
CONFLUENTES
MATHEMATICI

Mohamed BELHAJ MOHAMED
Doubling bialgebras of graphs and Feynman rules
Tome 8, no 1 (2016), p. 3-30.

<http://cml.cedram.org/item?id=CML_2016__8_1_3_0>

© Les auteurs et Confluentes Mathematici, 2016.
Tous droits réservés.

L’accès aux articles de la revue « Confluentes Mathematici »
(http://cml.cedram.org/), implique l’accord avec les condi-
tions générales d’utilisation (http://cml.cedram.org/legal/).
Toute reproduction en tout ou partie de cet article sous quelque
forme que ce soit pour tout usage autre que l’utilisation á fin
strictement personnelle du copiste est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir
la présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://cml.cedram.org/item?id=CML_2016__8_1_3_0
http://cml.cedram.org/
http://cml.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Confluentes Math.
8, 1 (2016) 3-30

DOUBLING BIALGEBRAS OF GRAPHS
AND FEYNMAN RULES

MOHAMED BELHAJ MOHAMED

Abstract. In this article, we define a doubling procedure for the bialgebra of specified
Feynman graphs introduced in a previous paper [1]. This is the vector space generated by the
pairs (Γ̄, γ̄) where Γ̄ is a locally 1PI specified graph of a perturbation theory T with γ̄ ⊂ Γ̄
locally 1PI and where Γ̄/γ̄ is a specified graph of T . We also define a convolution product on
the characters of this new bialgebra with values in an endomorphism algebra, equipped with
a commutative product compatible with the composition. We then express in this framework
the renormalization as formulated by A. Smirnov [13, §8.5, 8.6], adapting the approach of
A. Connes and D. Kreimer for two renormalization schemes: the minimal renormalization
scheme and the Taylor expansion scheme. Finally, we determine the finite parts of Feynman
integrals using the BPHZ algorithm after dimensional regularization procedure, by following
the approach by P. Etingof [9] (see also [11]).
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1. Introduction

In this note, we are interested in Feynman rules, given by integration of some type
of functions with respect to the internal momenta. We recall the construction of the
bialgebra H̃T and the Hopf algebra HT of specified Feynman graphs associated to
some perturbative theory T [1]. We define the doubling D̃T of this bialgebra. This
is the vector space generated by the pairs (Γ̄, γ̄) where Γ̄ is a locally 1PI specified
graph of the theory T with γ̄ ⊂ Γ̄ locally 1PI and where Γ̄/γ̄ is the corresponding
specified graph and we consider the following coproduct:

∆(Γ̄, γ̄) =
∑
δ̄⊆γ̄
γ̄/δ̄∈T

(Γ̄, δ̄)⊗ (Γ̄/δ̄, γ̄/δ̄).

We define then the convolution product > on the group G of characters of the Hopf
algebra DT with values in an endomorphism algebra End B̃ (where B̃ is defined in
§9.1), equipped with a commutative product • compatible with the composition ◦,
which takes into account the dependence of the external momenta:

ϕ> ψ := �(ϕ⊗ ψ)∆,

where � is the opposite of the composition product ◦. In other words, for all
specified graphs γ̄, Γ̄ such that γ̄ ⊂ Γ̄ we have:

(ϕ> ψ)(Γ̄, γ̄) =
∑
δ̄⊆γ̄
γ̄/δ̄∈T

ψ(Γ̄/δ̄, γ̄/δ̄) ◦ ϕ(Γ̄, δ̄).

We then retrieve the renormalization procedure as formulated by A. Smirnov [13,
§8.5, 8.6], adopting the approaches by A. Connes and D. Kreimer for two renor-
malization schemes: the minimal renormalization scheme and the Taylor expansion
scheme.

We then get interested in Feynman integrals which are generally divergent. We
use an algebraic approach to reinterpret Smirnov’s approach [13, §8] in the Connes-
Kreimer formalism, using the Hopf algebra DT and a target algebra which is no
longer commutative, because of composition of operators. We use the dimensional
regularization procedure for constructing the D-dimensional integrals, which con-
sists in writing the divergent integrals that we have to regularize in such a way
that the dimension of the physical space-time d can be replaced by any complex
number D. We follow the approach of P. Etingof [9] (see also [11]). Let V be the
d-dimensional space-time and Γ a Feynman graph with m external edges and corre-
sponding momenta q1, . . . , qm ∈ V , and with n−m loops (n > m). The amplitude
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of this graph can be written as:

I(q1,...,qm)(f) :=
∫
V n−m

f(q1, . . . , qn)dqm+1 . . . dqn.

Let Γ, γ and δ be three Feynman graphs such that δ ⊆ γ ⊆ Γ. We denote by:

E := E(Γ), F := E(Γ/δ) and G := E(Γ/γ) = E(Γ/δ
/
γ/δ),

the vector spaces spanned by the half-edges of the three graphs Γ, Γ/δ and Γ/γ
respectively. We denote by S2E∗ the vector space of symmetric bilinear forms on
E, by S̄2

+E
∗ the subset of positive semi-definite bilinear forms on E, by S2

+E
∗ the

subset of positive definite bilinear forms on E, and by S(S̄2
+E
∗) and S(S2E∗) the

two spaces of Schwartz functions on S̄2
+E
∗ and S2E∗ respectively. We adopt a

similar notations for F and G. We view an n-tuple q := (q1, . . . , qn), with qj ∈ Rd,
as an element of the vector space Hom(E,Rd). The m-tuple (q1, . . . , qm) is nothing
but the restriction q|F ∈ Hom(F,Rd). The bilinear form q∗(β) ∈ S̄2

+E
∗ is obtained

by pulling back β ∈ (S2
+Rd)∗ along q. Then we define the integral of a function f

that is defined on S̄2
+E
∗ by:

Id
∣∣
k∗β

(f) =
∫
{q∈Hom(E,Rd)/q|F=k}

f(q∗β)dq.

We recall that for all A in S2
+E
∗, for all B in S2

+E and for φB(A) := exp(−tr(AB))
we have:

Id
∣∣
C

(φB) = π(n−m)d/2 exp(−tr(C ·BF
∗
)).(detBF⊥)−d/2.

We recall [9] the construction of the D-dimensional integral with parameters

(ID)D∈C : S(S̄2
+E
∗) −→ O(C,S(S̄2

+F
∗))

defined by:

ID
∣∣
C

(φB) = π(n−m)D/2 exp(−tr(C ·BF
∗
)).(detBF⊥)−D/2.

We define then the integral IDΓ,δ : S(S̄2
+E
∗) −→ S(S̄2

+F
∗) for all C ∈ S2

+F
∗ and

f ∈ S(S̄2
+E
∗) by:

IDΓ,δ(f)(C) := ID
∣∣
C

(f),
which is a holomorphic function in D.

We show that for all graphs Γ, γ and δ such that δ ⊆ γ ⊆ Γ we have:
IDΓ,γ = IDΓ,δ ◦ IDΓ/δ,Γ/γ .

We denote by F(S̄2
+E
∗) and F(S2E∗) respectively the two spaces of Feynman type

functions on S̄2
+E
∗ and S2E∗, which are particular rational functions on S̄2

+E
∗

and S2E∗ without real poles (see Definition 8.8), and by F̃(S̄2
+E
∗) the space of

functions on C × S̄2
+E
∗, meromorphic in the first variable, equal to IDE′,E(g) for

some function g ∈ F(S̄2
+E
′∗), where E′ is a vector space containing E. The integral

ĨDΓ,δ : F̃(S̄2
+E
∗) −→ F̃(S̄2

+F
∗) is defined by:

ĨDΓ,δ(f)(C) := ID
∣∣
C

(f),
and extends to a meromorphic function of D.
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We denote by resΓ the residue of the graph Γ. The Feynman rules are defined
for U = E(resΓ) by:

ĨΓ,Γ
(
ϕ(Γ)

)
∈ F̃(S̄2

+U
∗),

where ϕ(Γ) is the Feynman amplitude (5.1) in §5.1 below.
Let G be the group of characters of DT with values in A := End B̃([z−1, z]]),

equipped by the minimal renormalization scheme:. We show that every element
ϕ of G has a unique Birkhoff decomposition compatible with the renormalization
scheme chosen:

ϕ = ϕ>−1
− > ϕ+,

with:
ϕ−(Γ̄, γ̄) = −P

(
ϕ(Γ̄, γ̄) +

∑
δ̄( γ̄
γ̄/δ̄ ∈T

ϕ(Γ̄/δ̄, γ̄/δ̄) ◦ ϕ−(Γ̄, δ̄)
)
,

ϕ+(Γ̄, γ̄) = (I − P )
(
ϕ(Γ̄, γ̄) +

∑
δ̄( γ̄
γ̄/δ̄ ∈T

ϕ(Γ̄/δ̄, γ̄/δ̄) ◦ ϕ−(Γ̄, δ̄)
)
,

and where P : A� A− is the projection parallel to A+. These formulas constitute
the algebraic frame of Smirnov’s approach [13, §8.2]. The regularized Feynman
rules then define an element Ĩ of G(k[z−1, z]]),

Ĩ : D̃T −→ A (Γ, γ) 7−→ Ĩ(Γ, γ) := ĨDΓ,γ .

