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Abstract. In a recent article by Gravejat and Smets [7], it is built smooth solutions to the inviscid surface quasi-
geostrophic equation that have the form of a traveling wave. In this article we work back on their construction
to provide similar solutions to a more general class of quasi-geostrophic equation where the half-laplacian is
replaced by any fractional laplacian.
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1. Presentation of the problem

1.1. The quasi-geostrophic equations

We consider the general transport equation for the vorticity of an incompressible fluid in dimen-
sion 2.

∂θ

∂t
+ v ·∇θ = 0, (1)

where θ : R2 ×R+ → R is the called the active scalar and v : R2 ×R+ → R is the velocity of the fluid
This equation tells that the active scalar is transported by the induced velocity. Since this velocity
v is divergence free (incompressibility condition), it is convenient to relate v and θ through a
stream function ψ : R2 ×R+ → R. The generalized inviscid surface quasi-geostrophic equation
corresponds to a stream function that verifies

v =∇⊥ψ and (−∆)sψ= θ, (2)

with s ∈ ]0,1[ and ⊥ denotes the rotation in the plane of angle π
2 . The three equations formed

by (1) and (2) are the generalized inviscid surface quasi-geostrophic equations. If we consider
formally the particular case s = 1, we obtain the well-known 2D Euler equation written in term
of vorticity and stream function. Another important case is s = 1

2 which correspond to the work
made in [7] that we generalize here. This case is the standard surface quasi-geostrofic equation
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that first appeared as a limit model in the context of geophysical flows [9,12]. These equations are
used to model a fluid in a rotating frame with stratified density and velocity and that is submitted
to Brunt–Väisälä thermal oscillations. This models leads to (1)–(2) using the Cafferelli–Silverstre
theory for fractional Laplace operator [2]. The case of the exponent s = 1

2 corresponds to the
case of a Brunt–Väisälä frequency N that does not depend on the height. Other exponents for
the fractional Laplace operator corresponds to different vertical profiles for the frequency N [6,
§1]. These equations has been intensely investigated since the work of Constantin, Majda and
Tabak [4] on the case s = 1

2 where they pointed out the mathematical links that arises between
(SQG- 1

2 ) and the Euler equation in dimension 3. Besides stationary solution, given by a radially
symmetric rearrangement on the active scalar, the only two known examples of global smooth
solutions where built by Castro, Córdoba and Gómez-Serrano [3] on the one hand and by Gravejat
and Smets [7] on the other hand with two different techniques. The article of Castro, Córdoba
and Gómez-Serrano also provides a wide bibliography related on SQG and its Cauchy problem.
In this work we generalize the result and the construction provided by [7] to the more general
equations (1)–(2) with a fixed s ∈]0,1[. The idea consists in looking for solutions that have the
form of traveling waves with a positive speed c in direction x2. In short, solutions of the form

θ(x1, x2, t ) =Θ(x1, x2 − ct ), v(x1, x2, t ) =V (x1, x2 − ct ), ψ(x1, x2, t ) =Ψ(x1, x2 − ct ), (3)

withΘ :R2 →R, V :R2 →R2, andΨ :R2 →R. We inject this form of solution in (1)–(2) and we get

0 = ∂

∂t
(Θ(x1, x2 − ct ))+V (x1, x2 − ct ).∇Θ(x1, x2 − ct )

=−ce2.∇Θ(x1, x2 − ct )+V (x1, x2 − ct ).∇Θ(x1, x2 − ct )

=−ce2.∇Θ(x1, x2 − ct )+∇⊥Ψ(x1, x2 − ct ).∇Θ(x1, x2 − ct ),

(4)

where (e1,e2) denotes the canonical basis of R2. This leads to the orthogonality condition

(∇ψ− ce1)⊥ ·∇Θ= 0, (5)

with the remark that e⊥1 = e2. In other words, the two vectors ∇Θ and ∇Ψ− ce1 must be collinear.
Following an idea from Arnold [1], Condition (5) is immediately verified ifΘ has the form

Θ(x) = f (Ψ(x)− cx1 −k). (6)

Indeed, in this case

∇Θ(x) = f ′(Ψ(x)− cx1 −k) · (∇Ψ(x)− ce1) (7)

which does give (5). We now consider the ansatz of a symmetry relatively to the x2-axis that takes
the form

Ψ(−x1, x2) =−Ψ(x1, x2). (8)

This implies that Θ(−x1, x2) = −Θ(x1, x2) and if we denote V = (V1,V2) the two components of
the velocity profile, then V1(−x1, x2) =−V1(x1, x2) and V2(−x1, x2) =V2(x1, x2). More precisely, we
impose the following ansatz

Θ(x1, x2) =
{

f (Ψ(x1, x2)− cx1 −k) if x1 ≥ 0,

− f (−Ψ(x1, x2)+ cx1 −k) otherwise,
(9)

where f : R→ R is a smooth function supported in R+ (to avoid a singularity at x = 0) with the
condition k > 0. Using the stream equations (2) we obtain

(−∆)sΨ (x1, x2) =
{

f (Ψ(x1, x2)− cx1 −k) if x1 ≥ 0,

− f (−Ψ(x1, x2)+ cx1 −k) otherwise.
(10)
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1.2. Variational formulation

The studied equation is variational and its solutions are the critical points of

E(Ψ) := 1

2

∫
R2
Ψ(−∆)sΨ−

∫
H

F (Ψ− cx1 −k)+
∫
Hc

F (Ψ+ cx1 −k), (11)

where H := {x = (x1, x2) ∈ R2 : x1 ≥ 0} and F (ξ) := ∫ ξ
0 f (ξ′)dξ′. We are going to build a critical point

of E using the technique of the Nehari manifold (defined later). For that purpose, since the choice
of f is free, we are imposing on this function the following properties

(a) f ∈C ∞(R,R), f|R− = 0 and f|R∗+ > 0,
(b) ∃ ν ∈ ]

1, 1+s
1−s

[
, ∀ ξ≥ 0, f (ξ) ≤Cξν,

(c) ∃µ ∈ ]1,ν[, ∀ ξ≥ 0, µ f (ξ) ≤ ξ f ′(ξ).

