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ON THE LIMITING ABSORPTION PRINCIPLE
FOR A NEW CLASS OF SCHRÖDINGER HAMILTONIANS

ALEXANDRE MARTIN

Abstract. We prove the limiting absorption principle and discuss the continuity properties of the boundary
values of the resolvent for a class of form bounded perturbations of the Euclidean Laplacian ∆ that covers
both short and long range potentials with an essentially optimal behaviour at infinity. For this, we give an
extension of Nakamura’s results (see [16]).
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1. INTRODUCTION

The purpose of this article is to prove a limiting absorption principle for a certain class of
Schrödinger operator with real potential and to study their essential spectrum. Because this
operators are self-adjoint, we already know that their spectrum is in the real axis. We also
know that the non negative Laplacian operator ∆ (Schrödinger operator with no potential)
has for spectrum the real set [0,+∞) with purely absolutely continuous spectrum on this
set. If we add to ∆ a "small" potential (with compact properties with respect to ∆), the
essential spectrum of this new operator is the same that ∆ essential spectrum which is
continuous. We are interested in the nature of the essential spectrum of the perturbed
operator and in the behaviour of the resolvent operator near the essential spectrum.

We will say that a self-adjoint operator has normal spectrum in an open real set O if it
has no singular continuous spectrum in O and its eigenvalues in O are of finite multiplici-
ties and have no accumulation points inside O. Note that if we have a Limiting Absorption
Principle for an operator H on O, H has normal spectrum on O.
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A general technique for proving this property is due to E. Mourre [14] and it involves a
local version of the positive commutator method due to C.R. Putnam [17, 18]. For various
extensions and applications of these techniques we refer to [1]. Roughly speaking, the idea
is to search for a second self-adjoint operator A such that H is regular in a certain sense
with respect to A and such that H satisfies the Mourre estimate on a set I in the following
sense

E(I)[H, iA]E(I) > c0E(I) +K

where E(I) is the spectral measure of H on I , c0 > 0 and K a compact operator. Then
one says that the operator A is conjugate to H on I .

When H = ∆ + V is a Schrödinger operator, we usually apply the Mourre theorem
with the generator of dilations

AD = 1
2(p · q + q · p),

where p = −i∇ and q is the vector of multiplication by x (see [1, Proposition 7.4.6] and
[7, Section 4]). But in the commutator expressions, derivatives of V appears which can be
a problem, if, for example, V has high oscillations at infinity.

In a recent paper S. Nakamura [16] pointed out the interesting fact that a different choice
of conjugate operator for H can be used to have a limiting absorption principle. This
allows us to avoid imposing conditions on the derivative of the long range part of the
potential. More precisely, if the operator of multiplication by V (q) is ∆-compact and two
other multiplication operators, which include differencies on V and not derivatives, are ∆-
bounded, then H has normal spectrum in (0, π2/a2) and the limiting absorption principle
holds for H locally on this set, outside the eigenvalues. This fact is a consequence of the
Mourre theorem with AN (see (1.1)) as conjugate operator.

Our purpose in this article is to put the results of Nakamura in a more general abstract
setting and get a generalisation of his result. Moreover, we will show that this general-
isation can be applied to potentials for which the Mourre theorem with the generator of
dilations as conjugate operator cannot apply (our potentials are not of long range type).
Furthermore, Nakamura’s result cannot apply to this type of potentials which are not ∆-
bounded. Finally, as usual, we will derive from the limiting absorption principle an appli-
cation of this theory to wave operators.

We denote X = Rν and H = L2(X). Let H1 be the first order Sobolev space on X ,
denote H−1 its adjoint space and similarly, we denote H2 the second order Sobolev space
on X andH−2 its adjoint space. All this spaces realised the following

H2 ⊂ H1 ⊂ H ⊂ H−1 ⊂ H−2.

Set B1 = B(H1,H−1) and B2 = B(H2,H−2). If needed for clarity, if u is a measurable
function onX we denote u(q) the operator of multiplication by u whose domain and range
should be obvious from the context. If a ∈ X let Ta be the operator of translation by a,
more precisely (Taf)(x) = f(x+ a).

We say that V ∈ B, B = B1 or B = B2, is a multiplication operator if V θ(q) =
θ(q)V for any θ ∈ C∞c (X). Note that V is not necessarily the operator of multiplication
by a function, it could be the operator of multiplication by a distribution of strictly positive
order. For example, in the one dimensional case V could be equal to the derivative of
a bounded measurable function. Anyway, if V is a multiplication operator then there is a
uniquely defined temperate distribution v onX such that V f = vf for all f ∈ C∞c (X) and
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then TaV T ∗a = v(·+ a). In general we simplify notations and do not distinguish between
the operator V and the distribution v, so we write V = V (q) and TaV T ∗a = V (q + a).

We will extend Nakamura’s result in two directions. First, we will use the Mourre theory
with a class of potential V : H2 → L2 or V : H1 → H−1 (cf. [1]) and satisfying a weaker
regularity. In particular, this includes potentials with Coulomb singularities, and also short
range potentials (see Definition 1.3). Secondly, we will use the Mourre theory with a more
general class of conjugate operators including AN (see (1.5)).

Let a > 0 and let sin(ap) =
(
sin(−ia∂x1), · · · , sin(−ia∂xν )

)
. Let

AN = 1
2
(
sin(ap) · q + q · sin(ap)

)
. (1.1)

Fix a real function ξ ∈ C∞(X) such that ξ(x) = 0 if |x| < 1 and ξ(x) = 1 if |x| > 2.

THEOREM 1.1. — Let a ∈ R and V : H2 → L2 (respectively V : H1 → H−1) be a
compact symmetric multiplication operator with, for all vector e of the canonical basis of
Rν , ∫ ∞

1
‖ξ(q/r)|q|(V (q + ae)− V (q))‖B

dr
r
<∞ (1.2)

where B = B2 (respectively B = B1). Then the self-adjoint operator H = ∆ + V onH
has normal spectrum in (0, (π/a)2) and, for some appropriate Besov space K, the limits

(H − λ± i0)−1 := w*-lim
µ↓0

(H − λ± iµ)−1 (1.3)

exist in B(K,K∗), locally uniformly in λ ∈ (0, (π/a)2) outside the eigenvalues of H .

We make some comments in connection with the Theorem 1.1.

(1) The Besov space is defined in Section 2 by (2.2).
(2) Condition (1.2) is satisfied if ‖〈q〉µ(V (q + a) − V (q))‖B < ∞ for a fixed µ >

1. To satisfy this conditions, it suffices that ‖〈q〉µV ‖B < ∞. In particular, in
dimension ν 6= 2, if V is a real function on Rν and if there is µ > 1 such that(
〈·〉µV (·)

)p
is in the Kato class, with p = 1 if ν = 1, and p = ν/2 if ν > 3, then

condition (1.2) is satisfied (see Proposition 4.7). If this is the case for all a ∈ R,
then the limiting absorption principle is true on (0,+∞).

(3) In the case where V : H2 → L2 is compact, in [16], V is assumed to satisfy
q(V (q + ae) − V (q)) and q2(V (q + ae) + V (q − ae) − 2V (q)) be ∆-bounded.
This assumptions implies to the C2(AN ,H2, L2) regularity. Observe that, since
q(V (q + ae)− V (q)) appears in [V, iAN ], (1.2) implies the C1,1(AN ,H2,H−2)
regularity which is implied by the C2(AN ,H2, L2) regularity.

(4) In one dimension, let V such that

q̂V (ξ) =
+∞∑

n=−∞
λnχ(ξ − n), (1.4)

where ·̂ is the Fourier transform, λn ∈ R and χ is compactly support, then V
satisfies assumptions of Theorem 1.1 with B = B1 but V is neither ∆-bounded
nor of class C1(AD,H1,H−1). In particular, we can neither apply the Mourre
Theorem with the generator of dilation (see [1, p.258]) nor Nakamura’s Theorem
(see lemma 5.3).
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As in [16], the limiting absorption principle is limited to (0, (π/a)2). The bound (π/a)2

is artificial and appears with the choice of vector field sin(ap). In fact, by a simple com-
putation with the Laplacian ∆ in L2(Rν), we have

[∆, iAN ] = [∆, i12
(
sin(ap) · q + q · sin(ap)

)
]

= 1
2
(
sin(ap) · [∆, iq] + [∆, iq] · sin(ap)

)
= 2p · sin(ap)

which implies a loss of positivity on (π/a)2. This is a drawback except if we can apply
(1.2) for all a > 0. We will use Nakamura’s method in a broader framework that allows
the removing of this drawback.

Let us denote H0 = ∆ = p2. Then H0 is a self-adjoint operator in H with domain H2

which extends to a linear symmetric operator H1 → H−1 for which we keep the notation
H0. Let V : H1 → H−1 be a linear symmetric compact operator. Then H = H0 + V is a
symmetric operator H1 → H−1 which induces a self-adjoint operator in H for which we
keep the notation H . Let E0 and E be the spectral measures of H0 and H .

Note that for each non real z the resolventR(z) = (H−z)−1 of the self-adjoint operator
H inH extends to a continuous operator R(z) : H−1 → H1 which is in fact the inverse of
the bijective operator H − z : H1 → H−1.
AN and AD belongs to a general class of conjugate operator, which appears in [1,

Proposition 4.2.3]. This is the class of operator which can be written like

Au = 1
2 (u(p) · q + q · u(p)) (1.5)

where u is a C∞ vector field with all the derivates bounded. We will see that this conjugate
operator is self-adjoint on some domain (see Section 6). Conjugate operators of this form
were already used in Mourre’s paper [14, page 395].

Remark that the commutator of such conjugate operator with a function of p is quite
explicit: denoting h′ = ∇h then

[h(p), iAu] = [h(p), iu(p)q] = u(p) · h′(p) = (u · h′)(p). (1.6)

In particular [H0, iAu] = 2p · u(p). We denote by the same notation eiτAu the C0-group
inH1 and inH−1.

One says thatA is strictly conjugate to H0 on J if there is a real number a > 0 such that
E0(J)[H0, iA]E0(J) > aE0(J), which in our case means 2k · u(k) > a for each k ∈ X
such that |k|2 ∈ J . Taking Au in this class, we have the following

THEOREM 1.2. — Let V : H1 → H−1 be a compact symmetric operator such that
there is u a C∞ bounded vector field with all derivatives bounded such that V is of class
C1,1(Au,H1,H−1) in the following sense:∫ 1

0
‖Vτ + V−τ − 2V ‖B1

dτ
τ2 <∞, where Vτ = eiτAuV e−iτAu . (1.7)

Let J be an open real set such that

inf{k · u(k) | k ∈ X, |k|2 ∈ J} > 0. (1.8)

Then H has normal spectrum in J and the limits

R(λ± i0) := w*-lim
µ↓0

R(λ± iµ) (1.9)
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exist in B
(
H−1

1/2,1,H
1
−1/2,∞

)
, locally uniformly in λ ∈ J outside the eigenvalues of H ,

whereH−1
1/2,1 andH1

−1/2,∞ are interpolation spaces which are defined on Section 2.

We make some remarks about this Theorem:

(1) To check the C1,1(Au,H1,H−1) property, it is useful to have eitAuH1 ⊂ H1.
For that, we will make a comment in the Section 6 on the flow generated by the
vector field u associated to Au.

(2) If k · u(k) is positive for all k 6= 0, Theorem 1.2 applies with J = (0,+∞).
(3) If V is the divergence of a short range potential (see Definition 1.3), then Theorem

1.2 applies. A certain class of this type of potential were already studied in [5] and
[6].

