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Abstract. The aim of this paper is to present a new simple recurrence for Appell and Sheffer sequences in
terms of the linear functional that defines them, and to explain how this is equivalent to several well-known
characterizations appearing in the literature. We also give several examples, including integral representa-
tions of the inverse operators associated to Bernoulli and Euler polynomials, and a new integral representa-
tion of the re-scaled Hermite d-orthogonal polynomials generalizing the Weierstrass operator related to the
Hermite polynomials.

Résumé. L’objectif de cet article est de présenter une nouvelle récurrence simple pour les suites d’Appell et de
Sheffer en termes de la fonctionnelle linéaire qui les définit, et d’expliquer comment cela équivaut à plusieurs
caractérisations bien connues qui apparaissent dans la littérature. Nous donnons aussi plusieurs exemples,
y compris des représentations intégrales des opérateurs inverses associés aux polynômes de Bernoulli et
d’Euler, et une nouvelle représentation intégrale des polynômes d’Hermite d-orthogonaux remis à l’échelle,
qui généralise l’opérateur de Weierstrass associé aux polynômes d’Hermite.
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1. Introduction

A remarkable class of polynomials are the Appell sequences having applications in Number the-
ory, Probability, and the theory of functions. They vastly generalize monomials arising naturally
from Taylor’s formula with integral rest, see [10, Chapitre VI] [11, Appendix A] and they include
famous polynomial sequences. For instance, the Bernoulli polynomials useful in numerical inte-
gration and asymptotic analysis (Euler–Maclaurin formula [24]); or the Euler polynomials which
lead to Euler–Boole formula [9]. On the other hand, a wide class of Appell sequences provides
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special values of transcendental functions, as recently proved in [20], extending the well-known
case of the Bernoulli polynomials as the values at negative integers of the Hurwitz zeta function.

Appell sequences are a subclass of Sheffer sequences (type zero polynomials) which were
treated by I. M. Sheffer as solutions of families of differential and difference equations [29].
Later on, their study, leaded by Rota and Roman, developed in what it is known today as
Umbral Calculus [26–28]. In contrast, a more recent approach has been made using matrix and
determinantal representations, see, e.g., [1, 2, 13, 14, 37, 38]. Also, current research has focussed
on special sequences [16] and other alternative descriptions of the theory, for instance, through
random variables [3, 33].

Our goal in this work is to obtain a new simple recursion for Appell sequences (Theorem 6),
their expansions in terms of an arbitrary delta operator (Proposition 7) (as presented in [4]
for difference operators), and several examples. Our exposition is based on Umbral Calculus,
briefly recalled in Sections 2 and 3. Using this tool, we obtain in Section 3 a new recurrence for
Sheffer sequences (Theorem 5) using left-inverses of a delta operator and deduce Theorem 6
as a particular case. In addition, we clarify how the characterization of Sheffer and Appell
sequences through a linear functional and a linear operator are naturally equivalent (Theorem 3)
(a general fact used systematically in specific cases, see, e.g., [9], [16, Theorems 2.2–2.3], [18, 34]).
Our examples are presented in Section 5, in particular, we generalize the Weierstrass operator
for classical Hermite polynomials by using Ecalle’s accelerator functions to obtain an integral
representation of the re-scaled Hermite d-orthogonal polynomials [15] (Proposition 20). We also
include the integral representations of the inverse operators associated with the Bernoulli and
Euler polynomials (Propositions 13 and 16). These formulas are closely related to their moment
expansions [32, 33], but here we deduce them in a direct elementary way. Finally, we collect in
Table 1 multiple examples of Appell sequences scattered in the literature, with their respective
linear functional and characterization.

2. Preliminaries on Sheffer sequences

We briefly recall some characterizations of Sheffer sequences and set the notations used along the
paper. Our summary is based on the expositions [26, 28] of Umbral Calculus whose cornerstone
is the twofold identification of formal power series in one variable C[[t ]] as the linear functionals,
as well as the shift-invariant linear operators of the ring of univariate polynomials C[x].

Let ∂= ∂x be usual differentiation and Ta : C[x] → C[x], Ta(p)(x) = p(x +a) the shift-operator
indexed by a ∈C. A linear operatorQ :C[x] →C[x] is shift-invariant ifQ◦Ta = Ta◦Q, for all a ∈C.
The set Σ of these operators acquires a commutative ring structure via the isomorphism

ι∂ :C[[t ]] →Σ, B(t ) =
∞∑

n=0

b̂n

n!
t n 7−→Q= B(∂) =

∞∑
n=0

b̂n

n!
∂n , (1)

where the product of formal power series corresponds to composition of operators. In fact, b̂n

is found by evaluating the polynomial Q(xn) at x = 0, i.e., b̂n = Q(xn)(0). Now, we can extend
Q to C[x][[t ]] by the rule P (x, t ) = ∑∞

n=0 pn(x)t n 7→Q(P )(x, t ) = ∑∞
n=0Q(pn)(x)t n (we denote this

extension also by Q, and despite the abuse of notation, its meaning should be clear from the
context). In this way, we can recover B(t ) using the value of Q at the exponential: Q(ext )(x, t ) =
B(t )ext and therefore ι−1

∂
(Q)(t ) =Q(ext )(0, t ), see Remark 8 for an example.

