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PROPERTIES EXPRESSIBLE IN SMALL FRAGMENTS OF THE
THEORY OF THE HYPERFINITE II1 FACTOR

ISAAC GOLDBRING AND BRADD HART

Abstract. We show that any II1 factor that has the same 4-quantifier theory as the hy-
perfinite II1 factor R satisfies the conclusion of the Popa Factorial Commutant Embedding
Problem (FCEP) and has the Brown property. These results improve recent results proving
the same conclusions under the stronger assumption that the factor is actually elementarily
equivalent to R. In the same spirit, we improve a recent result of the first-named author,
who showed that if (1) the amalgamated free product of embeddable factors over a property
(T) base is once again embeddable, and (2) R is an infinitely generic embeddable factor,
then the FCEP is true of all property (T) factors. In this paper, it is shown that item (2)
can be weakened to assume that R has the same 3-quantifier theory as an infinitely generic
embeddable factor.

Introduction

The following problem of Popa is the main motivation for the work in this paper:
Problem (Popa’s Factorial Commutant Embedding Problem (FCEP)). — Sup-

pose that M is a separable embeddable factor. Does there exist an embedding
i : M ↪→ RU with factorial commutant, that is, such that i(M)′ ∩RU is a factor?

Until recently, very little progress on the FCEP had been made. In [1], the
following theorem was proven:

Theorem 1. — If M is elementarily equivalent to R, then M satisfies the
FCEP.

Recall that II1 factors M and N are elementarily equivalent, denoted M ≡ N ,
if, for any sentence σ in the language of tracial von Neumann algebras, one has
σM = σN . A logic-free definition can be given using the Keisler-Shelah Theorem:
M and N are elementarily equivalent if and only if they have isomorphic ultra-
powers.1 By [6, Theorem 4.3], any separable II1 factor M has continuum many
nonisomorphic separable II1 factors elementarily equivalent to it, whence Theorem
1 gave continuum many new examples of separable II1 factors satisfying the FCEP.

In this paper, we weaken the assumption of the previous theorem and arrive
at the same conclusion. We say that II1 factors M and N are k-elementarily
equivalent, denoted M ≡k N , if they agree on all formulae of quantifier-complexity
at most k. (This will be defined precisely in the last section.) The following is an
imprecise version of our first main result:

Theorem A. — If M ≡4 R, then M satisfies the FCEP.

Math. classification: 03C66, 46L10.
Keywords: Continuous model theory, von Neumann algebras, II1 factors, factorial commutant

embedding problem.
1If one is willing to assume the continuum hypothesis, this can even be improved by saying

that M and N are elementarily equivalent if and only if MU ∼= NU for any nonprincipal ultrafilter
on N.
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38 I. Goldbring & B. Hart

In another direction, one of the main results of [7] was progress on the FCEP
problem for embeddable2 property (T) factors:

Theorem 2. — Suppose that the following two statements are true:
(1) Whenever M1 and M2 are embeddable II1 factors with a common property

(T) subfactor N , then the amalgamated free product M1 ∗N M2 is also
embeddable.

(2) R is an infinitely generic embeddable factor.
Then every embeddable property (T) factor satisfies the FCEP.

Infinitely generic factors form a large class of “rich” II1 factors and more infor-
mation about them can be found in [5]. In [5], it was claimed that R is an infinitely
generic embeddable factor. However, the proof there is incredibly flawed and set-
tling the question of whether or not R is actually an infinitely generic embeddable
factor remains an important open question.

Ideally, one would like to remove the model-theoretic assumption (2) in the
previous theorem, leaving only the operator-algebraic obstacle (1). Item (2) in the
previous theorem is equivalent to the statement that R is elementarily equivalent
to an infinitely generic embeddable factor. Consequently, the following theorem, a
consequence of a more general result proven in Section 3, is a strengthening of the
previous result:

Theorem B. — Suppose that the following two statements are true:
(1) Whenever M1 and M2 are embeddable II1 factors with a common property

(T) subfactor N , then the amalgamated free product M1 ∗N M2 is also
embeddable.

(2’) There is an infinitely generic embeddable factor M such that M ≡3 R.
Then every embeddable property (T) factor satisfies the FCEP.

It is worth noting that any infinitely generic embeddable factorM satisfiesM ≡2
R. In Section 3, we also note that the statement that there is an infinitely generic
embeddable factor M such that M ≡3 R is already known to be “halfway true.”

