu (1) = & fot(t— w* lpwdu, (a>0).

It is known that if ¢, () € 27(0,n), then ¢,(x) = O(1), where t,(x) is the (C,1) mean of the
sequence (nA,(x)) (see [22]). Using this fact, we have obtained the following theorem dealing
with trigonometric Fourier series.

Theorem 4 (cf. [12]). If ¢1(2) € BV (0,7), and the sequences (pp), (An) and (Xy) satisfy the
conditions of the Theorem 1, then the series }_ Ap(x)A,, is summable |N, p,li, k= 1.

Now, we can generalize Theorem 4 under weaker conditions in the following form.

Theorem 5. If (1) € 9BV (0, 7), and the sequences (pn), (Ay), and (Xp) satisfy the conditions of
Theorem 2, then the series ) A, (X)A,, is summable|N, pyli, k= 1.

In the special cases of (p,) and k as in Theorem 2, we can obtain similar results from
Theorem 5 for the trigonometric Fourier series.
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