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Abstract. In this paper we consider two functionals of the Fekete–Szegö type: Φ f (µ) = a2a4 − µa3
2 and

Θ f (µ) = a4 −µa2a3 for analytic functions f (z) = z +a2z2 +a3z3 + . . ., z ∈∆, (∆= {z ∈C : |z| < 1}) and for real
numbers µ. For f which is univalent and convex in the direction of the imaginary axis, we find sharp bounds
of the functionals Φ f (µ) and Θ f (µ). It is possible to transfer the results onto the class KR(i ) of functions
convex in the direction of the imaginary axis with real coefficients as well as onto the class T of typically real
functions. As corollaries, we obtain bounds of the second Hankel determinant in KR(i ) and T .
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1. Introduction

Let A be the class of functions of the form

f (z) = z +
∞∑

n=2
an zn (1)

which are analytic in the open unit disk ∆= {z ∈C : |z| < 1}.

Let S ∗ denote the class of starlike functions, i.e. functions f ∈A such that Re z f ′(z)
f (z) > 0 for all

z ∈∆. Givenβ ∈ (−π/2,π/2) and g ∈S ∗, a function f ∈A is called close-to-convex with argument
β with respect to g if

Re
e iβz f ′(z)

g (z)
> 0, z ∈∆. (2)
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The class of all functions satisfying (2) is denoted by Cβ(g ). Let C denote the family of all close-
to-convex functions (see [10]). Hence,

C = ⋃
β∈ (−π/2,π/2)

⋃
g ∈S ∗

Cβ(g ).

All functions in S ∗ and C are univalent. It is not the case for the class T of typically real
functions. A function f of the form (1) is in T if the condition Im z Im f (z) ≥ 0 holds for all z ∈∆.
All coefficients of any f ∈ T are real. It results in the symmetry of f (∆) with respect to the real
axis. It is worth recalling that there exists a unique correspondence between the functions in T

and PR.
By P we denote the class of analytic functions p with a positive real part in∆, having the Taylor

series expansion

p(z) = 1+
∞∑

n=1
pn zn . (3)

The subclass of P consisting of those functions which have real coefficients is denoted by PR.
The above correspondence between PR and T is as follows

p ∈PR⇔ z

1− z2 p(z) ∈T . (4)

One of the main problems in the geometric theory of analytic functions is connected with
Michael Fekete and Gabor Szegö. In [6] they considered the expression |a3 −µa2

2|, which is now
called the Fekete–Szegö functional. If µ = 1, then this expression is referred to as the classical
Fekete–Szegö functional. It is worth recalling that Fekete and Szegö obtained in [6] the exact
bound of |a3−µa2

2| for the class S of all univalent functions in∆ and, in this way, they disproved
the famous Littlewood-Paley conjecture about the coefficients of odd functions in S .

The problem of estimating the Fekete–Szegö functional, while f is in a given subclass A of the
class A , is still of great interest for many mathematicians. This problem was difficult to solve for
functions which are close-to-convex. It was completely solved by Koepf in [11].

Let us consider two functionals which are constructed in a similar way as the Fekete–Szegö
functional. Namely, for a fixed real number µ, let us define

Φ f (µ) ≡ a2a4 −µa3
2 (5)

and

Θ f (µ) ≡ a4 −µa2a3 . (6)

The functionalsΦ f (µ) andΘ f (µ) are generalizations of two expressions: a2a4−a3
2 and a4−a2a3.

The first one is known as the second Hankel determinant and it was examined in many papers.
The investigation of Hankel determinants for analytic functions was started by Pommerenke
(see [23, 24]). Following Pommerenke, many mathematicians published their results concerning
this determinant for various subclasses of the class S of univalent functions (see, for example [7–
9, 12, 15, 21], and quite recently [2, 3, 25]) and for multivalent functions (see [20]). The bound of
a2a4 − a3

2 for T was obtained in [29]. Hayami and Owa were the first who studied Φ f (µ). They
discussed an even more general functional an an+2−µan+1

2 for the class Q(α) consisting of those
functions f ∈A such that Re( f (z)/z) >α. Details will be given in Section 5.

The functional Θ f (µ) is a particular case of the generalized Zalcman functional. At the end of
1960’s Lawrence Zalcman conjectured that if f ∈S is of the form (1), then |an

2−a2n−1| ≤ (n−1)2

for n ≥ 2 with equality for rotations of the Koebe function k(z) = z
(1−z)2 . This problem was strictly

connected with the famous Bieberbach conjecture. If it were true, the Bieberbach conjecture
would also be true. After 50 years from formulating, the Zalcman conjecture is still an open
problem. We know only that it holds for some subclasses of univalent functions, for example
for S ∗ (Brown and Tsao, [1]) or for C (Ma [18] and Li and Ponnusamy [16]). On the other hand,
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Krushkal proved the Zalcman conjecture for the whole class S , but only for some initial values of
n (see [13, 14]). In the meantime, more general versions of the Zalcman functionals λan