This last hypothesis on the variations of f is equivalent to the hypothesis that the function

ξ 7−→ f (ξ)

ξµ
. (12)

is non-decreasing on R+. In particular and since µ> 1,

∀ ξ0 ≥ 0, ξ ∈R+ 7−→ f (ξ)

ξ+ξ0
(13)

is increasing and diverging at infinity. Examples of functions that satisfies these three hypothe-
sis (a)–(c) are the functions

ξ 7−→ ξν e−
1
ξ 1R+ (ξ), (14)

with ν ∈ [µ,ν]. Given the hypothesis (a) and (b), the functional E is well-defined on the Hilbert
space

X s := L
2

1−s ∩ Ḣ s (R2) (15)

with the scalar product induced by Ḣ s given by

〈Φ,Ψ〉X s := p.v.
∫
R2

∫
R2

(
Φ(x)−Φ(y)

)(
Ψ(x)−Ψ(y)

)
|x − y |2(1+s)

dx dy (16)

where p.v. refers to the principal value of the singularity of the kernel (x, y) 7→ 1/|x − y |2(1+s).
For further work, we make use of the notations x = (x1, x2) and y = (y1, y2) to distinguish the
coordinates of x and the coordinates of y . We recall here that the Gagliardo half-norms defining
the spaces Ẇ s,p are given in general by

|Φ|pW s,p := p.v.
∫
Rd

∫
Rd

∣∣Φ(x)−Φ(y)
∣∣p

|x − y |d+sp
dx1 dx2. (17)

For the rest of the work we refer E as being the “energy” of the problem although this energy does
not correspond to a physical energy. We remark that it is invariant by the action of the group of
symmetry generated by (8). We denote by X s

s ym the subspace of X s made with the functions that
are left invariant by the action of this symmetry group.

X s
s ym := {Ψ ∈ X s : ∀ (x1, x2) ∈R2,Ψ(−x1, x2) =−Ψ(x1, x2)}. (18)

It follows from the Palais principle of symmetric criticality [8] that any critical point of E on X s

actual belongs to X s
s ym . We can therefore restrict our investigations to the subspace X s

s ym , inside
which the energy can be rewritten

E(Ψ) = 1

2
‖Ψ‖2

X s −2V (Ψ) (19)

with

V (Ψ) :=
∫
H

F (Ψ− cx1 −k). (20)

C. R. Mathématique, 2021, 359, n 1, 85-98
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1.3. Nehari Manifold and presentation of the main result

The Nehari manifold associated to the energy E is defined by

N = {Ψ ∈ X s
s ym \ {0} : E ′(Ψ)(Ψ) = 0}, (21)

so thatΨ ∈N implies ∫
R2
Ψ(−∆)sΨ−2

∫
H

f (Ψ− cx1 −k)Ψ= 0. (22)

It is proven after that the Nehari manifold N is a sub-manifold of X s
s ym non empty, of regularity

C 1 without boundary. The main result of this article is the following theorem.

Theorem 1. Let c and k positive. Let f :R→R verifying (a), (b) and (c).
Then the energy E admits a minimizer Ψ 6= 0 on N . As a consequence there exist a non-trivial

smooth solutionΘ to the inviscid quasi-geostrofic equations (1)–(2) which has the form

Θ(x1, x2, t ) =Θ(x1, x2 − ct ) = f
(
Ψ(x1, x2 − ct )− cx1 −k

)
, (23)

for all (x1, x2) ∈ H and that satisfies the symmetries Θ(x1, x2) = −Θ(−x1, x2) = Θ(x1,−x2), for all
(x1, x2) ∈ R2. Moreover, The restriction of Θ to H is non-negative, compactly supported and non-
increasing relatively to the variable |x2|.

2. Strategy of proof and main lemmas

We regroup in this section the main Lemmas involved in the proof of Theorem 1 and how they
follow one another. The detailed proof of these different lemmas are provided in Section 3.

2.1. Properties of the Nehari Manifold and minimizing sequences

We are interested in the minimization problem

α := inf{E(Ψ) :Ψ ∈N }. (24)

Since the function f is worth 0 on R− then a given function Ψ cannot belong to N if Ψ≤ 0 on H.
Indeed, this would imply that ∫

H
f (Ψ− cx1 −k)Ψ= 0 (25)

and then ‖Ψ‖X s = 0. The only function in X s
s ym such that this quantity is worth 0 is the null

function which has been excluded from the definition of the Nehari manifold). We have the
following description of the Nehari manifold.

Lemma 2. The set N is a C 1 non-empty sub-manifold of X s
s ym . For every Ψ ∈ X s

s ym such that
L2(supp(Ψ+)∩H) is non zero1, there exist a unique tΨ > 0 such that tΨΨ ∈ N . The value of this
tΨ is characterized by

E(tΨΨ) = max{E(tΨ) : t > 0}. (26)

Moreover, any local minimizer of E on N is a smooth non-trivial solution of (10). We also have that

β := inf
{‖Ψ‖2

X s : Ψ ∈N
}> 0. (27)

and for everyΨ ∈N ,

‖Ψ‖2
X s ≤

(
1+ 1

µ

)
E(Ψ). (28)

1The notation Ld refers to the d-dimensional Lebesgue measure (the Lebesgue measure on Rd ). The function
Ψ+ := max{Ψ,0} is the positive part ofΨ.
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Remark that this last assertion implies thatα is positive. This proposition also implies that any
minimizing sequence of E on N is a bounded sequence.

