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ON THE DISTANCE BETWEEN HOMOTOPY CLASSES IN
W 1/p,p(S1;S1)

ITAI SHAFRIR

Abstract. For every p ∈ (1,∞) there is a natural notion of topological degree for maps
in W 1/p,p(S1; S1) which allows us to write that space as a disjoint union of classes,

W 1/p,p(S1; S1) =
⋃
d∈Z

Ed.

For every pair d1, d2 ∈ Z, we show that the distance
DistW 1/p,p (Ed1 , Ed2 ) := sup

f∈Ed1

inf
g∈Ed2

dW 1/p,p (f, g)

equals the minimal W 1/p,p-energy in Ed1−d2 . In the special case p = 2 we deduce from the
latter formula an explicit value: DistW 1/2,2 (Ed1 , Ed2 ) = 2π|d2 − d1|1/2.

1. Introduction

For any 1 < p < ∞ consider the space W 1/p,p(S1;S1) consisting of the measur-
able functions f : S1 → R2 satisfying f(x) ∈ S1 a.e. and

|f |W 1/p,p :=
(ˆ

S1

ˆ
S1

|f(x)− f(y)|p

|x− y|2
dxdy

)1/p
<∞. (1.1)

Although the functions in W 1/p,p(S1;S1) are not necessarily continuous, a notion
of topological degree does apply to maps in this space, based on the density of
C∞(S1;S1) in W 1/p,p(S1;S1). This is a special case of the concept of topological
degree for maps in VMO, that was developed by Brezis and Nirenberg [7] (following
a suggestion of L. Boutet de Monvel and O. Gabber [3, Appendix]). It is natural
to use this degree to decompose the space into disjoint classes {Ed}d∈Z and then to
define the “minimal energy” in each class, via the semi-norm in (1.1), that is

σp(d) := inf
f∈Ed

|f |W 1/p,p . (1.2)

A lower bound for σp(d) follows from the following result of Bourgain, Brezis and
Mironescu [1] who proved that there exists a positive constant Cp such that

|deg f | 6 Cp|f |pW 1/p,p , ∀f ∈W 1/p,p(S1;S1). (1.3)

Therefore,

σp(d) >
(
|d|
Cp

)1/p
, ∀d ∈ Z. (1.4)

In fact, a generalization of (1.3) to the space WN/p,p(SN ;SN ), N > 2, was also
proved in [1] (see [2, 9] for refinements of this formula).
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In the special case p = 2 an explicit formula for σ2(d) is available, namely,

σ2(d) = 2π|d|1/2 . (1.5)
An easy way to establish (1.5) is by using the expansion of f ∈ W 1/2,2(S1;S1)
to Fourier series, f(eıθ) =

∑∞
n=−∞ ane

ınθ. Indeed, combining the two well-known
formulas (see e.g. [4]):

|f |2W 1/2,2 = 4π2
∞∑

n=−∞
|n||an|2 and deg f =

∞∑
n=−∞

n|an|2

yields the inequality 4π2|deg f | 6 |f |2
W 1/2,2 , for every f ∈ W 1/2,2(S1;S1), while

equality occurs, e.g., for fd(z) = zd.
The distance function distW 1/p,p(f, g) = |f−g|W 1/p,p induces two natural notions

of distance between any pair of classes Ed1 , Ed2 :
distW 1/p,p(Ed1 , Ed2) := inf

f∈Ed1

inf
g∈Ed2

dW 1/p,p(f, g) , (1.6)

and
DistW 1/p,p(Ed1 , Ed2) := sup

f∈Ed1

inf
g∈Ed2

dW 1/p,p(f, g) . (1.7)

Both quantities in (1.6)–(1.7) were studied in [5]. Regarding distW 1/p,p the picture
is completely clear; it was shown in [5] (by a similar argument to the one used
in [7] in the case p = 2) that distW 1/p,p(Ed1 , Ed2) = 0 for all d1, d2 ∈ Z, for every
p ∈ (1,∞). On the other hand, for Dist1/p,p

W only partial results were obtained.
While the upper bound

DistW 1/p,p(Ed1 , Ed2) 6 c2(p)|d2 − d1|1/p, ∀d1, d2 ∈ Z (1.8)
was proved in [5, Thm. 3, item 2], estimates for the lower bound were obtained
only under some restrictions on p and/or d1, d2. As an example, it was proved in
[5, Prop. 7.3] that

DistW 1/2,2(Ed1 , Ed2) = 2π|d2 − d1|1/2, for d2 > d1 > 0. (1.9)
In the present paper we give a precise formula for DistW 1/p,p(Ed1 , Ed2), that in the
special case p = 2 yields the explicit formula (1.9) for all d1, d2.