2 −a2n−1

and λan am − an+m−1 have appeared. The latter, called the generalized Zalcman functional, was
investigated by Ma for f ∈ S ∗ (see [19]) and by Efraimidis and Vukotić for f in the Hurwitz
class ( f is given by (1) and it satisfies the inequality

∑∞
n=2 n|an | ≤ 1) and for f in the Noshiro–

Warschawski class R as well as for f in the closed convex hull of convex functions (see [5]).
The functionalsΦ f andΘ f for f in S ∗ and in the class K of convex functions were discussed

in [30]. The estimates ofΦ f andΘ f for functions in C0(k) were published in [28].
In this paper we shall estimate |Φ f (µ)| and |Θ f (µ)| in the subclass C0(h) of C where h(z)

= z
1−z2 . It follows from the definition of C0(g ) that

f ∈C0(h) ⇔ Re
(
1− z2) f ′(z) > 0 . (7)

The importance of this class is a consequence of the following two facts.

Theorem 1. If f ∈C0(h), then f is convex in the direction of the imaginary axis.

Proof of Theorem 1. According to the result of Royster and Ziegler [27], f is convex in the
direction of the imaginary axis if and only if there exist µ ∈ [0,2π] and ν ∈ [0,π] such that
Re[−i e iµ(1−2ze−iµ cosν+ z2e−2iµ) f ′(z)] > 0 for all z ∈∆.

It is enough to take µ= ν=π/2 to obtain the right hand side of the condition in (7). �

Theorem 2. Let all coefficients of f given by (1) be real. Then,

f ∈C0(h) ⇔ f ∈KR(i ) .

In the above, KR(i ) denotes the class of functions of the form (1) which are convex in the
direction of the imaginary axis and have all real coefficients. Robertson [26] proved that

f ∈KR(i ) ⇔ z f ′(z) ∈T . (8)

Proof of Theorem 2. If f has real coefficients, then the condition in (7) can be rewritten as

f ∈C0(h) ⇔ f ′(z) = 1

1− z2 p(z) , (9)

where p is in PR. From (4), f ∈C0(h) if and only if z f ′(z) ∈T . In view of (8), the latter means that
f ∈KR(i ), which proves our assertion. �

It is worth recalling that in [26] Robertson also proved that if f ∈KR(i ), not then Re( f (z)/z) >
1/2, or in other words, f ∈Q(1/2).

At the end of this section, we derive the estimate of the coefficients of f in C0(h).

Theorem 3. If f ∈C0(h) is of the form (1), then |an | ≤ 1.

Proof of Theorem 3. From (9), it follows that

nan = p1 +p3 + . . .+pn−1 if n is even (10)

and

nan = 1+p2 + . . .+pn−1 if n is odd . (11)

Then, for even n,

n|an | ≤ n

2
·2 = n

and, for odd n,

n|an | ≤ 1+ n −1

2
·2 = n .

�
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Finally, observe that |Φ f (µ)| and |Θ f (µ)| are invariant under rotation. If f is given by (1) and
fϕ(z) = e−iϕ f (ze iϕ), ϕ ∈R, then fϕ(z) = z +∑∞

n=2 ane i (n−1)ϕzn . Hence∣∣∣Φ fϕ (µ)
∣∣∣= ∣∣∣∣a2e iϕ ·a4e3iϕ−µ ·

(
a3e2iϕ

)2
∣∣∣∣= ∣∣Φ f (µ)

∣∣
and ∣∣∣Θ fϕ (µ)

∣∣∣= ∣∣∣a4e3iϕ−µ ·a3e2iϕ ·a2e iϕ
∣∣∣= ∣∣Θ f (µ)

∣∣ .

If for every f ∈ A and every ϕ ∈R,

f ∈ A ⇔ fϕ ∈ A , (12)

then in the research on |Φ f (µ)| and |Θ f (µ)|, it is not necessary to discuss all functions f of a given
class, but only those functions whose coefficients a2 are non-negative real numbers. If (12) does
not hold, then the research is more complicated. In such cases, one can usually obtain results
under an additional assumption a2 ∈R. It is the case for the class C0(h).

Note that f ∈ C0(h) if and only if fπ ∈ C0(h), so |Φ f (µ)| = |Φ fπ (µ)| and |Θ f (µ)| = |Θ fπ (µ)|.
Hence, when deriving the bounds of |Φ f (µ)| and |Θ f (µ)|, we can replace the assumption a2 ∈ R
by a2 ∈R+.

2. Auxiliary lemmas

In order to prove our results, we need a few lemmas concerning functions in the class P .

Lemma 4 ([7]). If p ∈P and µ ∈R, then the following sharp estimates hold

(1) |pn+m −µpm pn | ≤ 2 for n,m = 1,2, . . .,
(2) |p2 −µp1

2| ≤ 2.

Lemma 5 ([17]). If p ∈P , then

(1) 2p2 = p1
2 +x(4−p1

2),
(2) 4p3 = p1

3 +2p1(4−p1
2)x −p1(4−p1

2)x2 +2(4−p1
2)(1−|x|2)y,

for some x and y such that |x| ≤ 1, |y | ≤ 1.