(4) Since R(λ ± i0) exists in B
(
H−1

1/2,1,H
1
−1/2,∞

)
, for D′ the space of distributions

this operator exists in B (C∞c (Rν), D′).
(5) If V can be seen as a compact operator from H2 to L2, Theorem 1.2 is still valid

if we replace the assumption "V is of class C1,1(Au,H1,H−1)" by the weak
assumption "V ∈ C1,1(Au,H2,H−2)" with the same proof.

(6) Consider the ∆-compact operator V (q) where

V (x) = (1− κ(|x|))sin(|x|α)
|x|β

,

with κ ∈ C∞c (R,R) with κ(|x|) = 1 if |x| < 1, 0 6 κ 6 1, α > 0 and β > 0.
Note that this type of potential was already studied in [2, 8, 9, 10, 13, 21, 22]. In
[13], they proved that if |α− 1|+ β > 1, then V has the good regularity with AD
but, if |α − 1| + β < 1, H /∈ C1(AD). In the latter case, we cannot apply the
Mourre theory with the generator of dilation. Here, we prove that, with a certain
choice of u, V ∈ C1,1(Au,H2,H−2) if 2α+β > 3 (see lemma 5.4). In that case,
Theorem 1.2 applies. In particular, in the region 2α + β > 3 and α + β 6 2, we
have the limiting absorption principle but H is not of class C1(AD). In Section 5,
we will see that Theorem 1.2 also applies if β 6 0 under certain condition on α.

(7) Let κ ∈ C∞c (R,R) such that κ = 1 on [−1, 1] and 0 6 κ 6 1. Let

V (x) = (1− κ(|x|)) exp(3|x|/4) sin(exp(|x|)).

We can show that, for all u bounded, V ∈ C∞(Au,H1,H−1) and Theorem
1.2 applies (see Lemma 5.6). Moreover, this implies good regularity properties on
the boundary values of the resolvent. Since V is not ∆-bounded, we cannot use
the C1(AD,H2,H−2) (see [1, Theorem 6.3.4]).

We can also prove that V /∈ C1(AD,H1,H−1). In particular, Theorem 1.2
does not apply with Au = AD.

(8) If V : H1 → H−1 is compact and if there is µ > 0 such that x 7→ 〈x〉1+µV (x)
is in H−1 (V is assumed to be short range in a quite weak sense), then we can
apply Theorem 1.2 with an appropriate u (see lemma 5.8). We will provide in this
class an concrete example which cannot be treated with the generator of dilations
or Nakamura’s result (see lemma 5.10).

Now we will see a third result concerning existence of wave operators which are useful
in scattering theory (see [20]).
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DEFINITION 1.3. — A linear operator S ∈ B1 is short range if it is compact, symmet-
ric, and ∫ ∞

1
‖ξ(q/r)S‖B1 dr <∞. (1.10)

Remark that (1.2) is satisfied if∫ ∞
1
‖ξ(q/r)|q|V ‖B

dr
r
<∞ (1.11)

which is a short range type condition.
Note that we do not require S to be local. Clearly this condition requires less decay than

the condition (1.11). Then we have:

THEOREM 1.4. — Let H be as in Theorem 1.1 and let S be a short range operator.
Then the self-adjoint operator K = H + S has normal spectrum in (0,∞) and the wave
operators

Ω± = s-lim
t→±∞

eitKe−itHEc
H (1.12)

exist and are complete, where Ec
H is the projection onto the continuity subspace of H .

Proof. — We have K = ∆ +V +S and from [1, 7.5.8] it follows that S, hence V +S,
is of class C1,1(AN ,H1,H−1) for all a > 0 so that we can use Theorem 1.2 to deduce
that K has normal spectrum in (0,∞) and that the boundary values of its resolvent exist
as in the case of H . For the existence and completeness of the wave operators we use
[1, Proposition 7.5.6] with the following change of notations: H0, H, V from the quoted
proposition are our H,K, S respectively. It remains only to check that S satisfies the last
condition required on V in that proposition: but this is a consequence of [12, Theorem
2.14]. �

We will give on Section 4 more explicit conditions which ensure that the assumptions
of Theorem 1.1 and 1.4 are satisfied in the case where V and S are real functions.

We make two final remarks. First, the assumption of compactness of V and S as op-
erators H1 → H−1 is too strong for some applications, for example it is not satisfied if
X = R3 and V (x) has local singularities of order |x|−2. But compactness can be replaced
by a notion of smallness at infinity similar to that used in [12] which covers such singu-
larities and the arguments there extend to the present setting. Second, let us mention that
we treat only the case when H0 is the Laplacian ∆ = p2 but an extension to more general
functions h(p) is straightforward with the same class of conjugate operator Au.

The paper is organized as follows. In Section 2, we will give some notations we will use
below and we recall some basic fact about regularity with respect to a conjugate operator.
In Section 3, we will prove Theorem 1.2 and extend Nakamura’s results by geting proper-
ties about the boundary values of the resolvent. In Section 4 , we will give an extension
of Nakamura’s theorem by using the Mourre theory with C1,1 regularity with respect to
the conjugate operator AN . In Section 5, we will give some examples of potentials which
satisfies Theorem 1.1 and Theorem 1.2 and which are not covered by Mourre Theorem
with the generator of dilation and Nakamura’s Theorem. In Section 6, we will study the
flow associated to the unitary group generated by Au.
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2. NOTATION AND BASIC NOTIONS

2.1. Notation. Let X = Rν and for s ∈ R let Hs be the usual Sobolev spaces on X with
H0 = H = L2(X) whose norm is denoted ‖ · ‖. We are mainly interested in the spaceH1

defined by the norm ‖f‖2
1 =

∫ (
|f(x)|2 + |∇f(x)|2

)
dx and its dual spaceH−1.

Recall that we set B1 = B(H1,H−1) and B2 = B(H2,H−2) which are Banach
spaces with norm ‖ · ‖B, B = B1,B2. These spaces satisfy B1 ⊂ B2.

We denote qj the operator of multiplication by the coordinate xj and pj = −i∂j consid-
ered as operators inH. For k ∈ X we denote k ·q = k1q1 +· · ·+kνqν . If u is a measurable
function onX let u(q) be the operator of multiplication by u inH and u(p) = F−1u(q)F ,
where F is the Fourier transformation:

(Ff)(ξ) = (2π)− ν2
∫

e−ix·ξu(x)dx.

If there is no ambiguity we keep the same notation for these operators when considered as
acting in other spaces.

Throughout this paper ξ ∈ C∞(X) is a real function such that ξ(x) = 0 if |x| < 1 and
ξ(x) = 1 if |x| > 2. Clearly the operator ξ(q) acts continuously in all the spacesHs.

We are mainly interested in potentials V which are multiplication operators in the fol-
lowing more general sense.

DEFINITION 2.1. — A map V ∈ B is called a multiplication operator if V eik·q =
eik·qV for all k ∈ X . Or, equivalently, if V θ(q) = θ(q)V for all θ ∈ C∞c (X).

For the proof of the equivalence, note first that from V eik·q = eik·qV,∀k ∈ X we get
V θ(q) = θ(q)V for any Schwartz test function θ because (2π) ν2 θ(q) =

∫
eikq(Fθ)(k)dk

and second that if η ∈ C1(X) is bounded with bounded derivative then η(q) is the strong
limit in B of a sequence of operators θ(q) with θ ∈ C∞c (X).

As we mentioned in the introduction, such a V is necessarily the operator of multiplica-
tion by a distribution that we also denote V and we sometimes write the associated operator
V (q). For example, the distribution V could be the divergence divW of a measurable vec-
tor field W : X → X such that multiplication by the components of W sends H1 into H.
For example, W could be a bounded function and if this function tends to zero at infinity
then V will be a compact operator H1 → H−1. we say that a multiplication operator V is
∆-compact if V : H2 → L2 is a compact operator.

As usual 〈x〉 =
√

1 + |x|2. Then 〈q〉 is the operator of multiplication by the function
x 7→ 〈x〉 and 〈p〉 = F−1〈q〉F . For real s, t we denoteHts the space defined by the norm

‖f‖Hts = ‖〈q〉sf‖Ht = ‖〈p〉t〈q〉sf‖ = ‖〈q〉s〈p〉tf‖. (2.1)

Note that the adjoint space ofHts may be identified withH−t−s.
A finer Besov type version H−1

1/2,1 of H−1
1/2 appears naturally in the theory. To alleviate

the writing we denote it K. This space is defined by the norm

‖f‖K = ‖θ(q)f‖H−1 +
∫ ∞

1
‖τ1/2ψ(q/τ)f‖H−1

dτ
τ

(2.2)

where θ, ψ ∈ C∞c (X) with θ(x) = 1 if |x| < 1, ψ(x) = 0 if |x| < 1/2, and ψ(x) = 1 if
1 < |x| < 2. The adjoint space K∗ of K is the Besov spaceH1

−1/2,∞ (see [1, Chapter 4]).
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We will see in Section 6 that if u : X → X is a C∞ vector field all of whose derivatives
are bounded then the operator

Au = 1
2 (u(p) · q + q · u(p)) = 1

2

ν∑
j=1

(uj(p)qj + qjuj(p)) = u(p) · q + i
2(divu)(p)

(2.3)
with domain C∞c (X) is essentially self-adjoint in H; we keep the notation Au for its
closure. Remark that the unitary group eiτAu generated by Au leaves invariant all the
spacesHst and K (see Section 6).

Since we will use a lot the case of u bounded, let U be the space of vector fields u
bounded with all derivatives bounded such that x · u(x) > 0 for all x 6= 0.

2.2. Regularity. Let F ′, F ′′ be two Banach space and T : F ′ → F ′′ a bounded operator.
Let A a self-adjoint operator.
Let k ∈ N. we say that T ∈ Ck(A,F ′, F ′′) if, for all f ∈ F ′, the map R 3 t →

eitATe−itAf has the usual Ck regularity. The following characterisation is available:

PROPOSITION 2.2. — T ∈ C1(A,F ′, F ′′) if and only if [T,A] has an extension in
B(F ′, F ′′).

It follows that, for k > 1, T ∈ Ck(A,F ′, F ′′) if and only if [T,A] ∈ Ck−1(A,F ′, F ′′).
We can define another class of regularity called the C1,1 regularity:

PROPOSITION 2.3. — we say that T ∈ C1,1(A,F ′, F ′′) if and only if∫ 1

0
‖Tτ + T−τ − 2T‖B(F ′,F ′′)

dτ
τ2 <∞,

where Tτ = eiτAuT e−iτAu .

An easier result can be used:

PROPOSITION 2.4 (Proposition 7.5.7 from [1]). — Let ξ ∈ C∞(X) such that ξ(x) = 0
if |x| < 1 and ξ(x) = 1 if |x| > 2. If T satisfies∫ ∞

1
‖ξ(q/r)[T, iA]‖B(F ′,F ′′)

dr
r
<∞

then T is of class C1,1(A,F ′, F ′′).

If T is not bounded, we say that T ∈ Ck(A,F ′, F ′′) if for z /∈ σ(T ) we have (T −
z)−1 ∈ Ck(A,F ′, F ′′).

PROPOSITION 2.5. — For all k > 1, we have

Ck(A,F ′, F ′′) ⊂ C1,1(A,F ′, F ′′) ⊂ C1(A,F ′, F ′′).