An operator Q ∈ Σ is called a delta operator if the polynomial Q(x) is a non-zero constant. In
this case Q(a) = 0, for all a ∈ C and deg(Q(p)) = deg(p)− 1. Thus the series B(t ) starts at n = 1
with b̂1 =Q(x) 6= 0 and it admits a compositional inverse B(t ) =∑∞

n=1
bn
n! t n . The role of the series



Sergio A. Carrillo and Miguel Hurtado 207

B(t ) is to induce the sequence {qn(x)}n≥0 of basic polynomials of Q. These are defined through
the expansion

exB(t ) =
∞∑

n=0

qn(x)

n!
t n , and they satisfy qn(x +x0) =

n∑
j=0

(
n

j

)
q j (x)qn− j (x0). (2)

Thus, they are of binomial type. Moreover, they are characterized by

q0(x) = 1, qn(0) = 0, and Q(qn)(x) = nqn−1(x), for all n ≥ 1. (3)

The previous properties are easily established. For instance, (2) follows from equating co-
efficients in powers of t in e(x+x0)B(t ) = exB(t )ex0B(t ). Likewise, (1) shows that Q(exB(t ))(x, t ) =∑∞

n=1
b̂n
n! B(t )nexB(t ) = B(B(t ))exB(t ) = texB(t ), equality that proves the last equation in (3).

A delta operator Q also induces a ring isomorphism ιQ : C[[t ]] → Σ by A(t ) 7→ A(Q), and
if S = A(Q) = ∑∞

n=0
an
n! Q

n , then an = S(qn)(0). Therefore S(exB(t ))(x, t ) = A(t )exB(t ) and we
recover ι−1

Q (S)(t ) =S(exB(t ))(0, t ). Also, note that S is invertible if and only if a0 =S(1) 6= 0, and
S−1 = 1/A(Q), where 1/A(t ) is the reciprocal of A(t ).

We say {sn(x)}n≥0 is a Q-Sheffer sequence for the delta operator Q if s0 6= 0 is constant and

Q(sn)(x) = nsn−1(x), for all n ≥ 1. (4)

These sequences admit several characterizations. First, there is an invertible S ∈Σ satisfying

S(sn) = qn , for all n ≥ 0. (5)

Second, its exponential generating series has the form
∞∑

n=0

sn(x)

n!
t n = exB(t )

A(t )
, (6)

where A(t ) ∈C[[t ]] has a reciprocal, i.e., A(0) 6= 0. Third, the sequence satisfies

sn(x +x0) =
n∑

k=0

(
n

k

)
sk (x)qn−k (x0), and sn(x) =

n∑
k=0

(
n

k

)
sk (0)qn−k (x), for all n ≥ 0. (7)

Conditions (4), (5), (6) and both equations in (7) are equivalent to each other as can be checked.
The relevant relations are S = ιQ(A) and 1/A(t ) = ∑∞

n=0 sn(0)t n/n!. We highlight that S is
uniquely associated to {sn(x)}n≥0 which will be referred as the Q-Sheffer sequence relative to
S ((Q,S)-Sheffer for short). Finally, after repeated application of Q to (5) followed by evaluating
at x = 0, we find that

S(Qm(sn))(0) = n!δn,m , for all n,m ≥ 0, (8)

where δn,m is the Kronecker delta.

3. The use of linear functionals

Another characterization of Sheffer sequences is available through functionals of C[x]. It is based
on the identification of the dual space C[x]∗ with Σ (and thus with C[[t ]] via (1)).

Lemma 1. We have the linear isomorphism j :C[x]∗ →Σ given by

L 7−→L(p)(x) := L(Tx (p)), and having as inverse L 7−→ L(p) =L(p)(0), p ∈C[x]. (9)

Proof. Given L ∈C[x]∗ the map L= j(L) is clearly linear. It is also shift-invariant since

L(Ta(p))(x) = L(Tx (Ta(p))) = L(Tx+a(p)) =L(p)(x +a) = Ta(L(p))(x), for all a ∈C.

Conversely, if L ∈ Σ and L(p) = L(p)(0), then L ∈ C[x]∗ and L(Tx0 (p)) = L(Tx0 (p))(0) =
(Tx0 ◦L)(p)(0) =L(p)(x0), for all x0 ∈C. Thus the maps in (9) are inverses one of each other. �
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Remark 2. We can codify L ∈ C[x]∗ by the values Ln := L(xn) known as the moments of L.
Extending L to C[x][[t ]] by L(

∑∞
n=0 pn(x)t n) =∑∞

n=0 L(pn)t n we have the relation L(exB(t ))(x0, t ) =
L(Tx0 (exB(t ))) = L(e(x+x0)B(t )) = ex0B(t )L(exB(t )). In particular, the indicator series of L

L(ext ) =
∞∑

n=0
Ln

t n

n!
, satisfies L(ext )(x, t ) = L(ext )ext . (10)

Now we are in position to give two equivalent ways to characterize Sheffer sequences using
functionals.

Theorem 3. Given S ∈C[x]∗, there is a unique Q-Sheffer sequence {sn}n≥0 satisfying

S(s0) = 1 and S(sn) = 0, for all n ≥ 1, (11)

or equivalently,

S(Tx0 (sn)) = qn(x0), for all n ≥ 0 and x0 ∈C. (12)

Indeed, {sn}n≥0 is the (Q,S)-Sheffer sequence, S = j(S), having generating series exB(t )/S(exB(t )).
Conversely, given a Q-Sheffer sequence {sn}n≥0, there is a unique S ∈C[x]∗ such that (11) holds.