Since ∣∣p2
2 −µp1p3

∣∣≤ ∣∣p2
2 −p4

∣∣+ ∣∣p4 −µp1p3
∣∣ ,

directly from Lemma 4 we conclude the following fact.

Lemma 6. If p ∈P , then the sharp estimate |p2
2 −µp1p3| ≤ 4 holds for µ ∈ [0,1].

Let us return to the correspondence between the functions in C0(h) and P . Rewriting it as
follows (

1− z2) f ′(z) = p(z) , f ∈C0(h) , p ∈P , (13)

we can expressΦ f (µ) andΘ f (µ) for f ∈C0(h) in terms of the coefficients of p ∈P :

Φ f (µ) = 1

8
p1

(
p1 +p3

)− 1

9
µ

(
1+p2

)2 (14)

and

Θ f (µ) = 1

4

(
p1 +p3

)− 1

6
µp1

(
1+p2

)
. (15)
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3. Estimation of |Φ f (µ)|
Theorem 7. If f ∈C0(h) is of the form (1) and a2 is a real number, then∣∣Φ f (µ)

∣∣≤{
1−µ, µ≤ 1/2

µ, µ≥ 1/2.

Equality holds for the functions f (z) = z
1−z and f (z) = z

1+z if µ≤ 1/2 and for f (z) = z
1−z2 if µ≥ 1/2.

Proof of Theorem 7. By Theorem 3, if µ≤ 0, then |a2a4 −µa3
2| ≤ 1−µ. Equality holds if a2 = a3

= a4 = 1 or a2 =−a3 = a4 = 1, i.e. for f (z) = z
1−z or f (z) = z

1+z .
If µ≥ 9/8, then

a2a4 −µa3
2 =−

[
1

9
µ

(
p2

2 − 9

8µ
p1p3

)
+ 2

9µ

(
p2 − 9

16µ
p1

2
)
+ 1

9
µ

]
.

Hence, by Lemma 6 and Lemma 4,∣∣a2a4 −µa3
2∣∣≤ 1

9
µ ·4+ 2

9
µ ·2+ 1

9
µ=µ ,

with equality for p2 = 2 and p1 = p3 = 0 , i.e. for p(z) = 1+z2

1−z2 . This means that the extremal
function f ∈C0(h) is f (z) = z

1−z2 .
Now, we shall derive the bound ofΦ f (1/2). Applying Lemma 5 and writing p instead of p1, we

have

288Φ f (1/2)

= 5p4 +20p2 −16+2
(
4−p2)(5p2 −8

)
x − (

4−p2)(5p2 +16
)

x2 +18p
(
4−p2)(1−|x|2) y .

Assume now that a2 is a real number. As it was said in Introduction, instead of the condition
a2 ∈ R we can assume that a2 ∈ R+. Consequently, p ∈ [0,2]. Applying the triangle inequality
we obtain

288
∣∣Φ f (1/2)

∣∣≤ H(p,r ) ,

where r = |x| ∈ [0,1] and

H(p,r ) = ∣∣5p4 +20p2 −16
∣∣+18p

(
4−p2)+2

(
4−p2)∣∣5p2 −8

∣∣r + (
4−p2) (2−p)(8−5p)r 2 .

If 0 ≤ p ≤ 8/5, then H(p,r ) ≤ H(p,1). If 8/5 < p ≤ 2, then H is an increasing function of
r ∈ [0,r0), where

r0 = 5p2 −8

(2−p)(5p −8)
.

It is easy to check that for p ∈ (8/5,2] there is r0 > 1, so in this case we also have H(p,r ) ≤ H(p,1).
Hence, for p ∈ [0,2],

H(p,r ) ≤ h(p) ,

where
h(p) = ∣∣5p4 +20p2 −16

∣∣+2
(
4−p2)∣∣5p2 −8

∣∣+ (
4−p2)(5p2 +16

)
,

or equivalently,

h(p) =


72

(
2−p2

)
, 0 ≤ p ≤ p∗

2
(
5p4 −16p2 +56

)
, p∗ ≤ p ≤ p∗∗

2
(−5p4 +40p2 −8

)
, p∗∗ ≤ p ≤ 2 ,

where p∗ =
√

6/
p

5−2 = 0.826 . . . and p∗∗ = 4/
p

10 = 1.261 . . ..
It is easy to check that h1(p) = 72(2−p2) decreases for p ∈ [0, p∗], h2(p) = 2(5p4 −16p2 +56)

decreases for p ∈ [0, p∗∗] and h3(p) = 2(−5p4 + 40p2 − 8) increases for p ∈ [0,2]. Moreover,
h(0) = h(2) = 144. For this reason

max
{
h(p) : p ∈ [0,2]

}= 144,

C. R. Mathématique, 2020, 358, n 11-12, 1213-1226
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which results in ∣∣Φ f (1/2)
∣∣≤ 1/2. (16)

A careful analysis of the cases when equality holds in (16) leads to a conclusion that only the
functions mentioned at the beginning of this proof, i.e. f (z) = z

1−z , f (z) = z
1+z and f (z) = z

1−z2 are
extremal functions.

