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Abstract. This paper deals with the chemotaxis system with nonlinear signal secretion{
ut =∇· (D(u)∇u −S(u)∇v), x ∈Ω, t > 0,

vt =∆v − v + g (u), x ∈Ω, t > 0,

under homogeneous Neumann boundary conditions in a bounded domain Ω ⊂ Rn (n ≥ 2). The diffusion
function D(s) ∈ C 2([0,∞)) and the chemotactic sensitivity function S(s) ∈ C 2([0,∞)) are given by D(s) ≥
Cd (1+s)−α and 0 < S(s) ≤Cs s(1+s)β−1 for all s ≥ 0 with Cd ,Cs > 0 andα,β ∈R. The nonlinear signal secretion
function g (s) ∈ C 1([0,∞)) is supposed to satisfy g (s) ≤ Cg sγ for all s ≥ 0 with Cg ,γ > 0. Global boundedness
of solution is established under the specific conditions:

0 < γ≤ 1 and α+β< min

{
1+ 1

n
,1+ 2

n
−γ

}
.

The purpose of this work is to remove the upper bound of the diffusion condition assumed in [9], and we also
give the necessary constraint α+β< 1+ 1

n , which is ignored in [9, Theorem 1.1].

Mathematical subject classification (2010). 35K35, 35A01, 35B44, 35B35, 92C17.

Funding. This work is supported by the Chongqing Research and Innovation Project of Graduate Stu-
dents (No. CYS20271) and Chongqing Basic Science and Advanced Technology Research Program
(No. cstc2017jcyjXB0037).

Manuscript received 1 September 2020, revised 9 October 2020 and 9 December 2020, accepted 10 Decem-
ber 2020.

∗Corresponding author.

ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/

https://doi.org/10.5802/crmath.148
mailto:panx_math@163.com
mailto:wanglc@cqupt.edu.cn
https://comptes-rendus.academie-sciences.fr/mathematique/


162 Xu Pan and Liangchen Wang

1. Introduction

In the present work, we consider the following system, which describes the fully parabolic
chemotaxis system with nonlinear diffusion, sensitivity and signal secretion

ut =∇· (D(u)∇u −S(u)∇v), x ∈Ω, t > 0,

vt =∆v − v + g (u), x ∈Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

(u, v)(x,0) = (u0(x), v0(x)) , x ∈Ω,

(1)

with homogeneous Neumann boundary conditions, where Ω⊂ Rn (n ≥ 2) is a bounded domain,
and ∂/∂ν is the derivative of the normal with respect to ∂Ω. In system (1), u = u(x, t ) and
v = v(x, t ) represent the density of population and the concentration of chemicals, respectively.
In this article, the diffusion function D ∈ C 2([0,∞)) and the chemotactic sensitivity function
S ∈C 2([0,∞)) with S(0) = 0 are given by

D(s) ≥Cd (1+ s)−α and 0 ≤ S(s) ≤Cs s(1+ s)β−1 for all s ≥ 0 (2)

with Cd ,Cs > 0 and α,β ∈ R. The signal secretion function g ∈ C 1([0,∞)) is nonnegative and
satisfies

g (s) ≤Cg sγ for all s ≥ 0 with Cg ,γ> 0. (3)

The well-known chemotaxis model for the chemotactic movement of one specie [4] proposed
by Keller and Segel, which describes the aggregation phenomenon of the Dictyostelium dis-
coideum, there are many results about this system [1, 3, 9, 12, 13, 15, 16]. For instance, in case
g (u) = u, the asymptotics of S(u)

D(u) ' u
2
n is critical to distinguish the blow-up and global bound-

edness: under the condition S(u)
D(u) ≤ cu

2
n −ε for all u > 1 with ε> 0, Tao and Winkler [12] obtained

the global boundedness of solution; while if S(u)
D(u) ≤ cu

2
n +ε for all u > 1 [16], the solution of (1)

blow-up either in infinite time or finite time. We note that in [9], global boundedness of solution
is established under the conditions that α+β+γ< 1+ 2

n and d0(1+u)α ≤ D(u) ≤ d1(1+u)α1 with
d0,d1 > 0 and α,α1 ∈ R. The purpose of this work is to remove the upper bound of the diffusion
condition and give the necessary constraint α+β< 1+ 1

n that is ignored in [9, Theorem 1.1]. The
main result of this article is described below.