Proof. First note that (11) is simply (12) for x0 = 0 as (3) shows. Conversely, if (11) holds,
then (12) follows by applying S to the first equation in (7). Furthermore, if S = j(S), then
equation (5) is equivalent to (12) since S(Tx0 (sn)) =S(sn)(x0), thanks to Lemma 1. Also, applying
S to equation (6) we find A(t ) = S(exB(t )).

Finally, given the (Q,S)-Sheffer sequence {sn}n≥0, if S′ ∈C[x]∗ satisfies (11), then S′ = j(S′) ∈Σ
is invertible and satisfies S′(sn) = qn for all n. Since S is characterized by this condition, then
S′ =S and S′ = j−1(S) = S is also uniquely determined. �

The previous theorem shows that it is equivalent to have a Q-Sheffer sequence {sn}n≥0, an
invertible operator S ∈Σ or a functional S ∈C[x]∗ such that S(1) 6= 0. Thus we can refer to {sn}n≥0

as the (Q,S,S)-Sheffer sequence, where S= j(S).

Remark 4. The k-fold iteration Sk of an invertible operator S ∈ Σ produces the (Q,Sk ,Sk )-
Sheffer sequence {s(k)

n }n≥0, Sk := j−1(Sk ), having exponential generating series exB(t )/S(exB(t ))k .
According to (5) we find s(k)

n =S◦(−k)(qn) =S ◦S◦(−k−1)(qn) =S(s(k+1)
n ) holding for all k,n ∈ N.

We also highlight that if S admits the representation

S(p) =
∫

I
p(s)w(s)ds, and S(p)(x) =

∫
I

p(x + s)w(s)ds,

where I ⊆R is an interval and w : I →C is such that Sn are all finite, then

Sk (p) =
∫

I k
p(s1 +·· ·+ sk )w(s1) · · ·w(sk )ds, Sk (p)(x) =

∫
I k

p(x + s1 +·· ·+ sk )w(s1) · · ·w(sk )ds,

where ds = ds1 · · ·dsk and the integration is taken over the kth Cartesian product I k ⊆Rk .

A Q-Sheffer sequence can be calculate though its generating series, or using determinants,
see [13, 14, 37]. Here we present a new recursion formula using left-inverses for Q.

Theorem 5. Let Q be a delta operator and B = ι−1
∂

(Q). Then each x0 ∈C defines

Q−1
x0

(p) := ∂

B(∂)

(∫ x

x0

p(s)ds

)
, which is a left-inverse for Q.

Here the integral is taken over the line segment from x0 to x. Through it, the (Q,S,S)-Sheffer
sequence {sn}n≥0 can be calculated recursively by s0 = 1/S(1) and

sn = nQ−1
x0

(sn−1)− n

s0
S

(
Q−1

x0
(sn−1)

)
, n ≥ 1. (13)
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Proof. By writing Q= ∂◦P, where P ∈Σ is invertible and P−1 = ∂/B(∂), we find

Q◦Q−1
x0

(p)(x) = (∂◦P)

(
P−1

(∫ x

x0

p(s)ds

))
= ∂

(∫ x

x0

p(s)ds

)
= p(x),

as required. Now, setting s′0 = s0 = 1/S(1) and s′n(x) for the left-side of (13) we have

Q(s′n) = nQ(Q−1
x0

(s′n−1)) = ns′n−1, and S(s′n) = nS(Q−1
x0

(s′n−1))− n

s0
S

(
Q−1

x0
(s′n−1)

)
S(1) = 0,

for all n ≥ 1. Thus {s′n}n≥0 is the (Q, j(S),S)-sequence, so sn = s′n , for all n. �

4. The case of Appell sequences

The main example of Sheffer sequences are the Appell sequences (in honor of P. E. Appell (1880)
[6]) corresponding to

Q= ∂, for which B(t ) = B(t ) = t , and qn(x) = xn . (14)

In this case we see {pn(x)}n≥0 is an Appell sequence if p0 6= 0 is a constant and

dpn

dx
(x) = npn−1(x), n ≥ 1, (15)

Equivalently, there is a unique invertible L ∈ Σ satisfying L(pn) = xn , for all n ≥ 0, the sequence
has a exponential series of the form ext /L(ext ), where L = j−1(L) ∈ C[x]∗, or they satisfy the
corresponding equations to (7). We can refer to {pn}n≥0 as the (L,L)-Appell sequence. In this
setting, Theorems 3 and 5 take the following form.

Theorem 6. The (L,L)-Appell sequence {pn}n≥0 is the unique Appell sequence satisfying

L(Tx0 (pn)) = xn
0 , for all n ≥ 0 and x0 ∈C. (16)

Furthermore, it can be calculated recursively by p0 = 1/L(1) and

pn(x) = n
∫ x

x0

pn−1(s)ds − n

p0
L

(∫ x

x0

pn−1(s)ds

)
. (17)

Although we have deduced the previous theorem from the more general case of Sheffer
sequences, it can obtained by directly means. We also remark that (16) is referred as the mean
value property for Appell sequences connected to random variables, see [33, Proposition 2.7] and
the references therein.

Additionally, we can also express an Appell sequence in terms of a delta operator as follows.

Proposition 7. Let {pn}n≥0 be the (L,L)-Appell sequence with generating series ext /L(ext ) =
C (t )ext . If Q is a delta operator with B(t ) ∈ C[[t ]] as in equation (2), and (C ◦B)(t ) = ∑∞

k=0
αk
k ! t k ,

then

L−1 =
∞∑

k=0

αk

k !
Qk , and thus pn(x) =L−1(xn) =

n∑
k=0

αk

k !
Qk (xn).