If F ′ = F ′′ = H is an Hilbert space, we note C1(A) = C1(A,H,H∗). If T is self-
adjoint, we have the following:

THEOREM 2.6 (Theorem 6.3.4 from [1]). — Let A and T be self-adjoint operator in a
Hilbert space H. Assume that the unitary group {exp(iAτ)}τ∈R leaves the domain D(T )
of T invariant. Set G = D(T ) endowed with it graph topology. Then

(1) T is of class C1(A) if and only if T ∈ C1(A,G,G∗).
(2) T is of class C1,1(A) if and only if T ∈ C1,1(A,G,G∗).
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Remark that, if T : H → H is not bounded, since T : G → G∗ is bounded, in general,
it is easier to prove that T ∈ C1(A,G,G∗) than T ∈ C1(A).

If G is the form domain of H , we have the following:

PROPOSITION 2.7 (see p. 258 of [1]). — Let A and T be self-adjoint operators in a
Hilbert space H. Assume that the unitary group {exp(iAτ)}τ∈R leaves the form domain
G of T invariant. Then

(1) T is of class Ck(A) if and only if T ∈ Ck(A,G,G∗), for all k ∈ N.
(2) T is of class C1,1(A) if and only if T ∈ C1,1(A,G,G∗).

As previously, since T : G → G∗ is always bounded, it is, in general, easier to prove
that T ∈ Ck(A,G,G∗) than T ∈ Ck(A).

3. NAKAMURA’S IDEAS IN A MORE GENERAL SETTING:
BOUNDARY VALUES OF THE RESOLVENT

In this section, we will prove the Theorem 1.2 and we will see how the regularity of the
potential, in relation to Au, can implies a good regularity for the boundary values of the
resolvent.

Proof of Theorem 1.2. — By taking into account the equation (1.6) and the statement
of Theorem 7.5.6 in [1] we only have to explain how the space K introduced before (2.2)
appears into the picture (this is not the space also denoted K in [1]). In fact the quoted
theorem gives a more precise result, namely instead of our K one may take the real inter-
polation space

(
D(Au,H−1),H−1)

1/2,1, whereD(Au,H−1) is the domain of the closure
ofAu inH−1. From (2.3) and since u is bounded with all its derivatives bounded it follows
immediately that D(Au,H−1) contains the domain of 〈q〉 in H−1, which is H−1

1 . Hence(
D(Au,H−1),H−1)

1/2,1 contains
(
H−1

1 ,H−1)
1/2,1 which isH−1

1/2,1 = K. �

We say that V is of class Ck(Au,H1,H−1) for some integer k > 1 if the map τ 7→
Vτ ∈ B(H1,H−1) is k times strongly differentiable. We clearly haveC2(Au,H1,H−1) ⊂
C1,1(Au,H1,H−1). In [14] the Limiting Absorption Principle is proved essentially for
V ∈ C2(A) (see [11] for more details); notice that in [15] the limiting absorption principle
is proved in a space better (i.e larger) than K (see (2.1)), but not of Besov type.

If s > 1/2 thenH−1
s ⊂ K with a continuous and dense embedding. Hence:

COROLLARY 3.1. — For each s > 1/2 the limit R(λ ± i0) = w*-limµ↓0 R(λ ± iµ)
exists in the spaces B

(
H−1
s ,H1

−s
)
, locally uniformly in λ ∈ J outside the eigenvalues of

H .

The C1,1(Au) regularity condition (1.7) on V is not explicit enough for some applica-
tions. We now give a simpler condition which ensures that (1.7) is satisfied.

We recall some easily proven facts concerning the class C1(Au,H1,H−1). First, V is
of class C1(Au,H1,H−1) if and only if the function τ 7→ Vτ ∈ B(H1,H−1) is (norm or
strongly) Lipschitz. Notice that we used eiτAH1 ⊂ H1 to prove this. Second, note that
for an arbitrary V the expression [V, iAu] is well-defined as symmetric sesquilinear form
on C∞c (X) and V is of class C1(Au,H1,H−1) if and only if this form is continuous for
the topology induced by H1. In this case we keep the notation [V, iAu] for its continuous
extension toH1 and for the continuous symmetric operatorH1 → H−1 associated to it.

As a consequence of Proposition 7.5.7 from [1] with the choice Λ = 〈q〉 we get:
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PROPOSITION 3.2. — Let V : H1 → H−1 be a symmetric bounded operator of class
C1(Au,H1,H−1) such that ∫ ∞

1
‖ξ(q/r)[V, iAu]‖B

dr
r
<∞ (3.1)

with B = B1. Then V is of class C1,1(Au,H1,H−1).

If the potential V is of a higher regularity class with respect to Au then, by using results
from [3], we also get an optimal result on the order of continuity of the boundary values of
the resolvent R(λ± i0) as functions of λ. From [15] and the improvements in [4] one may
also get a precise description of the propagation properties of the dynamical group eitH in
this context, but we shall not give the details here.

To state this regularity result we recall the definition of the Hölder-Zygmund continuity
classes of order s ∈ (0,∞) . Let E be a Banach space and F : R → E a continuous
function. If 0 < s < 1 then F is of class Λs if F is Hölder continuous of order s. If s = 1
then F is of class Λ1 if it is of Zygmund class, i.e. ‖F (t+ ε) + F (t− ε)− 2F (t)‖ 6 Cε
for all real t and ε > 0. If s > 1, let us write s = k+σ with k > 1 integer and 0 < σ 6 1;
then F is of class Λs if F is k times continuously differentiable and F (k) is of class Λσ .
The corresponding local classes are defined as follows: if F is defined on an open real set
U then F is locally of class Λs if θF is of class Λs for any θ ∈ C∞c (U).

We say that V is of class Λs(Au,H1,H−1) if the function τ 7→ Vτ ∈ B1 is of class Λs.
We mention that in a more general context this class is denoted by Cs,∞(Au,H1,H−1),
but this does not matter here. In any case, one may easily check that

Λs(Au,H1,H−1) ⊂ C1,1(Au,H1,H−1) ⊂ C1(Au,H1,H−1)
if s > 1. If s > 1 is an integer then Cs(Au,H1,H−1) ⊂ Λs(Au,H1,H−1) strictly.

THEOREM 3.3. — Assume that u and J are as in Theorem 1.2 and let s be a real
number such that s > 1/2. If V : H1 → H−1 is a compact symmetric operator of class
Λs+1/2(Au,H1,H−1) then the functions

λ 7→ R(λ± i0) ∈ B(H−1
s ,H1

−s) (3.2)

are locally of class Λs−1/2 on J outside the eigenvalues of H .

Proof. — We shall deduce this from the theorem on page 12 of [3]. First, note that H
has a spectral gap becauseH0 > 0 and (H+i)−1−(H0 +i)−1 is a compact operator hence
H and H0 have the same essential spectrum. Thus we may use the quoted theorem and we
get the assertion of the present theorem but with B(H−1

s ,H1
−s) replaced by B(Hs,H−s).

Then it suffices to observe that if z belongs to the resolvent set of H then we have

R(z) = R(i) + (z − i)R(i)2 + (z − i)2R(i)R(z)R(i)
and to note that R(i) sendsH−1

s intoH1
s . �

We state explicitly the particular case corresponding to the Mourre condition V ∈
C2(Au,H1,H−1). We mention that this is equivalent to the fact that the sesquilinear form
[[V,Au], Au], which is always well-defined on C∞c (X), extends to a continuous sesquilin-
ear form onH1.

COROLLARY 3.4. — Assume that we are in the conditions of the Theorem 1.2 but with
the condition (1.7) replaced by the stronger one V ∈ C2(Au,H1,H−1). Then the map
(3.2) is Hölder continuous of order s − 1/2 for all s such that 1/2 < s < 3/2 and if
s = 3/2 then the map (3.2) is of Zygmund class (but could be nowhere differentiable).
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Previously, we saw that H0 verified the Mourre estimate on I if and only if k ·u(k) > 0
for all k such that |k|2 ∈ I . Moreover, we saw that if H0 verified the Mourre estimate on
I , because the potential V is H0-compact or compact on H1, the form domain of H0, to
H−1, H verified the Mourre estimate on the same interval I .

Because
uN (x) = (sin(axj))j=1,··· ,ν

we have the Mourre estimate only on Ia = (0, (π/a)2), i.e. where uN (x) 6= 0; this
function constructs some artificial thresholds. If we can choose a vector field u such that
x · u(x) > 0 if x 6= 0 which satisfied some good conditions of regularity for the potential
V , we can extend the interval Ia to I = (0,+∞). For example, we can choose the vector
field u(x) = (arctan(xj))j=1,··· ,ν , the function arctan being non zero for x 6= 0, or
u(x) = x/〈x〉. In particular, with this type of vector field, if 〈p〉−1qV 〈p〉−1 is bounded,
then V ∈ C1(Au,H1,H−1) and we have the Mourre estimate on all compact subset of
(0,+∞).

4. AN EXTENSION OF NAKAMURA’S RESULTS

In this section, we will prove Theorem 1.1 and we will give some conditions easy to
verify which assure that assumptions of Theorem 1.1 and 1.4 are satisfied. Moreover,
we will give a stronger version of Nakamura’s Theoerem with estimates on the boundary
values of the resolvent.

In all this section, B = B1 = B(H1,H−1).
We fix a real number a > 0 and denote Ia = (0, π

2

a2 ) . We apply the general results
from Section 3 with the vector field u as in [16]:

uN (p) = (sin(ap1), . . . , sin(apν)) . (4.1)

Then (div uN )(p) =
∑
j∂pj sin(apj) =

∑
ja cos(apj) hence

2AN =
∑
j

(
qj sin(apj) + sin(apj)qj

)
=
∑
j

(
2qj sin(apj)− ia cos(apj)

)
. (4.2)

The operator AN behaves well with respect to the tensor factorization L2(X) = L2(R)⊗ν
and this simplifies the computations. Indeed, if we denote B the operator A acting in
L2(R) we have AN = A1 + · · ·+Aν with A1 = B ⊗ 1 · · · ⊗ 1, A2 = 1⊗B ⊗ 1 · · · ⊗ 1,
etc.

Let Tj = eiapj be the operator of translation by a in the j direction, i.e. (Tjf)(x) =
f(x+ aej) where e1, . . . , eν is the natural basis of X = Rν . For any V : H1 → H−1 set

δj(V ) = TjV T
∗
j − V (4.3)

which is also an operator H1 → H−1 hence we may consider δkδj(V ), etc. If V = V (q)
is a multiplication operator then

δj(V ) = V (q + aej)− V (q).
Remark that, when V is a multiplication operator, δj(V ) appears in the first commuta-
tor [V, iAN ]. The operation δj can also be applied to various unbounded operators, for
example we obviously have δj(qk) = aδjk, where δjk is the Kronecker symbol, and
δj(u(p)) = 0.

If S ∈ B then [qj , S] and qjS are well-defined as sesquilinear forms onC∞c (X) and we
say that one of these expressions is a bounded operator H1 → H−1 if the corresponding
form is continuous in the topology induced byH1.
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THEOREM 4.1. — Let V : H1 → H−1 be a compact symmetric operator such that for
any j the forms [qj , V ] and qjδj(V ) are bounded operatorsH1 → H−1 and∫ ∞

1

(
‖ξ(q/r)[qj , V ]‖B + ‖ξ(q/r)qjδj(V )‖B

)dr
r
<∞. (4.4)

Then H has normal spectrum in Ia and the limits R(λ± i0) = w*-limε↓0 R(λ± iε) exist
in B(K,K∗), locally uniformly in λ ∈ Ia outside the set of eigenvalues of H .

Remark 4.2. — This Theorem give a stronger result than Theorem 1.1, since, if V is a
multiplication operator, [qj , V ] = 0 and (4.4) reduces to (1.2).

