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Abstract. In this study, we provide an interpretation of the dual differential Riccati equation of Linear-
Quadratic (LQ) optimal control problems. Adopting a novel viewpoint, we show that LQ optimal control
can be seen as a regression problem over the space of controlled trajectories, and that the latter has a very
natural structure as a reproducing kernel Hilbert space (RKHS). The dual Riccati equation then describes
the evolution of the values of the LQ reproducing kernel when the initial time changes. This unveils new
connections between control theory and kernel methods, a field widely used in machine learning.
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1. Introduction

We consider the problem of finite-dimensional time-varying linear quadratic (LQ) optimal con-
trol with finite horizon and quadratic terminal cost as in

V (t0,x0) := min
u( · )

x(T )>JT x(T )+
∫ T

t0

[
x(t )>Q(t )x(t )+u(t )>R(t )u(t )

]
dt (1)

s.t. x′(t ) = A(t )x(t )+B(t )u(t ), a.e. in[t0,T ] (1a)

x(t0) = x0, (1b)

where the state x(t ) ∈RN and the control u(t ) ∈RM . We shall henceforth assume that JT Â 0,1 and
for all t ∈ [t0,T ], R(t )< r IdM with r > 0, as well as A( · ) ∈ L1([t0,T ],RN ,N ), B( · ) ∈ L2([t0,T ],RN ,M ),
Q( · ) ∈ L1([t0,T ],RN ,N ), and R( · ) ∈ L2([t0,T ],RN ,N ). To have a finite objective, we restrict our
attention to measurable controls satisfying R( · )1/2u( · ) ∈ L2([t0,T ],RN ). Problem (1) is intimately
related to the differential Riccati equation,2 expressed as

−∂1J(t ,T ) = A(t )>J(t ,T )+ J(t ,T )A(t )− J(t ,T )B(t )R(t )−1B(t )>J(t ,T )+Q(t ) ; J(T,T ) = JT , (2)

1Here< (resp. Â) denotes the (strict) partial order over positive semi-definite matrices.
2The index T in J( · ,T ) is kept as a reminder that (2) is defined w.r.t. a given terminal time T . We denote by ∂1 the

derivative w.r.t. the first variable.
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which solution J( · ,T ) satisfies V (t0,x0) = x>0 J(t0,T )x0. It is well-known (e.g. [3, p. 31, 408]) that
under the above positivity assumptions, J(t ,T ) is a symmetric positive definite matrix, which
inverse M(t ,T ) := J(t ,T )−1 satisfies a dual Riccati equation

∂1M(t ,T ) = A(t )M(t ,T )+M(t ,T )A(t )>−B(t )R(t )−1B(t )>+M(t ,T )Q(t )M(t ,T ) ; M(T,T ) = J−1
T . (3)

This inverse matrix has been used as a tool to obtain a representation formula in infinite-
dimensional LQ control [2] but it has not received the deserved interest yet. Whereas the solution
of (2) is equal to the Hessian of the value function V (t0, ·), i.e. J(t0,T ) = ∂x,xV (t0, ·), we show
(Theorem 4 below) that the solution of (3) is equal to the diagonal element of a matrix-valued
reproducing kernel K ( · , · ), naturally associated with (1). Owing to this interpretation, the dual
Riccati equation (3) is thus no less fundamental and effectively allows to reverse the perspective
between the adjoint vector and the optimal trajectory.

We first need to bring trajectories to the fore in (1). In his seminal book, Luenberger [4,
p. 255] already discussed that an optimal control problem such as (1) can be seen as either
optimizing over the set of controls u( · ), or jointly over the set of trajectories x( · ) and controls
u( · ), connected through the dynamic constraint (1a). Luenberger also alluded without details to
a third possibility, that of optimizing directly over the controlled trajectories. We follow this last
viewpoint and consequently introduce the vector space S[t0,T ] of controlled trajectories of the
linear system:

S[t0,T ] :=
{

x : [t0,T ] →RN
∣∣∣∣∃ u( · ) s.t. x′(t ) = A(t )x(t )+B(t )u(t ) a.e.

and R( · )1/2u( · ) ∈ L2([t0,T ],RN )

