Comptes Rendus

Mathématique

Smail Cheboui, Arezki Kessi and Daniel Massart
Algebraic intersection for translation surfaces in the stratum \mathscr{H} (2)

Volume 359, issue 1 (2021), p. 65-70
Published online: 15 February 2021
https: //doi.org/10.5802/crmath. 153
(σ) Br \quad This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l'édition scientifique ouverte
www.centre-mersenne.org
e-ISSN : 1778-3569

Algebraic intersection for translation surfaces in the stratum \mathscr{H} (2)

Intersection algébrique dans la strate \not{H} (2) des surfaces de translation

Smail Cheboui ${ }^{a, b}$, Arezki Kessi ${ }^{a}$ and Daniel Massart ${ }^{*, b}$
${ }^{a}$ USTHB, Faculté de Mathématiques, Laboratoire de Systèmes Dynamiques, 16111
El-Alia BabEzzouar, Alger, Algérie
${ }^{b}$ IMAG, Univ Montpellier, CNRS, Montpellier, France
E-mails: scheboui@usthb.dz, akessi@usthb.dz, daniel.massart@umontpellier.fr

Abstract

We study a volume related quantity KVol on the stratum $\mathscr{H}(2)$ of translation surfaces of genus 2 , with one conical point. We provide an explicit sequence $L(n, n)$ of surfaces such that $\operatorname{KVol}(L(n, n)) \rightarrow 2$ when n goes to infinity, 2 being the conjectured infimum for KVol over $\mathscr{H}(2)$. Résumé. Nous étudions une quantité KVol liée au volume sur la strate $\mathscr{H}(2)$ des surfaces de translation de genre 2 , avec une singularité conique. Nous donnons une suite explicite de surfaces $L(n, n)$ telles que $\operatorname{KVol}(L(n, n)) \rightarrow 2$ quand n tend vers l'infini, 2 étant l'infimum conjectural de KVol sur $\mathscr{H}(2)$. Funding. The first author acknowledges the support of a Profas B+ grant from Campus France, while working on his Ph.D..

Manuscript received 18th June 2020, accepted 18th November 2020.

1. Introduction

Let X be a closed surface, that is, a compact, connected manifold of dimension 2, without boundary. Let us assume that X is oriented. Then the algebraic intersection of closed curves in X endows the first homology $H_{1}(X, \mathbb{R})$ with an antisymmetric, non degenerate, bilinear form, which we denote $\operatorname{Int}(\cdot, \cdot)$.

Now let us assume X is endowed with a Riemannian metric g. We denote $\operatorname{Vol}(X, g)$ the Riemannian volume of X with respect to the metric g, and for any piecewise smooth closed curve

[^0]

Figure 1. Unfolding an element of $\mathscr{H}(2)$
α in X, we denote $l_{g}(\alpha)$ the length of α with respect to g. When there is no ambiguity we omit the reference to g.

We are interested in the quantity

$$
\begin{equation*}
\operatorname{KVol}(X, g)=\operatorname{Vol}(X, g) \sup _{\alpha, \beta} \frac{\operatorname{Int}(\alpha, \beta)}{l_{g}(\alpha) l_{g}(\beta)} \tag{1}
\end{equation*}
$$

where the supremum ranges over all piecewise smooth closed curves α and β in X. $\operatorname{The} \operatorname{Vol}(X, g)$ factor is there to make KVol invariant to re-scaling of the metric g. See [5] as to why KVol is finite. It is easy to make KVol go to infinity, you just need to pinch a non-separating closed curve α to make its length go to zero. The interesting surfaces are those (X, g) for which KVol is small.

When X is the torus, we have $\operatorname{KVol}(X, g) \geq 1$, with equality if and only if the metric g is flat (see [5]). Furthermore, when g is flat, the supremum in (1) is not attained, but for a negligible subset of the set of all flat metrics. In [5], KVol is studied as a function of g, on the moduli space of hyperbolic (that is, the curvature of g is -1) surfaces of fixed genus. It is proved that KVol goes to infinity when g degenerates by pinching a non-separating closed curve, while KVol remains bounded when g degenerates by pinching a separating closed curve.