Theorem 1. Let Ω ⊂ Rn (n ≥ 2) be a smooth bounded domain. The nonnegative initial data
(u0, v0) ∈C 0(Ω)×C 1(Ω). Assume that (2) and (3) hold. If 0 < γ≤ 1 and

α+β< min

{
1+ 1

n
,1+ 2

n
−γ

}
,

then system (1) possesses a unique global bounded classical solution (u, v) in the sense that there
exists some constant C > 0 satisfying

‖u( · , t )‖L∞(Ω) +‖v( · , t )‖L∞(Ω) <C for all t > 0.

Remark 2. Compared with the previous study in [9, Theorem 1.1], we give the necessary con-
straint α+β< 1+ 1

n that is ignored in it, and we also remove the restriction on the upper bound
of the diffusion function D(s).

2. Boundedness

Let us state the local existence result, which has been established in [1, 3, 8, 10, 17, 18].
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Lemma 3. Let Ω ⊂ Rn (n ≥ 2) be a smooth bounded domain. The nonnegative initial data
(u0, v0) ∈ C 0(Ω) ×C 1(Ω). Assume that (2) and (3) hold, then there exists t ∈ (0,Tmax) such that
system (1) has a unique non-negative solution and satisfies

u, v ∈C (Ω× [0,Tmax))∩C 2,1(Ω× (0,Tmax)),

where Tmax denotes the maximal existence time. Moreover, if Tmax <∞, then

‖u( · , t )‖L∞(Ω) +‖v( · , t )‖L∞(Ω) →∞ as t ↗ Tmax.

In order to obtain the global boundedness of solution to system (1), we first establish a series
of prior estimates; then we treat the dissipative terms on the right hand side of the inequality
by using the Gagliardo–Nirenberg inequality; last, we get our final results by controlling the
parameter range in the inequality. The ideas come from [9, 12–14].

Lemma 4. Let Ω ⊂ Rn (n ≥ 2) be a smooth bounded domain. The nonnegative initial data
(u0, v0) ∈C 0(Ω)×C 1(Ω). Assume that (2) and (3) hold, then the first term of the solution to system
(1) satisfies

‖u( · , t )‖L1(Ω) = ‖u0‖L1(Ω) for all t ∈ (0,Tmax) . (4)

Furthermore, assume that 0 < γ≤ 1, if s ∈ [
1, n

(nγ−1)+
)
, then there exits C > 0 such that

‖v( · , t )‖W 1,s (Ω) ≤C for all t ∈ (0,Tmax) . (5)

Proof. Integrating the first equation of (1) overΩ, (4) can be easily obtained. From the Neumann
semigroup estimates method in [5, Lemma 1], (5) can be obtained. �

Before we give the result of main part, we first select the appropriate parameters.

Lemma 5. Let Ω ⊂ Rn (n ≥ 2) be a smooth bounded domain, the nonnegative initial data
(u0, v0) ∈C 0(Ω)×C 1(Ω), assume that (2) and (3) hold. In case 0 < γ≤ 1, if

α+β< min

{
1+ 1

n
,1+ 2

n
−γ

}
,

then there exists s ∈
[

1, n
(nγ−1)+

)
such that

γ− 1

n
< 1

s
< 1+ 1

n
−α−β. (6)

Moreover, let 1 < a < min
{

n
n−2 , s

(s−2)+

}
and b > max

{
n
2 , 1

2γ

}
, we choose some p? > 1 + nα

2 and
q? > 1+ s

2 such that for all p > p? and q > q?, then we have

n −2

n
· p +α+2β−2

p −α < 1

a
< p +α+2β−2, (7)

1− 2

s
< 1

a
< 1− n −2

nq
, (8)

n −2

n
· 2γ

p −α < 1

b
< 2

n
+ 1

q

(
1− 2

n

)
and

2b(q −1)

b −1
> s. (9)

Proof. The proof is similar to [9] (also see [12]), so we omitted it here. �

In the following lemma, we obtain the uniform boundedness of ‖u‖Lp (Ω) by establishing a
priori estimates and taking appropriate parameters.
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Lemma 6. Let Ω ⊂ Rn (n ≥ 2) be a smooth bounded domain. The nonnegative initial data
(u0, v0) ∈C 0(Ω)×C 1(Ω). Assume that (2) - (3) and Lemma 5 hold. If

0 < γ≤ 1 and α+β< min

{
1+ 1

n
,1+ 2

n
−γ

}
,

then there exists C > 0 such that

‖u( · , t )‖Lp (Ω) +‖∇v( · , t )‖Lq (Ω) ≤C (10)

for all t ∈ (0,Tmax) with all p ∈ [1,∞) > p? and q ∈ ( 3
2 ,∞)> q?.

