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Abstract. Consideration is given to the KdV equation as an approximate model for long waves of small
amplitude at the free surface of an inviscid fluid. It is shown that there is an approximate momentum density
associated to the KdV equation, and the difference between this density and the physical momentum density
derived in the context of the full Euler equations can be estimated in terms of the long-wave parameter.

Résumé. L'équation de KdV est considérée comme un modele approximatif pour des ondes longues de
faible amplitude a la surface libre d’'un fluide non visqueux. On montre qu’il y a une densité de moment
approximative associée al’équation de KdV, et que la différence entre cette densité et la densité de de moment
physique dérivée dans le contexte du systeme d’Euler peut étre estimée en fonction du parametre d’'onde
longue.
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Version francaise abrégée

Dans le présent travail, nous prouverons qu’au moins pour la densité de moment, I’approxi-
mation entre 'équation de KdV et systeme d’Euler peut étre rendue mathématiquement
rigoureuse. Le résultat principal montre que la densité I dans I'équation de KdV converge vers
la densité de moment physique définie en fonction de la solution du systeme d’Euler pour un
fluide parfait lorsque les parameétres physiques p et € tendent vers zéro. Lénoncé précis de notre
théoréme est le suivant.
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Théoreme. Soit ({,¢) une solution du systeme d’Euler, avec condition initiale ({y, o) suffisam-
ment réguliere. Soit  une solution de I'équation de KdV (1) avec une condition initiale ny = (.
Alors, il existe une constante C tel que :

e, 1) 3, 1
‘fl 6}6(,[)(27'} t)dz_n(') t)_EZn (‘) t)_l«tgnxx('y t)

<Cu?(1+1).
LOO

La preuve de ce théoreme est basée sur 'utilisation du systeme de Peregrine (9) comme
un modele intermédiaire entre I'équation de KdV et le probleme d’Euler. Le point clé est que
la densité de moment définie dans le contexte des équations d’Euler est reliée a la vitesse
moyenne V. En effet, nous avons

eC(x, 1) _
f 0x¢(z,x,)dz=(1+€l(x, 1) V(x,1),
-1

et cette relation peut étre utilisée d'une maniere favorable dans la preuve car le systeme Pere-
grine (9) est également défini en fonction de la vitesse horizontale moyenne.
On définie la vitesse variable associée a une solution 1 de I’équation de KdV

€ o> H
v =n--n"-=
Kav =1= 1" = cMxt
(voir [11]) par suite on obtient '’estimation suivante
|V = vkav | = Ci*t,

qui est I'ingrédient principal utilisé dans la preuve du résultat final.

1. Introduction

In the present contribution, we consider the question of momentum conservation in the context
of the Korteweg—de Vries equation. The KdV equation

3 1
nt+nx+55nnx+ﬂgnxxx=0 (1)

is known to yield a valid description of surface waves for waves of small amplitude and large
wavelength at the free surface of an incompressible, inviscid fluid running in a narrow open
channel where transverse effects can be neglected.

Suppose hy is the depth of the undisturbed fluid, and let A denote a typical wavelength and by
a a typical amplitude of a wavefield to be described. The nondimensional number € = a/ hj then
represents the relative amplitude. If we define the long-wave parameter by u = hg/)tz, then the
KdV equation is known to be a good model for waves at the free surface of a fluid if the relations
@ << 1and e =0 (u). The approximation can be made rigorous using the techniques developed
in [7,10,11,16,17] and others.

It is well known that the KdV equation has an infinite number of formally conserved integrals
(indeed the conservation can be made rigorous by following the work of [8]). If the equation is
given in the non-dimensional form (1), the first three conserved integrals are

f ndx, f n*dx, and f (%ni—ns)dx. )
—00 —00 —00

The first integral is found to be invariant with respect to time ¢ as soon as it is recognized that the
KdV equation can be written in the form

3 d 3, 1
E(")Jrﬁ e + g | =0, 3)

where the quantity appearing under the time derivative is interpreted as excess mass density,

and the term appearing under the spatial derivative is the mass flux through a cross section of
unit width due to the passage of a surface wave. The second and third integral are sometimes
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called momentum and energy, but this terminology may be misleading since these integrals are
not readily interpreted as approximations of the physical momentum and energy appearing in
the context of the Euler equations. Indeed, the authors of [1] already state clearly that they do not
believe these integrals to be approximations of the physical momentum and density, and further
doubt was cast on this interpretation in more recent work [2, 12-14].