A crucial ingredient to the proof of Theorem 1 above is the following result of
Nate Brown [3, Theorem 6.9]:

Fact. — If N is a separable subfactor of RU , then there is a separable subfactor
P of RU with N ⊆ P such that P ′ ∩RU is a II1 factor.

In [1], we said the II1 factor M had the Brown property if, for all separable
subfactors N ofMU , then there is a separable subfactor P ofMU with N ⊆ P such
that P ′ ∩MU is a II1 factor. It was shown in [1] that any M ≡ R has the Brown
property. In the last section of this paper, we prove a strengthening of this result:

Theorem C. — If M ≡4 R, then M has the Brown property.

An interesting question arises: are these results actually improvements of their
predecessors? Indeed, perhaps it is the case that there is k ∈ N such that ifM ≡k R,
thenM ≡ R. If this were to happen, then one would say that Th(R) has quantifier
simplification. Given recent results showing that the Th(R) is very complicated

2In this paper, we use the term embeddable as an abbreviation for RU -embeddable.
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from the model-theoretic perspective (see, e.g., [5] and [9]), we strongly believe in
the following:

Conjecture. — Th(R) does not admit quantifier simplification.
For the rest of this paper, we work under the assumption that the previous Con-

jecture has a positive solution. In this case, Theorem A yields continuum many
examples of factors satisfying the FCEP not covered by Theorem 1. Similarly, The-
orem C yields continuum many new examples of factors with the Brown property.

Infinitely generic embeddable factors form a subclass of the more general class
of existentially closed embeddable factors. An embeddable factor M is exis-
tentially closed (e.c.) if: whenever N is an embeddable factor with M ⊆ N , there
is an embedding N ↪→MU that restricts to the diagonal embedding M ↪→MU . It
was noted in [5] that R is an e.c. embeddable factor. Existentially closed embed-
dable factors have proven very important in applications of model-theoretic ideas
to the study of II1 factors. It is a major open question whether or not there are two
non-elementarily equivalent e.c. embeddable factors. If R is not infinitely generic,
then we would have an example of such a pair of e.c. embeddable factors. However,
it could still be the case that all e.c. factors have the same 3-quantifier theory, in
which case (2’) in Theorem B is actually satisfied.

In order to keep this note relatively self-contained, we do not include much
model-theoretic or operator-algebraic background. A rather lengthy introduction
to model-theoretic ideas as they pertain to problems around factorial commutants
can be found in [1].

In Section 1, we prove the main model-theoretic tools needed in the proof of
Theorem A. In Section 2 we prove Theorem A, in Section 3 we prove Theorem B,
and in Section 4 we prove Theorem C.

1. Weak heirs and weak embeddings

In this section, we fix a continuous language L. We say that a formula ϕ is in
prenex normal form if it is of the form

Q1x1 · · ·Qmxmψ(x1, . . . , xm, ~y),
with each Qi ∈ {sup, inf} and with ψ quantifier-free. If the Qi’s alternate type,
then we say that ϕ is ∀m (respectively ∃m) if Q1 = sup (resp. Q1 = inf).3 If a
formula is equivalent to a ∀m or ∃m formula, we often abuse terminology and refer
to the formula itself as ∀m or ∃m.

By a fragment of L-formulae, we mean a set ∆ consisting of all ∀m-formulae or
of all ∃m-formulae for some m.

Definition 1.1. — Fix an L-structure M , parameter sets A ⊆ B ⊆ M , and
fragments ∆ and ∆′.

(1) For c ∈M , we set tpM∆ (c/A) to be the set of all conditions ϕ(x) = r, where
ϕ ∈ ∆ has parameters from A and ϕ(c)M = r.

(2) SM∆ (A) denotes the set of all tpM∆ (c/A) for c ∈M .
(3) For p ∈ SM∆ (A) and ϕ(x) a formula from ∆ with parameters from A, we

set ϕ(x)p to be the unique r so that ϕ(x) = r belongs to p.