In the Birkhoff decomposition

Ĩ = Ĩ>−1
− > Ĩ+

the component Ĩ− is the character of the counterterms, and the renormalized char-
acter Ĩ+ is evaluated at D = d.

2. Feynman graphs

2.1. Basic definitions. A Feynman graph is a graph with a finite number of
vertices and edges, which can be internal or external. An internal edge is an edge
connected at both ends to a vertex, an external edge is an edge with one open
end, the other end being connected to a vertex. The edges are obtained by using
half-edges.

More precisely, let us consider two finite sets V and E . A graph Γ with V (resp.
E) as set of vertices (resp. half-edges) is defined as follows: Let σ : E −→ E be
an involution and ∂ : E −→ V. For any vertex v ∈ V we denote by st(v) =
{e ∈ E/∂(e) = v} the set of half-edges adjacent to v. The fixed points of σ
are the external edges and the internal edges are given by the pairs {e, σ(e)} for
e 6= σ(e). The graph Γ associated to these data is obtained by attaching the half-
edges e ∈ st(v) to the vertex v for any v ∈ V, and joining the two half-edges e and
σ(e) if σ(e) 6= e.

Several types of half-edges will be considered later on: the set E is partitioned
into several pieces Ei. In that case we ask that the involution σ respects the different
types of half-edges, i.e. σ(Ei) ⊂ Ei.
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We denote by I(Γ) the set of internal edges and by Ext(Γ) the set of external
edges. The loop number of a graph Γ is given by:

L(Γ) = |I(Γ)| − |V(Γ)|+ |π0(Γ)| ,

where π0(Γ) is the set of connected components of Γ.
A one-particle irreducible graph (in short, 1PI graph) is a connected graph which

remains connected when we cut any internal edge. A disconnected graph is said to
be locally 1PI if any of its connected components is 1PI.

A covering subgraph of Γ is a Feynman graph γ (not necessarily connected),
obtained from Γ by cutting internal edges. In other words:

(1) V(γ) = V(Γ).
(2) E(γ) = E(Γ).
(3) σΓ(e) = e =⇒ σγ(e) = e.
(4) If σγ(e) 6= σΓ(e) then σγ(e) = e and σγ(σΓ(e)) = σΓ(e).
For any covering subgraph γ, the contracted graph Γ/γ is defined by shrinking

all connected components of γ inside Γ onto a point.
The residue of the graph Γ, denoted by resΓ, is the contracted graph Γ/Γ.
The skeleton of a graph Γ denoted by skΓ is a graph obtained by cutting all

internal edges.

2.2. Quantum field theory and specified graphs. We will work inside a phys-
ical theory T , (ϕ3, ϕ4, QED, QCD etc). The particular form of the Lagrangian
leads to consider certain types of vertices and edges. A difficulty appears: the type
of half-edges of st(v) is not sufficient to determine the type of the vertex v. We de-
note by E(T ) the set of possible types of half-edges and by V(T ) the set of possible
types of vertices.

Example 2.1. — E(ϕ3) = { }, V(ϕ3) = {
0

,
1

, }.

E(QED) = { , }, V(QED) = {
0

,
1

, ,
1
}.

Definition 2.2. — A specified graph of theory T is a couple (Γ, i) where:
(1) Γ is a locally 1PI superficially divergent graph with half-edges and vertices

of the type prescribed in T .
(2) i : π0(Γ) −→ N, the values of i(γ) being prescribed by the possible types of

vertex obtained by contracting the connected component γ on a point.
We will say that (γ, j) is a specified covering subgraph of (Γ, i),

(
(γ, j) ⊂ (Γ, i)

)
if:

(1) γ is a covering subgraph of Γ.
(2) if γ0 is a full connected component of γ, i.e. if γ0 is also a connected com-

ponent of Γ, then j(γ0) = i(γ0).

Remark 2.3. — Sometimes we denote by Γ̄ = (Γ, i) the specified graph, and we
will write γ̄ ⊂ Γ̄ for (γ, j) ⊂ (Γ, i).

Definition 2.4. — Let be (γ, j) ⊂ (Γ, i). The contracted specified subgraph is
written:

Γ̄/γ̄ = (Γ/γ̄, i),
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where Γ̄/γ̄ is obtained by contracting each connected component of γ on a point,
and specifying the vertex obtained with j.

Remark 2.5. — The specification i is the same for the graph Γ̄ and the con-
tracted graph Γ̄/γ̄.

2.3. External structures. Let d be an integer > 1 (the dimension). For any half-
edge e of Γ we denote by pe ∈ Rd the corresponding moment. The momenta space
of graph Γ is defined by:

WΓ = {p : E(Γ) −→ Rd,
∑

e∈st(v)

pe = 0 ∀v ∈ V(Γ),

pe + pσ(e) = 0 ∀e ∈ E(Γ), e 6= σ(e)}.

The space of external momenta of Γ is nothing but WresΓ.

3. Construction of Feynman graphs Hopf algebra

3.1. The bialgebra of specified graphs. Let H̃T be the vector space generated
by the specified superficially divergent Feynman graphs of a field theory T . The
product is given by the concatenation, the unit 1 is identified with the empty graph
and the coproduct is defined by:

∆(Γ̄) =
∑
γ̄⊆Γ̄

Γ̄/γ̄∈T

γ̄ ⊗ Γ̄/γ̄,

where the sum runs over all locally 1PI specified covering subgraphs γ̄ = (γ, j) of
Γ̄ = (Γ, i), such that the contracted subgraph (Γ/(γ, j), i) is in the theory T .

Remark 3.1. — The condition Γ̄/γ̄ ∈ T is crucial, and means also that γ̄ is a
”superficially divergent” subgraph. For example, in ϕ3, for

Γ = and γ = ,

we obtain Γ/γ = by contraction, which must be eliminated because of the
tetravalent vertex.

Example 3.2. — In ϕ3 Theory:

∆( , 0) = ( , 0)⊗
0

+ ⊗ ( , 0)

+ ( , 0)⊗ (
0

, 0)

+ ( , 1)⊗ (
1

, 0).



DOUBLING BIALGEBRAS OF GRAPHS AND FEYNMAN RULES 9

In QED:

∆( , 1) = ⊗ ( , 1)

+ ( , 1)⊗
1

+ ( , 0)⊗ (
0

, 1)

+ ( , 1)⊗ (
1

, 1).

Theorem 3.3 ([1]). — The coproduct ∆ is coassociative.

3.2. The Hopf algebra of specified graphs. The Hopf algebra HT is given by
identifying all elements of degree zero (the residues) to unit 1:

HT = H̃T /J (3.1)

where J is the ideal generated by the elements 1−res Γ̄ where Γ̄ is an 1PI specified
graph. One immediately checks that J is a bi-ideal. HT is a connected graded
bialgebra, it is therefore a connected graded Hopf algebra. The coproduct then
becomes:

∆(Γ̄) = 1⊗ Γ̄ + Γ̄⊗ 1 +
∑

γ̄ proper subgraph of Γ̄
loc 1PI. Γ̄/γ̄∈T

γ̄ ⊗ Γ̄/γ̄, (3.2)

4. Doubling the bialgebra of specified graphs

Let D̃T be the vector space spanned by the pairs (Γ̄, γ̄) of locally 1PI speci-
fied graphs, with γ̄ ⊂ Γ̄ and Γ̄/γ̄ ∈ H̃T . This is the free commutative algebra
generated by the corresponding connected objects. The product is again given by
juxtaposition, and the coproduct is defined as follows:

∆(Γ̄, γ̄) =
∑
δ̄⊆γ̄
γ̄/δ̄∈T

(Γ̄, δ̄)⊗ (Γ̄/δ̄, γ̄/δ̄) (4.1)

Proposition 4.1. — (D̃T ,m,∆, u, ε) is a graded bialgebra, and

P2 : D̃T −→ H̃T
(Γ̄, γ̄) 7−→ γ̄

is a bialgebra morphism.