Definition 3 (Polarization). We now define the polarization of a functionΨ ∈ X s by

∀ x = (x1, x2) ∈R2, Ψ†(X ) :=
{

max
{
Ψ(x),Ψ

(
σ(x)

)}
if x1 > 0,

min
{
Ψ(x),Ψ(σ(x)

)}
if x1 < 0,

(29)

where σ denotes the linear map (x1, x2) ∈ R2 7→ (−x1, x2). In the particular case Ψ ∈ X s
s ym , we

obtainΨ†
|H ≥ 0 andΨ†

|Hc ≤ 0.

For more details about polarization, see for instance [10].

Lemma 4 (Polarization inequality). For allΨ ∈N ,

E(tΨ†Ψ
†) ≤ E(Ψ) (30)

and this inequality is strict whenΨ 6=Ψ†.

Denote with a † the image of a given set by the polarization. This lemma tells that if (Ψn) is a
minimizing sequence for E on N then so is tΨ†Ψ† because by definition of Ψ 7→ tΨ the function
tΨ†Ψ† belongs to N . Thus, the minimizer, if it exists, belongs to N †. It is then possible to restrict
the investigations to X s,†

s ym .

Definition 5 (Steiner rearrangement). We define the Steiner rearrangement of Ψ ∈ X s,†
s ym , noted

Ψ], as being the function of X s,†
s ym which super-level sets onH are given for all ν> 0 by

{Ψ] ≥ ν} := ⋃
x1∈R+

{x1}×
[
−ζΨ(x1)

2
,+ζΨ(x1)

2

]
(31)

with
ζΨ(x1) :=L1{x2 ∈R : Ψ(x1, x2) ≥ ν}. (32)

We extend this definition onHc by symmetry to ensure thatΨ] ∈ X s,†
s ym .

Lemma 6 (Steiner inequality). For allΨ ∈N †,

E(tΨ]Ψ]) ≤ E(Ψ) (33)

and the equality holds if and only ifΨ=Ψ] up to a translation on the x2 axis.

Then, if (Ψn) is a minimizing sequence for E on N † then so is tΨ]Ψ]. Thus, similarly as before
it is possible to restrict the investigations to X s,]

s ym .

2.2. Existence of the solution for the minimizing problem

Let (Ψn) ∈ N ] a minimizing sequence. We already know that such a sequence in bounded as a
consequence of Lemma 2. To start with, we establish the following compactness result.

Lemma 7 (compactness). Let c and k be positive. Define the non-linear map

T :Ψ ∈ X s 7−→
{

(Ψ− cx1 −k)+ on H,

−(Ψ− cx1 +k)− on Hc .
(34)

Then T maps X s
s ym into himself and maps bounded sets into bounded sets. Moreover, the map

T ◦ ]◦† is a compact map from X s
s ym into Lp

s ym(R2), with 1 ≤ p < 2
1−s .

Up to an extraction we can suppose that the minimizing sequence Ψn →Ψ? weakly in X s,]
s ym

and that (Ψn − cx1 −k)+ → (Ψ]− cx1 −k)+ strongly in Lp (H) for all p < 2
1−s .

Lemma 8 (convergence). The convergence ofΨn towardsΨ? in X s,] is a strong convergence.

This implies thatΨ? is solution to the studied minimization problem.

C. R. Mathématique, 2021, 359, n 1, 85-98
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2.3. Properties of the solution

We finally define Θ? from Ψ? according to formula (9). Since T (Ψ?) ∈ Lp (R2) for all p ∈ [
1, 2

1−s

]
thenΘ? ∈ Lq for all q ∈ [

1, 2
ν(1−s)

]
as a consequence of (b). We have the following regularity result

Lemma 9 (regularity). The functionsΨ? andΘ? are C ∞.

We can also establish a result on the decay ofΨ? at infinity.

Lemma 10 (decay estimate). There exists a constant C > 0 such that for all x ∈R2,

|Ψ?(x)| ≤ C

1+|x|2(1−s)
, (35)

With the positive cut-off level k > 0 appearing in the definition of T , this proposition implies
in particular thatΘ? is compactly supported.

3. Proofs of the lemmas

3.1. Proof of Lemma 2

LetΨ ∈ X s
s ym with L2

(
supp(Ψ+)∩H) 6= 0. For any t > 0, we define

g (t ) := E ′(tΨ)(tΨ)

t 2 = 1

2
‖Ψ‖2

Xs
−2t

∫
H

f (tΨ+− cx1 −k)Ψ+. (36)

We observe that the integral above can we rewritten

g (t ) = 1

2
‖Ψ‖2

X s −2
∫
H

f (tΨ+(x1, x2)− cx1 −k)

tΨ+(x1, x2)− cx1 −k + (cx1 +k)
(Ψ+)2(x1, x2)dx1 dx2. (37)

Since we have L2
(

supp(Ψ+)∩H) 6= 0, our remark on the variations ξ 7→ f (ξ)/(ξ+ξ0), consequence
of (c), indicates that t 7→ g (t ) is decreasing and g (t ) →−∞ as t →+∞. Indeed, one have to apply
this property of f to (37) with ξ= tΨ+ (x1, x2)− cx1 −k and ξ0 = cx1 +k and then integrate on H
against the non-negative weight (Ψ+)2. Now, we use Hypothesis (b) to write onH

0 ≤ 1

t
f (tΨ+− cx1 −k)Ψ+ ≤ 1

t
f (tΨ+)Ψ+ ≤C tν−1(Ψ+

)ν+1. (38)

Since ν> 1, then as t → 0+, we have

g (t ) −→ 1

2
‖Ψ‖2

X 2 > 0. (39)

Since f is smooth then g is continuous, and then the function g admits a unique root on R∗+. The
characterization (26) comes from the fact that

t g (t ) = d

dt
E(tΨ). (40)