This leaves open the question whether KVol has a minimum over the moduli space of hyperbolic surfaces of genus n, for $n \geq 2$. It is conjectured in [5] that for almost every (X, g) in the moduli space of hyperbolic surfaces of genus n, the supremum in (1) is attained (that is, it is actually a maximum).

In this paper we consider a different class of surfaces: translation surfaces of genus 2 , with one conical point. The set (or stratum) of such surfaces is denoted $\mathscr{H}(2)$ (see [3]). By [6], any surface X in the stratum $\mathscr{H}(2)$ may be unfolded as shown in Figure 1, with complex parameters $z_{1}, z_{2}, z_{3}, z_{4}$. The surface is obtained from the plane template by identifying parallel sides of equal length.

It is proved in [4] (see also [2]) that the systolic volume has a minimum in $\mathscr{H}(2)$, and it is achieved by a translation surface tiled by six equilateral triangles. Since the systolic volume is a close relative of KVol, it is interesting to keep the results of [4] and [2] in mind.

We have reasons to believe that KVol behaves differently in $\mathscr{H}(2)$, both from the systolic volume in $\mathscr{H}(2)$, and from KVol itself in the moduli space of hyperbolic surfaces of genus 2 ; that is, KVol does not have a minimum over \mathscr{H} (2).

We also believe that the infimum of $K V o l$ over $\mathscr{H}(2)$ is 2 . This paper is a first step towards the proof: we find an explicit sequence $L(n, n)$ of surfaces in $\mathscr{H}(2)$, whose KVol tends to 2 (see

Proposition 5). These surfaces are obtained from very thin, symmetrical, L-shaped templates (see Figure 2).

In the companion paper [1] we study KVol as a function on the Teichmüller disk (the $S L_{2}(\mathbb{R})$ orbit) of surfaces in $\mathscr{H}(2)$ which are tiled by three identical parallelograms (for instance $L(2,2)$), and prove that KVol does have a minimum there, but is not bounded from above. Therefore KVol is not bounded from above as a function on $\mathscr{H}(2)$. In [1] we also compute KVol for the translation surface tiled by six equilateral triangles, and find it equals 3 , so it does not minimize KVol , neither in $\mathscr{H}(2)$, nor even in its own Teichmüller disk.

2. $L(n, n)$

2.1. Preliminaries

Following [7], for any $n \in \mathbb{N}, n \geq 2$, we call $L(n+1, n+1)$ the $(2 n+1)$-square translation surface of genus two, with one conical point, depicted in Figure 2, where the upper and rightmost rectangles are made up with n unit squares. We call A (resp. B) the region in $L(n+1, n+1)$ obtained, after identifications, from the uppermost (resp. rightmost) rectangle, and C the region in $L(n+1, n+1)$ obtained, after identifications, from the bottom left square. Both A and B are annuli with a pair of points identified on the boundary, while C is a square with all four corners identified. We call e_{1}, e_{2}, (resp. f_{1}, f_{2}) the closed curves in $L(n+1, n+1)$ obtained by gluing the endpoints of the horizontal (resp. vertical) sides of A and B. The closed curve which sits on the opposite side of C from e_{1} (resp. f_{1}) is called e_{1}^{\prime} (resp. f_{1}^{\prime}), it is homotopic to $e_{1}\left(\right.$ resp. $\left.f_{1}\right)$ in $L(n+1, n+1)$. The closed curves in $L(n+1, n+1)$ which correspond to the diagonals of the square C are called g and h.

Figure 3 shows a local picture of $L(n+1, n+1)$ around the singular (conical) point S, with angles rescaled so the 6π fit into 2π.

Since $e_{1}, e_{2}, f_{1}, f_{2}$ do not meet anywhere but at S, the local picture yields the algebraic intersections between any two of $e_{1}, e_{2}, f_{1}, f_{2}$, summed up in the following matrix:

$$
\left(\begin{array}{ccccc}
\text { Int } & e_{2} & f_{1} & e_{1} & f_{2} \tag{2}\\
e_{2} & 0 & 1 & 0 & -1 \\
f_{1} & -1 & 0 & 0 & 0 \\
e_{1} & 0 & 0 & 0 & 1 \\
f_{2} & 1 & 0 & -1 & 0
\end{array}\right)
$$

We call T_{A} (resp. T_{B}) the flat torus obtained by gluing the opposite sides of the rectangle made with the $n+1$ leftmost squares (resp. with the $n+1$ bottom squares), so the homology of T_{A} (resp. T_{B}) is generated by e_{1} and the concatenation of f_{1} and f_{2} (resp. f_{1} and the concatenation of e_{1} and e_{2}).