Finally, if µ ∈ (0,1/2), then

Φ f (µ) = (1−2µ)a2a4 +2µ

(
a2a4 − 1

2
a3

2
)

.

The previous part of this proof yields∣∣Φ f (µ)
∣∣≤ (1−2µ) ·1+2µ · 1

2 = 1−µ .

In a similar way, for µ ∈ (1/2,9/8),∣∣Φ f (µ)
∣∣
=

∣∣∣∣1

5
(9−8µ)

(
a2a4 − 1

2
a3

2
)
+ 1

5
(8µ−4)

(
a2a4 − 9

8
a3

2
)∣∣∣∣

≤ 1

5
(9−8µ) · 1

2
+ 1

5
(8µ−4) · 9

8 =µ .

�

Taking µ= 1 we have

Corollary 8. If f ∈C0(h) is of the form (1) and a2 is a real number, then∣∣a2a4 −a3
2∣∣≤ 1.

Equality holds if f (z) = z
1−z2 .

4. Estimation of |Θ f (µ)|
At the beginning of this section, observe that∣∣Θ f (µ)

∣∣≤ ∣∣1−µ∣∣ for µ≤ 0 or µ≥ 3/2. (17)

Indeed, if µ≤ 0, then obviously |a4 −µa2a3| ≤ 1−µ. Since

a4 −µa2a3 =−1

4

[(
2

3
µ−1

)
p1 +

(
2

3
µp1p2 −p3

)]
,

by Lemma 4, for µ≥ 3/2,∣∣a4 −µa2a3
∣∣≤ 1

4

[(
2

3
µ−1

)
·2+ 8

3
µ−2

]
=µ−1.

Equalities in both cases hold for f (z) = z
1−z and f (z) = z

1+z .
If µ ∈ (0,3/2), then, applying Lemma 5 and writing Θ instead of Θ f (µ) and p instead of p1, we

have

16Θ= 4(1−γ)p + (1−2γ)p3 +2(1−γ)p
(
4−p2)x −p

(
4−p2)x2 +2

(
4−p2)(1−|x|2) y ,

where

γ= 2

3
µ ; µ ∈ (0,3/2) ⇔ γ ∈ (0,1) .

Let us now assume that the second coefficient of f is a real non-negative number; conse-
quently, p ∈ [0,2]. By the triangle inequality,

|Θ| ≤ 1

8

(
4−p2)[∣∣∣∣4(1−γ)p + (1−2γ)p3

2
(
4−p2

) + (1−γ)px − 1

2
px2

∣∣∣∣+1−|x|2
]

. (18)
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Now, we need the following result obtained in [4] (see also [22]).
For ∆= {z ∈C : |z| ≤ 1} and for real numbers a, b, c, let

Y (a,b,c) = max
{∣∣a +bz + cz2∣∣+1−|z|2 : z ∈∆

}
. (19)

Lemma 9. If ac ≥ 0, then

Y (a,b,c) =
{
|a|+ |b|+ |c| , |b| ≥ 2(1−|c|) ,

1+|a|+ b2

4(1−|c|) , |b| < 2(1−|c|) .

If ac < 0, then

Y (a,b,c) =


1−|a|+ b2

4(1−|c|) , −4a
(
1− c2

)
/c ≤ b2 and |b| < 2(1−|c|) ,

1+|a|+ b2

4(1+|c|) , b2 <−4a
(
1− c2

)
/c and b2 < 4(1+|c|)2 ,

R(a,b,c) , otherwise ,

where

R(a,b,c) =


|a|+ |b|− |c| , |c|(|b|+4|a|) ≤ |ab| ,

−|a|+ |b|+ |c| , |ab| ≤ |c|(|b|−4|a|) ,

(|a|+ |c|)
√

1− b2

4ac , otherwise .

LetΩ= {(γ, p) : γ ∈ (0,1) p ∈ [0,2]} and letΩk , k = 1,2, . . . , 7 denote the subsets ofΩ defined by
inequalities which appear in seven succesive cases described in Lemma 9. From (18) and (19),

a = 4(1−γ)p + (1−2γ)p3

2(4−p2)
, b = (1−γ)p , c =−1

2
p , (γ, p) ∈Ω. (20)

With these values of a, b, c, we shall rewrite Lemma 9. We start with checking some of the
conditions from this lemma.

Lemma 10. The curve a = 0 in Ω coincides with the image of [2/3,1) by the descreasing function

p(γ) = 2
√

1−γ
2γ−1 .

Lemma 11. The inequality b < 2(1+|c|) holds for all (γ, p) ∈Ω.

Lemma 12. The inequalities a > 0, b2 ≥ −4a(1 − c2)/c, b ≥ 2(1 + c) and ab ≥ −c(b + 4a) are
contradictory inΩ.

The first two lemmas are easy to verify.

Proof of Lemma 12. The inequalities written above for (γ, p) ∈Ω are equivalent to

γ< 2/3 ∨
(
γ≥ 2/3 ∧ p < 2

√
1−γ

2γ−1

)
γ≥ (p

5−1
)

/2 ∧ p ≥ 2
p

1−γ
γ

p ≥ 2
2−γ

γ≥ 2/3 ∧ p ≥ 2
p

2(1−γ)(2+γ)
γ .