Theorem 1.1. — For every p ∈ (1,∞) and all d1, d2 ∈ Z we have
DistW 1/p,p(Ed1 , Ed2) = σp(d2 − d1) . (1.10)

In particular, there exist two positive constants c1(p) < c2(p) such that

c1(p)|d2 − d1|1/p 6 DistW 1/p,p(Ed1 , Ed2) 6 c2(p)|d2 − d1|1/p, ∀d1, d2 ∈ Z. (1.11)

Formula (1.11) provides a positive answer to Open Problem 2 from [5] in the
case of dimension N = 1. It is an immediate consequence of (1.10), (1.4) and
(1.8). Note also that (1.10) confirms the symmetry property, DistW 1/p,p(Ed1 , Ed2) =
DistW 1/p,p(Ed2 , Ed1), which is not clear a priori from the definition (1.7) (thus pro-
viding support for a positive answer to [5, Open Problem 1]).

In the case p = 2 we obtain easily by combining (1.10) with (1.5):

Corollary 1.2. — We have
DistW 1/2,2(Ed1 , Ed2) = 2π|d2 − d1|1/2, ∀d1, d2 ∈ Z. (1.12)
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Remark 1.3. — Using a similar argument to the one used in the proof of Propo-
sition 4.1 below, it is easy to see that

σpp(d) 6 |d|σpp(1), ∀d ∈ Z. (1.13)

It follows that we may take c2(p) = σp(1) in (1.11). While for p = 2 equality holds
in (1.13) (by (1.5)), we do not know whether this is the case for other values of p.

The upper bound in (1.10) is the easier assertion. It follows from a slight modi-
fication of the argument used in the proof of item 2 of [5, Theorem 3], that is, the
estimate (1.8). The proof of the lower bound in (1.10) is much more involved; it
uses some arguments introduced in [6] to prove a lower bound for DistW 1,1(Ω;S1)
where Ω is either a bounded domain in RN or a smooth compact manifold, e.g.,
Ω = S1 (for the special case W 1,1(S1;S1), a slightly different argument was used
earlier in [5]). In particular, as in [5, 6] we make use of “zig-zag”-type functions
in order to construct functions in Ed1 that are “relatively hard to approximate” by
functions in Ed2 . This is the content of Proposition 1.4 below, whose proof requires
some new tools due to the nonlocal character of the W 1/p,p-energy. In order to
state it we need to introduce some notation.

We start with a notation for arcs in S1. For every α < β let

A(α, β) = {eiθ ; θ ∈ (α, β)}, A(α, β] = {eiθ ; θ ∈ (α, β]}
and A[α, β] = {eiθ ; θ ∈ [α, β]}. (1.14)

For any n > 1 we divide S1 to 2n arcs by setting

I2j = A
(
2jπ/n, (2j + 1)π/n

]
and I2j+1 = A

(
(2j + 1)π/n, (2j + 2)π/n

]
, (1.15)

for j = 0, 1, . . . , n−1. Define T̃n = T̃
(α)
n ∈ Lip(S1;S1) with deg T̃n = 1 by T̃n(eıθ) =

eıτn(θ), with τn defined on [0, 2π] by setting τn(0) = 0 and

τ ′n(θ) =
{
nα θ ∈ (2j π/n, (2j + 1)π/n]
−(nα − 2) θ ∈ ((2j + 1)π/n, (2j + 2)π/n]

, j = 0, 1, . . . , n−1 , (1.16)

where α is any number satisfying{
α ∈ (1− 1/p, 1) if p > 2
α ∈ (1/p, 1) if 1 < p < 2

. (1.17)

We fix a value of α satisfying (1.17). A useful property of T̃n is

dS1(x, T̃n(x)) 6 π

n1−α , x ∈ S1 , (1.18)

where dS1 denotes the geodesic distance in S1. The next proposition gives a partial
analogue of [6, Prop. 1.3] to the W 1/p,p-setting.