The estimate (28) is obtained, forΨ ∈N , as follows

E(Ψ) = E(Ψ)− 1

µ+1
E ′(Ψ)(Ψ)

= µ

2(µ+1)
‖Ψ‖2

X s + 2

µ+1

∫
H

[
f (Ψ− cx1 −k)Ψ(x1, x2)− (µ+1)F (Ψ− cx1 −k)

]
dx1 dx2

≥ µ

2(µ+1)
‖Ψ‖2

X s ,

(41)

where the last inequality comes from the integration on [0, x1] of hypothesis (c) that gives µF (t ) ≤
t f (t )−F (t ). The fact that β is not zero is obtained using (b) and the Sobolev embedding

‖Ψ‖2
X s =

∫
H

f (Ψ+− cx1 −k)Ψ+ ≤ 4K
∫
H

(Ψ+)
2

1−s = 4K ‖Ψ+‖
2

1−s

L
2

1−s
≤C‖Ψ‖

2
1−s
X s . (42)

C. R. Mathématique, 2021, 359, n 1, 85-98
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Concerning the regularity of N , it is a consequence of the implicit functions theorem applied to
Ξ : (s,Ψ) 7→ E ′(sΨ)(Ψ) defined on the open set R∗+×X s

s ym \ {0}. The hypothesis of the theorem are
verified because forΨ ∈N we have:

∂1Ξ(1,Ψ) = t 2
Ψg ′(tΨ) < 0. (43)

It remains to prove that any minimizer of E on N is a critical point for E defined on the whole
space. We first remark that a minimizer of E on N is a minimizer ofΨ 7→ E(tΨΨ) on X s

s ym . Then,
using the definition of the Nehari manifold and the fact that we have Ψ ∈ N implies tΨ = 1, we
conclude

∀ h ∈ X s
s ym ,E ′(Ψ)(h) = E ′(tΨΨ)[t ′Ψ(h)Ψ+ tΨh] = 0. (44)

�

3.2. Proof of Lemma 4

We first recall that Ψ ∈ N implies that L2
(

supp(Ψ+)∩H) 6= 0. Using the characterization (26)
we get E(Ψ) ≥ E(tΨ†Ψ). Using the fact that Ψ(x1, x2) = −Ψ(−x1, x2), we conclude that here the
polarization consists in switching the two values ofΨ(x1, x2) andΨ(−x1, x2) if and only if we have
Ψ(x1, x2) ≤ 0 ≤Ψ(−x1, x2). Therefore since F is worth 0 on R− and is positive on R+, we obtain

V (tΨ†Ψ) ≤V (tΨ†Ψ
†). (45)

To finish the proof of this lemma, we have to establish

‖Ψ†‖X s ≤ ‖Ψ‖X s (46)

and that this inequality is strict if and only if Ψ† 6= Ψ. Actually the fact that the polarization
decreases the Ẇ s,p (Rd ) half-norms (17) is a general result so that we can establish it in the general
case. By definition of the principal values, we haveÏ

|x−y |≥ε
|Ψ(x)−Ψ(y)|p
|x − y |d+sp

dx dy −→ |u|pW s,p as ε→ 0. (47)

We then establish the inequality for any fixed ε> 0. First, the integral is split as follows,Ï
|x−y |≥ε

|Ψ(x)−Ψ(y)|p
|x − y |d+sp

dx dy

=
Ï
H2\{|x−y |<ε}

(
1

|x − y |d+sp

(|Ψ(x)−Ψ(y)|p +|Ψ◦σ(x)−Ψ◦σ(y)|p)
+ 1

|x −σ(y)|d+sp

(|Ψ(x)−Ψ◦σ(y)|p +|Ψ◦σ(x)−Ψ(y)|p))
dx dy (48)

Let x, y ∈H. Observe that
|x − y |d+sp < |x −σ(y)|d+sp . (49)

Case 1:Ψ(x) ≥Ψ◦σ(x) andΨ(y) ≥Ψ◦σ(y). In this case, with the definition of the polarization,
Ψ(x) = Ψ†(x) and Ψ(y) = Ψ†(y). Then when we integrate on the couples (x, y) that belongs to
Case 1, the associated term in the integral (48) is not modified by the polarization.

Case 2:Ψ(x) ≥Ψ◦σ(x) andΨ(y) <Ψ◦σ(y). By computing its derivative, we obtain that the
function

uβ,γ :α ∈R 7→ |α+β|p −|α+γ|p (50)

is non-decreasing when β> γ. Indeed we have (with p ≥ 1)

u′
β,s (α) = p(α+β)|α+β|p−2 −p(α+γ)|α+γ|p−2(31) (51)

C. R. Mathématique, 2021, 359, n 1, 85-98
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which is non-negative because y 7→ y |y |p−2 is an non-decreasing function. We now use this
property of uβ,γ with α1 :=Ψ(x) ≥Ψ◦σ(x) =:α2 and with β :=−u(y) > γ :=−u ◦σ(y). We obtain

|Ψ(x)−Ψ(y)|p +|Ψ◦σ(x)−Ψ◦σ(y)|p > |Ψ◦σ(x)−Ψ(y)|p +|Ψ(x)−Ψ◦σ(y)|p . (52)

If we combine this with (49) we get

1

|x − y |d+sp

(|Ψ(x)−Ψ(y)|p +|Ψ◦σ(x)−Ψ◦σ(y)|p)
+ 1

|x −σ(y)|d+sp

(|Ψ◦σ(x)−Ψ(y)|p +|Ψ(x)−Ψ◦σ(y)|p)
> 1

|x − y |d+sp

(|Ψ◦σ(x)−Ψ(y)|p +|Ψ(x)−Ψ◦σ(y)|p)
+ 1

|x −σ(y)|d+sp

(|Ψ(x)−Ψ(y)|p +Ψ◦σ(x)−Ψ◦σ(y)|p)
= 1

|x − y |d+sp

(|Ψ†(x)−Ψ†(y)|p +|Ψ† ◦σ(x)−Ψ† ◦σ(y)|p)
+ 1

|x −σ(y)|d+sp

(|Ψ† ◦σ(x)−Ψ†(y)|p +Ψ†(x)−Ψ† ◦σ(y)|p)
.