This means that γ≥ 2/3 and

max

{
2
√

1−γ
γ

,
2

2−γ ,
2
√

2(1−γ)(2+γ)

γ

}
≤ p ≤ 2

√
1−γ

2γ−1
,

which is contradictory because

2
√

2(1−γ)(2+γ)

γ
> 2

√
1−γ

2γ−1
for γ≥ 2/3 . �
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In other words, Lemma 12 means thatΩ5 =;.
Since b ≥ 0 and c ≤ 0, applying Lemma 10, Lemma 11 and Lemma 12, we have

Y = Y (a,b,c) =


−a +b − c , (γ, p) ∈Ω1 ∪Ω6 ,

1−a + b2

4(1+c) , (γ, p) ∈Ω2 ∪Ω3 ,

1+a + b2

4(1−c) , (γ, p) ∈Ω4 ,

(a − c)
√

1− b2

4ac , (γ, p) ∈Ω7 .

(21)

Combining (21) with (18),

|Θ| ≤ h(γ, p) , h(γ, p) =


h1(γ, p) , (γ, p) ∈Ω2 ∪Ω3 ,

h2(γ, p) , (γ, p) ∈Ω2 ∪Ω3 ,

h3(γ, p) , (γ, p) ∈Ω4 ,

h4(γ, p) , (γ, p) ∈Ω7 ,

(22)

where

h1(γ, p) = 1

4
p

[−(1−γ)p2 +2−γ]
, (γ, p) ∈Ω1 ∪Ω6 ,

h2(γ, p) = 1

16

[
γ2p3 −2γ(2−γ)p2 −4(1−γ)p +8

]
, (γ, p) ∈Ω2 ∪Ω3 ,

h3(γ, p) = 1

16

[−γ2p3 −2γ(2−γ)p2 +4(1−γ)p +8
]

, (γ, p) ∈Ω4 ,

h4(γ, p) = 1

16
p

[−2γp2 +4(2−γ)
]√

4(1−γ)(2−γ)−γ2p2

4(1−γ)+ (1−2γ)p2 , (γ, p) ∈Ω7 .

Now, we are ready to derive the maximum value of h(γ, p) with respect to p, for a fixed value γ
if (γ, p) ∈Ω.

Lemma 13.

max
{
h3(γ, p) : (γ, p) ∈Ω4

}
=

{
1− 3

2γ , γ ∈ (
0,

(p
29−5

)
/2

]
,

1
54γ

[
2
√
γ2 −7γ+7

3 + (2γ−1)
(
γ2 −10γ+34

)]
, γ ∈ [(p

29−5
)

/2,1
)

.
(23)

Proof of Lemma 13. The set Ω4 is defined by two inequalities: a > 0 and b2 < −4a(1 − c2)/c,
which can be written as

4(1−γ)+ (1−2γ)p2 > 0 and γ2p2 < 4(1−γ) .

The above is equivalent toγ< 2/3 ∨
(
γ≥ 2/3, p2 < 4(1−γ)

2γ−1

)
,

γ< (
p

5−1)/2 ∨
(
γ≥ (

p
5−1)/2 , p2 < 4(1−γ)

γ2

)
,

hence,

Ω4 =
{

(γ, p) ∈Ω : γ<
(p

5−1
)

/2 ∨
(
γ≥

(p
5−1

)
/2, p < 2

√
1−γ
γ

)}
.

The only positive solution of ∂h3
∂p = 0 is p0 = 2(

√
γ2 −7γ+7+γ−2)/3γ. It is easy to check that

p0 < 2
√

1−γ/γ. Moreover, if γ≤ (
p

29−5)/2 then p0 ≥ 2. This yields that

max
{
h3(γ, p) : (γ, p) ∈Ω4

}={
h3(γ,2) , γ ∈ (

0,
(p

29−5
)

/2
]

,

h3(γ, p0) , γ ∈ [(p
29−5

)
/2,1

)
.

Thus the proof of Lemma 13 is completed. �
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Remark 14. Observe that the derived maximum value is greater than 1/2 for all γ ∈ (0,1). It is
obvious for γ ∈ (0, (

p
29−5)/2]. For γ ∈ [(

p
29−5)/2,1), or even for all γ ∈ (0,1), the inequality

1

54γ

[
2
√
γ2 −7γ+7

3
+ (2γ−1)

(
γ2 −10γ+34

)]> 1

2

is equivalent to

2
√
γ2 −7γ+7

3
> (2−γ)

(
2γ2 −17γ+17

)
.

After simple algebraic computation we obtain

27
(
γ2 −8γ+8

)
(1−γ)2 > 0,

which is true for all γ ∈ (0,1). This proves our claim.

Lemma 15. For (γ, p) ∈Ω1 ∪Ω6, we have h1(γ, p) < 1
2 .

