Bilel Selmi

Appendix to the paper “On the Billingsley dimension of Birkhoff average in the countable symbolic space”

Published online: 3 December 2020

https://doi.org/10.5802/crmath.116

This article is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
Appendix to the paper “On the Billingsley dimension of Birkhoff average in the countable symbolic space”

Bilel Selmia

aAnalysis, Probability and Fractals Laboratory: LR18ES17, Department of Mathematics, Faculty of Sciences of Monastir, University of Monastir, 5000-Monastir, Tunisia
E-mail: bilel.selmi@fsm.rnu.tn

Abstract. This appendix gives a lower bound of the Billingsley-Hausdorff dimension of a level set related to Birkhoff average in the "non-compact" symbolic space $\mathbb{N}^\mathbb{N}$, defined by Gibbs measure.

Manuscript received 8th September 2020, revised 8th September 2020, accepted 10th September 2020.

The authors in [1] estimate the upper bound of the Billingsley dimension of the levels sets $\hat{E}_f(\alpha)$, defined by Gibbs measures. In the following, we give the lower bound.

Theorem 1. Let φ be a potential function of summable variations. We assume that φ admits a unique Gibbs measure ν, then

\[\dim_{\nu} \hat{E}_f(\alpha) = \sup \left\{ \gamma(\nu, \mu); \int_{\mathcal{X}} f \, d\mu = \alpha \right\}. \]

Proof. For any $\mu \in \mathcal{P}_f(\mathcal{X})$, define the set of μ-generic points by

\[G_{\mu} = \left\{ x \in \mathcal{X}; \lim_{n \to +\infty} \frac{1}{n} S_n f(x) = \int_{\mathcal{X}} f \, d\mu \quad \text{for all} \quad C_b(\mathcal{X}) \right\}. \]

Remark that the sets G_{μ} for which $\int_{\mathcal{X}} f \, d\mu = \alpha$ are all included in the set $\hat{E}_f(\alpha)$. Thus by using Theorem 1.1 in [2], we obtain

\[\sup \left\{ \gamma(\nu, \mu); \int_{\mathcal{X}} f \, d\mu = \alpha \right\} \leq \dim_{\nu} \hat{E}_f(\alpha). \]

References