Proof. The operatorQ1 =∑∞
k=0

αk
k ! Q

k ∈Σ is invertible sinceα0 =C (0) 6= 0. Recalling thatQ(ext ) =
B(t )ext , we find

∞∑
n=0

Q1(xn)
t n

n!
=Q1(ext ) = (C ◦B)(B(t ))ext =C (t )ext =

∞∑
n=0

pn(x)

n!
t n .

Therefore, L−1(xn) = pn(x) = Q1(xn), for all n, and Q1 = L−1 as required. Finally, Q1(xn) =∑n
k=0

αk
k ! Q

k (xn), since Qk (xn) = 0 if k > n as Qk lowers the degree of a polynomial by k. �
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Remark 8. The previous proposition was recently studied in [4] for Q = ∆1 = ∆, the difference
operator of step one. Let us recall that for each h ∈C∗, the difference operator

∆h := Th −1, i.e., ∆h(p)(x) = p(x +h)−p(x),

constitute a delta operator for which B(t ) = ∆h(ext )(0, t ) = ext (eht − 1)|x=0 = eht − 1 and B(t ) =
log(1 + t )/h. Thus exB(t ) = (1 + t )x/h = ∑∞

n=0(x/h)n t n/n! and ∆h has qn(x) = (x/h)n as basic
sequence. Here (a)n := a(a −1) · · · (a −n +1) is the falling factorial.

Remark 9. Any pair of series B(t ),B(t ) ∈ tC[[t ]], B ′(0) 6= 0, B ′(0) 6= 0, compositional inverses one
of each other, define two families of numbers {sB (n,k)}n≥k and {SB (n,k)}n≥k determined by

B(t )k

k !
=

∞∑
n=k

sB (n,k)
t n

n!
,

B(t )k

k !
=

∞∑
n=k

SB (n,k)
t n

n!
, (18)

just as B(t ) = log(1+t ), B(t ) = e t −1 define the Stirling numbers of first and second kind [12, p. 50],

log(1+ t )k

k !
=

∞∑
n=k

s(n,k)
t n

n!
,

(e t −1)k

k !
=

∞∑
n=k

S(n,k)
t n

n!
. (19)

If B ,B are associated to the delta operator Q as in (2), then (18) induces the inverse relations

qn(x) =
n∑

k=0
sB (n,k)xk , xn =

n∑
k=0

SB (n,k)qk (x),

and

αk =
n∑

k=0
sB (n,k)pk (0), pk (0) =

n∑
k=0

SB (n,k)αk ,

where {αk }k≥0 and {pk (0)}k≥0 are as in Proposition 7. These follows from expanding exB(t ), ext =
exB(B̄(t )), C (t ), and C (t ) = (C ◦B)(B(t )), respectively, as in the usual case of Stirling numbers [12,
p. 144].

5. Examples

This final section is aimed to apply the previous results to concrete examples focusing on the role
of the functional involved. In particular, we find integral representations for Bernoulli and Euler
polynomials, and also for Hermite d-orthogonal polynomials [15]. Finally, we collect in Table 1 a
list of important (L,L)-Appell sequences and their characterization via Theorem 6, including the
recent results of Kummer hypergeometric polynomials given in [16].

Remark 10. Any functional S ∈C[x]∗ admits a representation of the form

S(p) =
∫ +∞

0
p(s)dβ(s), S(p)(x) =

∫ +∞

0
p(x + s)dβ(s),

for some function β : (0,+∞) →C of bounded variation as it was proved by Boas [8] in relation to
the Stieljes moment problem. Thus the characterization of Theorem 3 can be written as∫ +∞

0
sn(x0 + s)dβ(s) = qn(x0),

and equation (8) takes the form
∫ +∞

0 Q(m)(sn)(s)dβ(s) = n!δn,m . This reasoning contains the early
characterization of Appell sequences of Thorne [35], soon after generalized by Sheffer [30].

Example 11. Let {pn(x)}n≥0 be the (L,L)-Appell sequence, C (t ) = 1/L(ext ), and α,β ∈ C with
β 6= 0. Then {pn(x −α)}n≥0 is the (L ◦ Tα,L ◦ Tα)-Appell sequence and {β−n pn(βx)}n≥0 is the
(L◦Hα,L◦Hα)-Appell sequences, where Hβ :C[x] →C[x] is the homothecy Hβ(p)(x) = p(x/β).
Indeed, these sequences have as generating series C (t )e(x−α)t = ext /L(e(x+α)t ), and C (t/β)ext =
ext /L(ext/β), respectively.
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Example 12 (Bernoulli polynomials). They are defined by the expansion

∞∑
n=0

Bn(x)
t n

n!
= t

e t −1
ext , Bn(x) =

n∑
j=0

(
n

j

)
B j (0)xn− j .

The B j = B j (0) are the Bernoulli numbers that satisfy B0 = 1, B1 =− 1
2 and B2 j+1 = 0, j ≥ 1. We see

the Bernoulli polynomials conform the Appell sequence relative to

I (p) =
∫ 1

0
p(s)ds and I(p)(x) :=

∫ 1

0
p(x + s)ds, since I (ext ) = e t −1

t
.