Proposition 1.4. — For any d1 6= 0 let f(z) = zd1 and define for each n > 1,
fn(z) = T̃n ◦ f ∈ Ed1 . Then, for every d2 ∈ Z the sequence {fn} satisfies

lim
n→∞

inf
g∈Ed2

dW 1/p,p(fn, g) = σp(d2 − d1) . (1.19)
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It is clear that Proposition 1.4 implies the inequality “>” in (1.10) when d1 6= 0
(as we shall see in Section 4 below, the case d1 = 0 is trivial).

The paper is organized as follows. In Section 2 we prove some technical re-
sults needed for the proof of our main results. Section 3 is devoted to the proof
of a key lemma, essential to the proof of Proposition 1.4. Finally, the proofs of
Proposition 1.4 and Theorem 1.1 are given in Section 4.

2. Preliminaries

We recall the following elementary result (see [6, Lemma 5.2]):

Lemma 2.1. — Let z1 and z2 be two points in S1 satisfying, for some ε ∈
(0, π/2),

dS1(z1, z2) ∈ (ε, π − ε). (2.1)
If the vectors v1, v2 ∈ R2 satisfy

vj ⊥ zj , j = 1, 2, (2.2)
then

|v1 − v2| > (sin ε)|vj |, j = 1, 2. (2.3)

The intuition beyond the above result is quite simple. Informally speaking, if
the points z1, z2 ∈ S1 are neither close to each other nor close to being antipodal
points, then it is impossible for a pair of nonzero vectors, v1 and v2, in the tangent
spaces of S1 at z1 and z2, respectively, to be “almost parallel” to each other. The
next lemma can be viewed as a “discrete” version of Lemma 2.1, where tangent
vectors are replaced by chords.

Lemma 2.2. — For any ε ∈ (0, π/2) and every four points z1, z2, w1, w2 ∈ S1

such that
either z1w1, z2w2 ∈ A(ε, π − ε) or z1w1, z2w2 ∈ A(π + ε, 2π − ε) ,

we have:
|(z1 − w1)− (z2 − w2)|2 > (sin2 ε) max

{
|z1 − z2|2, |w1 − w2|2

}
. (2.4)

Proof. — Without loss of generality assume that z1w1, z2w2 ∈ A(ε, π − ε) and
write zj = eıϕj and wj = eıψj with ϕj − ψj ∈ (ε, π − ε), j = 1, 2. We may also
assume that z1 6= z2 and w1 6= w2; otherwise the result is clear. We have

z1 − z2 = eıϕ1 − eıϕ2 = 2ı sin
(
ϕ1 − ϕ2

2

)
eı(ϕ1+ϕ2)/2 ,

w1 − w2 = eıψ1 − eıψ2 = 2ı sin
(
ψ1 − ψ2

2

)
eı(ψ1+ψ2)/2 .

Therefore,
(z1 − z2) · w1 − w2 = |z1 − z2||w1 − w2|τ exp ı

(
(ϕ1 − ψ1)/2 + (ϕ2 − ψ2)/2

)
, (2.5)

with τ ∈ {−1, 1}. Since by our assumption (ϕ1 − ψ1)/2 + (ϕ2 − ψ2)/2 ∈ (ε, π − ε),
we get from (2.5) that an argument of (z1 − z2) ·w1 − w2 lies in either the interval
(ε, π − ε) (if τ = 1) or (π + ε, 2π − ε) (if τ = −1). In any case, an argument lies in
(ε, 2π − ε), whence
|(z1 − w1)− (z2 − w2)|2 > |z1 − z2|2 + |w1 − w2|2 − 2(cos ε)|z1 − z2||w1 − w2| ,
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and (2.4) follows. �

We will also need the following result about Lipschitz self-maps of S1.