}
. (4)

There is not necessarily a unique choice of u( · ) for a given x( · ) ∈ S[t0,T ].3 Therefore, with each
x( · ) ∈ S[t0,T ], we associate the control u( · ) having minimal norm based on the pseudoinverse
B(t )ª of B(t ) for the RM -norm ‖ ·‖R(t ) := ‖R(t )1/2 · ‖:

u(t ) = B(t )ª[x′(t )−A(t )x(t )] a.e. in[t0,T ]. (5)

Problem (1) then induces a natural inner product over S[t0,T ]. As a matter of fact, the expression

〈x1( · ),x2( · )〉K := x1(T )>JT x2(T )+
∫ T

t0

[
x1(t )>Q(t )x2(t )+u1(t )>R(t )u2(t )

]
dt (6)

is bilinear and symmetric over S[t0,T ] ×S[t0,T ]. It is positive definite over S[t0,T ] as ‖x( · )‖2
K = 0

implies that u( · ) a.e.≡ 0 and, as JT Â 0, x(T ) = 0, hence x( · ) ≡ 0. Therefore

V (t0,x0) = min
x( · )∈S[t0,T ]

‖x( · )‖2
K s.t. x(t0) = x0 (7)

In other words the value function V (t0,x0) of (1) coincides with the optimal value of a constrained
norm minimization over S[t0,T ]. The solution of (7) can be made explicit as (S[t0,T ],〈 · , · 〉K ) is not
an arbitrary Hilbert space, but a vector-valued reproducing kernel Hilbert space (vRKHS).

2. Vector spaces of linear controlled trajectories as vRKHSs

Definition 1. Let T be a non-empty set. A Hilbert space (HK (T),〈 · , · 〉K ) of RN -vector-valued
functions defined on T is called a vRKHS if there exists a matrix-valued kernel KT : T×T → RN ,N

such that the reproducing property holds: for all t ∈ T, p ∈ RN , KT( · , t )p ∈ HK (T) and for all
f ∈HK (T), p>f(t ) = 〈f,KT( · , t )p〉K .

3This is the case for instance if B(t ) is not injective for a set of times t with positive measure.
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Remark. It is well-known that by Riesz’s theorem, an equivalent definition of a vRKHS is that,
for every t ∈T and p ∈RN , the evaluation functional f ∈HK (T) 7→ p>f(t ) ∈R is continuous. There
is also a one-to-one correspondence between the kernel KT and the vRKHS (HK (T),〈 · , · 〉K ) (see
e.g. [5, Theorem 2.6]). Moreover, by symmetry of the scalar product, the matrix-valued kernel has
a Hermitian symmetry, i.e. KT(s, t ) = KT(t , s)> for any s, t ∈T.

Lemma 2. (S[t0,T ],〈 · , · 〉K ) is a vRKHS over [t0,T ] with a reproducing kernel K[t0,T ] which we call
the LQ kernel.

Proof of Lemma 2. The proof is identical to the one of Lemma 1 in [1] where S[t0,T ] was equipped
with the following inner product

〈x1( · ),x2( · )〉K ,init := x1(t0)>x2(t0)+
∫ T

t0

[
x1(t )>Q(t )x2(t )+u1(t )>R(t )u2(t )

]
dt . (8)

�
Owing to Lemma 2, we can look for a “representer theorem”, i.e. a necessary condition to

ensure that the solutions of an optimization problem like (7) live in a finite dimensional subspace
of S[t0,T ] and consequently enjoy a finite representation.

Theorem 3 (cf. [1]). Let (HK (T),〈 · , · 〉K ) be a vRKHS defined on a set T. For a given I ∈ N, let
{ti }i∈[[1,I ]] ⊂T. Consider the following optimization problem with “loss” function L :RI →R∪{+∞},
strictly increasing “regularizer” functionΩ :R+ →R, and vectors {ci }i∈[[1,I ]] ⊂RN

min
f∈HK (T)

L
(
c>1 f(t1), . . . ,c>I f(tI )

)+Ω (‖f‖K ) .

Then, for any minimizer f, there exists {pi }i∈[[1,I ]] ⊂RN such that f =∑I
i=1 KT( · , ti )pi with pi =αi ci

for some αi ∈R.