Proof of Lemma 15. The setΩ1 ∪Ω6 is described by the following complex condition

b ≥ 2(1+ c) ∧ [
a ≤ 0 ∨ (

a > 0, b2 ≥−4a
(
1− c2)/c , ab ≤−c(b −4a)

)]
,

which is a simple consequence of the conditions given in Lemma 9.
The inequality b ≥ 2(1+c) leads to p ≥ 2/(2−γ). The second operand of the above conjunction

is of the form

4(1−γ)+ (1−2γ)p2 ≤ 0 ∨


4(1−γ)+ (1−2γ)p2 > 0

γ2p2 ≥ 4(1−γ)

2(1−γ)(2−γ) ≤ (−γ2 +4γ−2
)

p2 .

We exclude the case p = 0, which is impossible because p ≥ 2/(2−γ). This condition is equivalent
to (

γ≥ 2/3, p2 ≥ 4(1−γ)

2γ−1

)
∨


γ≤ 2/3 ∨

(
γ> 2/3, p2 < 4(1−γ)

2γ−1

)
γ≥ (p

5−1
)

/2, p2 ≥ 4(1−γ)
γ2

γ≥ 2/3, p2 ≥ 2(1−γ)(2−γ)
−γ2+4γ−2

.

Finally,

Ω1 ∪Ω6 =
{

(γ, p) ∈Ω : γ≥ 2/3, p ≥ max

{
2

2−γ ,
2
√

1−γ
γ

,

√
2(1−γ)(2−γ)

−γ2 +4γ−2

}}
.

Moreover,
2

2−γ ≤ 2
√

1−γ
γ

≤ 2(1−γ)(2−γ)

−γ2 +4γ−2
for γ ∈ [

2/3,γ∗
]

and
2(1−γ)(2−γ)

−γ2 +4γ−2
≤ 2

√
1−γ
γ

≤ 2

2−γ for γ ∈ [
γ∗,1

)
,

where γ∗ = 0.704 . . . is the only solution of γ3 −4(1−γ)2 = 0.
The only positive solution of

∂h1

∂p
= 0is p0 =

√
(2−γ)/3(1−γ) .

It is easy to check that p0 ∈ [0,2] if γ ∈ (0,10/11] and p0 ≥ 2/(2−γ) if γ ≥ γ∗∗, where the number
γ∗∗ = 0.884 . . . is the only solution of (2−γ)3 −12(1−γ) = 0 in (0,1). This means that h1(γ, p) is
a decreasing function of p in [0,2] for γ ∈ [2/3,γ∗∗) and an increasing function of p in [0,2] for
γ ∈ [10/11,1). If γ ∈ (γ∗∗,10/11), then h1(γ, p) increases for p ∈ [0, p0) and decreases for p ∈ (p0,2].
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Combining the above facts we can write

h1(γ, p) ≤



h1

(
γ,

√
2(1−γ)(2−γ)
−γ2+4γ−2

)
, γ ∈ [

2/3,γ∗
]

,

h1

(
γ, 2

2−γ
)

, γ ∈ [
γ∗,γ∗∗

]
,

h1
(
γ, p0

)
, γ ∈ [

γ∗∗,10/11
]

,

h1
(
γ,2

)
, γ ∈ [10/11,1) .

The monotonicity of h1 as a function of p implies that

h1(γ, p) ≤ h1

(
γ,

2

2−γ
)

= 1

2
− 2(1−γ)

(2−γ)3 for γ ∈ [
2/3,γ∗∗

]
,

h1(γ, p) ≤ h1(γ, p0) = 1

6
(2−γ)

√
2−γ

3(1−γ)
for γ ∈ [

γ∗∗,10/11
]

,

h1(γ, p) ≤ h1(γ,2) = 1

2
(3γ−2) for γ ∈ [10/11,1) .

It is clear that h1(γ, p) < 1/2 in the first and the third case. The function

ρ :
[
γ∗∗,10/11

] 3 γ 7→ 1

6
(2−γ)

√
2−γ

3(1−γ)

is increasing, so ρ(γ) ≤ ρ(10/11) = 4/11 < 1/2. Therefore,

h1(γ, p) < 1

2
for all γ ∈ [2/3,1) .

�

Lemma 16. For (γ, p) ∈Ω2 ∪Ω3, we have h2(γ, p) ≤ 1
2 .

Proof of Lemma 16. Since

h2(γ, p) = 1

2
+ 1

16
p

[
γ2p2 −2γ(2−γ)p −4(1−γ)

]
and the expression in brackets is always less than 0 in Ω, so this proves our claim even in the
whole setΩ. �

Lemma 17. For (γ, p) ∈Ω7, we have h4(γ, p) < 1
2 .

Proof. Proof of Lemma 17 From Lemma 9 it follows thatΩ7 is defined by the inequalities

a > 0, b2 ≥−4a
(
1− c2)/c , b ≥ 2(1+ c) , −c(b −4a) ≤ ab ≤−c(b +4a) ,

which can be written as 

4(1−γ)+ (1−2γ)p2 > 0

γ2p2 ≥ 4(1−γ)

(2−γ)p ≥ 2

2(1−γ)(2−γ) ≥ (−γ2 +4γ−2
)

p2 ∨ p = 0

2(1−γ)(2+γ) ≥ γ2p2 ∨ p = 0 .