Proof. — The unit is the pair (1,1), where 1 is the empty graph, co-unit is given
by ε(Γ̄, γ̄) = ε(γ̄), the grading is given by the loop number of the subgraph:

|(Γ̄, γ̄)| = |γ̄|. (4.2)
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Let us now check coassociativity:

(∆⊗ id)∆(Γ̄, γ̄) = (∆⊗ id)
( ∑

δ̄⊆γ̄
γ̄/δ̄∈T

(Γ̄, δ̄)⊗ (Γ̄/δ̄, γ̄/δ̄)
)

=
∑

σ̄⊆δ̄⊆γ̄_δ̄/σ̄ , γ̄/δ̄∈T

(Γ̄, σ̄)⊗ (Γ̄/σ̄, δ̄/σ̄)⊗ (Γ̄/δ̄, γ̄/δ̄),

whereas

(id⊗∆)∆(Γ̄, γ̄) = (id⊗∆)
( ∑

σ̄⊆γ̄
γ̄/σ̄∈T

(Γ̄, σ̄)⊗ (Γ̄/σ̄, γ̄/σ̄)
)

=
∑
σ̄⊆γ̄
γ̄/σ̄∈T

∑
δ̃⊆γ̄/σ̄
γ̄/σ̄/δ̃∈T

(Γ̄, σ̄)⊗ (Γ̄/σ̄, δ̃)⊗ (Γ̄/σ̄
/
δ̃, γ̄/σ̄

/
δ̃)

=
∑

σ̄⊆δ̄⊆γ̄
γ̄/σ̄ , γ̄/σ̄∈T

(Γ̄, σ̄)⊗ (Γ̄/σ̄, δ̄/σ̄)⊗ (Γ̄/δ̄, γ̄/δ̄).

The conditions {γ̄/δ̄ , γ̄/σ̄ ∈ T } and {γ̄/δ̄ , δ̄/σ̄ ∈ T } are equivalent, which proves
coassociativity. Compatibility with product and grading are obvious. Finally P2 is
an algebra morphism, and we have:

∆ ◦ P2(Γ̄, γ̄) = ∆(γ̄)
=

∑
γ̄⊆Γ̄

Γ̄/γ̄∈T

δ̄ ⊗ γ̄/δ̄

= (P2 ⊗ P2)∆(Γ̄, γ̄). �

5. Feynman rules

5.1. Describing the integrand. Let Γ be a Feynman graph. Every vertex v
comes with its coupling constant gv depending only on the vertex type of v. Every
internal edge (e−e+) (resp every external edge e) comes with propagator Ge−e+ :
Rd −→ C (resp Ge) which depends only on the type of edge. This is a rational
function without real poles in the Euclidean case with mass. For example in ϕ3 or
ϕ4 theory, all propagators (internal and external) are given by the same function
G:

G(p) = 1
p2 +m2 .

Then ϕ(Γ) is an element of C∞(WΓ,C) defined by:

ϕ(Γ)(p) =
∏

v∈V(Γ)

gv
∏

{e,σ(e)},σ(e)6=e

Geσ(e)(pe)
∏

σ(e)=e

Ge(pe). (5.1)

Note that ifGeσ(e) is not an even function, we must orient the corresponding internal
edge and we set Gσ(e)e(p) = Geσ(e)(−p).
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Example 5.1. — We consider the following graph in ϕ3 theory:

Γ =
p

k

p

k − p

.

The amplitude of Γ can be written:

ϕ(Γ) = g2.
1

(p2 +m2)2 .
1

k2 +m2 .
1

(k − p)2 +m2 .

5.2. Integrating internal momenta. We put on R a normalized Lebesgue mea-
sure

d-ξ = dξ

2π
and we associate the normalized Lebesgue measure on WΓ. For all q in WΓ/γ we
set:

IΓ,γϕ(q) =
∫
F−1

Γ,γ({q})⊂WΓ

ϕ(p)d-p. (5.2)

Hence:
IΓ,γ : C∞(WΓ) −→ C∞(WΓ/γ),

if the integral converges. Integrating by stages, if δ ⊂ γ ⊂ Γ, we have:
IΓ,γ = IΓ/δ,γ/δ ◦ IΓ,δ.

The Feynman rules are given by:
Γ 7−→ IΓ,Γ(ϕ(Γ)).

The problem is that these integrals are in general divergent.

6. Bogoliubov’s algorithm

We denote by π the projection on the counterterms. Here π : C∞(WΓ) �
C∞(WΓ) is given by the Taylor expansion at a certain order. In dimensional reg-
ularization one often considers π : C∞(WΓ)[z−1, z]] � z−1C∞(WΓ)[z−1] (minimal
scheme).

If |γ| = 0 we find that: IΓ,γ = Id.
If |γ| = 1 we set: I−Γ,γ := −π ◦ IΓ,γ .
If |γ| > 2, we use our favorite recursive formulas:

I−Γ,γ := −π ◦
(
IΓ,γ +

∑
δ⊂γ

IΓ/δ,γ/δ ◦ I−Γ,δ
)
, (6.1)

I+
Γ,γ := (Id− π) ◦

(
IΓ,γ +

∑
δ⊂γ

IΓ/δ,γ/δ ◦ I−Γ,δ
)
. (6.2)

This is very similar to the Connes-Kreimer formulas [4], but there are some differ-
ences: the commutative product of the target algebra is replaced by composition
of operators. On the other hand, one can guess that the bialgebra D̃T must play
a role: this is indeed case. Moreover as IΓ,γ = Id for any γ of degree zero, we
can rather work with the Hopf algebra DT := D̃T /J , where J is the (bi-) ideal
spanned by 1− (Γ̄, γ), for |γ| = 0.
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7. Adaptation of the Connes-Kreimer formalism

We want to reinterpret Smirnov’s approach [13, §8] into Connes-Kreimer formal-
ism, using the Hopf algebra DT and a target algebra which is no longer commuta-
tive, because of composition of operators.

7.1. The unordered tensor product. Let A be a finite set, and let Vj be a
vector space for any j ∈ A. The product

∏
j∈A Vj is defined by:∏

j∈A
Vj := {v : A −→

∐
j∈A

Vj , v(j) ∈ Vj ∀ j ∈ A}.

The space V :=
⊗

j∈A Vj is then defined by the following universal property: for
any vector space E and for any multilinear map F :

∏
j∈A Vj −→ E, there exists a

unique linear map F̄ such that the following diagram is commutative:⊗
j∈A Vj

F̄

��∏
j∈A Vj

v 7→
⊗

j∈A
vj
99

F
// E

Remark 7.1. — Let
(
eλ
)
λ∈Λj

be a basis of Vj . A basis of
⊗

j∈A Vj is given by:(
fµ =

⊗
j∈A

eµ(j)
)
µ∈Λ,

where Λ =
∏
j∈A Λj = {µ : A −→

∐
j∈A Λj such that µ(j) ∈ Λj}.

7.2. An algebra of Schwartz functions. For a connected graph Γ, we introduce:

VΓ := S(WΓ). (7.1)

For Γ = Γ1 · · ·Γr not connected, we put:

VΓ =
⊗

j∈{1,...,r}

VΓj ,

where the space VΓ :=
⊗

j∈A VΓj is the unordered tensor product of the VΓj and
where the Γj are the connected components of Γ. Finally we consider

B :=
∏
Γ∈T

VΓ. (7.2)

Let use remark that the operators IΓ,γ can be understood as elements of EndB.
Any a ∈ EndB is written as a block matrix whose coefficients are of the following

form:
aΓΓ′ : VΓ −→ V ′Γ.

We equip EndB with a product • defined by:

aΓ1Γ′1 • aΓ2Γ′2 : VΓ1Γ2 −→ VΓ′1Γ′2⊗
j∈{1,2}

vj 7−→
⊗

j∈{1,2}

aΓjΓ′j (vj)
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This definition extends naturally to a commutative bilinear product on EndB:

(a • b)ΓΓ′ =
∑
∂δ=Γ
∂′δ′=Γ′

a∂∂′ • bδδ′ . (7.3)

Considering four linear maps:

a1 : VΓ1 −→ VΓ′1 ; b1 : VΓ′1 −→ VΓ′′1 ,
a2 : VΓ2 −→ VΓ′2 ; b2 : VΓ′2 −→ VΓ′′2 ,

we have the following result:

Proposition 7.2. — (b1 ◦ a1) • (b2 ◦ a2) = (b1 • b2) ◦ (a1 • a2).