(53)

Case 3:Ψ(x) <Ψ◦σ(x) andΨ(y) <Ψ◦σ(y). In this case we have both Ψ(x) and Ψ(y) that are
swapped with respectively Ψ ◦σ(x) and Ψ ◦σ(y). Then this case is the same as Case 1 and the
term associated to Case 3 in the integral (48) is not modified by the polarization.

Case 4:Ψ(x) <Ψ◦σ(x) andΨ(y) ≥Ψ◦σ(y). This case is the same as Case 2.

Gathering these four cases, we obtain that for any ε> 0,Ï
|x−y |≥ε

|Ψ(x)−Ψ(y)|p
|x − y |d+sp

dx dy ≥
Ï

|x−y |≥ε
|Ψ†(x)−Ψ†(y)|p

|x − y |d+sp
dx dy. (54)

Concerning the cases of equality, we obtained from Cases 2 and 4 that if

L2

({
(x, y) ∈H2 :Ψ(x) =Ψ†(x) and Ψ(y) 6=Ψ†(y)

}∩|x − y | ≥ ε
)
> 0 (55)

then the inequality (54) is actually strict. We now observe that the above set is of measure zero
for every ε> 0 if and only if we have either Ψ=Ψ† or Ψ=Ψ† ◦σ. But this last case is not possible
whenΨ ∈N and then the only case of equality in our case isΨ=Ψ†. �

3.3. Proof of Lemma 6

Arguing similarly as the previous proof, we only have to prove that

∀Ψ ∈ X s,†
s ym , E(Ψ]) ≤ E(Ψ). (56)

Since the Steiner rearrangement only involves rearrangements of the super-level sets perpendic-
ularly to the x1-axis, we get

V (Ψ]) =V (Ψ). (57)

To conclude we have to establish that

‖Ψ]‖X s ≤ ‖Ψ‖X s . (58)

To start with, we suppose thatΨ is smooth and compactly supported. In this case∫
R2

∫
R2

|Ψ(x)−Ψ(y)|2
(|x − y |2 +ε2)1+s dx dy −→ ‖Ψ‖X s , (59)
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as ε→ 0+. Since the considered functions are C ∞, it is possible to develop the square above and
write∫

R2

∫
R2

|Ψ(x)−Ψ(y)|2
(|x − y |2 +ε2)1+s dx dy

= 2
∫
R2

∫
R2

Ψ(x)2

(|x − y |2 +ε2)1+s dx dy −2
∫
R2

∫
R2

Ψ(x)Ψ(y)

(|x − y |2 +ε2)1+s dx dy. (60)

The first integral in the right-hand side of the above inequality is not modified by rearrangement
of the super-level sets of the function Ψ. Concerning the second integral, using the fact that
Ψ(x1, x2) =−Ψ(−x1, x2) we get∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
Ψ(x1, x2)Ψ(y1, y2)

((x1 − y1)2 + (x2 − y2)2 +ε2)1+s dx2 dy2 dx1 dy1

= 2
∫ +∞

0

∫ +∞

0

∫ +∞

−∞

∫ +∞

−∞
Ψ(x1, x2)Ψ(y1, y2)

((x1 − y1)2 + (x2 − y2)2 +ε2)1+s dx2 dy2 dx1 dy1

−2
∫ +∞

0

∫ +∞

0

∫ +∞

−∞

∫ +∞

−∞
Ψ(x1, x2)Ψ(y1, y2)

((x1 + y1)2 + (x2 − y2)2 +ε2)1+s dx2 dy2 dx1 dy1. (61)

We now observe that the function

Υx1,y1 : u 7−→ 1(
(x1 − y1)2 +u2 +ε2

)1+s −
1(

(x1 + y1)2 +u2 +ε2
)1+s (62)

is non-negative and radially decreasing on R. Moreover, for x1, y1 ≥ 0 the functions x2 7→Ψ(x1, x2)
and y2 7→Ψ(y1, y2) are both non-negative R. Thus, using the Riesz rearrangement inequality, we
obtain∫ +∞

−∞

∫ +∞

−∞
Ψ(x1, x2)Ψ(y1, y2)Υx1,y1 (x2 − y2)dx2 dy2

≤
∫ +∞

−∞

∫ +∞

−∞
Ψ](x1, x2)Ψ](y1, y2)Υx1,y1 (x2 − y2)dx2 dy2. (63)

We now inject this inequality back into (61) and get∫
R2

∫
R2

Ψ(x)Ψ(y)

(|x − y |2 +ε2)1+s dx dy ≤
∫
R2

∫
R2

Ψ\(x)Ψ\(y)

(|x − y |2 +ε2)1+s dx dy. (64)

We use this estimate in (60), we take the limit ε→ 0 and we conclude by density of the smooth
compactly supported functions. �

Remark. It was not possible to use directly the Riesz rearrangement inequality to the second
integral appearing in (60) because this inequality in only true for non-negative functions.