On the other hand, in physical flow problems, mass flux is often identical with momentum
density, so one might think that the term n + e?—lnz + u%n xx in (3) might be interpreted as
momentum flux. This is indeed correct as shown in the recent work [4], where based on ideas
developed in [3], it was shown how to find integral quantities that do represent approximations
to the physically relevant momentum and energy densities. In particular, following the procedure
laid out in [4] gives the expression for momentum density as

T=n+eom? +pin.s. @)
1 6

Since the analysis in [4] was based on a formal asymptotic analysis, the question of whether
this identity can be made mathematically rigorous has so far remained open. In the present work
we will prove that a firm mathematical proof can indeed be given. The main result to be proved
thus states that the density I converges to the physical momentum density defined in terms of a
solutions of the governing Euler equation for a perfect fluid if 4 and € tend to zero. The precise
statement is as follows.

Theorem 1. Let ({, ) be a solution of the water-wave problem defined below, with regular initial
data ({0, o). Letn be a solution of the KdV equation (1) with initial datang = {o. Then there exists
a constant C, so that we have the estimate

24 Q1)) 3, 1
U1 qub(z,-,t)dz—n(-,t)—ezn (-,t)—ugnxx(-,t)

<Cp*1+10. (5)
LOO

2. Auxiliary results

Denoting the original (dimensional) variables with a tilde, we introduce a scaling to make the
small amplitude and long wavelength relative to the undisturbed depth explicit. Thus we define
new variables (without a tilde) by X = Ax, Z= hyz, 2: al, t= C—’}) t, (E = %}gd).

Then we obtain the system

poip+0,4%=0 in Q

0,0=0, at z=-1,
6t(—ﬁ(—u6x(6xsb+6z¢)=0 at z=¢&(,
0p+{+5(0:¢)* + £ (0:0)° =0 at z=¢(,

where Q; = {(x,2),-1 < z < &((x,1)} is the fluid domain delimited by the free surface
{z ={(x, )}, and the flat bottom {z = —1}, and where ¢(x, z, t), defined on Q; is the velocity poten-
tial associated to the flow (that is, the two-dimensional velocity field vis given by v= (0¢,0,$) 7).
As is well known, the existence of the velocity potential is guaranteed by the assumption of irro-
tational flow. The equations above are formally equivalent to the Zakharov-Craig-Sulem (ZCS)
equations. They are written in terms of the trace ®(x,?) = ¢(x,&{(x,1),?) and the Dirichlet—
Neumann operator G({) as

(6)

(1= 1GE)P =0,
L ear e [GEDOreut 0] @
(Dt+(+§q)x—ﬁW:0
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Given a solution of this system, we reconstruct the potential ¢ by solving the Laplace equation in
the domain Q; (cf. [15,19]), and then define the average velocity in the context of the full water-
wave problem by

_ 1 [
Vix, t) = —— 0 ,z,dz. 8
(x,1) 1+€(f_1 xP(x,z,1)dz (8)
From [16, Theorem 4.16], we have the following result.

Theorem 2.
(1) For large enough s, there exists a unique solution ({,®) € C(0, T/e, H® x H**!) of the ZCS
water-wave system.
(2) For the average velocity, we have VeC(,T/e H3).

In the shallow-water small-amplitude regime specified above (u <« 1, € = G(u)), one can derive
the Peregrine system. For one-dimensional surfaces and flat bottoms, these equations couple the
free surface elevation ( to the vertically averaged horizontal component of the velocity, and can
be written as

{€t+[(l+e£)u]x i?l ©

Ut +CxHEUU = T Ugxe.

Based on results proved in [5, 18], the authors of [6] formulate the following result showing that
this system is globally well posed.

Theorem 3. Suppose s = 1, and initial data (&o, uo) € H x H*! are given with the additional
assumption that infé > —1. Then there is a unique solution (¢, u) of the system (9) which for any
I >0 lies in C(0,9, HS(R)) x C(0,9, H*1(R)), and such that &(x,0) = {o(x) and u(x,0) = uy(x).
Moreover the solution depends continuously on the initial data in the norm of

C(0,9,H®) xC(0,9,H"'®)).

Proving convergence of the unknown quantities in the model system to the unknowns in the
full water-wave problem requires consistency and stability. Stability of the Peregrine system was
proved in [16, Proposition 6.5]. Restricting this result to a flat bottom and to one space dimension
yields the following Theorem 4.

Theorem 4. Ifa pair of functions (&, @i) exists, such that
&+ [(1+€8) il =r
U — Ellox, +Ex+eliliz =R,
then
1E @) = & 0] 0 ey = C(1E @) = € 0] 0] gy + £103 R)1oo) (10)

where the norm || - || H; is defined by

170 = 0 s+ e el

Next following the procedure laid out in [7,9, 16], we define consistency based on system (9).