Proof. — (b1 ◦ a1) • (b2 ◦ a2)(
⊗

j∈{1,2}

vj) =
⊗

j∈{1,2}

(bj ◦ aj)(vj)

(b1 • b2) ◦ (a1 • a2)(
⊗

j∈{1,2}

vj) = b1 • b2
( ⊗
j∈{1,2}

aj(vj)
)

=
⊗

j∈{1,2}

bj(aj(vj))

=
⊗

j∈{1,2}

(bj ◦ aj)(vj). �

7.3. Convolution product >. Let � denote the opposite of the composition prod-
uct in EndB. We then define a convolution product > for all ϕ, ψ ∈ L(DT ,EndB)
by:

ϕ> ψ := �(ϕ⊗ ψ)∆. (7.4)

In other words, for all specified graphs γ̄, Γ̄ such that γ̄ ⊂ Γ̄ we have:

(ϕ> ψ)(Γ̄, γ̄) =
∑
δ̄⊆γ̄
γ̄/δ̄∈T

ψ(Γ̄/δ̄, γ̄/δ̄) ◦ ϕ(Γ̄, δ̄). (7.5)

Theorem 7.3. — Let G be the set of morphisms of unitary algebras DT −→
(EndB, •). Equipped with the product >, the set G is a group.

Proof. — Associativity of > is immediate, it results from the associativity of �
and coassociativity of ∆. The identity element E is defined by:

E(Γ̄, γ̄) =
{
IdB if γ̄ is a specified graph of degree zero,
0 if not. (7.6)

The inverse of an element ϕ of G is given by the following recursive formula:

ϕ>−1(Γ̄, γ̄) =

 ϕ(Γ̄, γ̄) = IdB if |γ| = 0,∑
δ̄⊆γ̄
|δ|>1

ϕ>−1(Γ̄/δ̄, γ̄/δ̄) ◦ ϕ(Γ̄, δ̄) if |γ| > 1. (7.7)
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The fact that for all ϕ, ψ ∈ G we have ϕ > ψ ∈ G is a result of the compatibility
between the products � and •. Indeed:
(ϕ> ψ)(Γ̄Γ̄′, γ̄γ̄′) = (ϕ> ψ)(ΓΓ′, γγ̄′)

=
∑
δ̄⊆γ̄γ̄′

(γ̄γ̄′)/δ̄∈T

ψ
(
Γ̄Γ̄′/δ̄, (γ̄γ̄′)/δ̄

)
◦ ϕ
(
Γ̄Γ̄′, δ̄

)

=
∑

δ̄⊂ γ̄ , δ̄′⊂ γ̄′
γ̄/δ̄;γ̄′/δ̄′∈T

ψ
(
Γ̄Γ̄′/δ̄δ̄′, γ̄γ̄′/δ̄δ̄′

)
◦ ϕ
(
Γ̄Γ̄′, δ̄δ̄′

)

=
∑

δ̄⊂ γ̄ , δ̄′⊂ γ̄′
γ̄/δ̄;γ̄′/δ̄′∈T

(
ψ(Γ̄/δ̄, γ̄/δ̄) • ψ(Γ̄′/δ̄′, γ̄′/δ̄′)

)
◦
(
ϕ(Γ̄̄,δ̄) • ϕ(Γ̄′, δ̄′)

)

=
∑

δ̄⊂ γ̄ , δ̄′⊂ γ̄′
γ̄/δ̄;γ̄′/δ̄′∈T

(
ψ(Γ̄/δ̄, γ̄/δ̄) ◦ ϕ(Γ̄̄,δ̄)

)
•
(
ψ(Γ̄′/δ̄′, γ̄′/δ̄′) ◦ ϕ(Γ̄′, δ̄′)

)
= (ϕ> ψ)(Γ̄, γ̄) • (ϕ> ψ)(Γ̄′, γ̄′). �

7.4. Taylor expansions. We adapt here a construction from [6, §9] also used by
[12, §3.7], (see also [7, 8], and also [1]).

Definition 7.4. — Let B be the commutative algebra defined by (7.2). For
m ∈ N the order m Taylor expansion operator is:

Pm ∈ End(B), Pmf(v) :=
∑
|β|6m

vβ

β! ∂
β
0 f, (7.8)

where β = (β1, ..., βn) ∈ Nn with the usual notations β 6 α iff βi 6 αi for all i,
|β| := β1 + ...+ βn, as well as

vβ =
∏

16k6n
vβkk , β! :=

∏
16k6n

βk!, ∂β0 :=
∏

16k6n

∂βk

∂vβkk |vk=0

.

Let ϕ be an element of G lifted to an algebra morphism from D̃T into (EndB, •).
We define a Birkhoff decomposition:

ϕ = ϕ>−1
− > ϕ+. (7.9)

The components ϕ+ and ϕ− are given by simple recursive formulas: for any (Γ̄, γ̄)
of degree zero (i.e. γ without internal edges) we put:

ϕ−(Γ̄, γ̄) = ϕ+(Γ̄, γ̄) = ϕ(Γ̄, γ̄) = IdB.

If we assume that ϕ−(Γ̄, γ̄) and ϕ+(Γ̄, γ̄) are known for (Γ̄, γ̄) of degree k 6 m− 1,
we have then for any pairs of specified graphs (Γ̄, γ̄) of degree m:

ϕ−(Γ̄, γ̄) = −Pm
(
ϕ(Γ̄, γ̄) +

∑
δ̄( γ̄
γ̄/δ̄ ∈T

ϕ(Γ̄/δ̄, γ̄/δ̄) ◦ ϕ−(Γ̄, δ̄)
)

(7.10)

ϕ+(Γ̄, γ̄) = (I − Pm)
(
ϕ(Γ̄, γ̄) +

∑
δ̄( γ̄
γ̄/δ̄ ∈T

ϕ(Γ̄/δ̄, γ̄/δ̄) ◦ ϕ−(Γ̄, δ̄)
)
. (7.11)
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The operators Pm form a Rota–Baxter family in the sense of K. Ebrahimi-Fard, J.
Gracia-Bondia and F. Patras [6, Proposition 9.1, Proposition 9.2]. For all graphs
Γ, for all f, g ∈ VΓ and for any s, t ∈ N we have:

(Psf)(Ptg) = Ps+t[(Psf)g + f(Ptg)− fg]. (7.12)

Theorem 7.5. — Let ϕ be a character of D̃T with values in the unitary com-
mutative algebra B. Further let P. : N −→ End(B) be an indexed renormalization
scheme, that is a family (Pt)t∈N of endomorphisms such that:

µ ◦ (Ps ⊗ Pt) = Ps+t ◦ µ ◦ [Ps ⊗ Id+ Id⊗ Pt − Id⊗ Id], (7.13)

for all s, t ∈ N. Then the two maps ϕ− and ϕ+ defined by (7.10) and (7.11) are
two characters of (B, •).

Proof. — We will just prove that ϕ− is a character. Then ϕ+ = ϕ− ~ ϕ is also
a character. For (Γ̄, γ̄), (Γ̄′, γ̄′) ∈ ker ε, we write

ϕ−(Γ̄, γ̄) = −P|(Γ̄,γ̄)|(ϕ̄(Γ̄, γ̄)),

where:

ϕ̄(Γ̄, γ̄) = ϕ(Γ̄, γ̄) +
∑
δ̄( γ̄
γ̄/δ̄ ∈T

ϕ(Γ̄/δ̄, γ̄/δ̄) ◦ ϕ−(Γ̄, δ̄).

For proving this theorem we use the formulas (7.10) and (7.13).