Taking L(e>1 x(t0), . . . ,e>N x(t0)) := χx0 (x(t0)) and Ω(y) = y2, with ei the i -th basis vector of RN ,
χx0 the indicator function of x0, we apply Theorem 3 to (7). Since ‖·‖2

K is strongly convex and
there exists x( · ) ∈ S[t0,T ] satisfying x(t0) = x0, the solution of (7) is unique and can be written as
x(t ) = K[t0,T ](t , t0)p0, with p0 = K[t0,T ](t0, t0)ªx0 ∈RN , where K[t0,T ](t0, t0)ª is the pseudoinverse of
K[t0,T ](t0, t0) for the RN -seminorm ‖K[t0,T ](t0, t0)1/2 · ‖. Thus, owing to the reproducing property,

V (t0,x0) = ‖x( · )‖2
K = 〈K[t0,T ]( · , t0)p0,K[t0,T ]( · , t0)p0〉K = p>

0 K[t0,T ](t0, t0)p0 (9)

= x>0 K[t0,T ](t0, t0)ªx0 = p>
0 x0.

So we conjecture that K[t0,T ](t0, t0)ª = J(t0,T ). We actually have a stronger result:

Theorem 4. Let Kd : t0 ∈ ]−∞,T ] 7→ K[t0,T ](t0, t0). Then Kd (t0) = J(t0,T )−1.

The proof of Theorem 4 (in Section 3 below) boils down to identifying the reproducing kernel
of (S[t0,T ],〈 · , · 〉K ). Informally, the inverse relation comes from inverting the graph of the (x,p)-
relation. As a matter of fact, consider the solution p(t ) of the adjoint equation

p′(t ) =−A(t )>p(t )+Q(t )x(t ) p(T ) =−JT x(T ). (10)

Then we have p(t ) = −J(t ,T )x(t ). In other words, the solution J( · ,T ) of the differential Ric-
cati equation maps the optimal trajectory x( · ) to its adjoint vector p( · ). On the contrary, since
x(t ) = K[t0,T ](t , t0)p0, the kernel K[t0,T ]( · , t0) maps an initial covector p0 ∈ Rn to the optimal tra-
jectory x( · ). This effectively inverts the graph of the relation between x( · ) and p( · ). The inver-
sion performed is related to yet another change of perspective, from an online and differential
approach to an offline and integral one.

Through Pontryagine’s Maximum Principle (PMP), it is well known that the optimal control
u( · ) satisfies u(t ) = R(t )−1B(t )>p(t ) =−R(t )−1B(t )>J(t ,T )x(t ) =: G(t )x(t ). Hence, based on J(t ,T ),
one has a closed feedback loop, with gain matrix G(t ), and knows the control to apply based only
on the present time and state. However the optimal trajectory x( · ) is not encoded as simply as in
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the kernel formula x(t ) = K[t0,T ](t , t0)p0. It has to be derived through numerical approximations
of the dynamics (1a). Conversely, the kernel K[t0,T ] performs the integration of the Hamiltonian
system (1a)-(10) and sparsely encodes x( · ) over [t0,T ] by p0. This sparsity partly stems from the
smaller number of constraints in (7) w.r.t. (1) since the dynamics (1a) were incorporated in the
definition of S[t0,T ]. Unlike in the PMP, the adjoint vector p(t ) disappears in the kernel perspective
and only the initial condition (or some intermediate rendezvous points) induce a covector pi .

More generally, for a given interval [t0,T ], Theorem 3 states that to encode the optimal tra-
jectories one needs at most as many covectors pi as there are points ti where the trajectory is
evaluated in the optimization problem. It is a classical property of “kernel machines”, frequently
leveraged in classification tasks (e.g. SVMs in [7]). This result was exploited in [1] to tackle affine
state constraints. From the PMP perspective, it resulted in focusing only on the measures sup-
ported on the constraint boundary. Unlike the adjoint vector p(t ) associated with the equal-
ity constraint (1a), which never vanishes except for abnormal trajectories, the covectors corre-
sponding to inequality constraints are null whenever the constraint is not active. This led to ex-
tremely sparse encoding of the optimal trajectory by specifying only the active covectors on the
[t0,T ] time interval.4 Offline computation of the kernel is indeed well suited for path-planning
problems. The kernel formalism however conflicts with the online perspective since varying t0