Lemma 2.3. — Let k ∈ Lip[0, 2π] with Lipschitz constant L such that k(0) =
k(2π). Define K : S1 → S1 by K(eıθ) = eık(θ), θ ∈ [0, 2π]. Then,

‖K‖Lip := sup
x,y∈S1

x 6=y

|K(x)−K(y)|
|x− y|

6 max{1, L} . (2.6)

Proof. — For any pair θ1 6= θ2 in [0, 2π) we have

|K(eıθ2)−K(eıθ1)|
|eıθ2 − eıθ1 |

=

∣∣∣∣∣ sin
(
(k(θ2)− k(θ1))/2

)
sin
(
(θ2 − θ1)/2

) ∣∣∣∣∣
6 sup

{
| sin θ|
sin t ; t ∈ (0, π/2], |θ| 6 Lt

}
. (2.7)

Fix any t ∈ (0, π/2]. We distinguish two cases: either Lt 6 π/2 or Lt > π/2. In
the first case we have

sup
{
| sin θ|
sin t ; |θ| 6 Lt

}
= sin(Lt)

sin t 6 max{L, 1}. (2.8)

Indeed, if L 6 1 then clearly sin(Lt) 6 sin(t). On the other hand, if L > 1 then
we use the fact that the function g(t) = sin(Lt) − L sin t satisfies g(0) = 0 and
g′(t) = L(cos(Lt)− cos t) 6 0 for 0 6 t 6 Lt 6 π/2. In the second case (where we
must have L > 1),

sup
{
| sin θ|
sin t ; |θ| 6 Lt

}
= 1

sin t <
1

sin
(
π/(2L)

) < L, (2.9)

where the last inequality follows from the easily verified fact that the function
h(L) := L sin

(
π/(2L)

)
satisfies h(1) = 1 and h′(L) > 0 on [1,∞). The conclusion

(2.6) clearly follows from (2.8)–(2.9). �

3. A key lemma

It will be useful to introduce the following notation for f ∈ W 1/p,p(S1;S1) and
A ⊂ S1 × S1,

Ep(f ;A) :=
¨
A

|f(x)− f(y)|p

|x− y|2
dxdy ,

so in particular Ep(f ;S1 × S1) = |f |p
W 1/p,p .

The next lemma is the main ingredient in the proof of Proposition 1.4.

Lemma 3.1. — Let u, ũ, v ∈W 1/p,p(S1;S1) ∩ C(S1;S1), ε ∈ (0, π/20), and
C+
ε = {x ∈ S1; (v/ũ)(x) ∈ A[−ε, ε]} ,

C−ε = {x ∈ S1; (v/ũ)(x) ∈ A[π − ε, π + ε]} ,
Cε = C+

ε ∪ C−ε ,
Dε = S1 × S1 \

(
(C+

ε × C+
ε ) ∪ (C−ε × C−ε )

)
.

(3.1)

Assume that
|u(x)− ũ(x)| 6 ε, ∀x ∈ S1, (3.2)
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and let deg(u) = d1, deg(v) = d2. Then, for some constant c1 = c1(p) > 0 we have,
for ε 6 ε0(p),

Ep(v − ũ;Dε) > (1− c1ε1/2)σpp(d2 − d1)−c1ε−p/2Ep(u; (S1 \ Cε)× S1)

−c1εp/2Ep(u;S1 × S1).
(3.3)

Proof. — Note first that (3.2) implies that deg(ũ) = deg(u) = d1. Hence, setting
w := v/u = v u and w̃ := v/ũ, we have deg(w̃) = deg(w) = d2 − d1. Consider the
map

W := u(v − ũ) + 1 = w + (1− ũ/u). (3.4)
Since
W (x)−W (y) = u(x){(v(x)− ũ(x))− (v(y)− ũ(y))}+ (u(x)− u(y))(v(y)− ũ(y)) ,
the triangle inequality yields,
|W (x)−W (y)| 6 |(v(x)− ũ(x))− (v(y)− ũ(y))|+ |1− w̃(y)||u(x)− u(y)|. (3.5)

Interchanging between x and y gives
|W (x)−W (y)| 6 |(v(x)− ũ(x))− (v(y)− ũ(y))|+ |1− w̃(x)||u(x)− u(y)|. (3.6)

By (3.5)–(3.6) we have

|W (x)−W (y)| 6 |(v(x)− ũ(x))− (v(y)− ũ(y))|+ 2|u(x)− u(y)|,
(x, y) ∈ S1 × S1 , (3.7)

and

|W (x)−W (y)| 6 |(v(x)− ũ(x))− (v(y)− ũ(y))|+ ε|u(x)− u(y)|,
(x, y) ∈ (C+

ε × S1) ∪ (S1 × C+
ε ). (3.8)