Lemma 1. The only closed geodesics in $L(n+1, n+1)$ which do not intersect e_{1} nor f_{1} are, up to homotopy, e_{1}, f_{1}, g, and h.

Proof. Let γ be such a closed geodesic. It cannot enter, nor leave, A, B, nor C. If it is contained in A, and does not intersect e_{1}, then it must be homotopic to e_{1}, which is the soul of the annulus from which A is obtained by identifying two points on the boundary. Likewise, if it is contained in B, and does not intersect f_{1}, then it must be homotopic to f_{1}. Finally, if γ is not contained in A nor in B, it must be contained in C. The only closed geodesics contained in C are the sides and diagonals of the square from which C is obtained, which are $e_{1}, e_{1}^{\prime}, f_{1}, f_{1}^{\prime}, g$, and h.

Lemma 2. For any closed geodesic γ in $L(n+1, n+1)$, we have $l(\gamma) \geq n\left|\operatorname{Int}\left(\gamma, e_{1}\right)\right|$.
Proof. For each intersection with e_{1}, γ must go through A, from boundary to boundary.

Figure 2. $L(n+1, n+1)$

Figure 3. Local picture around the conical point

Obviously a similar lemma holds with f_{1} instead of e_{1}. For g and h the proof is a bit different:
Lemma 3. For any closed geodesic γ in $L(n+1, n+1)$, we have $l(\gamma) \geq n|\operatorname{Int}(\gamma, g)|$.
Proof. First, observe that between two consecutive intersections with g, γ must go through either A or B, unless γ is g itself, or h : indeed, the only geodesic segments contained in C with endpoints on g are segments of g, or h. Obviously $\operatorname{Int}(g, g)=0$, and from the intersection matrix (2), knowing that $[g]=\left[e_{1}\right]-\left[f_{1}\right],[h]=\left[e_{1}\right]+\left[f_{1}\right]$, we see that $\operatorname{Int}(g, h)=0$.

Thus, either $\operatorname{Int}(\gamma, g)=0$, or each intersection must be paid for with a trek through A or B, of length at least n.

Obviously a similar lemma holds with h instead of g. Note that Lemmata $1,2,3$ imply that the only geodesics in $L(n+1, n+1)$ which are shorter than n are e_{1}, f_{1}, g, h, and closed geodesics homotopic to e_{1} or f_{1}.

Lemma 4. Let I, J be positive integers, take $a_{i j}, i=1, \ldots, I, j=1, \ldots, J$ in \mathbb{R}_{+}, and $b_{1}, \ldots, b_{I}, c_{1}, \ldots, c_{J}$ in \mathbb{R}_{+}^{*}. Then we have

$$
\frac{\sum_{i, j} a_{i j}}{\left(\sum_{i=1}^{I} b_{i}\right)\left(\sum_{j=1}^{J} c_{j}\right)} \leq \max _{i, j} \frac{a_{i j}}{b_{i} c_{j}}
$$

Proof. Re-ordering, if needed, the $a_{i j}, b_{i}, c_{j}$, we may assume

$$
\frac{a_{i j}}{b_{i} c_{j}} \leq \frac{a_{11}}{b_{1} c_{1}} \forall i=1, \ldots, I, j=1, \ldots, J
$$

Then $a_{i j} b_{1} c_{1} \leq a_{11} b_{i} c_{j} \forall i=1, \ldots, I, j=1, \ldots, J$, so

$$
b_{1} c_{1} \sum_{i, j} a_{i j} \leq a_{11} \sum_{i, j} b_{i} c_{j}=a_{11}\left(\sum_{i=1}^{I} b_{i}\right)\left(\sum_{j=1}^{J} c_{j}\right)
$$