Proof. Multiplying both sides the first equation of (1) by p(u +1)p−1 and integrating, then using
Young’s inequality, we have

d

dt

∫
Ω

(1+u)p ≤−Cd p(p −1)
∫
Ω

(1+u)p−α−2|∇u|2 +Cs p(p −1)
∫
Ω

(1+u)p+β−2|∇u||∇v |

≤ −Cd p(p −1)

2

∫
Ω

(1+u)p−α−2|∇u|2 + C 2
s p(p −1)

2Cd

∫
Ω

(1+u)p+α+2β−2|∇v |2.
(11)

The first term on the right-hand side of the inequality (11) can be expressed as

Cd p(p −1)

2

∫
Ω

(1+u)p−α−2|∇u|2 = 2Cd p(p −1)

(p −α)2

∫
Ω

∣∣∣∇(1+u)
p−α

2

∣∣∣2
,

this together with (11) which implies

d

dt

∫
Ω

(1+u)p + 2Cd p(p −1)

(p −α)2

∫
Ω

∣∣∣∇(1+u)
p−α

2

∣∣∣2 ≤ C 2
s p(p −1)

2Cd

∫
Ω

(1+u)p+α+2β−2|∇v |2 (12)

for all t ∈ (0,Tmax). For a prior estimate of v , one can see [9,12,13], for completeness, a brief proof
is given here. Applying the second equation of (1), the point-wise identity ∆|∇v |2 = 2

∣∣D2v
∣∣2 +

2∇v ·∇∆v and the fact |∆v |2 ≤ n
∣∣D2v

∣∣2
, we derive

1

q

d

dt

∫
Ω
|∇v |2q + 2

n

∫
Ω
|∇v |2(q−1)|∆v |2 +2

∫
Ω
|∇v |2q

≤
∫
Ω
|∇v |2(q−1)∆|∇v |2 +2

∫
Ω
|∇v |2(q−1)∇v ·∇g (u)

=−(
q −1

)∫
Ω
|∇v |2(q−2)|∇|∇v |2|2 +

∫
∂Ω

|∇v |2(q−1) ∂|∇v |2
∂ν

dS

−2(q −1)
∫
Ω
|∇v |2(q−2)∇|∇v |2 ·∇v · g (u)−2

∫
Ω
|∇v |2(q−1)∆v · g (u)

(13)

for all t ∈ (0,Tmax). Using the property of boundary integral without the convexity of domain [6,
Lemma 4.2] and the trace inequality [2, Proposition 4.22, 4.24] we have∫

∂Ω
|∇v |2(q−1) ∂|∇v |2

∂ν
dS ≤ 2κΩ

∫
∂Ω

|∇v |2q dS ≤ q −1

q2

∫
Ω
|∇|∇v |q |2 +C1

∫
Ω
|∇v |2q (14)

with some κΩ,C1 > 0. Combining (13) with (14) and using Young’s inequality yield

1

q

d

dt

∫
Ω
|∇v |2q + 2

n

∫
Ω
|∇v |2(q−1)|∆v |2 +2

∫
Ω
|∇v |2q

≤−q −1

2

∫
Ω
|∇v |2(q−2)|∇|∇v |2|2 + q −1

q2

∫
Ω
|∇|∇v |q |2 +C1

∫
Ω
|∇v |2q

+ 2

n

∫
Ω
|∇v |2(q−1)|∆v |2 +

(
2(q −1)+ n

2

)∫
Ω
|∇v |2(q−1)g 2(u)

=−q −1

q2

∫
Ω
|∇|∇v |q |2 +C1

∫
Ω
|∇v |2q + 2

n

∫
Ω
|∇v |2(q−1)|∆v |2

+
(
2(q −1)+ n

2

)∫
Ω
|∇v |2(q−1)g 2(u),
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thus, this together with (3) which implies

1

q

d

dt

∫
Ω
|∇v |2q + q −1

q2

∫
Ω
|∇|∇v |q |2 ≤C 2

g

(
2(q −1)+ n

2

)∫
Ω

u2γ|∇v |2(q−1) + (C1 −2)
∫
Ω
|∇v |2q (15)

for all t ∈ (0,Tmax). Combining (12) and (15) we have

d

dt

∫
Ω

(
(1+u)p + 1

q
|∇v |2q

)
+ q −1

q2

∫
Ω
|∇|∇v |q |2 + 2Cd p(p −1)