Proof. — This is a consequence of Theorem 1.2 and Proposition 3.2 once we have
checked that V is of class C1(AN ) and the relation (3.1) is satisfied. In order to prove that
V ∈ C1(AN ,H1,H−1) it suffices to show that the sesquilinear form on C∞c (X) defined
by

[2AN , V ] =
∑
j

(
2[qj sin(apj), V ]− ia[cos(apj), V ]

)
(4.5)

is continuous for theH1 topology. This is clear for the second term in the sum and for the
first one we use

[qj sin(apj), V ] = [qj , V ] sin(apj) + qj [sin(apj), V ]. (4.6)

The first term on the right hand side defines a bounded operatorH1 → H−1 by one of the
hypotheses of the theorem. For the second one we first note that

[Tj , V ] = δj(V )Tj and [T ∗j , V ] = −T ∗j δj(V ) (4.7)

from which we get

2i[sin(apj), V ] = [Tj − T ∗j , V ] = δj(V )Tj + T ∗j δj(V ). (4.8)

It follows easily that qj [sin(apj), V ] is bounded. Thus V is of class C1(AN ,H1,H−1).
It remains to show that (3.1) is satisfied. We use (4.5) again: the terms with sin(apj)

are treated with the help of (4.6) and (4.8). The term with cos(apj) is treated similarly by
using

2[cos(apj), V ] = [Tj + T ∗j , V ] = δj(V )Tj − T ∗j δj(V ). (4.9)
Using (4.4), this proves (3.1). �

Remark 4.3. — The “usual” version of the preceding theorem involves the derivatives
[pj , V ] of the potential, instead of the finite differences δj(V ), cf. [1, Theorem 7.6.8].
Note that the quoted theorem is a consequence of Theorem 4.1 because ‖δj(V )‖B 6
a‖[pj , V ]‖B.

The condition (4.4) says that the operators [qj , V ] and qjδj(V ) are not only bounded
as maps H1 → H−1 but also tend to zero at infinity in some weak sense. Then it is clear
that the maps λ 7→ R(λ± i0) ∈ B(K,K∗) are strongly continuous outside the eigenvalues
of H , but nothing else can be said in general. Stronger conditions on this decay improve
the smoothness properties of the boundary values R(λ ± i0) as maps H1

s → H−1
−s . This

question is solved in general by using Theorem 3.3 but here we consider only a particular
case as an example. One may see in [12, Theorem 1.7] the type of assumptions V has to
satisfy in order to improve the smoothness properties of the boundary values.

Remark that if V is a multiplication operator, we have

δjδk(V ) = V (q + aej + aek)− V (q + aej)− V (q + aek) + V (q)
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which appears in the second commutator [[V, iAN ], iAN ].
The next result is an extension of [16, Theorem 1]: we make the regularity assumption

V ∈ C2(AN ) but V is not necessarily an operator in H and we give the precise Hölder
continuity order of the boundary values.

THEOREM 4.4. — Let V = V (q) : H1 → H−1 be a symmetric compact multiplica-
tion operator. Assume that there is a real number a > 0 such that for all j, k

(H)
{

qj
(
V (q + aej)− V (q)

)
and

qjqk
(
V (q + aej + aek)− V (q + aek)− V (q + aek) + V (q)

)
are bounded operatorsH1 → H−1. ThenH has normal spectrum in the interval Ia and the
limits R(λ ± i0) = w*-limε↓0 R(λ ± iε) exist in B (K,K∗), locally uniformly in λ ∈ Ia
outside the eigenvalues of H . If 1

2 < s < 3
2 then the operators R(λ± i0) ∈ B(H−1

s ,H1
−s)

are locally Hölder continuous functions of order s− 1
2 of the parameter λ ∈ Ia outside the

eigenvalues of H .

Proof. — We first show that (1.8) is satisfied for any open interval J whose closure is
included in Ia, i.e. inf{k · uN (k) | k ∈ X, |k|2 ∈ J} > 0. Since k 7→ k · uN (k) is
a continuous function and J̄ is a compact in Ia, it suffices to check that ak · uN (k) =∑
akj sin(akj) > 0 for all k such that |k|2 ∈ Ia. The last condition may be written

0 < |ak| < π and this implies |akj | < π for all j and |akj | > 0 for at least one j. Clearly
then we get ak · uN (k) > 0.

For the rest of the proof it suffices to check that V is of classC2(AN ,H1,H−1). Indeed,
then we may use Theorems 1.2, Corollary 3.1, and Theorem 3.3 (see also Corollary 3.4).

Thus we have to prove that the commutators [AN , V ] and [AN , [AN , V ]], which are
a priori defined as sesquilinear forms on C∞c (X), extend to continuous forms on H1.
Although the computations are very simple, we give the details for the convenience of the
reader.

We have [AN , V ] =
∑

[Aj , V ] and [AN , [AN , V ]] =
∑

[Aj , [Ak, V ]] and we recall the
relations (4.7). Since sin(apj) = 1

2i (Tj − T
∗
j ) and cos(apj) = 1

2 (Tj + T ∗j ) we have

2iAj = qj2i sin(apj) + a cos(apj) = qj(Tj − T ∗j ) + b(Tj + T ∗j ) (4.10)

where b = a/2. Thus by using the relations [Tj , V ] = δj(V )Tj and [T ∗j , V ] = −T ∗j δj(V )
and since TjqjT ∗j = qj + a, we get

[2iAj , V ] = qj [Tj − T ∗j , V ] + b[Tj + T ∗j , V ]
= (b+ qj)δj(V )Tj + T ∗j (−b+ qj)δj(V ) (4.11)

Because Tj = eiapj and T ∗j = e−iapj are bounded, by the assumption (H) the right
hand side of this relation is a bounded operator from H1 to H−1, hence V is of class
C1(AN ,H1,H−1). It remains to treat the second order commutators.

Since [iAN , S∗] = [iAN , S]∗, we have

[iAj , [iAk, V ]] = [iAj , (b+ qk)δk(V )Tk] + [iAj , T ∗k (−b+ qk)δk(V )]
= [iAj , (b+ qk)δk(V )]Tk + (b+ qk)δk(V )[iAj , Tk]
+ [iAj , Tk]∗(−b+ qk)δk(V ) + T ∗k [iAj , (−b+ qk)δk(V )]. (4.12)
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Since we have [iAj , Tk] = bδjk(1− T 2
k ), we get

[iAj , (b+ qk)δk(V )]Tk + (b+ qk)δk(V )[iAj , Tk] = [iAj , (b+ qk)δk(V )]Tk
+ bδjk(b+ qk)δk(V )(1− T 2

k ). (4.13)

The last term here is again a bounded operator H1 → H−1 by assumption (H), hence it
remains to prove that the first term of the right hand side has the same property. For this
we use (4.11) with (b+ qk)δk(V ) instead of V and we get:

[iAj , (b+ qk)δk(V )] = (b+ qj)δj((b+ qk)δk(V ))Tj
+ T ∗j (−b+ qj)δj((b+ qk)δk(V )). (4.14)

Since δj(MN) = δj(M)TjNT ∗j +Mδj(N) we have

δj
(
(b+ qk)δk(V )

)
= δj(b+ qk)Tjδk(V )T ∗j + (b+ qk)δjδk(V )
= aδjkTjδj(V )T ∗j + (b+ qk)δjδk(V ).

Since (b+ qj)Tj = Tj(qj − b) we then get

(b+ qj)δj
(
(b+ qk)δk(V )

)
= aδjkTj(qj − b)δj(V )T ∗j + (b+ qj)(b+ qk)δjδk(V )

which is bounded as operator H1 → H−1 by (H), hence the right hand side of (4.14) has
the same property.

Using the same argument, we can prove that

[iAj , Tk]∗(−b+ qk)δk(V ) + T ∗k [iAj , (−b+ qk)δk(V )]
is bounded.

By (4.12), [iAj , [iAk, V ]] is bounded; we deduce that V is of class C2(AN ,H1,H−1).
�

Remark 4.5. — This Theorem is a stronger version of Nakamura’s result. In fact, in
Nakamura’s paper, V is a multiplication operator with the ∆-compact property (compact
fromH2 to L2) which is a stronger assumption than compact fromH1 toH−1. Moreover,
we add in Theorem 4.4 a result concerning the regularity of the boundary values of the
resolvent.

Now we assume that V and S are real functions and we give more explicit conditions
which ensure that the assumptions of the Theorems 1.1 and 1.4 are satisfied. Let p = 1 if
ν = 1, any p > 1 if ν = 2, and p = ν/2 if ν > 3 and denote

JfKxp =
(∫
|y−x|<1|f(y)|pdy

)1/p
.

PROPOSITION 4.6. — Consider V and S multiplication operators such that:
• V ∈ Lploc(X) satisfies limx→∞JV Kxp = 0 and for any a ∈ X and any r > 1,∫ ∞

1
ϕa(r)dr

r
<∞

where
ϕa(r) = sup

|x|>r

{
|x|JV (·+ a)− V (·)Kxp

}
;

• S ∈ Lploc(X) and
∫∞

1 sup|x|>rJSKxp dr <∞.
Then all the conditions of Theorems 1.1 and 1.4 are satisfied.
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Proof. — If U : H1 → H is a local operator then it is easy to see that there is C ′ ∈ R
such that

‖U‖H1→H 6 C
′ sup{‖Uf‖ | f ∈ H1 with ‖f‖H1 6 1 and diam suppf 6 1}.

If V is a function and ν > 3 then the Sobolev inequality gives a number C ′′ such that

|〈f |V f〉| 6 ‖|V |1/2f‖2 6 ‖V ‖
L
ν
2 ‖f‖

2
L

2ν
ν−2
6 C ′′‖V ‖

L
ν
2 ‖f‖

2
H1 .

If ν = 1, 2 then the argument is simpler but ν/2 has to be replaced by 1 or any p > 1
respectively. Thus, if we introduce the notation

JV Kp = sup
x

(∫
|y−x|<1|V (y)|pdy

)1/p
(4.15)

with p = 1 if ν = 1, any p > 1 if ν = 2, and p = ν/2 if ν > 3, we get the following
estimate: there is a number C = C(ν, p) such that

‖V ‖B 6 CJV Kp . (4.16)

Clearly that C∞c (X) is dense for the norm J·Kp in the space of functions V with finite J·Kp
norm and such that

∫
|y−x|<1 |V (y)|pdy → 0 as x → ∞. Thus for such functions the

operator V (q) : H1 → H−1 is compact.
Suppose that, ϕa(r) = sup|x|>r{|x|JV (·+ a)− V (·)Kxp} verifies∫ ∞

1
ϕa(r)dr

r
<∞.

We will prove that V verifies (1.2).
Because ξ(x) = 0 if ‖x‖ 6 1, and according to (4.16), we have

‖ξ(q/r)|q|(V (q + ae)− V (q))‖B 6 C sup
|x|>r

J| · |(V (·+ a)− V (·))Kxp . (4.17)

By definition, we have

J| · |(V (·+ a)− V (·))Kxp =
(∫
|y−x|<1

|y|p|V (y + a)− V (y)|pdy
)1/p

. (4.18)

Because p > 1 we have |y|p 6 (|y − x| + |x|)p. Moreover, using the convexity of the
function x 7→ xp on R+,

(|y − x|+ |x|)p = 2p
( |y − x|+ |x|

2

)p
6 2p−1(|y − x|p + |x|p).