Theorem 6 asserts they are characterized by the condition I(Bn)(x) = ∫ 1
0 Bn(x + s)d s = xn , or

equivalently after differentiation, by the equation ∆(Bn)(x) = Bn(x +1)−Bn(x) = nxn−1, which is
a well-known result. Furthermore, we can compute them recursively by B0(x) = 1 and

Bn(x) = n
∫ x

0
Bn−1(t )dt −n

∫ 1

0

∫ u

0
Bn−1(t )dtdu.

Following Remark 4 we find the k-fold iteration of I is I k (p) = ∫
[0,1]k p(s1+·· ·+sk )d s which pro-

duces the kth order Bernoulli polynomials B (k)
n (x) having t k ext /(e t −1)k as generating exponen-

tial series. These are also known as Nørlund polynomials due to N. E. Nørlund who introduced
them in 1922 [22]. Moreover, we can write these polynomials in terms of ∆ as

Bn(x) =
n∑

j=0

(−1) j

j +1
∆ j (xn), and B (k)

n (x) =
n∑

j=0

k !

(k + j )!
s(k + j ,k)∆ j (xn),

by using Proposition 7. In fact, in this case B(t ) = log(1 + t ) and the previous formulas follow
from (19) since ((e t −1)/t )k ◦B(t ) = log(1+ t )k /t k , c.f., [4, Theorem 5].

An interesting question is to determine an analytic representation for the inverse operator of
I which in turn gives left-inverses for ∆ and an analytic representation of Bernoulli polynomials.
We remark that the formula below to invert∆ is familiar in the theory of difference equations and
it has been used to justify Ramanujan summation, see [11, Theorem 1].

Proposition 13. The map L(p) = p(0)− p ′(0)
2 − i

∫ +∞
0

p ′(i s)−p ′(−i s)
e2πs−1

ds verifies L(ext ) = t/(e t − 1).

Therefore, the inverse operator of I(p)(x) = ∫ 1
0 p(x + s)ds is

I−1(p)(x) = p(x)− p ′(x)

2
− i

∫ +∞

0

p ′(x + i s)−p ′(x − i s)

e2πs −1
ds.

Moreover, the difference operator ∆ admits the left-inverses

∆−1
x0

(p) =
∫ x

x0

p(s)ds − p(x)

2
− i

∫ +∞

0

p(x + i s)−p(x − i s)

e2πs −1
ds.

Furthermore, the Bernoulli polynomials admit the integral representation

Bn(x) = xn − n

2
xn−1 − i n

∫ +∞

0

(x + i s)n−1 − (x − i s)n−1

e2πs −1
ds.

Proof. For the first statement note L(1) = 1 = B0, L(x) = −1/2 = B1 and L(x2 j+1) = 0, j ≥ 1 since
the derivative of x2 j+1 is an even function. For the even powers we find

L(x2 j ) = 2 j (−1) j+1
∫ +∞

0

2s2 j−1

e2πs −1
ds = B2 j ,

values that are familiar in the study of Abel–Plana formula [24, p. 291], [25, 24.7.2]. Now, the
operator L= j(L) is the inverse of I since I(ext ) = (e t −1)/t . Finally, Proposition 5 shows∆−1

x0
(p) =

∂
eh∂−1

(∫ x
x0

p(s)ds
)

and the previous example proves Bn(x) = I−1(xn) as required. �
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Example 14 (Euler polynomials). We consider the Apostol–Euler polynomials determined by

ext

1+β(e t −1)
=

∞∑
n=0

En(β; x)
t n

n!
, for a fixed β 6= 0. (20)

They are the Appell sequence relative to

L(p) = (1−β)p(0)+βp(1), L(p)(x) = (1−β)p(x)+βp(x +1), since L(ext ) = 1+β(e t −1).

The caseβ= 1/2 recovers the classical Euler polynomials En(1/2; x) = En(x). Theorem 6 shows the
Apostol–Euler are characterized by (1−β)En(β; x)+βEn(β; x +1) = xn . Moreover, they are given
recursively by E0(β; x) = 1 and

En(β; x) = n
∫ x

0
En−1(β; t )dt −βn

∫ 1

0

∫ u

0
En−1(β; t )dtdu.

The kth Apostol–Euler polynomials E (k)
n (β; x) are the Appell sequence relative to Lk (p) =∑k

j=0

(k
j

)
β j (1 − β)k− j p( j ) and with exponential generating series ext /

(
1+β(e t −1)

)k . The case

β= 2 corresponds to the kth Euler polynomials E (k)
n (x). Finally, Proposition 7 proves that

E (k)
n (β; x) =

n∑
j=0

(
j +k −1

j

)
(−1) jβ j∆ j (xn), and En(x) =

n∑
j=0

(−1) j

2 j
∆ j (xn),

since (1+β(e t −1))−k ◦ log(1+ t ) = (1+βt )−k =∑∞
j=0

( j+k−1
j

)
(−1) jβ j t j , c.f., [4, Theorem 7].

Remark 15. It is worth recalling that Apostol–Euler polynomials are usually defined through the
expansion 2ext /(λe t + 1), for a parameter λ ∈ C∗, which up to a constant is equivalent to (20).
On the other hand, these can be expressed in terms of Apostol–Bernoulli polynomials that were
introduced by T. Apostol in relation with the Lerch zeta function [5], see, e.g., [21] for more details
on these connections.

In analogy with Proposition 13, we can write an analytic expression for the inverse of the
operator inducing the Euler polynomials. More specifically, we have.