(p −α)2

∫
Ω
|∇(1+u)

p−α
2 |2

≤C2

∫
Ω

(1+u)p+α+2β−2|∇v |2 +C2

∫
Ω

(1+u)2γ|∇v |2(q−1) +C2

∫
Ω
|∇v |2q (16)

for all t ∈ (0,Tmax) with C2 := max
{

C 2
s p(p−1)

2Cd
,C1 −2,C 2

g

(
2(q −1)+ n

2

)}> 0. According to Lemma 5,

a,b > 1, let a
′

:= a
a−1 > 1 and b

′
:= b

b−1 > 1, applying Hölder’s inequality to the first two terms on
the right-hand side of the inequality (16), we infer∫

Ω
(1+u)p+α+2β−2|∇v |2 ≤

(∫
Ω

(1+u)(p+α+2β−2)a
) 1

a
(∫
Ω
|∇v |2a

′ ) 1

a
′

(17)

and ∫
Ω

(1+u)2γ|∇v |2(q−1) ≤
(∫
Ω

(1+u)2γb
) 1

b
(∫
Ω
|∇v |2(q−1)b

′ ) 1

b
′

. (18)

In view of (4) and Gagliardo–Nirenberg inequality [7, 11] we have(∫
Ω

(1+u)(p+α+2β−2)a
) 1

a =
∥∥∥(1+u)

p−α
2

∥∥∥ 2(p+α+2β−2)
p−α

L
2a(p+α+2β−2)

p−α (Ω)

≤C3

∥∥∥∇(1+u)
p−α

2

∥∥∥ 2(p+α+2β−2)θ
p−α

L2(Ω)

∥∥∥(1+u)
p−α

2

∥∥∥ 2(p+α+2β−2)(1−θ)
p−α

L
2

p−α (Ω)

+C3

∥∥∥(1+u)
p−α

2

∥∥∥ 2(p+α+2β−2)
p−α

L
2

p−α (Ω)

≤C4

(∫
Ω

∣∣∣∇(1+u)
p−α

2

∣∣∣2
) p+α+2β−2

p−α θ

+C4

(19)

with C3,C4 > 0, and θ =
p−α

2 − p−α
2a(p+α+2β−2)

1
n − 1

2 +
p−α

2
∈ (0,1) is guaranteed by (7). Similarly, according to (5) and

Gagliardo–Nirenberg inequality again we have(∫
Ω
|∇v |2a

′ ) 1

a
′
= ∥∥|∇v |q∥∥ 2

q

L
2a

′
q (Ω)

≤C5
∥∥∇|∇v |q∥∥ 2δ

q

L2(Ω)

∥∥|∇v |q∥∥ 2(1−δ)
q

L
s
q (Ω)

+C5
∥∥|∇v |q∥∥ 2

q

L
s
q (Ω)

≤C6

(∫
Ω
|∇|∇v |q |2

) δ
q +C6

(20)

with C5,C6 > 0, and δ =
q
s +

q
2a −

q
2

1
n − 1

2 +
q
s

∈ (0,1) is guaranteed by (8). Combining (19) and (20) with (17),

there exists a positive constant C7 > 0 such that

C2

∫
Ω

(1+u)p+α+2β−2|∇v |2 ≤C7

((∫
Ω

∣∣∣∇(1+u)
p−α

2

∣∣∣2
) p+α+2β−2

p−α θ

+1

)((∫
Ω
|∇|∇v |q |2

) δ
q +1

)
. (21)

Similarly, in view of Lemma 4, (9) and Gagliardo–Nirenberg inequality again we derive(∫
Ω

(1+u)2γb
) 1

b =
∥∥∥(1+u)

p−α
2

∥∥∥ 4γ
p−α

L
4γb
p−α (Ω)

≤C8

(∫
Ω

∣∣∣∇(1+u)
p−α

2

∣∣∣2
) 2γθ̄

p−α +C8 (22)
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and (∫
Ω
|∇v |2(q−1)b

′ ) 1

b
′
= ∥∥|∇v |q∥∥ 2(q−1)

q

L
2(q−1)b

′
q (Ω)

≤C9

(∫
Ω
|∇|∇v |q |2

) (q−1)δ̄
q +C9 (23)

with some C8,C9 > 0, θ =
p−α

2 − p−α
4γb

1
n − 1

2 +
p−α

2
∈ (0,1) and δ =

q
s +

q
2(q−1)b −

q
2(q−1)