2.2. Estimation of $\operatorname{KVol}(L(n, n))$

Proposition 5.

$$
\lim _{n \rightarrow+\infty} \operatorname{KVol}(L(n+1, n+1))=2
$$

Proof. First observe that $\operatorname{Vol}(L(n+1, n+1))=2 n+1, l\left(e_{1}\right)=1, l\left(f_{2}\right)=n, \operatorname{Int}\left(e_{1}, f_{2}\right)=1$, so

$$
\operatorname{KVol}(L(n+1, n+1)) \geq 2+\frac{1}{n}
$$

To bound $\operatorname{KVol}(L(n+1, n+1))$ from above, we take two closed geodesics α and β; by Lemmata 2 and 3 , if either α or β is homotopic to e_{1}, f_{1}, g, or h, then

$$
\frac{\operatorname{Int}(\alpha, \beta)}{l(\alpha) l(\beta)} \leq \frac{1}{n}
$$

so from now on we assume that neither α or β is homotopic to e_{1}, f_{1}, g, We cut α and β into pieces using the following procedure: we consider the sequence of intersections of α with $e_{1}, e_{1}^{\prime}, f_{1}, f_{1}^{\prime}$, in cyclical order, and we cut α at each intersection with e_{1} or e_{1}^{\prime} which is followed by an intersection with f_{1} or f_{1}^{\prime}, and at each intersection with f_{1} or f_{1}^{\prime} which is followed by an intersection with e_{1} or e_{1}^{\prime}. We proceed likewise with β. We call $\alpha_{i}, i=1, \ldots, I$, and $\beta_{j}, j=1, \ldots, J$, the pieces of α and β, respectively.

Note that

$$
l(\alpha)=\sum_{i=1}^{I} l\left(\alpha_{i}\right), l(\beta)=\sum_{j=1}^{J} l\left(\beta_{j}\right), \quad \text { and } \quad|\operatorname{Int}(\alpha, \beta)| \leq \sum_{i, j}\left|\operatorname{Int}\left(\alpha_{i}, \beta_{j}\right)\right|
$$

so Lemma 4 says that

$$
\frac{|\operatorname{Int}(\alpha, \beta)|}{l(\alpha) l(\beta)} \leq \max _{i, j} \frac{\left|\operatorname{Int}\left(\alpha_{i}, \beta_{j}\right)\right|}{l\left(\alpha_{i}\right) l\left(\beta_{j}\right)}
$$

We view each piece α_{i} (resp. β_{j}) as a geodesic arc in the torus T_{A} (resp. T_{B}), with endpoints on the image in T_{A} (or T_{B}) of f_{1} or f_{1}^{\prime} (resp. e_{1} or e_{1}^{\prime}), which is a geodesic arc of length 1 , so we can close each α_{i} (resp. β_{j}) with a piece of f_{1} or f_{1}^{\prime} (resp. e_{1} or e_{1}^{\prime}), of length ≤ 1. We choose a closed geodesic $\widehat{\alpha}_{i}$ (resp. $\widehat{\beta}_{j}$) in T_{A} (resp. T_{B}) which is homotopic to the closed curve thus obtained. We have $l\left(\widehat{\alpha}_{i}\right) \leq l\left(\alpha_{i}\right)+1, l\left(\widehat{\beta}_{j}\right) \leq l\left(\beta_{j}\right)+1$, so

$$
\frac{1}{l\left(\widehat{\alpha}_{i}\right) l\left(\widehat{\beta}_{j}\right)} \geq \frac{1}{\left(l\left(\alpha_{i}\right)+1\right)\left(l\left(\beta_{j}\right)+1\right)}
$$

Now recall that $l\left(\alpha_{i}\right), l\left(\beta_{j}\right) \geq n$, so $l\left(\alpha_{i}\right)+1 \leq\left(1+\frac{1}{n}\right) l\left(\alpha_{i}\right)$, whence

$$
\frac{1}{l\left(\widehat{\alpha}_{i}\right) l\left(\widehat{\beta}_{j}\right)} \geq \frac{1}{l\left(\alpha_{i}\right) l\left(\beta_{j}\right)}\left(\frac{n}{n+1}\right)^{2} .
$$