This results in 
2
p

1−γ
γ ≤ p ≤ 2, γ ∈ ( 1

2

(p
5−1

)
,2/3

]
2
p

1−γ
γ ≤ p ≤ 2(1−γ)(2−γ)

−γ2+4γ−2
, γ ∈ [2/3,1) .

If γ = 2/3, then h4(2/3, p) =p
3(4p −p3)/18, p ∈ [

p
3,2] is a decreasing function, so h4(2/3, p)

≤ h4(2/3,
p

3) = 1/6.

C. R. Mathématique, 2020, 358, n 11-12, 1213-1226



Paweł Zaprawa 1223

Now, let us define

g1(γ, p) =−2γp3 +4(2−γ)p and g2(γ, p) =
√

4(1−γ)(2−γ)−γ2p2

4(1−γ)+ (1−2γ)p2 .

With this notation h4(γ, p) = 1
16 g1(γ, p)g2(γ, p).

Observe that the homography[
4(1−γ)

γ2 ,
2(1−γ)(2−γ)

−γ2 +4γ−2

]
3 x 7→ 4(1−γ)(2−γ)−γ2x

4(1−γ)+ (1−2γ)x

is increasing if γ ∈ (
p

5−1)/2,2/3) and decreasing if γ ∈ (2/3,1). Hence,

g2(γ, p) ≤ g2

(
γ,

2
√

1−γ
γ

)
= γ√

1−γ if γ ∈
(

1

2

(p
5−1

)
,

2

3

)
(24)

and

g2(γ, p) ≤ g2

(
γ,

2(1−γ)(2−γ)

−γ2 +4γ−2

)
= 2−γ if γ ∈ (2/3,1) . (25)

Let γ ∈ ( 1
2 (
p

5− 1),2/3). Since the only positive solution p0 = √
2(2−γ)/3γ of ∂g1

∂p = 0 is less

than 2
√

1−γ/γ, so

g1(γ, p) ≤ g1

(
γ,

2
√

1−γ
γ

)
= 8

(−γ2 +4γ−2
)

γ2

√
1−γ

and, by (24),

h4(γ, p) ≤ 1
2

[
4−

(
γ+ 2

γ

)]
.

Since for γ in ( 1
2 (
p

5−1),2/3) the expression in brackets increases, we have

h4(γ, p) < 1
6 .

Let now γ ∈ (2/3,1). Since 2−γ< 2γ, we have g1(γ, p) ≤ 2γ(4p −p3). Taking the greatest value
of 4p −p3 in the whole interval (0,1), we obtain g1(γ, p) ≤ 32γ/3

p
3. Applying (25),

h4(γ, p) ≤ 2

3
p

3
γ(2−γ) < 2

3
p

3
.

Consequently, for all (γ, p) ∈Ω7, there is h4(γ, p) < 1/2. �

Taking into account (17), Lemmas 13 - 17 and Remark 14 and substituting γ= 2µ/3, we obtain

Theorem 18. If f ∈C0(h) is of the form (1) and a2 is a real number, then

∣∣Θ f (µ)
∣∣≤


1−µ , µ≤µ0

F (µ) , µ ∈ [
µ0,3/2

]
µ−1, µ≥ 3/2 ,

where µ0 = 3(
p

29−5)/4 = 0.288 . . . and

F (µ) = 1

486µ

[√
63−42µ+4µ2

3
+ (4µ−3)

(
153−30µ+2µ2)] . (26)

For µ= 1,

Corollary 19. If f ∈C0(h) is of the form (1) and a2 is a real number, then

|a4 −a2a3| ≤ 125

243
.
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5. Applications

As it was stated earlier, the bounds of Φ f (µ) and Θ f (µ) found in the previous sections are sharp.
We shall show that all corresponding extremal functions have real coefficients. This observation
and Theorem 2 make it possible to transfere these estimates onto the class KR(i ). Subsequently,
the relation between KR(i ) and T , i.e. Formula (8), results in the analogous estimates for
typically real functions.

Observe that almost all extremal functions in the theorems proved in Sections 3 and 4 have real
coefficients. It is the case for functions f (z) = z

1−z and f (z) = z
1+z which appear in Theorem 7 and

in Theorem 18 as well as for the function f (z) = z
1−z2 which is the extremal function in Theorem 7.

Only one extremal function is not known explicitly, i.e. the function f ∈ C0(h) which gives the
bound F (µ) in Theorem 18. We know only that Y given by (19) with a,b,c defined by (20) is equal
to 1+a +b2/4(1− c).

Consider now Y constrained to real x ∈ ∆, i.e. Y = max{k(x) : x ∈ [−1,1]}, where k(x)
= |a+bx+cx2|+1−x2. Let a+bx+cx2 > 0. Then the function k(x) = 1+a+bx−(1−c)x2 attains
its maximum value for x0 = b/2(1−c), and this value is equal to 1+a+b2/4(1−c), providing that
1−c > 0, −1 ≤ x0 ≤ 1 and a+bx0+cx0

2 > 0. We know that for (γ, p) ∈Ω4 there is a > 0, b > 0, c < 0.
Hence, the first inequality holds. The second and the third inequalities reduce to b ≤ 2(1− c) and
b2(2− c) ≥−4a(1− c)2 respectively, which is true for (γ, p) ∈Ω4.