3.4. Proof of Lemma 7

Step 1 : T maps X s,†
s ym into itself and maps bounded sets into bounded sets. First, if Ψ satisfies

the symmetry property then so does T (Ψ). Define the set2

Ω(Ψ) := {(x1, x2) ∈H : T (Ψ)(x1, x2) > 0}, (65)

where T (Ψ)(x1, x2) := (Ψ(x1, x2)− cx1 −k)+. By definition of T and ofΩ

L2(Ω) =
∫
Ω

1 ≤
∫
Ω

(
Ψ(x1, x2)

cx1 +k

) 2
1−s

dx1 dx2 ≤
∫
Ω

(
Ψ(x1, x2)

k

) 2
1−s

dx1 dx2 ≤ 1

k
2

1−s

∫
H
Ψ

2
1−s . (66)

2The adherence of this set is the support of the functionΘ. This corresponds physically speaking to the vorticity zone.
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Using a Sobolev inequality above leads to

L2(Ω) ≤ Cs

k
2

1−s

‖Ψ‖
2

1−s
X s . (67)

The computation of the double integral defining the Ḣ s half-norm (17) is done separating the
integrals on R2 on two between Ω and Ωc . On Ωc the quantity Ψ(x1, x2)− cx1 −k is non-positive
and then T (Ψ)(x1, x2) = 0. Therefore,∫

Ωc

∫
Ωc

|T (Ψ)(x)−T (Ψ)(y)|2
|x − y |2(1+ s)

dx dy = 0. (68)

Concerning the integral onΩ×Ω, using the notation x = (x1, x2) and y = (y1, y2),∫
Ω

∫
Ω

|T (Ψ)(x)−T (Ψ)(y)|2
|x − y |2(1+s)

dx dy =
∫
Ω

∫
Ω

|(Ψ(x)− cx1 −k)− (Ψ(y)− c y1 −k)|2
|x − y |2(1+s)

dx1 dx2

≤
∫
Ω

∫
Ω

|Ψ(x)−Ψ(y)|2 + c2|x1 − y1|2
|x − y |2(1+s)

dx1dx2.

(69)

Denote with an ∗ the radially decreasing rearrangement and RΩ > 0 the radius such that

L2(Ω) =L2(B(0,RΩ)). (70)

To simplify the notations we simply note this ball B(Ω). By the Riesz rearrangement inequality we
have ∫

Ω

∫
Ω

|x1 − y1|2
|x − y |2(1+s)

dx dy ≤
∫
Ω

∫
Ω

dx dy

|x − y |2s ≤
∫
B(Ω)

∫
B(Ω)

dx dy

|x − y |2s

≤
∫
B(Ω)

∫
B(Ω)

dx

|x|2s dy = πs

1− s
L2(Ω)2−s .

(71)

Using now (67) we get ∫
Ω

∫
Ω

|x1 − y1|2
|x1 −x2|2(1+s)

dx1 dx2 ≤Cs ‖Ψ‖2 2−s
1−s

X s . (72)

Concerning the last term,∫
Ω

∫
Ωc

|T (Ψ)(x)−T (Ψ)(y)|2
|x − y |2(1+s)

dx dy =
∫
Ω
|T (Ψ)(x)|2

∫
Ωc

dy

|x − y |2(1+s)
dx. (73)

For all x ∈Ωwe defineΛ(x) := Ψ(x)−cx1−k
2c and Ox := {y ∈Ωc : y1 ≥ x1 +Λ(x)}. Then,∫

Ox

dy

|x − y |2(1+s)
≤

∫
Ox

dy

|x1 − y1|2(1+s)
≤

∫
B(x,Λ(x))c

dy

|x − y |2(1+s)
= πs

Λ(x)2s . (74)

Using the fact that x ∈Ω, that y ∈Ωc and that y ∈Ox in this order, we obtain

0 ≤ T (Ψ)(x) =Ψ(x)− cx1 −k ≤Ψ(x)−Ψ(y)+ c(x1 − y1)

≤Ψ(x)−Ψ(y)+Ψ(x)− cx1 −k

2
=Ψ(x)−Ψ(y)+ 1

2
T (Ψ)(x). (75)

Therefore
|T (Ψ)(x)| ≤ 2|Ψ(x)−Ψ(y)| (76)

Combing (73), (74) and (76) leads to∫
Ω

∫
Ωc

|T (Ψ)(x)−T (Ψ)(y)|2
|x − y |2(1+s)

dxdy

≤ 4
∫
Ω

∫
Ωc \Ox

|Ψ(x)−Ψ(y)|2
|x − y |2(1+s)

dx dy +
∫
Ω
|T (Ψ)(x)|2 π

sΛ(x)2s dx

≤ 4
∫
Ω

∫
Ωc

|Ψ(x)−Ψ(y)|2
|x − y |2(1+s)

dx dy + π

s

∫
Ω
|T (Ψ)(x)|2(1−s)dx.

(77)
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Now, to estimate the last term of the above inequality, we use the fact that T (Ψ) ≤Ψ and then the
Hölder inequality gives∫

Ω
|T (Ψ)(x)|2(1−s)dx ≤

∫
Ω
|Ψ(x)|2(1−s) ≤L2(Ω)s(2−s) ‖Ψ‖2(1−s)

L
2

1−s
. (78)

We continue this estimate using (67) and a Sobolev embedding,

≤C‖Ψ‖2s(1+ 1
1−s )

X s ‖Ψ‖2(1−s)

L
2

1−s
≤C‖Ψ‖

2
1−s
X s . (79)

Thus, gathering all these estimates we obtain.

‖T (Ψ)‖2
X s :=

∫
Ω

∫
Ωc

|T (Ψ)(x)−T (Ψ)(y)|2
|x − y |2(1+s)

dx dy ≤C‖Ψ‖2
X s

(
1+‖Ψ‖

2s
1−s
X s

)
. (80)

Therefore, T does map X s,†
s ym into itself and maps bounded subsets of X s,†

s ym into bounded subsets.