3Technically we really should be speaking of m− 1 alternations of blocks of quantifiers of the
same length, but we blur this distinction here.
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(4) For c ∈M , let tpM∆,∆′(c/A,B) be the union of tpM∆ (c/A) and tpM∆′(c/B).
(5) We let S∆,∆′(A,B) denote the set of all tpM∆,∆′(c/A,B) for c ∈ M . We

extend the notation ϕ(x)p to S∆,∆′(A,B) in the obvious way.
(6) If p ∈ S∆(A), q ∈ S∆,∆′(A,B), and ∆′ ⊆ ∆, we say that q is an heir of p

if, for every b ∈ B, every ϕ(x, y) ∈ ∆′, and every ε > 0, there is a ∈ A such
that |ϕ(x, a)p − ϕ(x, b)q| < ε.

Definition 1.2. — Suppose that i : N ↪→ M is an embedding between L-
structures and ∆ is a fragment. We say that i is:

(1) downward ∆ if, for any nonnegative formula ϕ(x) ∈ ∆ and any a ∈ N , if
ϕ(i(a))M = 0, then ϕ(a)N = 0;

(2) upward ∆ if, for any nonnegative formula ϕ(x) ∈ ∆ and any a ∈ N , if
ϕ(a)N = 0, then ϕ(i(a))M = 0.

We note one obvious fact:

Lemma 1.3. — Given an embedding i : N ↪→ M , we have that i is downwards
∃m if and only if i is upwards ∀m.

Proof. — Suppose that i is not upwards ∀m, so there is a nonnegative ∀m for-
mula ϕ(x) and a ∈ N such that ϕ(a)N = 0 but ϕ(i(a))M = ε > 0. Then
(ε .− ϕ(i(a)))M = 0 and since this formula is equivalent to a ∃m formula, we
have that (ε .− ϕ(a))N = 0, a contradiction. The other direction is similar. �

The following is our main technical result concerning the existence of weak heirs.
In the remainder of this paper, U denotes a countably incomplete ultrafilter on some
index set (unless otherwise specified).

Theorem 1.4. — Suppose that M is a separable L-structure. Fix a separable
substructure N of MU such that the inclusion N ⊆ MU is downward ∃m+2. Fix
also p ∈ S∀m

(N). Then for any separable parameter set A with N ⊆ A ⊆MU and
any n < m, there is q ∈ S∀m,∀n(N,A) that is an heir of p.

Proof. — We seek a ∈MU satisfying the following two kinds of conditions:
(1) ψ(a) = ψ(x)p for any ∀m-formula ψ(x) with parameters from N ;
(2) ϕ(a, c)MU

> ε
2 for any ∀n+1-formula ϕ(x, y) with parameters from A and

any ε > 0 such that ϕ(x, b)p > ε for all b ∈ N .
Indeed, if a is as above, we claim that q := tpMU

∀m,∀n
(a/A) is an heir of p. By (1), q is

an extension of p. To see that q is an heir, fix a ∀n-formula ϕ(x, c) with parameters
from A and set s := ϕ(x, c)q = ϕ(a, c)MU . Suppose, towards a contradiction,
that there is ε > 0 such that |ϕ(x, b)p − s| > ε for all b ∈ N . It follows that
|ϕ(x, b)− s|p > ε for all b ∈ N . Since |ϕ(x, b)− s| is logically equivalent to a ∀n+1,
whence, by (2), |ϕ(a, c)MU − s| > ε

2 , leading to a contradiction.
Suppose now, towards a contradiction, that no such a ∈MU exists. By countable

saturation, it follows that there are:
• a ∀m-formula ψ(x) with parameters from N such that ψ(x)p = 0,
• a δ > 0, and
• formulae ϕ1(x, c1), . . . , ϕk(x, ck) with parameters from A as in (2)

such that, for any a ∈MU , if ψ(a) < δ, then ϕi(a, ci) < ε
2 for some i = 1, . . . , k.
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In other words,(
sup
x

min
(
δ −. ψ(x), min

16i6k

(
ϕi(x, ci)−.

ε

2

)))MU

= 0.

Consequently,(
inf
y1
· · · inf

yk

sup
x

min
(
δ −. ψ(x), min

16i6k

(
ϕi(x, yi)−.

ε

2

)))MU

= 0,

and thus, since the inclusion N ⊆MU is downward ∃m+2, we have(
inf
y1
· · · inf

ym

sup
x

min
(
δ −. ψ(x), min

16i6m

(
ϕi(x, yi)−.

ε

2

)))N

= 0.

Set η := min(δ, ε2 ) and take d1, . . . , dk ∈ N such that(
sup
x

min
(
δ −. ψ(x), min

16i6k

(
ϕi(x, di)−.