Note that by (3.1) Dε can be written as a disjoint union,
Dε = ((S1 \ Cε)× S1) ∪· (Cε × (S1 \ Cε)) ∪· (C+

ε × C−ε ) ∪· (C−ε × C+
ε ). (3.9)

Next we will use the following elementary inequality:
(a+ b)p 6 (1 + η)pap + (1 + 1/η)pbp , ∀a, b, η, p > 0 . (3.10)

For the proof of (3.10) it suffices to notice that a+ b 6 (1 + η)a when ηa > b, while
a + b < (1 + 1/η)b when ηa < b. By (3.9) and (3.10), applied to (3.7)–(3.8) with
η =
√
ε, we obtain

Ep(v−ũ;Dε) >
Ep(W ;Dε)
(1 +

√
ε)p
−2(2/

√
ε)pEp

(
u;S1×(S1\Cε)

)
−2εp/2Ep(u;C+

ε ×C−ε ).

(3.11)
By (3.2), |W − w| = |1− ũ/u| = |u− ũ| 6 ε in S1. Hence∣∣|W | − 1

∣∣ 6 |W − w| 6 ε in S1, (3.12)
and also

|w̃ − w| = |ũ− u| 6 ε in S1. (3.13)
Consider the map W̃ := W/|W |, which thanks to (3.12) belongs to W 1/p,p(S1;S1).
Furthermore, again by (3.12),

|W̃ − w| 6 |W̃ −W |+ |W − w| 6 2ε in S1, (3.14)
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implying in particular that
deg(W̃ ) = d2 − d1. (3.15)

Combining (3.14) with (3.13) yields

|W̃ − w̃| 6 3ε and dS1(W̃ , w̃) 6 6ε in S1. (3.16)
From (3.12) we get in particular that |W | > 1− ε, whence, using the identity

|z1 − z2|2 = (|z1| − |z2|)2 + |z1| · |z2|
∣∣∣∣ z1

|z1|
− z2

|z2|

∣∣∣∣2 , ∀z1, z2 ∈ C− {0} ,

we get that

|W (x)−W (y)| > (1− ε)|W̃ (x)− W̃ (y)|, ∀x, y ∈ S1. (3.17)
Plugging (3.17) in (3.11) yields

Ep(v − ũ;Dε) >
( 1− ε

1 +
√
ε

)p
Ep(W̃ ;Dε)− 2(2/

√
ε)pEp(u;S1 × (S1 \ Cε))

− 2εp/2Ep(u;C+
ε × C−ε ).

(3.18)

By (3.16) and (3.1) we have

C+
ε ⊂ C̃+

ε := {x ∈ S1; W̃ (x) ∈ A[−7ε, 7ε]}

C−ε ⊂ C̃−ε := {x ∈ S1; W̃ (x) ∈ A[π − 7ε, π + 7ε]}
. (3.19)

Therefore,
D̃ε := S1 × S1 \

(
(C̃+

ε × C̃+
ε ) ∪ (C̃−ε × C̃−ε )

)
⊂ Dε. (3.20)

For each δ ∈ (0, π/2) we define (as in [6]) the map Kδ : S1 → S1 by Kδ(eıθ) = eıkδ(θ)

where kδ : [0, 2π]→ [0, 2π] is given by

kδ(θ) :=


0, if θ ∈ (0, δ) ∪ [2π − δ, 2π]
π(θ − δ)/(π − 2δ), if θ ∈ (δ, π − δ)
π, if θ ∈ [π − δ, π + δ]
π + π(θ − π − δ)/(π − 2δ), if θ ∈ [π + δ, 2π − δ)

. (3.21)

Clearly Kδ ∈ Lip(S1;S1) and deg(Kδ) = 1. Since ‖k′δ‖∞ = π/(π − 2δ) we have by
Lemma 2.3,∣∣Kδ(eıθ2)−Kδ(eıθ1)

∣∣ 6 ( π

π − 2δ

) ∣∣eıθ2 − eıθ1)
∣∣ , ∀θ1, θ2 ∈ [0, 2π].