changes the domain of K[t0,T ]. As the correspondence between the kernel KT and the vRKHS
(HK (T),〈 · , · 〉K ) is one-to-one (e.g. [5, Theorem 2.6]), varying T = [t0,T ] or modifying the inner
product changes the kernel. In general, restricting the domain leads to complicated relations be-
tween a vRKHS and its kernel [6, p. 78–80]. In our case, the dual Riccati equation (3) precisely
describes how the values of the LQ kernel change when varying t0.

3. Proof of Theorem 4

The proof corresponds to the identification of the reproducing kernel of (S[t0,T ],〈 · , · 〉K ). Since
we shall proceed with fixed initial time t0, we drop the corresponding index and set K ( · , · ) =
K[t0,T ]( · , · ). By existence and unicity of the reproducing kernel, we just have to exhibit a function
K ( · , · ) which satisfies the requirements of Definition 1.

Let us denote by ΦA(t , s) ∈ RN ,N the state-transition matrix of z′(τ) = A(τ)z(τ), defined from
s to t , i.e. z(t ) = ΦA(t , s)z(s). The key property used throughout this section is the variation of
constants, a.k.a. Duhamel’s principle, stating that for any absolutely continuous x( · ) such that
x′(t ) = A(t )x(t )+B(t )u(t ) a.e., we have for any σ, t ∈ [t0,T ]

x(t ) =ΦA(t ,σ)x(σ)+
∫ t

σ
ΦA(t ,τ)B(τ)u(τ)dτ. (11)

Setting ∂1K (s, t ) : p 7→ d
ds (K (s, t )p), let us define formally U(s, t ) := B(s)ª[∂1K (s, t )−A(s)K (s, t )].

The reproducing property for K then writes as follows, for all t ∈ [t0,T ], p ∈RN , x( · ) ∈S[t0,T ],

p>x(t ) = (K (T, t )p)>JT x(T )+
∫ T

t0

(K (s, t )p)>Q(s)x(s)ds +
∫ T

t0

(U(s, t )p))>R(s)u(s)ds. (12)

4In [1], we considered the inner product (8) rather than (6) which assumes a terminal quadratic cost. The choice of (8)
was more appropriate for fixed initial time and general lower semicontinuous convex terminal costs, alongside affine
state constraints.
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By the Hermitian symmetry of K and the variation of constants (11) written for σ = T , we can
rewrite (12) as, for all t ∈ [t0,T ], x( · ) ∈S[t0,T ],

x(t ) = K (t ,T )JT x(T )+
∫ T

t0

K (t , s)Q(s)

(
ΦA(s,T )x(T )+

∫ s

T
ΦA(s,τ)B(τ)u(τ)dτ

)
ds

+
∫ T

t0

U(s, t )>R(s)u(s)ds.

Regrouping terms,

x(t ) =
(
K (t ,T )JT +

∫ T

t0

K (t , s)Q(s)ΦA(s,T )ds

)
x(T )+

∫ T

t0

K (t , s)Q(s)
∫ s

T
ΦA(s,τ)B(τ)u(τ)dτds

+
∫ T

t0

U(s, t )>R(s)u(s)ds

Setting K̃ (t , s) := ∫ s
t0

K (t ,τ)Q(τ)ΦA(τ, s)dτ, and applying Fubini’s theorem, we get

x(t ) = (
K (t ,T )JT + K̃ (t ,T )

)
x(T )+

∫ T

t0

[
U(s, t )>R(s)−

∫ s

t0

K (t ,τ)Q(τ)ΦA(τ, s)B(s)dτ

]
u(s)ds.