ε

2

)))N

< η;

since the inclusion N ⊆MU is upward ∀m+1, we have(
sup
x

min
(
δ −. ψ(x), min

16i6k

(
ϕi(x, di)−.

ε

2

)))MU

< η.

Take a ∈MU realizing p. Then ψ(a)MU = ψ(x)p = 0, whence, since η 6 δ, we have
min16i6k(ϕi(x, di) −. ε

2 )MU
< η 6 ε

2 . Choosing i such that (ϕi(a, di) −. ε
2 )MU

< η,
we get that ϕi(x, di)p = ϕi(a, di)M

U
< ε, a contradiction. �

We will be interested in the following special case of Theorem 1.4:
Corollary 1.5. — Suppose thatM is a separable L-structure. Fix a separable

substructure N of MU such that the inclusion N ⊆ MU is downward ∃3. Fix also
p ∈ S∀1(N). Then for any separable parameter set A with N ⊆ A ⊆ MU , there is
q ∈ S∀1,∀0(N,A) that is an heir of p.

Definition 1.6. — Given a fragment ∆ and an L-structure M , we set
Th∆(M) := {σ : σ is a nonnegative L-sentence from ∆ and σM = 0}.

If N is another L-structure, we write N |= Th∆(M) if σN = 0 for all σ ∈ Th∆(M).
We now prove a result connecting small quantifier-fragments of theories of struc-

tures with the existence of embeddings as in the previous theorem.
Proposition 1.7. — Suppose that M and N are separable L-structures and

m ∈ N. Then there is an embedding i : N ↪→ MU that is downwards ∃m+2 if and
only if M |= Th∃m+3(N).

Proof. — First suppose that a downwards ∃m+2-embedding i : N ↪→ MU exists
and σ is a nonnegative ∃m+3-sentence such that σN = 0. Write σ = infx ϕ(x) with
ϕ a ∀m+2-formula. Fix ε > 0 and take a ∈ N such that ϕ(a) < ε. Then (ϕ(a) .−
ε)N = 0, and since this formula is equivalent to a ∀m+2-formula and i is upwards
∀m+2, we have that (ϕ(i(a)) .− ε)MU = 0. Consequently, (infx(ϕ(x) .− ε))M = 0;
since M is arbitrary, we have that σM = 0, as desired.

Conversely, suppose thatM |= Th∃m+3(N). Let LN be the language obtained by
adding constants ca for a ∈ N . Set Γ to be the following collection of LN sentences:
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(1) θ(ca1 , . . . , can
), where θ is a nonnegative quantifier-free formula such that

θ(a1, . . . , an)N = 0;
(2) ε .− ϕ(ca1 , . . . , can), where ϕ is a ∃m+2-formula with ϕ(a1, . . . , an)N > ε

If Γ can be shown to be approximately finitely satisfiable in an expansion of M ,
then by countable saturation there is an expansion of MU which is a model of Γ,
and this yields the desired embedding. So suppose θ1, . . . , θk are as in (1) and
εj

.− ϕj , j = 1, . . . , l, are as in (2). Then

inf
x

(
max

(
max
i=1,...,k

θi(x), max
j=1,...,l

(εj .− ϕj(x)
))

is equivalent to an ∃m+3-sentence that evaluates to 0 in N , whence, by assumption,
also evaluates to 0 in M . This completes the proof. �

Combining Theorem 1.4 and Proposition 1.7, we arrive at:

Corollary 1.8. — Suppose thatM is a separable L-structure. Fix a separable
substructure N of MU such that M |= Th∃m+3(N). Fix also p ∈ SMU

∀m
(N). Then

for any separable parameter set A with N ⊆ A ⊆ MU and any n < m, there is
q ∈ SM

U

∀m,∀n
(N,A) that is an heir of p. In particular, if M |= Th∃4(N), then for

any p ∈ SMU

∀1
(N) and any separable parameter set A with N ⊆ A ⊆ MU , there is

q ∈ SMU

∀1,∀0
(N,A) that is an heir of p.

2. Proof of Theorem A

In this section, we apply the abstract results from the previous section to the
setting of II1 factors. Throughout this section, L is the language of tracial von Neu-
mann algebras and T is the universal theory of embeddable tracial von Neumann
algebras. All structures considered in this section will be models of T .