Therefore, w1 := K7ε ◦ W̃ satisfies deg(w1) = deg(W̃ ) = d2 − d1 and

|w1(x)− w1(y)| 6
(

π

π − 14ε

)
|W̃ (x)− W̃ (y)|, ∀x, y ∈ S1. (3.22)

By definition of σp, (3.22) and the definition of K7ε (see (3.21)) it follows, using
also (3.20) and the fact that w1 is constant on C̃+

ε and C̃−ε , that

σpp(d2 − d1) 6 Ep(w1;S1 × S1) = Ep(w1; D̃ε)

6

(
π

π − 14ε

)p
Ep(W̃ ; D̃ε) 6

(
π

π − 14ε

)p
Ep(W̃ ;Dε). (3.23)

Plugging (3.23) in (3.18) yields (3.3), for large enough c1. �
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4. Proof of Theorem 1.1

We begin with the upper bound for DistW 1/p,p :

Proposition 4.1. — For every d1, d2 ∈ Z we have

DistW 1/p,p(Ed1 , Ed2) 6 σp(d2 − d1). (4.1)

Proof. — Let f ∈ Ed1 and ε > 0 be given. We need to prove the existence of
g ∈ Ed2 satisfying

|f − g|p
W 1/p,p 6 σ

p
p(d1 − d2) + ε. (4.2)

By [5, Lemma 2.2] every map in W 1/p,p(S1;S1) can be approximated by a sequence
{fn} ⊂ C∞(S1;S1) such that each fn is constant near some point. Therefore,
without loss of generality we may assume that the given f satisfies f ≡ 1 in A(π−
δ, π + δ) for some small δ > 0. By definition of σp(d2 − d1) there exists h ∈ Ed2−d1

satisfying
|h|p

W 1/p,p 6 σ
p
p(d2 − d1) + ε. (4.3)

By the density result mentioned above, we may assume that h ≡ 1 in A(−η, η),
for some small η > 0. Next we invoke the invariance of | · |W 1/p,p with respect to
Möbius transformationsM that send S1 to itself (see [8]) to get that

|h|W 1/p,p = |h ◦M|W 1/p,p . (4.4)

For each n > 1 letMn be the unique Möbius transformation that sends the ordered
triple (with respect to the positive orientation on S1) (eı(π+1/n), 1, eı(π−1/n)) to the
ordered triple (e−ıη, 1, eıη). Hence Mn is a self map of S1 satisfying Mn(A(π +
1/n, 3π − 1/n)) = A(−η, η). Set hn = h ◦Mn. Clearly deg hn = deg h = d2 − d1
and by (4.4) and (4.3), for each n, |hn|pW 1/p,p = |h|p

W 1/p,p 6 σ
p
p(d2 − d1) + ε and

{x ∈ S1 ; hn(x) 6= 1} ⊂ A(π − 1/n, π + 1/n) .

For every n set gn = fhn ∈ Ed2 . By construction it is clear that for n > 1/δ we
have gn − f = f(hn − 1) = hn − 1 on S1. Therefore, (4.2) holds with g = gn for
such n. �

The main ingredient in the proof of the lower bound for DistW 1/p,p is Proposi-
tion 1.4.

Proof of Proposition 1.4. — Clearly it suffices to consider d2 6= d1 with d1 > 0.
Let a small ε > 0 be given. In view of the upper bound of Proposition 4.1, it suffices
to show that there exists N(ε) such that (for every sufficiently small ε):

|fn − g|pW 1/p,p > σ
p
p(d2 − d1)− ε1/3, ∀g ∈ Ed2 , ∀n > N(ε). (4.5)

Fix any g ∈ Ed2 . By density of smooth maps in W 1/p,p(S1;S1) we may assume that
g ∈ C∞(S1;S1). Clearly it suffices to consider n for which

|fn − g|pW 1/p,p 6 σ
p
p(d2 − d1). (4.6)

Consider the map

Hn := f̄(g − fn) + 1 = h+ (1− f̄fn) . (4.7)

Put N1(ε) :=
[
(π/ε)1/(1−α)]+ 1. By (1.18) we deduce that

|fn − f | 6 ε on S1, ∀n > N1(ε). (4.8)



ON THE DISTANCE BETWEEN HOMOTOPY CLASSES IN W 1/p,p(S1; S1) 133

For such n we may apply Lemma 3.1 with u = f, ũ = fn and v = g to get that

|g−fn|pW 1/p,p > (1−c1ε1/2)σpp(d2−d1)−c1ε−p/2Ep(f ; (S1 \C(n)
ε )×S1)−c1γd1ε

p/2,
(4.9)

where for each d ∈ Z we denote

γd := |zd|p
W 1/p,p , (4.10)

and where

C(n)
ε = {x ∈ S1 ; (f̄ng)(x) ∈ A[−ε, ε] ∪ A[π − ε, π + ε]}.