ϕ−(Γ̄Γ̄′, γ̄γ̄′)

= −P|(Γ̄Γ̄′,γ̄γ̄′)|
(
ϕ(Γ̄Γ̄′, γ̄γ̄′) +

∑
δ̄δ̄′(γ̄γ̄′

γ̄γ̄′/δ̄δ̄′ ∈T

ϕ(Γ̄Γ̄′/δ̄δ̄′, γ̄γ̄′/δ̄δ̄′) ◦ ϕ−(Γ̄Γ̄′, δ̄δ̄′)
)

= −P|(Γ̄Γ̄′,γ̄γ̄′)|

[
ϕ(Γ̄, γ̄) • ϕ(Γ̄′, γ̄′) + ϕ−(Γ̄, γ̄) • ϕ(Γ̄′, γ̄′) + ϕ(Γ̄, γ̄) • ϕ−(Γ̄′, γ̄′)

+
∑
δ̄(γ̄

γ̄/δ̄ ∈T

(
ϕ(Γ̄/δ̄, γ̄/δ̄) ◦ ϕ−(Γ̄, δ̄)

)
•
(
ϕ−(Γ̄′, γ̄′) + ϕ(Γ̄′, γ̄′)

)

+
∑
δ̄′(γ̄′

γ̄′/δ̄′ ∈T

(
ϕ(Γ̄′/δ̄′, γ̄′/δ̄′) ◦ ϕ−(Γ̄′, δ̄′)

)
•
(
ϕ−(Γ̄, γ̄) + ϕ(Γ̄, γ̄)

)

+
∑

δ̄( γ̄ , δ̄′( γ̄′

γ̄/δ̄ ; γ̄′/δ̄′∈T

(
ϕ(Γ̄/δ̄, γ̄/δ̄) ◦ ϕ−(Γ̄, δ̄)

)
•
(
ϕ(Γ̄′/δ̄′, γ̄′/δ̄′) ◦ ϕ−(Γ̄′, δ̄′)

)]
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= −P|(Γ̄,γ̄)|+|(Γ̄′,γ̄′)|

[(
ϕ(Γ̄, γ̄) +

∑
δ̄( γ̄
γ̄/δ̄ ∈T

ϕ(Γ̄/δ̄, γ̄/δ̄) ◦ ϕ−(Γ̄, δ̄)
)

•
(
ϕ(Γ̄′, γ̄′) +

∑
δ̄′( γ̄′

γ̄′/δ̄′ ∈T

ϕ(Γ̄′/δ̄′, γ̄′/δ̄′) ◦ ϕ−(Γ̄′, δ̄′)
)

+ ϕ−(Γ̄′, γ̄′) •
(
ϕ(Γ̄, γ̄) +

∑
δ̄( γ̄
γ̄/δ̄ ∈T

ϕ(Γ̄/δ̄, γ̄/δ̄) ◦ ϕ−(Γ̄, δ̄)
)

+ ϕ−(Γ̄, γ̄) •
(
ϕ(Γ̄′, γ̄′) +

∑
δ̄′( γ̄′

γ̄′/δ̄′ ∈T

ϕ(Γ′/δ′, γ′/δ′) ◦ ϕ−(Γ̄′, δ̄′)
)]

= −P|(Γ̄,γ̄)|+|(Γ̄′,γ̄′)|

[
ϕ̄(Γ̄, γ̄) • ϕ̄(Γ̄′, γ̄′)− P|(Γ̄,γ̄)|(ϕ̄(Γ̄, γ̄)) • ϕ̄(Γ̄′, γ̄′)

− P|(Γ̄′,γ̄′)|(ϕ̄(Γ̄′, γ̄′)) • ϕ̄(Γ̄, γ̄)
]

= P|(Γ̄,γ̄)|+|(Γ̄′,γ̄′)|

[
P|(Γ̄′,γ̄′)|(ϕ̄(Γ̄′, γ̄′)) • ϕ̄(Γ̄, γ̄) + P|(Γ̄,γ̄)|(ϕ̄(Γ̄, γ̄)) • ϕ̄(Γ̄′, γ̄′)

− ϕ̄(Γ̄, γ̄) • ϕ̄(Γ̄′, γ̄′)
]

= P|(Γ̄,γ̄)|
(
ϕ̄(Γ̄, γ̄)

)
• P|(Γ̄′,γ̄′)|

(
ϕ̄(Γ̄′, γ̄′)

)
= ϕ−(Γ̄, γ̄) • ϕ−(Γ̄′, γ̄′). �

8. Dimensional regularization

The problem of perturbative renormalization theory is to give a meaning to
certain divergent integrals arising from Feynman graphs. The analytical difficulty
is to regularize the occurring divergent integrals, associating to each Feynman graph
some finite value indexed by a parameter. The procedure we use to regularize an
integral is called dimensional regularization. The basic idea behind dimensional
regularization consists in writing down the divergent integrals that we have to
regularize in such a way that the dimension of the physical space-time d becomes
an complex parameter D. We follow the approach of Pavel Etingof [9] and Ralf
Meyer [11].

8.1. General idea. Let V the d-dimensional space-time. Consider a Feynman
graph with m external edges and corresponding momenta q1, . . . , qm ∈ V , and with
n−m loops (n > m). The amplitude of this graph can be written as:

I(q1...qm)(f) :=
∫
V n−m

f(q1, . . . , qn)dqm+1 . . . dqn, (8.1)

where we assume at first that f is a Schwartz function. The dimension d of space-
time has become an external parameter which can be replaced by any complex
number D. We obtain the following results: first, for ReD > n + 1 and ReD < 0
the integral ID(f) exists. Moreover, this function admits a holomorphic extension
with respect to D on C. If f is a Feynman type rational function (see Definition
8.8 below), ID(f) is defined on a half-plane but admits a meromorphic extension.
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Once we have a meromorphic function ID(f), the regularization value of the
integral is obtained by minimal subtraction at the physical dimension D = d. We
consider the Laurent series around d:

ID(f) =
∑
n∈Z

an.(D − d)n. (8.2)

Then the counterterm is given by:

ID− (f) :=
−∞∑
n=−1

an.(D − d)n, (8.3)

and regularized value is:
Ireg(f) := a0. (8.4)

8.2. The D-dimensional integral. In this section, we construct the D-dimen-
sional integral for Schwartz functions. We will always work with the Euclidean
model of space-time. Let V be Euclidean space-time and β the positive definite
metric on V . We denote by d the physical dimension of space-time, and use D for
the dimension when viewed as a complex variable. The Lorentz group is replaced
by the orthogonal group O(d).

Let W be a finite dimensional vector space, we write S2W ∗ for the vector space
of symmetric bilinear forms on w, S̄2

+W
∗ and S2

+W
∗ for the subsets of positive

semi-definite and positive definite bilinear forms on W . Thus
S2

+W
∗ ⊂ S̄2

+W
∗ ⊂ S2W ∗.

We write S(S̄2
+W

∗) and S(S2W ∗) for the spaces of Schwartz functions on S̄2
+W

∗

and S2W ∗. By definition, a function on S̄2
+W

∗ is a Schwartz function iff it is the
restriction of a Schwartz function on S2W ∗.

Let E be a n-dimensional vector space and F a m-dimensional subspace of
E. We view an n-tuple q := (q1, · · · , qn) with qj ∈ Rd, as an element of the
vector space Hom(E,Rd). The m-tuple (q1, · · · , qm) is nothing but the restriction
q|F ∈ Hom(F,Rd). The bilinear form q∗(β) ∈ S̄2

+E
∗ is obtained by pulling back

β ∈ (S2
+Rd)∗ along q.

Proposition 8.1. — [11] Let q1 and q2 be two elements of Hom(E,Rd). Then
q1 and q2 are in the same O(d)-orbit iff q∗1β = q∗2β.

We suppose that f is already given as a function defined on all of S̄2
+E
∗. Then

we can rewrite our integral as:

Id
∣∣
k∗β

(f) =
∫
{q∈Hom(E,Rd)/q|F=k}

f(q∗β)dq, (8.5)

for k ∈ Hom(F,Rd). The right hand side depends only on k∗β, not on k itself. The
integral Id

∣∣
C

(f) is defined only for rank(C) 6 d.

8.3. Extrapolation to complex dimensions. We consider φB(A), defined for
all A in S2

+E
∗ and B in S2

+E by:
φB(A) := exp(−tr(AB)).

Notice that this is a Schwartz function on S2
+E
∗ by positivity.
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Proposition 8.2. — Let be B ∈ S2
+E
∗. We denote by BF⊥ , the restriction of

B at F⊥ = (E/F )∗ ⊆ E∗ and by BF∗ ∈ S2
+F
∗ the restriction of the bilinear form

B to F . The integral Id
∣∣
C

(φB) is defined for C ∈ S̄2
+F
∗ such that rank(C) 6 d,

and is given by:

Id
∣∣
C

(φB) = π(n−m)d/2 exp(−tr(C ·BF
∗
)).(detBF⊥)−d/2. (8.6)

Proof. — We decompose E as follows: E = F ⊕ F⊥. Let (e1, · · · , em) (resp.
(em+1, · · · , en)) be an orthogonal basis of F (resp. F⊥) such that B is diagonal
on (e1, · · · , en). We note µi = B(ei, ei). The condition rank(C) 6 d implies the
existence of a symmetric bilinear form β on Rd such that C = k∗β with k ∈
Hom(F,Rd). Then we calculate:

Id
∣∣
C

(φB) =
∫
{q∈Hom(E,V )/q|F=k}

exp
(
−tr(C ·B)

)
dq

=
∫
{q∈Hom(E,V )/q|F=k}

exp
(
−

n∑
i=1

µiq
∗β(ei, ei)

)
dq

=
∫
{q∈Hom(E,V )/q|F=k}

exp
(
−

n∑
i=1

µi||q(ei)||2
)
dq

= exp
(
−

m∑
i=1

µi||kj ||2
) ∫
{q∈Hom(E,V )/q|F=k}

exp
(
−

n∑
i=m+1

µi||q(ei)||2
)
dq

= exp
(
−tr(k∗β|F ·BF

∗
)
) n∏
i=m+1

∫
exp

(
µi||q(ei)||2

)
dqi

= exp
(
−tr(C ·BF

∗
)
) n∏
i=m+1

πd/2µ
−d/2
i

= π(n−m)d/2 exp
(
−tr(C ·BF

∗
)
)
(detBF⊥)−d/2. �

We write E as E ∼= F ⊕G and describe B by a block matrix (Bij) that respects
the decomposition E∗ = F ∗ ⊕G∗. We obtain:

BF⊥ = B22, BF
∗

= B11 −B12B
−1
22 B21. (8.7)

If the decomposition of E diagonalizes the matrix B, then we get BF∗ = B11.