Lemma 2.1. — Suppose that M and N are separable with N ⊆ MU . Suppose
also that a, b ∈MU are such that a ∈ Z(N ′ ∩MU ) and tpMU

∀1
(a/N) = tpMU

∀1
(b/N).

Then b ∈ Z(N ′ ∩MU ).

Proof. — Since tpMU

∀0
(a/N) = tpMU

∀0
(b/N), we have b ∈ N ′∩MU . Now fix ε > 0.

By countable saturation, there are e1, . . . , en ∈ N and δ > 0 such that, for all
c ∈MU , if ‖[c, ei]‖2 < δ for all i = 1, . . . , n, then ‖[c, a]‖2 < ε. Consequently,

sup
x

min (δ −. mini‖[x, ei]‖2, ‖[x, y]‖2 −. ε)

belongs to tpMU

∀1
(a/N), whence it also belongs to tpMU

∀1
(b/N). It follows that b ∈

Z(N ′ ∩MU ). So, if c ∈ N ′ ∩MU , then ‖[b, c‖2 6 ε. Since ε was arbitrary, it follows
that [b, c] = 0, and thus b ∈ Z(N ′ ∩MU ), as desired. �

Corollary 2.2. — Suppose that N ⊆ P ⊆MU , P ′∩MU is a factor, and every
element of SMU

∀1
(N) admits an heir to SMU

∀1,∀0
(N,P ). Then N ′ ∩MU is a factor.

Proof. — Take a ∈ Z(N ′ ∩MU ) and let p := tp∀1(a/N). Let q ∈ S∀1,∀0(N,P )
be an heir of p. Let b ∈ MU satisfy q. By the heir property, b ∈ P ′ ∩MU . If
c ∈ P ′ ∩MU , then c ∈ N ′ ∩MU , whence, by the previous lemma, [b, c] = 0. It
follows that b ∈ Z(P ′ ∩MU ) = C. So b = λ · 1 for some λ ∈ C, so d(x, λ · 1) = 0
belongs to q, whence it also belongs to p, and thus a = λ · 1, as desired. �
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Recall the following fact of Nate Brown mentioned in the introduction:

Fact 2.3. — For every separable N ⊆ RU , there is a separable P ⊆ RU with
N ⊆ P such that P ′ ∩RU is a factor.

We are now able to prove the following more precise version of Theorem A:

Theorem 2.4. — Suppose that N is an embeddable factor such that R |=
Th∃4(N). Then N satisfies the FCEP.

Proof. — Fix P as in the previous fact, so N ⊆ P ⊆ RU with P ′ ∩RU a factor.
The proof then follows from Corollary 1.8 and Corollary 2.2. �

3. Proof of Theorem B

Let (*) denote the statement: the amalgamated free product of embeddable
factors over a property (T) base is once again embeddable.

Lemma 3.1. — Suppose that (*) holds. Then whenever N is a w-spectral gap
subfactor of the e.c. embeddable factor M , then (N ′ ∩M)′ ∩M = N .

Proof. — In [8], this was proven without a restriction to embeddable factors.
The proof goes through in the embeddable case if one assumes (*) holds. �

Recall that if N is a property (T) factor, then N has a Kazhdan set, which
is a finite subset F of N that satisfies the following property: there is a K > 0
such that for any II1 factor M containing N as a subfactor, any b ∈ M1, and any
sufficiently small η > 0, if ‖[a, b]‖2 < η for all a ∈ F , then there is c ∈ N ′ ∩M
such that ‖b − c‖2 < Kη. Since ‖b − EN ′∩M (b)‖2 6 ‖b − c‖2 < Kη and EN ′∩M
is operator norm-contractive, it follows that we may assume that c ∈ M1 as well.
(See [4, Proposition 1] for a proof.)

Theorem 3.2. — Suppose that (*) holds. Suppose further that N is an em-
beddable property (T) II1 factor, M is an e.c. embeddable factor containing N ,
and j : M ↪→ RU is downward Σ2. Then j(N)′ ∩RU is a factor.

Proof. — Suppose a ∈ Z(j(N)′ ∩ RU ) but d(a, tr(a) · 1) = ε > 0; we aim for
a contradiction. Without loss of generality, suppose a is in the unit ball. Let
{z1, . . . , zn} be a Kazhdan set for N with Kazhdan constant K. Note that

RU |= ∀w
(

max
16i6n

‖[w, j(zi)]‖2 = 0→ ‖[w, a]‖2 = 0
)
,

whence, by [2, Proposition 7.14], there is a continuous, nondecreasing function
α : R→ R satisfying α(0) = 0 such that

RU |= sup
w

(
‖[a,w]‖2 −. α

(
max

16i6n
‖[w, j(zi)]‖2

))
= 0.