In order to conclude via (4.9) we need to bound the term Ep(f ; (S1 \C(n)
ε )×S1).

We claim that there exists C = C(p, d1, d2) such that for some β > 0 there holds

Ep(f ; (S1 \ C(n)
ε )× S1) 6 C

ε
n−β . (4.11)

We may write S1\C(n)
ε = A

(n)
ε,+∪A

(n)
ε,− where A(n)

ε,+ = {x ∈ S1 ; (f̄ng)(x) ∈ A(ε, π−ε)}
and A(n)

ε,− = {x ∈ S1 ; (f̄ng)(x) ∈ A(π + ε, 2π − ε)}. Next we write S1 as a disjoint
union of the 2nd1 arcs given by

Ĩk = A
( kπ
nd1

,
(k + 1)π
nd1

]
, k = 0, 1, . . . , 2nd1 − 1.

By the definition of fn we have (for large n) for all x 6= y in Ĩk:

dS1(fn(x), fn(y))
d1
S(x, y) =

{
nαd1 k is even
(nα − 2)d1 k is odd

. (4.12)

We use these arcs to write A(n)
ε,+ =

2nd1−1⋃
k=0

Jk,+ where Jk,+ = A
(n)
ε,+ ∩ Ĩk. Using the

following basic relation between the geodesic and Euclidean distances in S1,( 2
π

)
dS1(x, y) 6 |x− y| 6 dS1(x, y), ∀x, y ∈ S1 , (4.13)

we deduce from (4.12) that

|fn(x)− fn(y)|p

|x− y|2
> C1n

αp|x− y|p−2 , for all x 6= y in Jk,+, (4.14)

for some constant C1 = C1(p, d1). Applying (2.4) with z1 = fn(x), z2 = fn(y), w1 =
g(x) and w2 = g(y) to the L.H.S. of (4.14), and then integrating over Jk,+ × Jk,+
yields
¨
Jk,+×Jk,+

|(fn(x)− g(x))− (fn(y)− g(y))|p

|x− y|2
dx dy >

C1(sinp ε)nαp
¨
Jk,+×Jk,+

|x− y|p−2 dx dy, k = 0, 1, . . . , 2nd1 − 1 . (4.15)
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Next, we can also write A(n)
ε,− =

2nd1−1⋃
k=0

Jk,− where {Jk,−}2nd1−1
k=0 are defined analo-

gously to {Jk,+}2nd1−1
k=0 . The same computation that led to (4.15) gives

¨
Jk,−×Jk,−

|(fn(x)− g(x))− (fn(y)− g(y))|p

|x− y|2
dx dy >

C1(sinp ε)nαp
¨
Jk,−×Jk,−

|x− y|p−2 dx dy, k = 0, 1, . . . , 2nd1 − 1 . (4.16)

Summing over all indices in (4.15)–(4.16) and taking into account (4.6) yields
2nd1−1∑
k=0

¨
Jk,−×Jk,−

|x−y|p−2 dx dy+
2nd1−1∑
k=0

¨
Jk,+×Jk,+

|x−y|p−2 dx dy 6
C2

(nα sin ε)p .

(4.17)
Next we treat separately the cases p > 2 and 1 < p < 2.

Case I: p > 2

The key tool in treating this case is the following elementary inequality:¨
A×A

|x− y|a dx dy > κa|A|a+2 , ∀A ⊂ S1, ∀a > 0, (4.18)

for some constant κa > 0. [Obviously we consider only measurable subsets of S1

and |A| denotes the one dimensional Hausdorff measure of A]. To verify (4.18) we
first note that for any measurable set A ⊂ R the set

B := {x ∈ A ; |x| > |A|/4} ,

satisfies |B| > |A|/2 (here |C| stands for the Lebesgue measure of C ⊂ R). It
follows that ˆ

A

|x|a dx >
ˆ
B

|x|a dx > |B|(|A|/4)a > c̃a|A|a+1, ∀a > 0. (4.19)