Next, observe that $\left|\operatorname{Int}\left(\alpha_{i}, \beta_{j}\right)\right| \leq\left|\operatorname{Int}\left(\widehat{\alpha_{i}}, \widehat{\beta_{j}}\right)\right|+1$, because $\widehat{\alpha_{i}}$ (resp. $\widehat{\beta}_{j}$) is homologous to a closed curve which contains α_{i} (resp. β_{j}) as a subarc, and the extra arcs cause at most one extra intersection, depending on whether or not the endpoints of α_{i} and β_{j} are intertwined. So,

$$
\frac{\left|\operatorname{Int}\left(\alpha_{i}, \beta_{j}\right)\right|}{l\left(\alpha_{i}\right) l\left(\beta_{j}\right)} \leq \frac{\left|\operatorname{Int}\left(\widehat{\alpha_{i}}, \widehat{\beta_{j}}\right)\right|+1}{l\left(\widehat{\alpha}_{i}\right) l\left(\widehat{\beta}_{j}\right)}\left(\frac{n+1}{n}\right)^{2} \leq\left(\frac{\left|\operatorname{Int}\left(\widehat{\alpha}_{i}, \widehat{\beta}_{j}\right)\right|}{l\left(\widehat{\alpha}_{i}\right) l\left(\widehat{\beta}_{j}\right)}+\frac{1}{n^{2}}\right)\left(\frac{n+1}{n}\right)^{2},
$$

where the last inequality stands because $l\left(\widehat{\alpha}_{i}\right) \geq n, l\left(\widehat{\beta}_{j}\right) \geq n$, since $\widehat{\alpha}_{i}$ and $\widehat{\beta}_{j}$ both have to go through a cylinder A or B at least once. Finally, since $\widehat{\alpha}_{i}$ and $\widehat{\beta}_{j}$ are closed geodesics on a flat torus of volume $n+1$, we have (see [5])

$$
\begin{gathered}
\frac{\left|\operatorname{Int}\left(\widehat{\alpha_{i}}, \widehat{\beta_{j}}\right)\right|}{l\left(\widehat{\alpha}_{i}\right) l\left(\widehat{\beta}_{j}\right)} \leq \frac{1}{n+1} \text {, so } \\
\frac{\left|\operatorname{Int}\left(\alpha_{i}, \beta_{j}\right)\right|}{l\left(\alpha_{i}\right) l\left(\beta_{j}\right)} \leq\left(\frac{1}{n+1}+\frac{1}{n^{2}}\right)\left(\frac{n+1}{n}\right)^{2}=\frac{1}{n}+o\left(\frac{1}{n}\right),
\end{gathered}
$$

which yields the result, recalling that $\operatorname{Vol}(L(n+1, n+1))=2 n+1$.

References

[1] S. Cheboui, A. Kessi, D. Massart, "Algebraic intersection for translation surfaces in the Teichmüller disk of $L(2,2)$ ", https://arxiv.org/abs/2007.10847.
[2] F. Herrlich, B. Muetzel, G. Weitze-Schmithüsen, "Systolic geometry of translation surfaces", https://arxiv.org/abs/ $1809.10327 \mathrm{vl}, 2018$.
[3] P. Hubert, S. Lelièvre, "Prime arithmetic Teichmüller discs in \mathscr{H} (2)", Isr. J. Math. 151 (2006), p. 281-321.
[4] C. Judge, H. Parlier, "The maximum number of systoles for genus two Riemann surfaces with abelian differentials", Comment. Math. Helv. 94 (2019), no. 2, p. 399-437.
[5] D. Massart, B. Muetzel, "On the intersection form of surfaces", Manuscr. Math. 143 (2014), no. 1-2, p. 19-49.
[6] C. T. McMullen, "Teichmüller curves in genus two: discriminant and spin", Math. Ann. 333 (2005), no. 1, p. 87-130.
[7] G. Schmithüsen, "An algorithm for finding the Veech group of an origami", Exp. Math. 13 (2004), no. 4, p. 459-472.

[^0]: * Corresponding author.