Theorem 8.3. — [11] There is unique family of distributions ID
∣∣
C
∈ S(S̄2

+E
∗)′

that satisfies

ID
∣∣
C

(φB) = π(n−m)D/2 exp
(
−tr(C ·BF

∗
)
)
· (detBF⊥)−D/2 (8.8)

for all B ∈ S2
+E, C ∈ S̄2

+F
∗, and D ∈ C. In addition, these distributions piece

together to a continuous linear map

I = (ID)D∈C : S(S̄2
+E
∗) −→ O(C,S(S̄2

+F
∗)).

Definition 8.4. — The operator ID is called D-dimensional integral with pa-
rameters. If F = {0}, it is called D-dimensional integral.
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8.4. Construction of the D-dimensional integral with parameters. To prove
Theorem 8.3, we present two descriptions for a distribution ID

∣∣
C

satisfying (8.8).
The first one only works for ReD > n − 1. The second one works for Re < 0 and
is used to extend the first description to all D ∈ C.

For all l ∈ N, x ∈ C, we define:

Γl(x) := πl(l−1)/4
l−1∏
j=0

Γ(x− j

2).

For ReD > n− 1 and C ∈ S2
+F
∗, we define:

A 7−→ ρD(A,C) := π(n−m)D/2 · Γm(D/2)
Γn(D/2) ·

(detA)(D−n−1)/2

(detC)(D−m−1)/2 · δ(AF − C).

This is a well-defined distribution because the function (detA)−1 is locally inte-
grable on S2E∗.

Lemma 8.5 ([11]). — Let ReD > n− 1, C ∈ S2
+F
∗ and B ∈ S2

+E. Then:∫
S2

+E
∗
ρD(A,C)φB(A)dA = π(n−m)D/2 exp

(
−tr(C ·BF

∗
)
)
.(detBF⊥)−D/2.

Proof. — Both sides of the equation are defined independently of the choice of
basis, they only use the subspace F ⊆ E, the volume forms on E and F , and the
positive definite bilinear forms C and B. Let (xi)16i6n be a basis of E such that
F = 〈x1, . . . , xm〉 and G = 〈xm+1, . . . , xn〉. Let (x∗i )16i6n be the corresponding
dual basis for E∗. We put:

G := F⊥B = 〈xm+1, . . . , xn〉 ⊆ E, G∗ = F⊥ ⊆ E∗.

The positive definite bilinear forms B and C are then written in the form:

C =

c1 · · · 0
...

. . .
...

0 · · · cn

 , B =
(
BF

∗ 0
0 BF⊥

)
.

We represent an element A of S2
+E
∗ as a block matrix (Aij) with respect to the

decomposition E = F⊕G. If A is positive definite, so is A11. Hence A11 is invertible
and we can define:

Y := A21A
−1
11 , Y ∗ := A−1

11 A12, X := A22 −A21A
−1
11 A12.

The computation(
1 0
Y 1

)
·
(
A11 0
0 X

)
·
(

1 Y ∗

0 1

)
=
(
A11 A12
A21 A22

)
shows that A > 0 iff A11 > 0 and X > 0 and that detA = detA11.detX. We
apply the change of variables: A 7−→ (A11, X,A21), which identifies

S2
+E
∗ ∼= S2

+F
∗ × S2

+F
⊥ ×Hom(F ∗, F⊥).
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Its Jacobian has determinant 1 everywhere. Simplifying first the δ-function and
then the Gaussian integral for A21, we obtain:

I =
∫
S2

+E
∗
ρD(A,C)φB(A)dA

=
∫
S2

+E
∗
π(n−m)D/2 Γm(D/2)

Γn(D/2)
(detA)(D−n−1)/2

(detC)(D−m−1)/2 exp
(
−tr(AB)

)
· δ(AF − C)dA

=
∫
S2

+F
∗×S2

+F
⊥×Hom(F∗,F⊥)

π(n−m)D/2 Γm(D/2)
Γn(D/2)

(detA11 · detX)(D−n−1)/2

(detC)(D−m−1)/2

exp
(
−tr(A11B11)− tr(A22B22)

)
· δ(AF − C)dA11dA21dX

=
∫
S2

+F
∗×S2

+F
⊥×Hom(F∗,F⊥)

π(n−m)D/2 Γm(D/2)
Γn(D/2)

(detA11 · detX)(D−n−1)/2

(detC)(D−m−1)/2

exp
(
−tr(A11B11)− tr(X +A21A

−1
11 A12)B22

)
· δ(AF − C)dA11dA21dX

= π(n−m)D/2 · Γm(D/2)
Γn(D/2) (detC)(m−n)/2 exp

(
−tr(BF

∗
C)
)

∫
S2

+F
⊥

(detX)(D−n−1)/2 exp
(
−tr(B⊥FX)

)
∫
Hom(F∗,F⊥)

exp
(
−tr(BF⊥A21C

−1At21)
)
dA21dX.

Let J =
∫
Hom(F∗,F⊥) exp

(
−tr(BF⊥A21C

−1At21)
)
dA21. We perform the following

change of variables:

A′21 = A21C
−1/2,

which implies that:

dA21 = (detC)m(n−m)/2mdA′21 = (detC)(n−m)/2dA′21,

and J becomes:

J = (detC)(n−m)/2
∫
Hom(F∗,F⊥)

exp
(
−tr(BF⊥A21A

t
21)
)
dA21.

We perform another change of variables:

A′21 = (BF⊥)1/2A21,

which implies that:

dA21 = (detBF⊥)−m(n−m)/2(n−m)dA′21 = (detBF⊥)−m/2dA′21,

and we obtain:

J = (detC)(n−m)/2(detBF⊥)−m/2
∫
Hom(F∗,F⊥)

exp
(
−tr(A21A

t
21)
)
dA21

= πm(n−m)/2(detC)(n−m)/2(detBF⊥)−m/2,
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and the integral I becomes:

I = π(n−m)D/2 · Γm(D/2)
Γn(D/2) (2π)m(n−m)/2 exp

(
−tr(BF

∗
C)
)

∫
S2

+F
⊥

(detBF⊥)−m/2(detX)(D−n−1)/2 exp
(
−tr(B⊥FX)

)
dX.

Put K =
∫
S2

+F
⊥(detBF⊥)−m/2(detX)(D−n−1)/2 exp

(
−tr(BF⊥X)

)
dX. We per-

form the following change of variables:

X ′ = BF⊥X = bF⊥X,

which implies that:

dX = (detBF⊥)−(n−m)(n−m+1)/2(n−m)dX ′ = (detBF⊥)−(n−m+1)/2dX ′,

and the integral K becomes:

K = (detBF⊥)−m/2(detBF⊥)−(n−m+1)/2∫
S2

+F
⊥

(det bF⊥−1X)(D−n−1)/2 exp
(
−trX

)
dX

= (detBF⊥)[−m−(n−m+1)−(D−n−1)]/2
∫
S2

+F
⊥

(detX)(D−n−1)/2 exp
(
−trX

)
dX

= (detBF⊥)−D/2
∫
S2

+F
⊥

(detX)(D−n−1)/2 exp
(
−trX

)
dX.

Now we decompose G = F⊥ := G1 ⊕ G2 with dimG1 = 1. We write X = (Xij)
with X11 ∈ R, and we put:

T := X21X
−1
11 , T ∗ := X−1

11 X12, L := X22 −X21X
−1
11 X12.

By calculation we obtain

(
1 0
T 1

)
·
(
X11 0

0 L

)
·
(

1 T ∗

0 1

)
=
(
X11 X12
X21 X22

)
.