Proposition 16. The functional L(p) = ∫ +∞
0

p
(
− 1

2 + i s
2

)
+p

(
− 1

2 − i s
2

)
eπs/2+e−πs/2 ds satisfies L(ext ) = 2/(e t +1). In

consequence,

J−1(p)(x) =
∫ +∞

0

p
(
x − 1

2 + i s
2

)+p
(
x − 1

2 − i s
2

)
eπs/2 +e−πs/2

ds

is the inverse of J(p)(x) = (p(x+1)+p(x))/2. Furthermore, the Euler polynomials admit the integral
representation

En(x) =
∫ +∞

0

(
x − 1

2 + i s
2

)n + (
x − 1

2 − i s
2

)n

eπs/2 +e−πs/2
ds.

Proof. It is sufficient to establish the first formula, the remaining ones follow as in the previous
proposition. For this purpose we write the Euler polynomials in terms of the Euler numbers En as

En(x) =
n∑

k=0

(
n

k

)
i k

2k
Ek

(
x − 1

2

)n−k

where
2

e t +e−t =
∞∑

n=0
i nEn

t n

n!
.

In fact,
∑∞

n=0 En(x) t n

n! = 2ext /(e t +1) = 2e(x−1/2)t /(e t/2+e−t/2). Also note that E2 j+1 = 0, j ≥ 0. Now,
by Example 11, it is enough to show that the operator

L′(p) =
∫ +∞

0

p
( i s

2

)+p
(− i s

2

)
eπs/2 +e−πs/2

ds,
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satisfies L′(ext ) = 2/(e t/2 + e−t/2). In fact, L = L′ ◦ T−1/2 and therefore L(ext ) = e−t/2L′(ext ) =
2/(e t + 1) as required. It is clear that L′(x2 j+1) = 0 since these are odd functions. For the even
powers we also find [25, 24.7.6]

L′(x2 j ) = (−1) j

22 j−1

∫ +∞

0

s2 j

eπs/2 +e−πs/2
ds = (−1) j E2 j

22 j
,

as required. �

Remark 17. Although the integral representations of Euler numbers

E2 j = 2
∫ +∞

0

s2 j

eπs/2 +e−πs/2
ds =

(
2

π

)2 j+1 ∫ +∞

0

ln(u)2 j

u2 +1
du,

are known (here u = eπs/2), we find instructive to include a simple proof using calculus of
residues. Indeed, we can find An = (2/π)n+1

∫ +∞
0

ln(u)n

1+u2 du, recursively: using the branch of the
logarithm log(z) = ln |z| + i arg(z) with −π/2 < arg(z) < 3π/2, the Residue Theorem shows that∫
γε,R

log(z)n

z2+1
dz = 2πi Res

( log(z)n

z2+1
, i

) = i nπn+1/2n . Here 0 < ε < 1, R > 1 and γε,R is the path formed
by the segments from −R to −ε and ε to R, and the corresponding semicircles centered at 0 of
radius ε and R, oriented positively. Letting ε→ 0+ and R →+∞ the integral over the arcs tends to
0 and we obtain ∫ +∞

0

ln(u)n

1+u2 du +
∫ +∞

0

(ln(u)+ iπ)n

1+u2 du = i nπn+1

2n .

Thus the sequence An satisfies An +∑n−1
k=0

(n
k

)
i k 2k An−k = 2i n . If we set A(t ) = ∑∞

n=0 An t n/n!, this
recursion is equivalent to the equation A(t )+A(t )e2i t = 2e i t . Consequently, A(t ) = 2/(e i t +e−i t ) =∑∞

n=0(−1)nEn t n/n! and An = (−1)nEn as needed.

Now we proceed to extend the integral representation and characterization of Hermite poly-
nomials that are essentially the only Appell orthogonal sequence [31]. But first we need a remark.

Remark 18. Given L ∈C[x]∗ and an integer m ≥ 1, we can construct a functional recording only
the moments of L indexed by multiples of m. Indeed, recalling Example 11 and fixing the m-th
root of unity ωm := e2πi /m , we see that the functional

Lm = 1

m
(L+L ◦Hω−1

m
+·· ·+L ◦H

ω−(m−1)
m

)

has moments Lm(xnm) = Lnm and equal to zero otherwise, i.e., Lm(ext ) = ∑∞
n=0 Lnm

t nm

(nm)! . This

can be checked using the identity 1+ω j
m +·· ·+ω j (m−1)

m = 0, valid for j = 1, . . . ,m −1.

Example 19 (Hermite polynomials). Fix an integer d ≥ 1. We shall describe an analytic expres-
sion for the functional defining the Appell sequence determined by the expansion

exp
(
xt − t d+1

)
=

∞∑
n=0

H (d)
n (x)

t n

n!
,

which correspond to a particular case of Gould–Hopper polynomials [17]. Our approach is based
on Ecalle’s accelerator operators familiar in the theory of multisummability of power series, see [7,
Chapter 11]. To this end, we recall the accelerator function

Cα(z) := 1

π

∞∑
n=0

sin

(
(n +1)π

β

)
Γ

(
n +1

α

)
zn

n!
, where α> 1,

1

α
+ 1

β
= 1, (21)

and Γ is the Gamma function. The map Cα is entire and satisfies |Cα(z)| ≤ c1 exp(−c2|z|β) on
each sector |arg(z)| ≤ θ/2 < π/(2β), for certain constants c j = c j (α,θ) > 0, j = 1,2. Then, given
k ′ > k > 0, the acceleator operator of index (k ′,k), Ak ′,k (p)(z) := z−k

∫ +∞
0 p(s)Ck ′/k ((s/z)k )dsk
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is well-defined for all polynomials p ∈ C[z]. Its importance relies on the fact that Ak ′,k (zn) =
Γ(1+n/k)
Γ(1+n/k ′) zn , for all n ≥ 0. Choosing k = 1, k ′ = d +1, and z = 1, we find that

Ad+1,1(p) :=
∫ +∞

0
p(s)Cd+1(s)ds has moments Ad+1,1(xn) = n!