Set ψ(x,~t) := supw(‖[x,w]‖2 −. α(max16i6n ‖[w, ti]‖2)), a universal formula such
that RU |= ψ(a, j(~z)) = 0 whence

RU |= inf
x

max
(

max
16i6n

‖[x, j(zi)]‖2, ψ(x, j(~z)), ε−. d(x, tr(x) · 1)
)

= 0.
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Since the latter displayed formula is equivalent to a ∃2-formula, by assumption we
have

M |= inf
x

max
(

max
16i6n

‖[x, zi]‖2, ψ(x, ~z), ε−. d(x, tr(x) · 1)
)

= 0.

Fix η > 0 sufficiently small and take b ∈M1 such that

M |= max
(

max
16i6n

‖[b, zi]‖2, ψ(b, ~z), ε−. d(b, tr(b) · 1)
)
< η.

If η is sufficiently small, there is b′ ∈ N ′∩M such that d(b, b′) < Kη. For simplicity,
set β := Kη. Now suppose that c ∈ N ′ ∩M is in the unit ball. Then ‖[b, c]‖2 < η,
whence ‖[b′, c]‖2 < η + 2β. Since c ∈ N ′ ∩M was arbitrary, we have d(b′, (N ′ ∩
M)′ ∩ M) 6 η + 2β.4 By Lemma 3.1, since M is e.c. and N has w-spectral
gap in M , we have that (N ′ ∩ M)′ ∩ M = N , so d(b′, N) 6 η + 2β, that is,
d(b′, EN (b′)) 6 η+2β. However, b′ ∈ N ′∩M implies EN (b′) ∈ Z(N) = C. It follows
that d(b′, tr(b′) · 1) = d(b,C) 6 d(b, EN (b′)) 6 η + 2β. Since ε −. d(b, tr(b) · 1) < η,
we have that ε −. d(b′, tr(b′) · 1) < η + 2d(b, b′) < η + 2β, which is a contradiction
as long as 2η+ 4β < ε. Recalling that β = Kη, we have that 2η+ 4β = (2 + 4K)η,
whence choosing η < ε

2+4K , we arrive at the desired contradiction. �

The following is a more precise version of Theorem D; it follows immediately
from Proposition 1.7 and Theorem 3.2.

Corollary 3.3. — Suppose that (*) holds and every embeddable factor N
embeds into an e.c. embeddable factor M such that M |= Th∀3(R). Then every
embeddable property (T) factor satisfies the FCEP.

The assumption in the previous corollary should be compared to:

Lemma 3.4. — If M is an e.c. embeddable factor, then M |= Th∃3(R).

Proof. — Since M is a II1 factor, we may assume that R ⊆ M . Fix an ∃3-
sentence σ = infx supy infz ϕ(x, y, z) such that σR = 0. Fix ε > 0 and a ∈ R such
that (infy supz ϕ(a, y, z))R < ε. Fix b ∈ M and an embedding i : M ↪→ RU . Then
(infz ϕ(i(a), i(b), z)RU

< ε, whence there is c ∈ RU such that (ϕ(i(a), i(b), c)RU
< ε.

Since M is e.c. there is b′ ∈ M such that ϕ(a, b, c′) < 2ε. Since ε is arbitrary, we
have that σM = 0. �

Thus, the assumption of Corollary 3.3 comes tantalizingly close to removing any
model-theoretic assumption at all, leaving only the operator-algebraic assumption
(*).

4. Proof of Theorem C

We begin by explaining exactly what we mean for two structures to be k-
elementarily equivalent.

Definition 4.1. — If ϕ is a formula and k is a nonnegative integer, we recall
what it means for ϕ to have quantifier depth at most k, written depth(ϕ) 6 k,
by induction on the complexity of ϕ:

• If ϕ is atomic, then depth(ϕ) 6 0.

4This follows from the general fact that, for a subfactor P of a II1 factor Q and a ∈ Q1, one
has d(a, P ′ ∩Q) 6 supb∈P1 ‖[a, b]‖2.
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• If ϕ1, . . . , ϕn are formulae, f : Rn → R is a continuous function and ϕ =
f(ϕ1, . . . , ϕn), then depth(ϕ) 6 max16i6n depth(ϕi).