This equality shows that X > 0 iff X11 > 0 and L > 0 and that detX = X11 ·detL.
We use the following change of variables: X 7−→ (X11, L,X21). The integral K is
written:
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K = (detBF⊥)−D/2
∫
S2

+G1×S2
+G2×Hom(G1,G2)

X
(D−n−1)/2
11 exp(−X11)

(detL)(D−n−1)/2 exp
(
−tr(L+X21X

−1
11 X12)

)
dX11dLdX21

= (detBF⊥)−D/2
∫
S2

+G1×S2
+G2

X
(D−n−1)/2
11 exp(−X11)(detL)(D−n−1)/2

exp
(
−tr(L)

) ∫
Hom(G1,G2)

exp
(
−tr(X21X

−1
11 X12)

)
dX21︸ ︷︷ ︸

π(n−m−1)/2X
(n−m−1)/2
11

dX11dL.

= π(n−m−1)/2(detBF⊥)−D/2
∫
S2

+G1

X
[(D−n−1)/2+(n−m−1)/2]
11 exp(−X11)dX11∫

S2
+G2

(detL)(D−n−1)/2 exp(−tr(L))dL

= π(n−m−1)/2(detBF⊥)−D/2
∫
S2

+G1

X
(D−m−2)/2
11 exp(−X11)dX11∫

S2
+G2

(detL)(D−n−1)/2 exp(−trL)dL

= π(n−m−1)/2(detBF⊥)−D/2Γ
(D

2 −
m

2

)
·
∫
S2

+G2

(detL)(D−n−1)/2 exp(−trL)dL.

We repeat this process n−m+1 times, which yieds a product of Gamma functions
and powers of π:

I = π(n−m)D/2 · Γm(D/2)
Γn(D/2) exp

(
−tr(BF

∗
C)
)
(detBF⊥)−D/2 · πm(n−m)/2

· π(n−m−1)/2 · Γ
(
D/2−m/2

)
· π(n−m−2)/2 · Γ

(
D/2− (m+ 1)/2

)
· · ·π0 · Γ

(
D/2− (n− 1)/2

)
= π(n−m)D/2 π

(m−n)(m+n−1)
4∏n−1

j=m Γ
(
D/2− j/2

) exp
(
−tr(BF

∗
C)
)
(detBF⊥)−D/2

· π(n−m)m/2π

∑n

j=m+1
(n−j)/2 ·

n−1∏
j=m

Γ
(
D/2− j/2

)
= π(n−m)D/2 exp

(
−tr(BF

∗
C)
)
(detBF⊥)−D/2.

Hence the final result:∫
S2

+E
∗
ρD(A,C)φB(A)dA = π(n−m)D/2 exp

(
−tr(C ·BF

∗
)
)
· (detBF⊥)−D/2. �

Thus, we can define ID
∣∣
C

for ReD > n− 1 and C ∈ S2
+F
∗ by:

ID
∣∣
C

:= ρD(. , C).
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Definition 8.6. — We define IDE,F : S(S̄2
+E
∗) −→ S(S̄2

+F
∗) for all C ∈ S2

+F
∗

and f ∈ S(S̄2
+E
∗) by:

IDE,F (f)(C) := ID
∣∣
C

(f). (8.9)

Proposition 8.7. — Let E, F and G be three vector spaces such that G ⊆
F ⊆ E. The following diagram is commutative:

S(S̄2
+E
∗)

IDE,G ((

IDE,F // S(S̄2
+F
∗)

IDF,G
��

S(S̄2
+G
∗)

Proof. — Let C ∈ S2
+F
∗, C ′ ∈ S2

+G
∗ with C|G = C ′ and B ∈ S2

+E. We have:

IDF,G
(
IDE,F (φB)

)
(C ′) =

∫
S2

+F
∗
ρD(C,C ′)

∫
S2

+E
∗
ρD(A,C)φB(A)dAdC

= π(n−p)D/2 Γp(D/2)
Γm(D/2)

Γm(D/2)
Γn(D/2)

∫
S2

+F
∗

(detC)(D−m−1)/2

(detC ′)(D−p−1)/2∫
S2

+E
∗

(detA)(D−n−1)/2

(detC)(D−m−1)/2φB(A)δ(CG − C ′)δ(AF − C)dAdC

= π(n−p)D/2 Γp(D/2)
Γn(D/2)

∫
S2

+F
∗

(detA)(D−n−1)/2

(detC ′)(D−p−1)/2∫
S2

+E
∗
φB(A)δ(CG − C ′)δ(AF − C)dAdC

=
∫
S2

+E
∗
π(n−p)D/2 Γp(D/2)

Γn(D/2)
(detA)(D−n−1)/2

(detC ′)(D−p−1)/2φB(A)δ(AG − C ′)dA

=
∫
S2

+E
∗
ρD(A,C ′)φB(A)dA = IDE,G

(
φB
)
(C ′).

Hence IDE,G = IDF,G ◦ IDE,F . �

8.5. D-dimensional integral of a Feynman type function.

Definition 8.8. — A function f ∈ S2
+E
∗ is of Feynman type if it is written in

the form:

f(A) = P (A)∏l
j=1

(
tr(ABj) +m2

j

) , (8.10)

where P is a polynomial, Bj ∈ S̄2
+E
∗ such that B(t) :=

(∑
tjBj

)
∈ S2

+E
∗ for all

tj > 0, and the mj are positive real numbers. In particular, for all subspace F ⊂ E,
(B(t))F⊥ is non-degenerate. The function f is without poles in S̄2

+E
∗.

Remark 8.9. — We note here that the functions of Feynman type form an
algebra. For the product that is immediate, and for the sum it is sufficient to
reduce to the same denominator.
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Proposition 8.10 ([9]). — If f is a Feynman type function then IDE,F (f) ex-
tends to the whole complex plane to a meromorphic function of the variable D for
any subspace F ⊂ E.

Proof. — We first prove the proposition for P = 1, the case where P 6= 1 will be
proved later. Firstly we use the following equality:∫ ∞

0
exp(−at)dt = a−1 for all a > 0.

Let t = (t1, · · · , tl) and B(t) =
∑l
j=1 tjBj . Since we have:

f(A) = 1∏l
j=1

(
tr(ABj) +m2

j

)
=

l∏
j=1

(
tr(ABj) +m2

j

)−1

=
l∏

j=1

∫
tj>0

exp
(
−tj(tr(ABj) +m2

j )
)
dtj

=
∫
tj>0

exp
(
−

l∑
j=1

trA(tjBj)
)

exp
(
−

l∑
j=1

tjm
2
j

)
dt1 · · · dtl

=
∫
tj>0

exp
(
−trA(

l∑
j=1

tjBj)
)

exp
(
−

l∑
j=1

tjm
2
j

)
dt,

we obtain for all C ∈ S2
+F
∗:

IDE,F (f)(C) =
∫
tj>0

exp
(
−

l∑
j=1

tjm
2
j

)
IDE,F

(
exp

(
−tr(C

l∑
j=1

tjBj)
))
dt.

Using Lemma 8.5, we can write:

IDE,F (f)(C) = π(n−m)D/2
∫
tj>0

exp
(
−

l∑
j=1

tjm
2
j−tr(C.B(t)F

∗
)
)
·(detB(t)F⊥)−D/2dt.

(8.11)
To finish the proof of the proposition we use Bernstein’s theorem [2] (see also [5])
and a corollary.

Theorem 8.11 (Bernstein’s theorem). — Let Q be a polynomial with l vari-
ables. Then there exists a differential operator L(D) in l variables, with coefficients
which depend on D, and a polynomial q in D, such that:

L(D)Q−D/2 = q(D)Q−1−D/2. (8.12)

Corollary 8.12. — We assume that Q takes positive values for tj > 0. Let g
be a function with rapid decay defined for tj > 0, and such that its derivatives are
also rapidly decreasing. Then the integral

I(D, g) :=
∫
tj>0

g(t)Q−D/2(t)dt (8.13)
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converges for Re� 0, and extends to a meromorphic function in the whole complex
plane.

Proof. — Using the formulas (8.12) and (8.13) we can write:

I(D + 2, g) =
∫
tj>0

g(t)Q−D/2−1(t)dt

=
∫
tj>0

g(t)q(D)−1L(D)Q−D/2(t)dt

= q(D)−1
∫
tj>0

g(t)L(D)Q−D/2(t)dt.