The above means that the maximum value ofΘ for f ∈C0(h) and (γ, p) ∈Ω is achieved if p1 ∈R
and p2, p3 are as in Lemma 5 with x = x0 ∈R. For this reason, p2 is also real, as well as p3, since it
is enough to take y = 1 to obtain the estimation in (18).

Summing up, the extremal function p ∈ P which maximizes the expression Θ is of the form
p(z) = 1+p1z +p2z2 + . . . with p1, p2, p3 ∈R. But

P (z) = 1

2

[
p(z)+p(z)

]
= 1+p1z +p2z2 +p3z3 +Re(p4)z4 + . . . ∈PR .

This means that there exists a function P ∈PR and a corresponding function f in C0(h) such that
for its real coefficients a2, a3, a4 the equality |a4−µa2a3| = F (µ) holds. From this observation and
by Theorem 2, we obtain the following Corollaries 20 and 21 with sharp inequalities.

Corollary 20. If f ∈KR(i ) is of the form (1), then∣∣Φ f (µ)
∣∣≤{

1−µ , µ≤ 1/2

µ , µ≥ 1/2 .

Corollary 21. Let F and µ0 be defined as in Theorem 2. If f ∈KR(i ) is of the form (1), then

∣∣Θ f (µ)
∣∣≤


1−µ , µ≤µ0

F (µ) , µ ∈ [µ0,3/2]

µ−1, µ≥ 3/2 .

Let us return to the earlier mentioned result of Hayami and Owa. In [7] they obtained the
following inequality for the class Q(1/2), which is a superclass for KR(i ).

Theorem 22. If f ∈Q(1/2) is of the form (1), then

|Φ f (µ)| ≤


1−µ , µ≤ 0

1, µ ∈ [0,1]

µ , µ≥ 1 ,

with equality for the functions f (z) = z
1−z (µ≤ 0) and f (z) = z

1−z2 (µ≥ 1).

Moreover, they improved the second case of Theorem 22 showing that
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Theorem 23. If f ∈Q(1/2) is of the form (1), then |Φ f (µ)| ≤µ for µ ∈ [3/4,1].

This result is sharp. For µ ∈ [(2 −p
2)/4,3/4] the bound is (9 − 16µ+ 8µ2)/8(1 − µ), but it

is not sharp. What is interesting here, they conjectured that the exact bound of Φ f (µ) is the
same as in the assertion of Corollary 20. Unfortunately, this conjecture is false. It can be proved
that, for example, if µ = 1/2 the sharp inequality |Φ f (1/2)| ≤ 5/8 holds for Q(1/2), contrary to
the conjectured value 1/2. This shows that the results for Q(1/2) and for KR(i ) are essentially
different.

Now, let us turn to the class T of typically real functions. Let g (z) = z f ′(z). From (8) we know
that f ∈KR(i ) if and only if g ∈T . If f is of the form (1) and

g (z) = z +b2z2 + . . . , (27)

then

nan = bn .

Applying this formula in Corollary 20 and in Corollary 21 withλ= 8µ/9 andλ= 2µ/3, respectively,
we obtain the bounds ofΦg (λ) andΘg (λ) while g ∈T .

Corollary 24. If g ∈T is of the form (27), then

∣∣Φg (λ)
∣∣≤{

8−9λ , λ≤ 4/9

9λ , λ≥ 4/9.

The bound is sharp. Equality holds for the functions g (z) = z
(1−z)2 and g (z) = z

(1+z)2 if λ≤ 4/9 and

for f (z) = z(1+z2)
(1−z2)2 if λ≥ 4/9.

Corollary 25. Let

G(λ) = 2

27λ

[
2
√

7−7λ+λ2
3 + (2λ−1)

(
34−10λ+λ2)] (28)

and λ0 = (
p

29−5)/2 = 0.192. . .. If g ∈T is of the form (27), then

∣∣Θg (λ)
∣∣≤


4−6λ , λ≤λ0

G(λ) , λ ∈ [λ0,1]

6λ−4, λ≥ 1.

The bound is sharp. Equality holds for the functions g (z) = z
(1−z)2 and g (z) = z

(1+z)2 if λ ≤ λ0 or
λ≥ 1.

Taking λ= 1, we conclude that

Corollary 26. If g ∈T is of the form (27), then∣∣b2b4 −b3
2∣∣≤ 9.

Equality holds if g (z) = z(1+z2)
(1−z2)2 .

Corollary 27. If g ∈T is of the form (27), then

|b4 −b2b3| ≤ 2.

Equality holds if g (z) = z
(1−z)2 or g (z) = z

(1+z)2 .

The bound from Corollary 26 coincides with the result from [29] which was obtained in a quite
different way. The result from Corollary 27 coincides with a particular case of the generalized
Zalcman conjecture for the class T which was proved in [19] by Ma.
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