Since (4.19) is clearly invariant w.r.t translations, we deduce that alsoˆ
A

|x− y|a dx > c̃a|A|a+1 , ∀A ⊂ R, ∀y ∈ R, ∀a > 0 ,

and an additional integration yields¨
A×A

|x− y|a dx dy > c̃a|A|a+2 , ∀A ⊂ R, ∀a > 0 . (4.20)

Switching from S1 to R, using (4.13), enables us to deduce (4.18) from (4.20).
Applying (4.18) to A = Jk,± and a = p− 2 gives¨

Jk,±×Jk,±
|x− y|p−2 dx dy > κp−2|Jk,±|p . (4.21)

Plugging (4.21) in (4.17) yields
2nd1−1∑
k=0

(|Jk,+|p + |Jk,−|p) 6
C3

(nα sin ε)p . (4.22)
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By Hölder inequality and (4.22) we obtain,

∣∣S1\C(n)
ε

∣∣ =
2nd1−1∑
k=0

(|Jk,+|+ |Jk,−|) 6 (4nd1)1−1/p C
1/p
3

nα sin ε 6
C4

ε
n1−1/p−α . (4.23)

Finally, by (4.23) we get

Ep(f ; (S1\C(n)
ε )×S1) 6 2π

∣∣∣S1 \ C(n)
ε

∣∣∣ sup
x,y∈S1

x 6=y

|f(x)− f(y)|p

|x− y|2
6
C5

ε
n1−1/p−α, (4.24)

which gives (4.11) with β = α− (1− 1/p) > 0 (by (1.17)).

Case II: 1 < p < 2

Treating this case requires another elementary inequality, namely,
¨
A×A

dx dy

|x− y|b
> λb

(¨
A×S1

dx dy

|x− y|b

)2
, ∀A ⊂ S1, ∀b ∈ (0, 1), (4.25)

for some λb > 0. To confirm (4.25) we first notice that
´
S1

dy
|x−y|b := η = η(b), ∀x ∈

S1, and thus ¨
A×S1

dx dy

|x− y|b
= η|A| , for every measurable A ⊂ S1. (4.26)

Finally, by (4.26)
¨
A×A

dx dy

|x− y|b
>

1
2b |A|

2 = 1
2bη2

(¨
A×S1

dx dy

|x− y|b

)2
,

and (4.25) follows with λb = 1
2bη2 .

Next we turn to the proof of (4.11) in this case. Clearly

Ep(f ; (S1 \ C(n)
ε )× S1) 6

C6

2nd1−1∑
k=0

(¨
Jk,−×S1

|x− y|p−2 dx dy +
¨
Jk,+×S1

|x− y|p−2 dx dy

)
. (4.27)

Applying the Cauchy-Schwarz inequality to (4.27) and using (4.25) (with A = Jk,±
and b = 2− p) and (4.17) yields

Ep(f ; (S1 \ C(n)
ε )× S1) 6 C6(4nd1)1/2 C

1/2
2

λ
1/2
2−p(nα sin ε)p/2

6
C7

ε
n(1−αp)/2 ,

and (4.11) follows in this case as well, with β = (αp− 1)/2 > 0 (see (1.17)).
Choosing N(ε) > N1(ε) (see (4.8)) such that, in addition,

Cn−β 6 ε1+p, ∀n > N(ε),

we get from (4.9) and (4.11) that for n > N(ε) there holds,

|g − fn|pW 1/p,p > (1− c1ε1/2)σpp(d2 − d1)− c1εp/2(1 + γd1) > σpp(d2 − d1)− ε1/3 ,

for ε sufficiently small (using p/2 > 1/2), and (4.5) follows. �

We can now give the proof of our main result Theorem 1.1.
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Proof of Theorem 1.1. — In view of (4.1) of Proposition 4.1, it suffices to prove
that

DistW 1/p,p(Ed1 , Ed2) > σp(d2 − d1), ∀d1, d2 ∈ Z. (4.28)
In case d1 6= 0, (4.28) follows from Proposition 1.4. In the remaining (easy) case
d1 = 0, we can take the constant function f = 1 that satisfies dp

W 1/p,p(f, g) =
|g|p

W 1/p,p > σ
p
p(d2) for all g ∈ Ed2 . �
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