1
n − 1

2 +
q
s

∈ (0,1). Then combining (22)

and (23) with (18), there exists a positive constant C10 > 0 such that

C2

∫
Ω

(1+u)2γ|∇v |2(q−1) ≤C10

(∫
Ω

∣∣∣∇(1+u)
p−α

2

∣∣∣2
) 2γθ̄

p−α +1

(∫
Ω
|∇|∇v |q |2

) (q−1)δ̄
q +1

 . (24)

Therefore, using (16) in conjunction with (21) and (24), we infer

d

dt

∫
Ω

(
(1+u)p + 1

q
|∇v |2q

)
+ 2Cd p(p −1)

(p −α)2

∫
Ω

∣∣∣∇(1+u)
p−α

2

∣∣∣2 + q −1

q2

∫
Ω
|∇|∇v |q |2

≤C11

((∫
Ω

∣∣∣∇(1+u)
p−α

2

∣∣∣2
) p+α+2β−2

p−α θ

+1

)((∫
Ω
|∇|∇v |q |2

) δ
q +1

)

+C11

(∫
Ω

∣∣∣∇(1+u)
p−α

2

∣∣∣2
) 2γθ̄

p−α +1

(∫
Ω
|∇|∇v |q |2

) (q−1)δ̄
q +1

+C2

∫
Ω
|∇v |2q

(25)

for all t ∈ (0,Tmax) with some C11 > 0. Thus, according to [12, Lemma 3.1] and Young’s inequality,
we can obtain

d

dt

∫
Ω

(
(1+u)p + 1

q
|∇v |2q

)
+ Cd p(p −1)

(p −α)2

∫
Ω

∣∣∣∇(1+u)
p−α

2

∣∣∣2 + q −1

2q2

∫
Ω
|∇|∇v |q |2

≤C2

∫
Ω
|∇v |2q +C12 (26)

with C12 > 0 if the assumptions

p +α+2β−2

p −α θ+ δ

q
< 1 and

2γθ

p −α + (q −1)δ

q
< 1 (27)

are satisfied. Therefore, in order for the assumptions in (27) to be satisfied, let

h(q) := p +α+2β−2

p −α θ+ δ

q
=

p+α+2β−2
2 − 1

2a
1
n − 1

2 +
p−α

2

+
1
s + 1

2a − 1
2

1
n − 1

2 +
q
s

and

h(q) := 2γθ

p −α + (q −1)δ

q
= γ− 1

2b
1
n − 1

2 +
p−α

2

+
q−1

s + 1
2b − 1

2
1
n − 1

2 +
q
s

,

according to the condition (6) of Lemma 5, we have

h(q(p)) < 1 and h(q(p)) < 1

with q(p) := p−α
2 s. Since q(p) →+∞ as p →∞, for all p ≥ p?, there exists q ≥ q? such that

h(q) < 1 and h(q) < 1,

thus, the assumptions in (27) are satisfied. In order for the inequality (26) to satisfy the form of
Gronwall’s inequality, using Gagliardo–Nirenberg inequality and Lemma 4 imply∫

Ω
(1+u)p =

∥∥∥(1+u)
p−α

2

∥∥∥ 2p
p−α

L
2p

p−α (Ω)
≤C13

(∫
Ω

∣∣∣∇(1+u)
p−α

2

∣∣∣2
) pσ

p−α +C13 (28)
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with some C13 > 0, and σ =
p−α

2 − p−α
2p

1
n − 1

2 +
p−α

2
∈ (0,1) is satisfied because of the condition p > 1+ nα

2 in

Lemma 5. In the same way, we obtain(
1

q
+C2

)∫
Ω
|∇v |2q =

(
1

q
+C2

)∥∥|∇v |q∥∥2
L2(Ω) ≤C14

(∫
Ω
|∇|∇v |q |2

)σ̄
+C14

≤ q −1

2q2

∫
Ω
|∇|∇v |q |2 +C15

(29)

with some C14,C15 > 0, and σ =
q
s − 1

2
1
n − 1

2 +
q
s
∈ (0,1) is satisfied because of the condition q > 1+ s

2 in

Lemma 5. Therefore, combining (28) and (29) with (26), which implies

d

dt

∫
Ω

(
(1+u)p + 1

q
|∇v |2q

)
+C16

(∫
Ω

(1+u)p
) p−α

pσ + 1

q

∫
Ω
|∇v |2q ≤C17 (30)

for all t ∈ (0,Tmax) with some C16,C17 > 0, therefore, according to the ODI comparison principle
with (30), which implies (10). �

Now, we can easily prove Theorem 1.

Proof of Theorem 1. In view of [12, Lemmas 3.3 and A.1], we obtain the desired results. �
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