So from (4.18), we have

J| · |(V (·+ a)− V (·))Kxp 6 C2(1 + |x|p)1/pJ(V (·+ a)− V (·))Kxp (4.19)

where Ci are constants independent of x
By hypothesis on V , we have the following

‖ξ(q/r)|q|(V (q + ae)− V (q))‖B 6 C3 sup
|x|>r

(1 + |x|p)1/p

|x|
ϕa(r) 6 C4ϕa(r) (4.20)
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and then∫ ∞
1
‖ξ(q/r)|q|(V (q + ae)− V (q))‖B

dr
r
< C4

∫ ∞
1

ϕa(r)dr
r
<∞. (4.21)

�
A class of potentials that we may consider is the Kato class whose definition is as

follows [7, Sec. 1.2]. A measurable function V : Rν → R is of class Kν if
• limα↓0 supx

∫
|y−x|<α |y − x|

2−ν |V (y)|dy = 0 in case ν > 2,
• limα↓0 supx

∫
|y−x|<α ln |y − x|−1|V (y)|dy = 0 in case ν = 2,

• limα↓0 supx
∫
|y−x|<α |V (y)|dy = 0 in case ν = 1.

The Kν norm of such a function is given by

‖V ‖Kν = sup
x

∫
|y−x|<1

Lν(y − x)|V (y)|dy

with the obvious definition of Lν . Note that the operator V (q) is form relatively bounded
with respect to the Laplacian with relative bound zero if V ∈ Kν [7, p. 8] hence H =
∆ + V (q) is a well-defined self-adjoint and bounded from below operator.

PROPOSITION 4.7. — Let V be a real function on Rν , with ν 6= 2, such that there is
µ > 1 and

(
〈·〉µV (·)

)p ∈ Kν . Then condition (1.2) is satisfied.

Proof. — According to (4.16), there is C > 0 such that

‖〈q〉µV ‖B 6 CJ〈·〉µV Kp

6 C sup
x

(∫
|y−x|<1|〈y〉

µV (y)|pdy
)1/p

6 C
(

sup
x

∫
|y−x|<1|〈y〉

µV (y)|pdy
)1/p

(4.22)

Because, if ν 6= 2 then Lν(y − x) > 1 for |y − x| < 1, we have the following∫
|y−x|<1|〈y〉

µV (y)|pdy 6
∫
|y−x|<1Lν(y − x)|〈y〉µV (y)|pdy (4.23)

So

sup
x

∫
|y−x|<1|〈y〉

µV (y)|pdy 6 sup
x

∫
|y−x|<1Lν(y − x)|〈y〉µV (y)|pdy (4.24)

According to (4.22), we have

‖〈q〉µV ‖B 6 C (‖(〈·〉µV (·))p‖Kν )1/p
. (4.25)

So if there is µ > 1 such that
(
〈·〉µV (·)

)p ∈ Kν , then ‖〈q〉µV ‖B < ∞ and V satisfies
(1.2). �

5. CONCRETE POTENTIALS

In this section, we will give examples of concrete potential which satisfy the assump-
tions of Theorem 1.1 and the assumptions of Theorem 1.2. For these examples, we will
discuss the application of the Mourre Theorem with the generator of dilation and/or Naka-
mura’s result.

Note that since H0 = ∆ : H1 → H−1 is bounded, if V : H1 → H−1 is compact, then
H : H1 → H−1 is bounded. Furthermore H0 ∈ C∞(Au,H1,H−1) and we can deduce
that:
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PROPOSITION 5.1. — Let k ∈ N∗. We suppose that V : H1 → H−1 is compact. The
folowing properties are equivalent:

(1) H = ∆ + V ∈ Ck(Au);
(2) H = ∆ + V ∈ Ck(Au,H1,H−1);
(3) V ∈ Ck(Au,H1,H−1).

When V : H2 → L2 is compact, we have the following

PROPOSITION 5.2. — Let k ∈ N∗. We suppose that V is ∆-compact. The folowing
properties are equivalent:

(1) H = ∆ + V ∈ Ck(Au,H2,H−2);
(2) V ∈ Ck(Au,H2,H−2).

Remark that if V is ∆-compact and k 6= 1, then H ∈ Ck(Au,H2,H−2) is not equiva-
lent to H ∈ Ck(Au) (see [1, Theorem 6.3.4]).

5.1. A non Laplacian-compact potential. In this part, we work in one dimension.
Let χ ∈ C1(R,R) be such that χ(x) = 0 if |x| > 1, χ(x) > 0 if |x| < 1 and

χ(−x) = χ(x).

LEMMA 5.3. — Let V such that

q̂V (ξ) =
+∞∑

n=−∞
λnχ(ξ − n),

where λ−n = λn > 0, λ0 = 0, and (λn)n∈Z is not bounded. Moreover, we suppose that
there is 0 < ε < 1/2 such that

+∞∑
n=−∞

λn〈n〉−1/2+ε <∞. (5.1)

Then, for all u ∈ U ,

(1) V is symmetric and V : H1 → H−1 is compact.
(2) V ∈ C1,1(Au,H1,H−1).
(3) V /∈ C1(AD,H1,H−1).
(4) V is not ∆-bounded.

We will give few remarks about this lemma.

(a) Note that, since χ is compactly support, the sum which defines V is locally finite and
so V is well defined.

(b) Lemma 5.3 applies with AN replacing Au but since V is not ∆-bounded, and so V is
not ∆-compact, we can not apply [16, Theorem 1]. Furthermore, because of (3), we
can not apply the Mourre Theorem with AD as conjugate operator.

(c) The requirements on (λn)n∈Z are satisfied in the case

λn =
{
p if |n| = 2p

0 else
.

Proof of Lemma 5.3. —
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(1) Let

Tn(x) =
{∫ x

0 χ(s− n)ds if n > 0
−
∫ 0
x
χ(s− n)ds if n < 0

.

Remark that T ′n = χ(· − n). For n > 0 and f, g ∈ H1, we have∣∣∣(f̂, Tn ∗ ĝ)
∣∣∣ =

∣∣∣∣∣
∫

R2
f̂(ξ)ĝ(η)

∫ ξ−η

0
χ(s− n)dsdξdη

∣∣∣∣∣
=

∣∣∣∣∣
∫

R2
f̂(ξ)ĝ(η)

∫ ξ−η−n

−n
χ(s)dsdξdη

∣∣∣∣∣ .
Since χ(s) = 0 if s 6 −1, we have

∫ ξ−η−n
−n χ(s)ds = 0 if ξ − η − n 6 −1. If

ξ − η − n > −1, then
∫ ξ−η−n
−n χ(s)ds =

∫ ξ−η−n
−1 χ(s)ds. So

∣∣∣(f̂, Tn ∗ ĝ)
∣∣∣ =

∣∣∣∣∣
∫

R2
f̂(ξ)ĝ(η)

∫ ξ−η−n

−1
χ(s)dsdξdη

∣∣∣∣∣
6

∫
R2
〈ξ〉|f̂(ξ)|〈η〉|ĝ(η)|〈ξ〉−1〈η〉−1

∫ ξ−η−n

−1
χ(s)dsdξdη.

Since ε < 1/2, there is C > 0 such that 〈ξ〉−1/2+ε〈η〉−1/2+ε 6 C〈ξ − η〉−1/2+ε.∣∣∣(f̂, Tn ∗ ĝ)
∣∣∣ 6 C

∫
R2
〈ξ〉|f̂(ξ)|〈η〉|ĝ(η)|〈ξ〉−1/2−ε〈η〉−1/2−ε

〈ξ − η〉−1/2+ε
∫ ξ−η−n

−1
χ(s)dsdξdη

6 〈n− 1〉−1/2+ε
∫ 1

−1
χ(s)ds

∫
R2
〈ξ〉|f̂(ξ)|〈η〉|ĝ(η)|

〈ξ〉−1/2−ε〈η〉−1/2−εdξdη.

So, since K : (ξ, η) → 〈ξ〉−1/2−ε〈η〉−1/2−ε is in L2(R2), the operator L2 3
ψ 7→

∫
R K(ξ, η)ψ(η)dη is compact (see [19, Theorem VI.23]). So Tn is compact

fromH1 toH−1 if n > 0 and we can remark that we have similar inequalities for
n < 0.

So∣∣∣(f̂, V̂ ∗ ĝ)
∣∣∣ 6 +∞∑

n=−∞
|λn|

∣∣∣(f̂, Tn ∗ ĝ)
∣∣∣

6
∫

R2
〈ξ〉|f̂(ξ)|〈η〉|ĝ(η)|K(ξ, η)dξdη∫ 1

−1
χ(s)ds

+∞∑
n=−∞

|λn|max(〈n− 1〉−1/2+ε, 〈n+ 1〉−1/2+ε).

So, since
∑+∞
n=−∞ |λn|〈n〉−1/2+ε < ∞, we have that V : H1 → H−1 is

compact.
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Moreover, since χ(−x) = χ(x) and λn = λ−n, we have

q̂V (−ξ) =
+∞∑

n=−∞
λnχ(−ξ − n)

=
+∞∑

n=−∞
λnχ(ξ + n)

=
+∞∑

n=−∞
λ−nχ(ξ − n)

= q̂V (ξ)

So, since q̂V (ξ) ∈ R, we have xV (x) ∈ R,∀x ∈ R, and we conclude that V is a
symmetric multiplication operator.

(2) By a simple computation, in all dimension, we have

(g, [V,Au]f) = (V g,Auf)− (Aug, V f)
= (V g, qu(p)f)− (qu(p)g, V f)

− i2 ((V g, u′(p)f) + (u′(p)g, V f))

= (qV g, u(p)f)− (u(p)g, qV f)

− i2 ((V g, u′(p)f) + (u′(p)g, V f)) . (5.2)

If u′ is bounded, since V : H1 → H−1 is a compact operator, there is C > 0
such that

|(V g, u′(p)f) + (u′(p)g, V f)| 6 C‖f‖H1‖g‖H1 .

Moreover, we can remark that 〈·〉−1q̂V ∈ L1(R). So, there is C > 0 such that

|(u(p)f, qV g)| = |(u(q)f̂, q̂V ∗ ĝ)|

=
∣∣∣∣∫

R2
u(ξ)f̂(ξ)q̂V (ξ − η)ĝ(η)dξdη

∣∣∣∣
6 C

∫
R2
|u(ξ)|〈ξ〉|f̂(ξ)|〈ξ − η〉−1|q̂V (ξ − η)|

〈η〉|ĝ(η)|dξdη (5.3)

Since f, g ∈ H1 and u is bounded, u(q)〈q〉f̂ and 〈q〉ĝ are in L2. So by Young
inequality, we conclude that

|(u(p)f, qV g)| 6 C‖u(q)〈q〉f̂‖2‖(〈q〉−1q̂V ) ∗ (〈q〉ĝ)‖2

6 C‖〈q〉−1q̂V )‖1‖〈q〉f̂‖2‖〈q〉ĝ‖2

6 C‖〈q〉−1q̂V )‖1‖f‖H1‖g‖H1 .

So V ∈ C1(Au,H1,H−1). Similarly, we have

(g, [[V,Au], Au]f) = ([V,Au]g,Auf)− (Aug, [V,Au]f)
= ([V,Au]g, qu(p)f)− (qu(p)g, [V,Au]f)

− i2

(
(u′(p)g, [V,Au]f) + ([V,Au]g, u′(p)f)

)
.
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As V ∈ C1(Au,H1,H−1), we have that (u′(p)g, [V,Au]f) + ([V,Au]g, u′(p)f)
is bounded. Using (5.2), we have

(qu(p)g, [V,Au]f) = (qV qu(p)g, u(p)f)− (u(p)qu(p)g, qV f)

− i2
(
(V qu(p)g, u′(p)f) + (u′(p)qu(p)g, V f)

)
=

(
q2V u(p)g, u(p)f

)
− (u(p)qu(p)g, qV f)

− i2
(
(u(p)g, qV u′(p)f) + (u′(p)qu(p)g, V f)

)
.