• If ϕ = sup~x ψ or ϕ = inf~x ψ, then depth(ϕ) 6 depth(ψ) + 1.

Definition 4.2. — IfM andN are L-structures, we writeM ≡k N if σM = σN

whenever depth(σ) 6 k.

Remark 4.3. — If σ is an ∀m-sentence or a ∃m-sentence, then clearly depth(σ) =
m. Consequently, if M ≡m N , then M |= Th∀m(N) and N |= Th∀m(M).

We recall the following Ehrenfeucht-Fraisse game for continuous logic.

Definition 4.4. — Let M and N be L-structures and let k ∈ N. G(M,N, k)
denotes the following game played by two players. First, player I plays either a
tuple5 ~x1 ∈ M or a tuple ~y1 ∈ N . Player II then responds with a tuple ~y1 ∈ N
or ~x1 ∈ M . The play continues in this way for k rounds. We say that Player II
wins G(M,N, k) if there is an isomorphism between the substructures generated
by { ~x1, . . . , ~xk} and {~y1, . . . , ~yk} that maps ~xi to ~yi.

Definition 4.5. — If M and N are L-structures, we write M ≡EFk N if II has
a winning strategy for G(M,N, k).

It is a routine induction to show that M ≡EFk N implies M ≡k N . Conversely,
one has the following result (see [10, Lemma 2.4]):

Fact 4.6. — Suppose that M and N are countably saturated L-structures.
Then M ≡k N if and only if M ≡EFk N .

We are now ready to prove Theorem C. Recall from the introduction that a II1
factor M has the Brown property if: for every separable subfactor N of MU , there
is a separable subfactor P of MU with N ⊆ P such that P ′ ∩MU is a II1 factor.

Theorem 4.7. — Suppose that M ≡4 R. Then M has the Brown property.

Proof. — Suppose N is a separable subfactor of MU . It suffices to find a sepa-
rable subfactor P of MU containing N such that P ′∩MU is a factor. Indeed, since
M ≡2 R, M is McDuff, whence P ′ ∩MU will contain a copy of RU and will thus
be a II1 factor, as desired.

Since M ≡4 R and MU and RU are ℵ1-saturated, we know that player II has
a winning strategy in G(MU ,RU , 4). We assume in the following run of the game
that player II plays according to this strategy. Let player I begin with ~a1, which
is a countable sequence from the unit ball of N which generates N . Let player II
respond with ~b1 and let N∗ denote the separable subfactor of RU generated by ~b1.
Since R has the Brown property, there is a separable subfactor P ∗ of RU containing
N∗ such that (N∗)′ ∩RU is a factor. Let ~b2 be a countable subset of the unit ball
of P ∗ which, together with ~b1, generates P ∗. Let player II respond with ~a2 and let
P be the separable subfactor of MU generated by ~a1 and ~a2. We claim that this P
is as desired.

To see this, suppose that a3 ∈ Z(P ′ ∩MU ). We wish to show that a3 ∈ C. To
see this, let player II respond with b3 ∈ RU . We claim that b3 ∈ Z((P ∗)′ ∩ RU ),
whence b3 ∈ C. To see this, suppose that b4 ∈ (P ∗)′ ∩ RU . Let player II respond

5Here, tuples can be either of finite or countably infinite length.
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with a4 ∈ MU . Since the map ~a1~a2a3a4 7→ ~b1~b2b3b4 extends to an isomorphism
between the subalgebras they generate, we see that a4 ∈ P ′ ∩MU . It follows that
a3 and a4 commute, whence so do b3 and b4.

Now that we have established that b3 ∈ C, the fact that the strategy is winning
also shows that a3 ∈ C, as desired. �

Recall that a McDuff II1 factor is super McDuff if M ′ ∩MU is a II1 factor. In
[1, Proposition 4.2.4], it was proven that M has the Brown property if and only if
all N elementarily equivalent to M are super McDuff. Consequently, we arrive at:

Corollary 4.8. — If M ≡4 R, then M is super McDuff.

As mentioned in the introduction, if Th(R) does not admit quantifier simplifi-
cation, then these results yield continuum many new examples of separable factors
that are super McDuff and have the Brown property.
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