Step 2 : T ◦ ]◦† defined on X s
s ym is a compact operator for the Lp topology. Set the convention

that {|x2| ≥ R} designates the set {(x1, x2) ∈ H : |x2| ≥ R}. Let κ > 0 and R ≥ 0. For all x1 ∈ Ω] we
define

Ux :=B(x,κ)∩ (
Ω]

)c . (81)

Then, ∫
{|x2|≥R}

|T (Ψ])(x)|2dx =
∫

{|x2|≥R}

1

L2(Ux )

∫
Ux

|T (Ψ])(x)|2 dy dx

≤
∫

{|x2|≥R}

1

L2(Ux )

∫
Ux

|T (Ψ])(x)−T (Ψ])(y)|2 dy dx

≤
∫

{|x2|≥R}

κ2(1+s)

L2(Ux )

∫
Ux

|T (Ψ])(x)−T (Ψ])(y)|2
|x − y |2(1+s)

dy dx.

(82)

Denote by PR the projection on R× {0} (that is identified to R). As a consequence of the Steiner
symmetrization, with (66),

2R L1

(
PR

(
(Ω])c ∩ {|x2| ≥ R}

))≤L2
(
Ω]

)≤ 1

k
2

1−s

‖Ψ]‖
2

1−s

L
2

1−s
. (83)

Since |x2| ≥ R −κ then using again the Steiner symmetry of Ω], gives that Ux contains the ball
B(x1,κ) minus the rectangle centered at x, of width

L1

(
PR

(
(Ω])c ∩ {|x2| ≥ R −κ}

))
and height 2κ. Then, with (83),

L2(Ux ) ≥πκ2 − κ

(R −κ)k
2

1−s

‖Ψ]‖
2

1−s

L
2

1−s
. (84)

The choice of κ is free and then we choose to fix it equal to C /R with

C := 4

πk
2

1−s

‖Ψ]‖
2

1−s

L
2

1−s
.

Choose now R such that R ≥p
2C . Then in this case the inequality (84) becomes

L2(Ux ) ≥ πC 2

2R2 . (85)

Combining the estimate above with (82), leads to the following estimate∫
{|x2|≥R}

|T (Ψ])(x)|2dx ≤
(

4

πR

)2s(‖Ψ]‖
L

2
1−s

k

) 4s
1−s

‖T (Ψ])‖2
X s . (86)
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On the other hand, using the Hölder inequality,∫
{x1≥R}

|T (Ψ])|2 =
∫

{x1≥R}
|T (Ψ])|21(Ω])c ≤

(∫
{x1≥R}

|T (Ψ])| 2
1−s

)1−s(∫
{x1≥R}

1(Ω])c

)s

= cL2((Ω])c ∩ {x1 ≥ R}
)s‖Ψ]‖2

L
2

1−s
,

(87)

where by convention {x1 ≥ R} designates the set {(x1, x2) ∈H : x1 ≥ R}. Moreover

L 2((Ω])c ∩ {x1 ≥ R}
)= ∫

(Ω])c∩{x1≥R}
1 ≤

∫
(Ω])c∩{x1≥R}

(
Ψ]

cx1 +k

) 2
1−s

≤
(

1

cR +k

) 2
1−s

‖Ψ]‖
2

1−s

L
2

1−s
. (88)

Combining (87) and (88) leads to∫
{x1≥R}

|T (Ψ])|2 ≤
(

1

cR +k

) 2s
1−s

‖Ψ]‖
2

1−s

L
2

1−s
(89)

The two decay estimates (86) and (89) and the Rellich–Kondrachov compactness theorem
(applied at the local level) give the result. �

3.5. Proof of Lemma 8

It follows from the definition of N and of Lemma 2 that∫
H

f (Ψn − cx1 −k)Ψn = 1

2

∫
R
Ψn(−∆)sΨn = 1

2
‖Ψn‖2

X s ≥ β

2
> 0. (90)

By the previous lemma, up to a sub-sequence when n →+∞,∫
H

f (Ψn − cx1 −k)Ψn −→
∫
H

f (Ψ?− cx1 −k)Ψ? ≥ β

2
. (91)

In particular (Ψ?−cx1−k)+ 6≡ 0 onH. By Lemma 2, there exists t? > 0 such that t?Ψ? ∈N . With
the characterization of t? and sinceΨn ∈N ,

E(Ψn) = E(tΨnΨn) ≥ E(t?Ψn). (92)

Thus,

α= lim
n→+∞E(Ψn) ≥ liminf

n→+∞ E(t?Ψn) ≥ E(t?Ψ?) ≥α. (93)

Therefore all these inequalities are equalities and ‖Ψn‖2
X s →‖Ψ?‖2

X s . Since the space X s is strictly
convex, this gives thatΨn converges towardsΨ? strongly in X s . �

3.6. Proof of Lemma 9

We already know that T (Ψ?) ∈ L
2

1−s (R2). Since the support of T (Ψ?) has a finite measure, then
T (Ψ?) ∈ L1(R2). DefineΘ? fromΨ? using formula (23). Hypothesis (b) implies

∀ q ∈
[

1,
2

ν(1− s)

]
, Θ? ∈ Lq (R2). (94)

Define now the function Ψ̃ given by the following representation formula,

Ψ̃(x) = Ks

∫
R2

Θ?(y)

|x − y |2(1−s)
dy. (95)

where Ks is some renormalization constant. It follows from the weighted inequalities for singular
integrals [11, §5] that Ψ̃ ∈ Ẇ 2s,q (R2), for all q ∈ [

1, 2
ν(1−s)

]
. Moreover, by the Hardy–Littlewood–

Sobolev convolution inequality, Ψ̃ ∈ Lq (R2), for all q ∈ [ 1
1−s , 2

ν−s(2+ν)

]
. By standard interpolation,

C. R. Mathématique, 2021, 359, n 1, 85-98



Ludovic Godard-Cadillac 97

Ψ̃ ∈ X s
s ym . Now, let ϕ ∈ X s

s ym be a test function. Using the spectral properties of the Sobolev
spaces [5] gives (up to multiplicative renormalization constants),