By a simple computation, we have

(u(p)qu(p)g, qV f) = (qu(p)u(p)g, qV f) + ([u(p), q]u(p)g, qV f)

=
(
u(p)u(p)g, q2V f

)
+ i

2 (u(p)u′(p)g, qV f)

and

(u′(p)qu(p)g, V f) = (qu′(p)u(p)g, V f) + ([u′(p), q]u(p)g, V f)

= (u(p)u′(p)g, qV f) + i

2 (u′′(p)u(p)g, V f) .

As previously, we can remark that 〈q〉−1q̂2V ∈ L1. So, since u and all of whose
derivatives are bounded, we deduce that [[V,Au], Au] is a bounded operator on
H1 → H−1 and V ∈ C2(Au,H1,H−1). Remark that all previous inequalities
are true for any bounded u such that u ∈ C∞ with all derivatives bounded. In
particular, by taking u(x) = sin(ax), we deduce that

V ∈ C2(AN ,H1,H−1) ⊂ C1,1(AN ,H1,H−1).

(3) Now we will prove that V is not in C1(AD,H1,H−1). For N ∈ N∗, let

f̂N = 1[N,N+1]〈N + 1〉−1 and ĝ = 1[0,1].

Note that ‖〈·〉f̂N‖2
L2‖〈·〉ĝ‖2

L2 6 2 which implies that ‖fN‖H1‖g‖H1 6 4
√

2. We
have(

f̂N , ∇̂(qV ) ∗ ĝ
)

=
+∞∑

n=−∞
λn

∫
R2

(ξ − η)f̂N (ξ)χ(ξ − η − n)ĝ(η)dξdη

>
λN

〈N + 1〉

∫ N+1

N

(∫ 1

0
(ξ − η)χ(ξ − η −N + 1)dη

)
dξ

>
λN

〈N + 1〉 (N − 1)
∫ N+1

N

(∫ ξ−N+1

ξ−N
χ(σ)dσ

)
dξ

>
N − 1
〈N + 1〉λN

∫ 2

0
χ(σ)

(∫ N+σ

N+σ−1
dξ
)
dσ

>
N − 1
〈N + 1〉λN

∫ 2

0
χ(σ)dσ.

So, since
∫ 2

0 χ(σ)dσ > 0, we have that
(
(fN , [V, iAD]g)

)
N∈N

is not bounded
with ‖fN‖H1‖g‖H1 6 4. So V does not belong to the class C1(AD,H1,H−1).
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(4) Now, we will prove that V is not ∆-compact.
Let N ∈ N, N > 2 and let

f̂N = 1[N+1,N+2] and ĝ = 1[0,1].

Remark that ‖fN‖L2‖g‖H2 is a bounded sequence.

|(fN , V g)| =
∣∣∣(f̂N , V̂ ∗ ĝ)

∣∣∣
=

∫
ξ∈[N+1,N+2]

∫
η∈[0,1]

+∞∑
n=−∞

λn

∫ ξ−η

0
χ(s− n)ds

= −
∫
ξ∈[N+1,N+2]

∫
η∈[0,1]

−1∑
n=−∞

λn

∫ 0

ξ−η
χ(s− n)ds

+
∫
ξ∈[N+1,N+2]

∫
η∈[0,1]

N−1∑
n=1

λn

∫ ξ−η

0
χ(s− n)ds

+
N+2∑
n=N

λn

∫
ξ∈[N+1,N+2]

∫
η∈[0,1]

∫ ξ−η

0
χ(s− n)ds

+
∫
ξ∈[N+1,N+2]

∫
η∈[0,1]

+∞∑
n=N+3

λn

∫ ξ−η

0
χ(s− n)ds. (5.4)

Remark that, for ξ ∈ [N + 1, N + 2] and η ∈ [0, 1], we have N + 2 > ξ− η > N .
So, if ξ ∈ [N + 1, N + 2] and η ∈ [0, 1], we have:
• If n 6 −1, then χ(s−n) = 0 for all s ∈ [0, ξ− η]. So

∫ 0
ξ−η χ(s−n)ds = 0.

• If 1 6 n 6 N − 1, then ξ − η > n+ 1. So, since χ(s) = 0 if |s| > 1,∫ ξ−η

0
χ(s− n)ds =

∫ n+1

n−1
χ(s− n)ds =

∫ 1

−1
χ(s)ds > 0.

• If n > N+3, then ξ−η 6 n−1. So, since χ(s−n) = 0 for all s ∈ [0, ξ−η],
we have

∫ ξ−η
0 χ(s− n)ds = 0.

So, since λn > 0 for all n and χ(x) > 0 for all x, from (5.4), we have:

|(fN , V g)| =
∫
ξ∈[N+1,N+2]

∫
η∈[0,1]

N−1∑
n=1

λn

∫ 1

−1
χ(s)ds

+
N+2∑
n=N

λn

∫
ξ∈[N+1,N+2]

∫
η∈[0,1]

∫ ξ−η

0
χ(s− n)ds

> λN−1

∫ 1

−1
χ(s)ds.

So, since (λn)n∈N is not bounded, we can extract a subsequence (λφ(n))n∈N

such that

lim
n→+∞

λφ(n) = +∞ and we have lim
N→+∞

∣∣(fφ(N)+1, V g)
∣∣ = +∞.

So V is not ∆-bounded. �
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5.2. A class of oscillating potential. Let α > 0, β ∈ R, k ∈ R∗ and κ ∈ C∞c (R,R) such
that κ = 1 on [−1, 1] and 0 6 κ 6 1. Let

Wαβ(x) = (1− κ(|x|)) sin(k|x|α)
|x|β

. (5.5)

This potential can be seen as a ∆-compact potential (if β > 0) or as a potential on H1 to
H−1 for which we keep the same notation.

We will see that under certain condition on (α, β), we can apply Theorems 1.1 and 1.2
with Wαβ as potential. We will also compare our results (lemma 5.4) with results given in
[13].

Recall that U is the space of vector fields u bounded with all derivatives bounded such
that x · u(x) > 0 for all x 6= 0. We have the following:

LEMMA 5.4. — Let Wαβ be as in (5.5) and let H = ∆ + Wαβ . For all u ∈ U , we
have:

(1) if α+β > 2, thenWαβ : H1 → H−1 is compact andWαβ ∈ C1,1(Au,H1,H−1).
(2) if 2α+ β > 3 and β > 0, then Wαβ ∈ C1,1(Au,H2,H−2).

In particular, in this both cases, Theorems 1.1 and 1.2 apply.

Note that in (1), we do not require to have β > 0. In particular, if β < 0, then Wαβ is
an unbounded function.

In [13], if we suppose β > 0, we can see that the Limiting Absorption Principle can
be proved with the generator of dilation AD as conjugate operator for H = ∆ + Wαβ if
|α− 1|+ β > 1. If |α− 1|+ β < 1, they showed that H /∈ C1(AD). This implies that we
cannot apply the Mourre Theorem with AD as conjugate operator on this area. Moreover,
they also proved a limiting absorption principle if α > 1 and β > 1/2, in a certain energy
window. If |α − 1| + β < 1 and 2α + β > 3, Theorem 1.2 improves this result in two
waves: first, there is no restriction of energy; second, we have some result on the boundary
value of the resolvent. Furthermore, the region where |α − 1| + β < 1, 2α + β > 3 and
β 6 1

2 is not covered by [13] but Theorem 1.2 applies.
Proof of Lemma 5.4. — Let f, g ∈ S and let 0 < µ < 1. Let u ∈ U . We will always

suppose that µ is small enough. We have

(f, 〈q〉µ[Wαβ , iAu]g)
= (〈q〉µWαβf, iAug)− (Au〈q〉µf, iWαβg)
= (〈q〉µWαβf, iq · u(p)g)− (q · u(p)〈q〉µf, iWαβg)

+(〈q〉µWαβf,
1
2u
′(p)g) + ( i2u

′(p)〈q〉µf, iWαβg)

= (〈q〉µWαβf, iq · u(p)g)− (q · u(p)f, i〈q〉µWαβg) (5.6)

+(〈q〉µWαβf,
1
2u
′(p)g) + ( i2u

′(p)f, i〈q〉µWαβg) (5.7)

−(q · [u(p), 〈q〉µ]f, iWαβg) + ( i2 [u′(p), 〈q〉µ]f, iWαβg). (5.8)

Remark that, since u and all its derivatives are bounded, for µ < 1, we have that [u(p), 〈q〉µ]
and [u′(p), 〈q〉µ] are bounded and ‖u(p)f‖Hs and ‖u′(p)f‖Hs are controlled by ‖f‖Hs for
s = 1, 2. We will use this argument to treat terms in (5.7) and (5.8) and we note that they
are bounded in the H1 norm when terms in (5.6) are bounded. For this reason, we focus
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on this to terms which are quite similar. To control them, we will show that qWαβ(q) can
be write with a different form.

Let κ̃ ∈ C∞c (R,R) be such that κ̃(|x|) = 0 if |x| > 1, κ̃ = 1 on [−1/2, 1/2] and
0 6 κ̃ 6 1. So, we can observe that (1− κ̃(|x|))(1−κ(|x|)) = (1−κ(|x|)) for all x ∈ Rν .

For γ ∈ R, let

W̃αγ(x) = (1− κ̃(|x|))cos(k|x|α)
|x|γ

.

By a simple computation, we have

(1− κ(|x|))|x|∇W̃αγ(x) = −(1− κ(|x|))γ x
|x|
W̃αγ(x)− kαxWαβ(x) (5.9)

with γ = α+ β − 1.
In a first time, remark that, since, in both cases, γ > 0,

〈q〉µ γ

kα

q

|q|
W̃αγ(q)

is bounded for all 0 < µ 6 γ. Thus, by using (5.9) in (5.6), it suffices to proof that

〈q〉µ(1− κ(|q|))|q|∇W̃αγ(q) : H1 → H−1

is bounded to show that Wαβ ∈ C1,1(Au,H1,H−1).
To do this, remark that ∇F (q) = i[p, F (q) for all functions F . So, we have for φ, ψ ∈

S,

(u(p)φ, (1− κ(|q|))〈q〉µ|q|∇W̃αγ(q)ψ)
= (u(p)φ, i[p, (1− κ(|q|))〈q〉µ|q|W̃αγ(q)]ψ) + (u(p)φ, qκ′(|q|)〈q〉µW̃αγ(q)ψ)
−µ(u(p)φ, q(1− κ(|q|))〈q〉µ−1|q|W̃αγ(q)ψ)

−(u(p)φ, (1− κ(|q|))〈q〉µ q
|q|
W̃αγ(q)ψ).

So, we have

(u(p)φ, (1− κ(|q|))〈q〉µ|q|∇W̃αγ(q)ψ)
= (pu(p)φ, i(1− κ(|q|))〈q〉µ|q|W̃αγ(q)ψ)
−(u(p)φ, i(1− κ(|q|))〈q〉µ|q|W̃αγ(q)pψ) + (u(p)φ, qκ′(|q|)〈q〉µW̃αγ(q)ψ)
−µ(u(p)φ, q(1− κ(|q|))〈q〉µ−1|q|W̃αγ(q)ψ)

−(u(p)φ, (1− κ(|q|))〈q〉µ q
|q|
W̃αγ(q)ψ). (5.10)

So, since u is bounded, by density, if (1 − κ(|q|))〈q〉µ|q|W̃αγ(q) is bounded, then (1 −
κ(|q|))〈q〉µ|q|∇W̃αγ(q) : H1 → H−1 is bounded.