Identifying with (11) for σ= T , we derive that

K (t ,T )JT = ΦA(t ,T )− K̃ (t ,T ),

U(s, t )>R(s) =
{

(−ΦA(t , s)+ K̃ (t , s))B(s) ∀ s ≥ t ,

K̃ (t , s)B(s) ∀ s < t .
(13)

Let us introduce formally an adjoint equation defined for a variable Π(s, t ) ∈ RN ,N . For any given
t ∈ [t0,T ],

∂1Π(s, t ) =−A(s)>Π(s, t )+Q(s)K (s, t ) Π(t0, t ) =− IdN .

This is the matrix version of (10) but with an initial rather than terminal condition. Again,
applying the variation of constants (11) with σ = t0 to Π(s, t ), taking the transpose and owing
to the symmetries of K ( · , · ) andΦ( · , · ), we derive that

Π(s, t ) =Φ(−A>)(s, t0)Π(t0, t )+
∫ s

t0

Φ(−A>)(s,τ)Q(τ)K (τ, t )dτ

Π(s, t )> =−ΦA(t0, s)+
∫ s

t0

K (t ,τ)Q(τ)ΦA(τ, s)dτ=−ΦA(t0, s)+ K̃ (t , s).

Since ∂1K (s, t ) = A(s)K (s, t ) + B(s)U(s, t ), by (13), for any given time t ∈ [t0,T ], we have two
coupled differential equations for K ( · , t ) andΠ( · , t )

∂1K (s, t ) = A(s)K (s, t )+B(s)R(s)−1B(s)>
{
Π(s, t )+ΦA(t0, s)>−ΦA(t , s)> ∀ s ≥ t ,

Π(s, t )+ΦA(t0, s)> ∀ s < t .

∂1Π(s, t ) =−A(s)>Π(s, t )+Q(s)K (s, t ),

Π(t0, t ) =− IdN K (t ,T )JT =−Π(T, t )>+ΦA(t ,T )−ΦA(t0,T ).

(14)

Equations (14) seem quite intricate but they become simpler for t = t0, and as seen in (9), t0 is
actually the only time that interests us to solve the LQ optimal control problem (7). For t = t0, the
equations boil down to

∂1K (s, t0) = A(s)K (s, t0)+B(s)R(s)−1B(s)>Π(s, t0)

∂1Π(s, t0) =−A(s)>Π(s, t0)+Q(s)K (s, t0)

Π(t0, t0) =− IdN ; Π(T, t0) =−JT K (T, t0).

(15)
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Let us solve (15) by variation of the constant JT . We thus look for a function J( · ,T ), which we will
prove solves (2), such that J(T,T ) = JT and Π(s, t0) =−J(s,T )K (s, t0). We take the derivative in s of
the latter expression to obtain

−A(s)>Π(s, t0)+Q(s)K (s, t0) =−J(s,T )
(
A(s)K (s, t0)+B(s)R(s)−1B(s)>Π(s, t0)

)− (∂1J(s,T ))K (s, t0)

Therefore, applying to the right of the equations any pseudo-inverse of K (s, t0),

0 = [
A(s)>J(s,T )>+ J(s,T )A(s)− J(s,T )B(s)R(s)−1B(s)>J(s,T )+Q(s)+∂1J(s,T )

]
projImK (s,t0) .

So it suffices that J( · ,T ) solves the differential Riccati equation (2) and that, by symmetry of K ,

Π(t0, t0) =− IdN =−J(t0,T )K (t0, t0) =−K (t0, t0)J(t0,T ).

Consequently K (t0, t0) = J(t0,T )−1 which formalizes our intuition of the inverse relation between
J and K . Now let us vary the initial time and consider the function Kd : t0 7→ K[t0,T ](t0, t0). Taking
the derivative w.r.t. t0 ofΠ(t0, t0) =− IdN =−J(t0,T )K[t0,T ](t0, t0), we get

0 = (∂1J(t0,T )Kd (t0)+ J(t0,T )(∂1Kd (t0)),

applying Kd (t0) to the left of the equation and using that Kd (t0) = J(t0,T )−1, we obtain

0 =−Kd (t0)A(t0)>−A(t0)Kd (t0)+B(t0)R(t0)−1B(t0)>−Kd (t0)Q(t0)Kd (t0)+∂1Kd (t0).

This concludes our proof as Kd ( · ) solves the dual matrix Riccati equation (3) which has a unique
solution.
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