〈Ψ̃,ϕ〉X s =
∫
R2

|ξ|2s F [Ψ̃](ξ)F [ϕ](ξ)dξ

=
∫
R2

|ξ|2sF

[
Θ?∗ 1

| · |2(1−s

]
(ξ)F [ϕ](ξ)dξ

=
∫
R2

F [Θ?](ξ)F [ϕ](ξ)dξ= 〈Θ?,ϕ〉L2 ,

(96)

where F [ · ] designates the Fourier transform. Moreover, since Ψ? is a critical point of E , then
〈Ψ?,ϕ〉X s = 〈Θ?,ϕ〉L2 , which implies Ψ̃=Ψ?. The regularity known forΘ? allows to conclude that
Ψ? is bounded and uniformly continuous. Seen the definitions, to conclude that Ψ? is smooth
by a bootstrap argument there remain to study possible discontinuities on x1 = 0. Nevertheless,
it follows from the symmetry property of Ψ? and its uniform continuity that T (Ψ?) is worth 0 at
a distance uniformly positive from x1 = 0, meaning on a strip ]−δ,δ[×R+. Therefore so is the case
forΘ? and then the smoothness ofΨ? is proved. �

3.7. Proof of Lemma 10

Let x ∈R2 such that |x| ≥ 1. We separate the integral (95) into two,

Ψ?(x) = Ks

∫
|x−y |≤ |x|

2

Θ?(y)

|x − y |2(1−s)
dy +Ks

∫
|x−y |> |x|

2

Θ?(y)

|x − y |2(1−s)
dy (97)

Concerning the first integral, we choose η ∈]1− s, 1
s+1 [. This interval is non-empty and included

in ]0,1[. We use the Hölder inequality and Hypothesis (b) and then we are led to∫
|x−y |≤ |x|

2

Θ?(y)

|x − y |2(1−s)
dy ≤

(∫
|ζ|≤ |x|

2

dζ

|ζ|
2(1−s)
η

)η(∫
|x−y |≤ |x|

2

|T (Ψ?)| ν
1−η

)1−η
. (98)

Using again the estimates (86) and (89),∫
|x−y |≤ |x|

2

|T (Ψ?)|2(y)dy ≤ C

(1+|x|)−2s . (99)

Knowing that ν
1−η ≥ 2, the above estimate used in (98) leads to (the constant that depends only

on η) ∫
|x−y |≤ |x|

2

Θ?(y)

|x − y |2(1−s)
dy ≤C (η)

(|x|2 +1
)η(s+1)−1. (100)

The second integral in (97) can be estimated using directly the hypothesis on the function f ,∫
|x−y |> |x|

2

Θ?(y)

|x − y |2(1−s)
dy ≤

(
2

|x|
)2(1−s) ∫

R2
|T (Ψ?)|ν ≤ C

|x|2(1−s)
. (101)

By choosing η ∈ ]
1− s, 1

s+1

[
such that η≥ s

s+1 , the estimates (100) and (101) give

Ψ?(x) ≤ C

1+|x|2(1−s)
. (102)

References

[1] V. I. Arnold, Mathematical methods of classical mechanics, Graduate Texts in Mathematics, vol. 60, Springer, 1978.
[2] L. Caffarelli, L. Silvestre, “An extension problem related to the fractional laplacian”, Commun. Partial Differ. Equa-

tions 32 (2007), no. 8, p. 1245-1260.
[3] A. Castro, D. Córdoba, J. Gómez-Serrano, “Global smooth solutions for the inviscid SQG equation”, https://arxiv.org/

abs/1603.03325, 2016.

C. R. Mathématique, 2021, 359, n 1, 85-98

https://arxiv.org/abs/1603.03325
https://arxiv.org/abs/1603.03325


98 Ludovic Godard-Cadillac

[4] P. Constantin, A. J. Majda, E. Tabak, “Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar”,
Nonlinearity 7 (1994), no. 6, p. 1495-1533.

[5] E. Di Nezza, G. Palatucci, E. Valdinoci, “Hitchhiker’s guide to the fractional Sobolev spaces”, Bull. Sci. Math. 136
(2012), no. 5, p. 521-573.

[6] L. Godard-Cadillac, “Les vortex quasi-géostrophiques et leur désingularisation”, PhD Thesis, Sorbonne Université
(France), 2020.

[7] P. Gravejat, D. Smets, “Smooth travelling-wave solutions to the inviscid surface quasi-geostrophic equation”, Int.
Math. Res. Not. 2019 (2019), no. 6, p. 1744-1757.

[8] R. Palais, “The principle of symmetric criticality”, Commun. Math. Phys. 69 (1979), no. 1, p. 19-30.
[9] J. Pedlowsky, Geophysical Fluid Dynamics, Springer, 1987.

[10] D. Smets, M. Willem, “Partial symmetry and asymptotic behavior for some elliptic variational problems”, Calc. Var.
Partial Differ. Equ. 18 (2003), no. 1, p. 57-75.

[11] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathemat-
ical Series, vol. 43, Princeton University Press, 1993.

[12] G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics, Cambridge University Press, 2006.

C. R. Mathématique, 2021, 359, n 1, 85-98


	1. Presentation of the problem
	1.1. The quasi-geostrophic equations
	1.2. Variational formulation
	1.3. Nehari Manifold and presentation of the main result

	2. Strategy of proof and main lemmas
	2.1. Properties of the Nehari Manifold and minimizing sequences
	2.2. Existence of the solution for the minimizing problem
	2.3. Properties of the solution

	3. Proofs of the lemmas
	3.1. Proof of Lemma 2
	3.2. Proof of Lemma 4
	3.3. Proof of Lemma 6
	3.4. Proof of Lemma 7
	3.5. Proof of Lemma 8
	3.6. Proof of Lemma 9
	3.7. Proof of Lemma 10

	References