(1) Suppose that α + β > 2. Since γ > 1, by (5.9), 〈q〉µqWαβ : H1 → H−1 is
bounded for µ > 0 small enough. This implies that Wαβ belongs to the class
C1,1(Au,H1,H−1).

Moreover, by (5.9), we have

Wαβ(x) = −(1− κ(|x|)) γ
kα

1
|x|
W̃αγ(x)− (1− κ(|x|)) x

kα|x|
∇W̃αγ(x).
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So, since γ > 0, we have that (1−κ(|q|)) γ
kα

1
|q|W̃αγ(q) : H1 → H−1 is compact.

As in (5.10), we can prove that (1 − κ(|q|)) q
kα|q|∇W̃αγ(q) : H1 → H−1 is

compact. Thus, by sum, Wαβ : H1 → H−1 is compact.
(2) Suppose that β > 0 and 2α + β > 3. In this case, remark that Wαβ(q) is ∆-

compact. Let u ∈ U . Let κ˜ ∈ C∞c (R,R) be such that κ˜(x) = 0 if |x| > 1/2,
κ˜ = 1 on [−1/4, 1/4] and 0 6 κ˜ 6 1. For δ ∈ R, let

W˜αδ(x) = (1− κ˜(|x|)) sin(k|x|α)
|x|δ

.

By a simple computation, we can write:

W̃αγ(x) = (1− κ̃(|x|)) δ
kα

1
|x|
W˜αδ + (1− κ̃(|x|)) x

kα|x|
∇W˜αδ(x)

with δ = γ + α− 1 = β + 2α− 2 > 1.
Since we want to prove that [Wαβ , iAu] : H2 → H−2 is bounded, we can make

twice the argument of (5.10). This implies thatWαβ is inC1,1(Au,H2,H−2). �
If we want more regularity on the potentials, we have the following

LEMMA 5.5. — Let V : H1 → H−1 be a compact symmetric multiplication operator.
If |q|nV : H1 → H−1 is bounded for some n ∈ N∗, then, for any u ∈ U , we have V ∈
Cn(Au,H1,H−1). In particular, if α+β− 1 > n ∈ N∗, then Wαβ ∈ Cn(Au,H1,H−1).
In this case, if n > 1, we deduce that λ 7→ R(λ± i0) is locally of class Λs on R+∗ outside
the eigenvalues of H , where s is the integer part of α+ β − 2.

Proof of Lemma 5.5. — Let u ∈ U and n ∈ N∗. Let adnAu(V ) the iterated com-
mutator of order n, with ad1

Au
(V ) = [V,Au]. By induction, we can prove that there is

(Bk(p))k∈{0,··· ,n} and (B′k(p))k∈{0,··· ,n} two sequences of bounded operators such that

adnAu(V ) =
n∑
k=0

Bk(p)qkV B′k(p). (5.11)

Moreover, we can see that Bk(p) and B′k(p) depends only of u and its derivatives of order
less than n. So, if |q|nV : H1 → H−1 is bounded, then V ∈ Cn(Au,H1,H−1).

Moreover, by (5.9), we can see that if γ = α + β − 1 > s+ 1, s ∈ N∗, then |q|s+1V :
H1 → H−1 is bounded. So Wαβ ∈ Cs+1(Au,H1,H−1) ⊂ Λs+1(Au,H1,H−1) and by
Theorem 3.3, we can deduce that λ 7→ R(λ± i0) is locally of class Λs on R+∗ outside the
eigenvalues of H . �

5.3. An unbounded potential with high oscillations. Now, we will show an example
of potential V of class C∞(Au,H1,H−1) for any u ∈ U such that V is neither in
C1(AD,H1,H−1) nor ∆-bounded. In particular we cannot have the Mourre estimate
with AD as conjugate operator but we can prove a limiting absorption principle with Au
as conjugate operator and have a good regularity for the boundary value of the resolvent.

LEMMA 5.6. — Let κ ∈ C∞c (R,R) such that κ = 1 on [−1, 1] and 0 6 κ 6 1. Let

V (x) = (1− κ(|x|)) exp(3|x|/4) sin(exp(|x|)). (5.12)

Then:
(1) V : H1 → H−1 is compact;
(2) For any u ∈ U , we have V ∈ C∞(Au,H1,H−1);
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(3) V is not ∆-bounded;
(4) V is not of class C1(AD,H1,H−1).

In particular, we can use neither the Mourre Theorem with the generator of dilation as
conjugate operator nor Nakamura’s Theorem. By Theorem 3.3, we have the following

COROLLARY 5.7. — Let V as in (5.12) andH = ∆+V : H1 → H−1. Then Theorem
1.2 applies and, for all s > 0, the functions

λ 7→ R(λ± i0) ∈ B(H−1
s ,H1

−s) (5.13)

are locally of class Λs−1/2 on (0,+∞) outside the eigenvalues of H .

In particular, if we seeR(λ±i0) as an operator fromC∞c toD′ the space of distributions,
the functions

λ 7→ R(λ± i0) ∈ B(C∞c ,D′)
are of class C∞ on (0,+∞) outside the eigenvalues.

Proof of Lemma 5.6. — Let κ̃ ∈ C∞c (R,R) such that κ̃(|x|) = 0 if |x| > 1, κ̃ = 1 on
[−1/2, 1/2] and 0 6 κ̃ 6 1. So, we can observe that (1−κ̃(|x|))(1−κ(|x|)) = (1−κ(|x|))
for all x ∈ Rν .

If we denote
Ṽ (x) = (1− κ̃(|x|)) cos(exp(|x|)),

we have:

(1− κ(|x|))∇Ṽ (x) = −(1− κ(|x|)) x
|x|

exp(|x|) sin(exp(|x|)).

So,
xV (x) = −|x|(1− κ(|x|)) exp(−|x|/4)∇Ṽ (x).

(1) By a simple calculus, we have

V (x) = − x

|x|
(1− κ(|x|)) exp(−|x|/4)∇Ṽ (x).

So, since Ṽ is bounded, by writing∇Ṽ (q) = i[p, Ṽ (q)], as in (5.10), we can prove
that V : H1 → H−1 is compact.

(2) Similarly, since Ṽ is bounded, writing ∇Ṽ (q) = i[p, Ṽ (q)] we have q|q|nV (q) :
H1 → H−1 is bounded for all n ∈ N. So, by Lemma 5.5, for any u ∈ U we have
V ∈ Cn(Au,H1,H−1) for all n ∈ N∗. So V ∈ C∞(Au,H1,H−1).

(3) Let χ ∈ C0
c (R,R) be such that supp(χ) ⊂ [π4 ,

3π
4 ], χ > 0 and χ(π/2) = 1. Let

N ∈ N∗,
f(x) = 〈x〉−(ν+1)/2

and

gN (x) = ln
(3π

4 + 2Nπ
)(1−ν)/2

exp(|x|/2)χ
(

exp(|x|)− 2Nπ
)
.

We denote C > 0 constants independant of N . Remark that f ∈ H2 and∫
Rν
g2
N (x)dx =

∫
Rν

ln
(3π

4 + 2Nπ
)(1−ν)

exp(|x|)χ2(exp(|x|)− 2Nπ)dx

= C ln
(3π

4 + 2Nπ
)(1−ν) ∫

R
exp(r)χ2(exp(r)− 2Nπ)rν−1dr

6 C

∫
R

exp(r)χ2(exp(r)− 2Nπ)dr.
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So, if σ = er − 2Nπ, we have∫
Rν
g2
N (x)dx 6 C

∫
R
χ2(σ)dσ. (5.14)

So ‖f‖H2‖gN‖L2 6 C. Remark that, since f(x)V (x)gN (x) > 0 for all x ∈ Rν ,
we have for N large enough∫

Rν
f(x)V (x)g(x)dx =

∫
Rν
〈x〉−(ν+1)/2 ln

(3π
4 + 2Nπ

)(1−ν)/2
exp(5|x|/4)

χ
(

exp(|x|)− 2Nπ
)
(1− κ(|x|)) sin(exp(|x|))dx

> C ln
(3π

4 + 2Nπ
)(1−ν)/2 ∫

Rν
〈x〉−(ν+1)/2 exp(5|x|/4)

χ
(

exp(|x|)− 2Nπ
)
dx

> C ln
(3π

4 + 2Nπ
)(1−ν)/2

∫
R
〈r〉−(ν+1)/2 exp(5r/4)χ(er − 2Nπ)rν−1dr

> C

∫
R

exp(r/8)erχ(er − 2Nπ)dr

> C

∫ 3π/4

π/4
(σ + 2Nπ)1/8χ(σ)dσ

> C(π4 + 2Nπ)1/8
∫ 3π/4

π/4
χ(σ)dσ.

So lim
N→+∞

∫
Rν f(x)V (x)gN (x)dx = +∞. So V is not ∆-bounded.

(4) By a simple calculus, we have

x · ∇V (x) =− κ′(|x|)|x| exp(3|x|/4) sin(exp(|x|))
+ (1− κ(|x|))|x| exp(7|x|/4) cos(exp(|x|))

+ (1− κ(|x|))3
4 |x| exp(3|x|/4) sin(exp(|x|)).

Let χ ∈ C1
c (R,R) be such that supp(χ) ⊂ [0, π4 ], χ > 0 and χ(π/8) = 1. Let

N ∈ N∗ and
f(x) = 〈x〉−(ν+1)/2

and

gN (x) = ln
(π

4 + 2Nπ
)(1−ν)/2

exp(−|x|/2)χ
(

exp(|x|)− 2Nπ
)
.

As in (5.14), we can show that ‖f‖H1‖gN‖H1 6 C. Remark that, f(x)x ·
∇V (x)gN (x) > 0 for all x ∈ Rν . Since κ ∈ C∞c , we have for N ∈ N∗ large
enough∫

Rν
f(x)κ′(|x|)|x| exp(3|x|/4) sin(exp(|x|))gN (x)dx = 0.

Moreover, we have∫
Rν
f(x)(1− κ(|x|))3

4 |x| exp(3|x|/4) sin(exp(|x|))gN (x)dx > 0.
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Thus, for N large enough,∫
Rν
f(x)x · ∇V (x)g(x)dx >

∫
Rν
|x| ln

(π
4 + 2Nπ

)(1−ν)/2
χ
(

exp(|x|)− 2Nπ
)

(1− κ(|x|))〈x〉−(ν+1)/2 exp(5|x|/4) cos(exp(|x|))dx

> C ln
(π

4 + 2Nπ
)(1−ν)/2 ∫

Rν
〈x〉−(ν+1)/2

χ
(

exp(|x|)− 2Nπ
)
|x| exp(5|x|/4)dx

> C ln
(π

4 + 2Nπ
)(1−ν)/2 ∫

Rν
〈r〉−(ν+1)/2

χ
(
er − 2Nπ

)
rν exp(5r/4)dx

> C

∫
Rν
χ
(
er − 2Nπ

)
exp(5r/4)dx

> C

∫ π/4

0
(σ + 2Nπ)1/4χ(σ)dσ

> C(2Nπ)1/4
∫ π/4

0
χ(σ)dσ.

Thus, lim
N→+∞

∫
Rν f(x)x · ∇V (x)gN (x)dx = +∞.

Therefore, V /∈ C1(AD,H1,H−1). �

Remark that, if f(x) = 〈x〉−(ν+1)/2, then f ∈ Hk for all k ∈ N. This yields that, by
the same proof, we can show that V : Hk → L2 is not bounded for all k ∈ N.

5.4. A short range potential in a weak sense. Now, we will show an example of potential
with no decay at infinity for which Theorem 1.2 applies.