Γ
(
1+ n

d+1

) .

Therefore, if ωd+1 = e2πi /(d+1), Remark 18 proves that the functional

A d+1(p) := 1

d +1

∫ +∞

0

(
p(s)+p(ωd+1s)+·· ·+p(ωd

d+1s)
)

Cd+1(s)ds (22)

satisfies A d+1(ext ) = exp(t d+1). Moreover, for λ 6= 0, Example 11 shows that A d+1 ◦Hλ produces
the sequence {λ−n H (d)

n (λx)}n≥0 having exp(xt − (t/λ)d+1) as generating series. In particular, if
we choose λd+1 = −1, say λ = e iπ/(d+1), the generating series would be exp(xt + t d+1). These
considerations establish the following.

Proposition 20. The sequence {H (d)
n (x)}n≥0 having exp(xt−t d+1) as exponential generating series

is characterized as the Appell sequence relative to A d+1 given by (22) and satisfying∫ +∞

0

d∑
j=0

H (d)
n

(
x +e

2πi j
d+1 s

)
Cd+1(s)ds = (d +1)xn , (23)

where Cd+1 is Ecalle’s accelerator function (21). Moreover, H (d)
n admits the integral representation

H (d)
n (x) = 1

d +1

∫ +∞

0

d∑
j=0

(
x +e

2πi ( j−1/2)
d+1 s

)n
Cd+1(s)ds. (24)

On the other hand, if in the previous paragraph we take λ=λd := (d !(d +1)2)1/(d+1) we recover
the family Ĥ n(x;d) :=λ−n

d H (d)
n (λd x) of Hermite-type-d-orthogonal polynomials. We briefly recall

that a sequence of polynomials {pn(x)}n≥0 with deg(pn) = n, is d-orthogonal with respect to a d
functionals L1, . . . ,Ld ∈C[x]∗ if

L j (pm pn) = 0, for n ≥ md + j , and L j (pm pmd+ j−1) 6= 0, for all m ≥ 0, j = 1, . . . ,d ,

see [15, Definition 1.5] and the references therein. For d = 1 this corresponds to the classical or-
thogonality condition. Moreover, d-orthogonal Appell polynomial sequences have a generating
series of the form exp(xt −∑d−1

j=0 γd−1− j t j+2/( j +2)!), for certain constants γl [15, Theorem 3.1].
Finally, in the case d = 1 and α = β = 2 in (21), after a direct calculation using the values

Γ(n +1/2) = (2n)!/(4nn!)
p
π, n ≥ 0, we find the familiar function C2(z) = exp(−z2/4)/

p
π. Then,

taking λ=p
2 we find the functional

(A 2 ◦Hp
2)(p) = 1

2

∫ +∞

0

(
p(s/

p
2)+p(−s/

p
2)

)
C2(s)ds = 1p

2π

∫ +∞

−∞
p(s)e−s2/2 ds,

corresponding to the Weierstrass operator [16, p. 746] who induces the classical Hermite polyno-
mials {Hen(x)}n≥0 with generating series exp(xt − t 2/2). Finally, equations (23) and (24) take the
familiar form [19, p. 254]

xn = 1p
2π

∫ +∞

−∞
Hen(x + s)e−s2/2 ds, Hen(x) = 1p

2π

∫ +∞

−∞
(x + i s)ne−s2/2 ds.

We conclude with one final worked example in relation with functionals induced by entire
functions.

Example 21. Given an entire function F (z) =∑∞
n=0 fn zn and λ ∈C such that F (λ) 6= 0, let

LF,λ(p) = 1

F (λ)

∞∑
k=0

p(k) fkλ
k , and LF,λ(p)(x) = 1

F (λ)

∞∑
k=0

p(x +k) fkλ
k .
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To see these are well-defined we use the differential operator δ = z ∂
∂z to note that δ j (F )(z) =∑∞

k=1 k j fk zk , j ≥ 1 are again entire and thus

LF,λ(xn) = δn(F )(λ)

F (λ)
, and LF,λ(xn)(x) =

n∑
j=0

(
n

j

)
δ j (F )(λ)

F (λ)
xn− j .

Moreover, LF,λ(ext ) = ∑∞
k=0 ekt fkλ

k /F (λ) = F (λe t )/F (λ). In this way we obtain an Appell se-
quence {PF,λ,n(x)}n≥0 characterized by the equation

∞∑
k=0

PF,λ,n(x +k) fkλ
k = F (λ)xn .

If F has no zeros in the complex plane, 1/F (z) = ∑∞
k=0 f ′

k zk is again entire and L1/F,λ(ext ) =
F (λ)/F (λe t ). Therefore, L−1

F,λ =L1/F,λ and we can invert the previous equation to obtain

PF,λ,n(x) = F (λ)
∞∑

k=0
(x +k)n f ′

kλ
k =

n∑
j=0

(
n

j

)
δ j (1/F )(λ)

(1/F )(λ)
xn− j . (25)

Examples of this situation are given by F (z) = exp(P (z)), where P is a non-constant polynomial
as considered by Touchard [36]. The best-known case corresponds to F (z) = ez , for which

Lez ,λ(ext ) = exp(λ(e t −1)) =
∞∑

k=0
Tk (λ)

t k

k !
, where Tk (λ) = e−λ ·δn(ez )(λ) =

n∑
k=0

S(n,k)
λk

k !

are the exponential or Touchard polynomials [26, p. 63] (recall equation (19)). In particular, (25)
takes the form Pez ,λ,n(x) =∑n

j=0

(n
j

)∑ j
l=0 S( j , l )(−λ)l xn− j /l !, see [9, Example 4.4].