Definition 5. A family of function pairs ({¢'*, v®*) is consistent with (9) if for all € > 0, we have

{ci”"‘ + [(1+ €05 voH),

EH_ P EM &, & u,E0 _ 2pEu
VU= U O revt Uyt = e ROH,

e2roH,

with (re®, R&") bounded in L°(0, T/e, H*(R) x H*(R)).
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Clearly, if we are able to find a family of function pairs consistent with the Peregrine system,
then by the stability result, these functions will converge towards the unknowns of the Peregrine
system. It turns out that both the ZCS equations and the KdV equation can be shown to be
consistent with the Peregrine system. From [16, Corollary 5.20] (with flat bottom), we have the
following result.

Theorem 6. The water-wave equations are consistent with the Peregrine system. Indeed for a
solution {,® of the water wave problem, we can define ¢ and V as explained above, and we have

(i+ [+ V], =0,
Vt - % -xxt +(x+ 8‘7‘756 = /JZR;
with |R(., 1) | gs bounded for t € [0, T/ €].

Now following the proof of [16, Corollary 6.23], one may put all these theorems together to
obtain the following result.

Theorem 7. Suppose initial data ({o, ®o) € HY (R) x HN*1(R) are given for a large enough Sobolev
index N. Defining initial data for (9) by éo = (o and uy = ﬁffio 0x(x,z,0)dz, there exists a
constant C depending only on N, such that the estimate

1@ V) - & w] o < C?e an
holds for the solutions of (7) and (9) and with V defined by (8).

Next we turn to the uni-directional KdV model. Existence, uniqueness and continuous depen-
dence on the initial data follow from the results proved in [8], and are by now classical.

Theorem 8. For the KdV equation with initial data in H®, where s = 2, there is a unique solution
1€ C(0,J, H®) forany I >0, and the solution depends continuously on the initial data.

Note also that it was proved in [11] thatn € C L0, T/e, H3). In order to prove consistency in
the sense of Definition 5, we need to define an appropriate velocity. Following [11], we define

€
VKdv =77—Z772— gnxt- (12)

Now given initial data (&g, up) € H® x H*! and the solution (¢,u) € C(0,97, H® x H**!) of
the system (9) we define initial data for (1) by no = ¢y, and using the solution n € C(0,9, H®)
guaranteed by Theorem 8 we define vg, i by (12). Then following the proof laid out in [11], we
can obtain the following estimate.

Theorem 9. With the above provisos, we have the estimate
I, vkav) = € W) oo < Cult. (13)

Thus it becomes clear that since the Peregrine system approximates the full water wave
problem, so do solutions of the KdV equation.
3. Convergence of momentum density

We now give a proof of Theorem 1.

Proof. Firstof all, from (10) and (13) and the triangle inequality we have

HV—UKdV”LwSCpZt and ||(—77||L005Cu2t- (14)
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Next we have

“ ud “pedz-—— [“ e
= _
f—1 Pxdz f—l Pxdz 1+8(f—1 Pxdz

1 (& €, 1
1+£Cf_1 0x¢dz—(n—;ln — €T

£ 5, 1 e , 1
Mg T E | (M T e

& _ 1 3
)f (,bxdz"'v_VKdV_E(_+_)772_E(77xt+77xx)‘
) 4 4 6

:(1_1+£(

Now observe that equation (1) together with the fact that solutions of (1) are bounded in H*(R) for
all time (cf. [8]) can be used to show that [, (-, £) + 75 (-, £) | o < Cp. Using this estimate together
with the triangle inequality, and the fact that || V(8= vkavC Do < C,u2 t from (14) leads to

e((-1) _
fl 0x¢(,z,0)dz—1(-, 1) H <e|0COVED -1 0| oo + CHP A+ 1).
- LOO

Finally, notice that

(V== =+ (V-7
=(+ME-m+{(-¢+V)
= +mMC-m+{(V=vkav +vkav —n+n-{).

The function ¢ is bounded in C(0, T/¢e, H%), V is bounded in C(0, T/¢e, H™3) 71 is bounded in
C(0,9, H%) and vigy is bounded in C(0, T/¢e, H*~?), so that we have

eC(, 1) _
f 0xp(,2,0dz =10, 0)||  <eC{|[¢=n] o0 + |V = vkav | oo + [vKav =1l| oo + |1 =] oo} -

— LOO
Finally using (14), and the definition of vx4y (12) along with the fact that n € C'(0, T/e, HS™3)
(cf. [11]) proves the required result. O
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