We have the following:

LEMMA 5.8. — Suppose that V : H1 → H−1 is a symmetric bounded operator. There
exists u ∈ U such that:

(1) if x 7→ |x|V (x) is inH−1 then V ∈ C1(Au,H1,H−1).
(2) if x 7→ 〈x〉1+µV (x) is inH−1 for some µ > 0, then V ∈ C1,1(Au,H1,H−1).

For this type of potential, we can take u of the form u(x) = x〈x〉−ν−1. Note that this u
is in L2(Rν).

We have the following

COROLLARY 5.9. — Let V : H1 → H−1 is a symmetric compact operator. Suppose
that there is µ > 0 such that x 7→ 〈x〉1+µV (x) is in H−1. Then Theorem 1.2 applies on
(0,+∞).

We will give an example of a potential which satisfies assumption of the previous corol-
lary and for which we cannot apply the Mourre Theorem with AD as conjugate operator.

LEMMA 5.10. — Let ν > 3 and let χ : R→ R such that χ ∈ C3, χ(|x|) = 0 if |x| > 1
and χ′(0) = χ′′(0) = 1. Let

V (x) =
+∞∑
n=2

n(3ν−1)/2χ′(n3ν/2(|x| − n)) with a finite sum for each x.

Then
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(1) V : H1 → H−1 is compact;
(2) there is u ∈ U such that V is of class C1,1(Au,H1,H−1);
(3) V is not ∆-bounded;
(4) V is not of class C1(AD,H1,H−1).

Proof of Lemma 5.8. — Let u(x) = x〈x〉−ν−1.
(1) Suppose that x 7→ |x|V (x) is in H−1. By (5.2), we can see that, if [qV, u(p)] :
H1 → H−1 is bounded, then V ∈ C1(Au,H1,H−1).

Let f, g ∈ C∞c . By (5.3) and Young inequality, there is C > 0 such that

|(u(p)f, qV g)| 6 C

∫
R2ν
|u(ξ)|〈ξ〉|f̂(ξ)|〈ξ − η〉−1|q̂V (ξ − η)|〈η〉|ĝ(η)|dξdη

6 C‖u(q)〈q〉f̂‖1‖(〈q〉−1|q̂V |) ∗ (〈q〉|ĝ|)‖∞
6 C‖u‖2‖〈q〉f̂‖2‖〈q〉−1q̂V ‖2‖〈q〉ĝ‖2

6 C‖u‖2‖f‖H1‖qV ‖H−1‖g‖H1 . (5.15)

We have a similar inequality for |(qV f, u(p)g)|. By density, we have the same
inequality for all f, g ∈ H1. Thus [qV, u(p)] : H1 → H−1 is bounded which
implies that V ∈ C1(Au,H1,H−1).

(2) Suppose that there is µ > 0 such that x 7→ 〈x〉1+µV (x) is in H−1. In partic-
ular, x 7→ |x|V (x) is in H−1. Therefore V ∈ C1(Au,H1,H−1). As we saw
previously, we can deduce that [〈q〉µqV, u(p)] : H1 → H−1 is bounded.

By a simple calculus, we have:

[qV, u(p)] = [〈q〉−µ〈q〉µqV, u(p)]
= 〈q〉−µ[〈q〉µqV, u(p)] + [〈q〉−µ, u(p)]〈q〉µqV

By the pseudo-differential calculus, we can prove that 〈q〉µ[〈q〉−µ, u(p)]〈p〉1+ν is
a bounded operator. From that, we deduce

[〈q〉−µ, u(p)]〈q〉µqV = 〈q〉−µ〈q〉µ[〈q〉−µ, u(p)]〈p〉1+ν〈p〉−1−ν〈q〉µqV.
As in (5.15), since x 7→ 〈x〉−1−ν is in L2(Rν), we have that 〈p〉−1−ν〈q〉µqV :
H1 → H−1 is bounded and 〈q〉µ[〈q〉−µ, u(p)]〈p〉1+ν〈p〉−1−ν〈q〉µqV : H1 →
H−1 is bounded.

Thus we can write [qV, u(p)] = 〈q〉−µB where B : H1 → H−1 is bounded.
Thus, for all ξ a real function of class C∞(Rν) such that ξ(x) = 0 if |x| < 1 and
ξ(x) = 1 if |x| > 2, we have

‖ξ(q/r)[qV, u(p)]‖B(H1,H−1) = ‖ξ(q/r)〈q〉−µB‖B(H1,H−1)

6 〈r〉−µ‖B‖B(H1,H−1).

In particular, by (5.15), V satisfies (3.1) and, by Proposition 3.2, V is of class
C1,1(Au,H1,H−1). �

Proof of Lemma 5.10. — Remark that we can write V (x) = x
|x|∇W (x) where

W (x) =
+∞∑
n=2

√
n
−1
χ(
√
n

3ν(|x| − n)).

(1) As lim
|x|→+∞

W (x) = 0, writing ∇W (q) = i[p,W (q)], we have that

V : H1 → H−1
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is compact.
(2) Let µ > 0.

∫
Rν

∣∣∣|x|1+µW (x)
∣∣∣2dx =

∞∑
n=2

n−1
∫

Rν
|x|2+2µχ2(n3ν/2(|x| − n))dx.

Since χ(|x|) = 0 if |x| > 1, there is C > 0 such that

∫
Rν

∣∣∣|x|1+µW (x)
∣∣∣2dx 6 C

∞∑
n=2

n−1(n+ n−3ν/2)2+2µ
∫ n+n−3ν/2

n−n−3ν/2
rν−1dr

6 2C
∞∑
n=2

(n+ n−3ν/2)1+2µ+νn−3ν/2−1.

In particular, since ν > 3, for µ > 0 sufficiently small, this sum is finite, and we
can conclude that 〈q〉1+µW ∈ L2. Therefore

〈x〉1+µV (x) = 〈x〉1+µ x

|x|
∇W = x

|x|
∇
{
〈·〉1+µW

}
(x)− (1 + µ)|x|〈x〉µ−1W (x).

Since x 7→ |x|〈x〉µ−1W (x) is in L2, we have that x 7→ 〈x〉1+µV (x) is in H−1.
Thus, by Lemma 5.8, V ∈ C1,1(Au,H1,H−1).

(3) Let N ∈ N∗. Then

f(x) = 〈x〉−(ν+1)/2

and

gN (x) = Nν/4+1/2χ′(N3ν/2(|x| −N)).

Remark that f ∈ H2 and

∫
Rν
g2
N (x)dx = Nν/2+1

∫
Rν
χ′(N3ν/2(|x| −N))2dx

6 CNν/2+1
∫

Rν
rν−1χ′(N3ν/2(r −N))2dx

6 CNν/2+1(N + 1)ν−1N−3ν/2
∫ 1

−1
χ′(t)2dt

6 C. (5.16)

Thus ‖gN‖L2 6 C.
To simplify notation, let I = [N −N−3ν/2, N +N−3ν/2]. Then
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Rν
f(x)V (x)gN (x)dx = Nν/4+1/2N (3ν−1)/2∫

Rν
〈x〉−(ν+1)/2χ′(N3ν/2(|x| −N))2dx

> Nν/4+1/2N (3ν−1)/2〈N +N−3ν/2〉−(ν+1)/2∫
|x|∈I

χ′(N3ν/2(|x| −N))2dx

> CNν/4+1/2N (3ν−1)/2〈N +N−3ν/2〉−(ν+1)/2∫
r∈I

rν−1χ′(N3ν/2(r −N))2dr

> C〈N + 1〉−(ν+1)/2(N − 1)5ν/4−1∫
r∈I

χ′(N3ν/2(r −N))2dr

> C〈N + 1〉−(ν+1)/2(N − 1)5ν/4−1
∫
r∈[−1,1]

χ′(r)2dr

Therefore, since ν > 3, we have that lim
N→+∞

∫
Rν f(x)V (x)gN (x)dx = +∞.

Since ‖f‖H2‖gN‖L2 6 C, we have that V is not ∆-bounded.
(4) By a simple calculus, we have

x · ∇V (x) = |x|
+∞∑
n=2

n3ν/2n(3ν−1)/2χ′′(n3ν/2(|x| − n)).

Let N ∈ N∗ and

f(x) = 〈x〉−(ν+1)/2 and gN (x) = Nν/4+1/2N−3ν/2χ′′(N3ν/2(|x| −N)).

Remark that f ∈ H1 and by (5.16) ‖gN‖H1 6 C.
To simplify notation, let I = [N −N−3ν/2, N +N−3ν/2]. We have∫

Rν
f(x)x · ∇V (x)gN (x)dx

= Nν/4+1/2N (3ν−1)/2
∫

Rν
|x|〈x〉−(ν+1)/2χ′′(N3ν/2(|x| −N))2dx

> Nν/4+1/2N (3ν−1)/2〈N +N−3ν/2〉−(ν+1)/2
∫
|x|∈I

χ′′(N3ν/2(|x| −N))2dx

> CNν/4+1/2N (3ν−1)/2〈N +N−3ν/2〉−(ν+1)/2
∫
r∈I

rν−1χ′′(N3ν/2(r −N))2dr

> C〈N + 1〉−(ν+1)/2(N − 1)5ν/4−1
∫
r∈I

χ′′(N3ν/2(r −N))2dr

> C〈N + 1〉−(ν+1)/2(N − 1)5ν/4−1
∫
r∈[−1,1]

χ′′(r)2dr.

Thus, since ν > 3, we have that lim
N→+∞

∫
Rν f(x)x · ∇V (x)gN (x)dx = +∞

with ‖f‖H1‖gN‖H1 6 C. Thus V /∈ C1(AD,H1,H−1). �
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6. FLOW

In this section we make a comment concerning the unitary group generated by the oper-
atorAu which could be useful in checking the C1,1(Au) property, subject that however we
shall not pursue further in this note. ForAu as in (2.3) one may give an explicit description
of eiτAu in terms of the classical flow generated by the vector field u as follows (we refer to
Subsection 4.2 in [1] for details). For each x ∈ X denote φτ (x) the solution of the system{

d
dτ φτ (x) = u (φτ (x))
φ0(x) = x

, (6.1)

which exists for all real τ and φτ (x) is a C∞ function of τ, x. Then φτ : X → X is a C∞

diffeomorphism and we have φσ ◦ φτ = φσ+τ .
Remark that because FAuF−1 = 1

2 (p · u(q) + u(q) · p), we have that Au is essentially
self-adjoint (see [1, Proposition 4.2.3]). Morever, because F−1HstF = Hts, for u ∈ U , the
C0 groups eiτAu leaves invariant theHst spaces (see [1, Proposition 4.2.4]).

Denote φ′τ (x) the derivative of φτ at the point x, so that φ′τ (x) : X → X is a linear
map with Jτ (x) = detφ′τ (x) > 0. Then:

FeiτAuF−1f = J1/2
τ f ◦ φτ (6.2)

where F is the Fourier transformation.
For the operator AN given by (4.2) it suffices to consider the one dimensional case,

because of the factorization properties mentioned at the beginning of Section 4. Then
X = R and u(k) = sin(ak). For simplicity, and without loss of generality, we take a = 1.
Then the system (6.1) has an elementary solution: if 0 6 x 6 π then

φτ (x) = arccos
((1− e2τ)+ cos(x)

(
1 + e2τ)(

1 + e2τ
)

+ cos(x)
(
1− e2τ

)) = 2 arctan
(

eτ tan
(x

2

))
(6.3)

and similarly outside [0, π]. Note that if x = kπ with k ∈ Z then φτ (x) = x.
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