Table 1 contains more examples of Appell sequences as Nørlund [23], Laguerre [26, p. 108],
Strodt [9], and the Bernoulli-type polynomials [34] (see Lemma 1 where a should be only
equal to 1). Moreover, the Bernoulli hypergeometric [18] and Kummer hypergeometric Bernoulli
polynomials [16].

Table 1. Some families of Appell polynomials

Polynomials Functional L(p) Indicator series L(ext ) / Characterization

Monomials
(x −a)n p(a) eat

Bernoulli
Bn(x)

∫ 1

0
p(t )dt

(e t −1)/t

Bn+1(x +1)−Bn+1(x) = (n +1)xn

kth Bernoulli

B (k)
n (x)

∫
[0,1]k

p(s1 +·· ·+ sk )ds
(e t −1)k /t k∫

[0,1]k
B (k)

n (x + s1 +·· ·+ sk )ds = xn

Bernoulli
Nørlund

∫
[0,1]k

p(ω1s1 +·· ·+ωk sk )ds
k∏

j=1

eω j t −1

ω j t

B (k)
n (x|ω) ω= (ω1, . . . ,ωk ) ∈Ck

∫
[0,1]k

B (k)
n (x +

k∑
j=1

ω j s j |ω)ds = xn

Apostol
Euler

En(β; x)
(1−β)p(0)+βp(1)

1+β(e t −1)

(1−β)En(β; x)+βEn(β; x +1) = xn
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Euler
En(x)

p(0)+p(1)

2

(1+e t )/2

En(x)+En(x +1) = 2xn

kth Apostol
Euler

k∑
j=0

(
k

j

)
β j (1−β)k− j p( j )

(
1+β(e t −1)

)k

E (k)
n (β; x)

k∑
j=0

(
k

j

)
β j (1−β)k− j E (k)

n (β; x + j ) = xn

Euler
Nørlund

2−k
∑

n j ∈{0,1}
p

( k∑
j=1

n jω j

)
2−k

k∏
j=1

(eω j t +1)

E (k)
n (x |ω) ω= (ω1, . . . ,ωk ) ∈Ck

∑
n j ∈{0,1}

E (k)
n

(
x +

k∑
j=1

n jω j |ω
)
= 2k xn

w-Strodt
Sn,w (x)

N∑
j=1

w j p
(
x j

) N∑
j=1

w j ex j t

x j ∈R, 0 < w j < 1,
N∑

j=1
w j = 1

n−1∑
j=0

Sn,w
(
x +w j

)= xn

Bernoulli-type
m∑

j=l
a j

∫ j

0
p(s)ds

m∑
j=l

a j e j t /t

B (m−l )
n,1 (x) l ,m ∈Z,

m∑
j=l

a j = 0,
m∑

j=l
j a j = 1

m∑
j=l

a j B (m−l )
n,1 (x + j ) = nxn−1

Hermite 1p
2π

∫ +∞

−∞
p(s)e−s2/2 ds

exp(t 2/2)

Hen(x)
∫ +∞

−∞
Hen(x + s)e−s2/2 ds =p

2πxn

d-Hermite ∫ +∞

0

d∑
j=0

p
(
e

2πi j
d+1 s

) Cd+1(s)

d +1
ds

exp(t d+1), d ≥ 0 integer

H (d)
n (x)

∫ +∞

0

d∑
j=0

H (d)
n

(
x +e

2πi j
d+1 s

) Cd+1

d +1
(s)ds = xn

Laguerre ∫ +∞

0
p(s)

sαe−s

Γ(1+α)
ds, Re(α) >−1

(1− t )−α−1

(−1)nn!L(α−n)
n (x)

∫ +∞

0
L(α−n)

n (x + t )
tαe−t

Γ(1+α)
dt = (−1)n xn

n!
Bernoulli

hypergeometric N
∫ 1

0
p(s)(1− s)N−1 ds, N ≥ 1

(
e t −

N−1∑
j=0

t j / j !

)
/(t N /N !)

BN ,n(x) N
∫ 1

0
BN ,n(x + s)(1− s)N−1ds = xn

Kummer
hypergeometric

Γ(a +b)

Γ(a)Γ(b)

∫ 1

0
p(s)sa−1(1− s)b−1 ds 1+

∞∑
n=1

a(a +1) · · · (a +n −1)

(a +b)(a +b +1) · · · (a +b +n −1)

t n

n!

Ba,b,n(x) Re(a),Re(b) > 0
∫ 1

0
Ba,b,n(x + s)

sa−1

Γ(a)

(1− s)b−1

Γ(b)
ds = xn

Γ(a +b)

PF,λ,n(x)

1

F (λ)

∞∑
k=0

p(x +k)

k !
F (k)(0)λk F (λe t )/F (λ)

F :C→C entire, F (λ) 6= 0
∞∑

k=0
PF,λ,n(x +k)

F (k)(0)λk

k !
= F (λ)xn
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