Using the following induction:

g(t) −→ L(D)∗(g(t)) and L(D)Q−D/2(t) −→ Q−D/2(t)

we obtain:

I(D + 2, g) = q(D)−1
∫
tj>0

L(D)∗(g(t))Q−D/2(t)dt+ C(D)

= q(D)−1I(D,L(D)∗(g(t))) + C(D),

where C(D) is a sum of integrals of the same type on the boundary. This term
is meromorphic by the induction hypothesis, since the boundary of (R+)l can be
written as the union of l copies of (R+)l−1 and strata in dimension 6 l − 2. �

Using Bernstein’s theorem and the previous corollary, we can conclude that:

IDE,F (f)(C) = π(n−m)D/2
∫
tj>0

exp
(
−

l∑
j=1

tjm
2
j−tr(C·B(t)F

∗
)
)
·(detB(t)F⊥)−D/2dt

extends to a meromorphic function into D, which proves the proposition for P = 1.
For P 6= 1, we obtain the same results: Considering

f(A) = P (A)∏l
j=1

(
tr(ABj) +m2

j

) ,
the integral IDE,F (f)(C) will be written in the form:

IDE,F (f)(C) =
∫
tj>0

exp
(
−

l∑
j=1

tjm
2
j

)
IDE,F

(
P exp(−tr(B(t))

)
(C)dt

=
∫
tj>0

exp
(
−

l∑
j=1

tjm
2
j

)
IDE,F

(
PφB(t)

)
(C)dt

=
∫
tj>0

exp
(
−

l∑
j=1

tjm
2
j

)
IDE,F

(
P̄ (∂B)φ(B(t))

)
(C)dt,

where P̄ (∂B) is a constant coefficient differential operator, defined as follows:
For A = (aij) et B(t) = (bij(t)) we have:

tr(A ·B(t)) =
∑
k,i

aikbki(t),
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and then:

− ∂

∂bqp
exp

(
−tr(A ·B(t))

)
= apq exp

(
−
∑
k,i

aikbki(t)
)

= apq exp
(
−tr(A ·B(t))

)
,

what defines the polynomial P̄ when P (A) = apq, and therefore for all P by iterating
the process. As a result:

IDE,F
(
P̄ (∂B)φ(B(t))

)
(C) = P̄ (∂B)IDE,F

(
φ(B(t))

)
(C)

= P̄ (∂B)π(n−m)D/2 exp
(
−tr(C ·B(t)F

∗
)
)
· (detB(t)F⊥)−D/2

=
deg P̄∑
r=0

gr,C(t)(detB(t)F⊥)−D/2−r,

where t 7−→ gr,C(t) is a Schwartz function. Then we obtain:

IDE,F (f)(C) =
∫
tj>0

exp
(
−

l∑
j=1

tjm
2
j

) deg P̄∑
r=0

gr,C(t)(detB(t)F⊥)−D/2−rdt.

Hence, under the same conditions as for P = 1, the integral IDE,F (f), if P 6= 1,
extends to the whole complex plane to a meromorphic function for the complex
variable D. �

We denote by F(S̄2
+E
∗) the space of Feynman type functions on S̄2

+E
∗ and by

F̃(S̄2
+E
∗) the space of functions on C × S̄2

+E
∗, meromorphic in the first variable,

equal to IDE′,E(g) for some function g ∈ F(S̄2
+E
′∗), where E′ is a vector space

containing E. We use this representation:

g(A′) =
∫
tj>0

P̄ (∂B) exp
(
−tr(A ·B(t))

)
exp

(
−

l∑
j=1

tjm
2
j

)
dt

for all A′ ∈ S2
+E
′∗, and we also let:

g =
∫
tj>0

P̄ (∂)φ(B(t)) exp
(
−

l∑
j=1

tjm
2
j

)
dt.

We then have for all A ∈ S2
+E
∗:

f(A) = IDE′,E(g)(A) =
∫
tj>0

exp
(
−

l∑
j=1

tjm
2
j

)
IDE′,E

(
P̄ (∂B) exp(−trB(t))

)
(A)︸ ︷︷ ︸

ϕt(A)

dt.

Clearly ϕt ∈ S(S̄2
+E
∗). Then we put:

IDE,F (f) :=
∫
tj>0

exp
(
−

l∑
j=1

tjm
2
j

)
IDE,F (ϕt)dt.
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By means of Proposition 8.7, we can write for all C ∈ S̄2
+F
∗:

IDE,F (f)(C) =
∫
tj>0

exp
(
−

l∑
j=1

tjm
2
j

)
IDE,F I

D
E′,E

(
P̄ (∂)φ(B(t))

)
(C)dt

=
∫
tj>0

exp
(
−

l∑
j=1

tjm
2
j

)
IDE′,F

(
P̄ (∂)φ(B(t))

)
(C)dt

= IDE′,F (g)(C).

Corollary 8.13. — We have:
IDE,F : F̃(S̄2

+E
∗) −→ F̃(S̄2

+F
∗),

and if G ⊂ F ⊂ E, the following diagram is commutative:

F̃(S̄2
+E
∗)

IDE,G ((

IDE,F // F̃(S̄2
+F
∗)

IDF,G
��

F̃(S̄2
+G
∗)

In other words:
IDE,G = IDF,G ◦ IDE,F .

9. Renormalization of the Feynman integral

9.1. The target algebra End B̃ and convolution product. Let T be a quantum
field theory and let Γ be a connected Feynman graph of T . We recall that WΓ is
the momenta space of graph Γ, and E = E(Γ). In this section, we define the target
algebra B̃, the product • and the convolution product > analogously to Section §7.
We put:

ṼΓ := F̃(S̄2
+E
∗). (9.1)

For Γ = Γ1 · · ·Γr connected, we set:

ṼΓ =
⊗

j∈{1,··· ,r}

ṼΓj ,

B̃ :=
∏
Γ∈T

ṼΓ. (9.2)

The product • is defined on the elements of End B̃ similarly to Paragraph §7.2. It
is compatible with the composition product. In other words, for the linear maps:

ã1 : VΓ1 −→ VΓ′1 , b̃1 : VΓ′1 −→ VΓ′′1 ,

ã2 : VΓ2 −→ VΓ′2 , b̃2 : VΓ′2 −→ VΓ′′2 ,

we obtain the following result:

(̃b1 ◦ ã1) • (̃b2 ◦ ã2) = (̃b1 • b̃2) ◦ (ã1 • ã2). (9.3)

We denote by � the opposite of composition product in End B̃. Then we define a
convolution product > for all ϕ, ψ ∈ L(DT ,End B̃) by:

ϕ> ψ := �(ϕ⊗ ψ)∆. (9.4)
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In other words, for all specified graphs γ̄, Γ̄ such that γ̄ ⊂ Γ̄ we have:

(ϕ> ψ)(Γ̄, γ̄) =
∑
δ̄⊆γ̄
γ̄/δ̄∈T

ψ(Γ̄/δ̄, γ̄/δ̄) ◦ ϕ(Γ̄, δ̄). (9.5)

Similarly to the Paragraph §7.4 we obtain the following theorem:

Theorem 9.1. — Let G be the set of morphisms of unitary algebras: DT −→
(End B̃, •). Equipped with the product >, the set G is a group.

9.2. Feynman integral. Let Γ, γ and δ be three Feynman graphs such that δ ⊆
γ ⊆ Γ. We put:

E := E(Γ), F := E(Γ/δ) and G := E(Γ/γ) = E(Γ/δ
/
γ/δ).

Clearly G ⊆ F ⊆ E. We define the Feynman integral ĨDΓ,γ by:

ĨDΓ,γ := IDE,F : S(S̄2
+E
∗) −→ S(S̄2

+F
∗)

This expression is holomorphic in D, in other words it defines an operator:

ĨΓ,γ = (ID)D∈C : S(S̄2
+E
∗) −→ O(C,S(S̄2

+F
∗)). (9.6)

Theorem 9.2. — Let Γ, γ and δ be three Feynman graphs such that δ ⊆ γ ⊆ Γ.
We have:

ĨDΓ,γ = ĨDΓ,δ ◦ ĨDΓ/δ,γ/δ. (9.7)

Proof. — This is a direct corollary of Proposition 8.7. �

We adopt the notation ĨDΓ,γ for IDE,F : F̃(S̄2
+E
∗) −→ F̃(S̄2

+F
∗). It extends to a

meromorphic function of the complex variable D.

Theorem 9.3. — Let Γ, γ and δ be three Feynman graphs such that δ ⊆ γ ⊆ Γ.
Then:

ĨDΓ,γ = ĨDΓ/δ,γ/δ ◦ Ĩ
D
Γ,δ. (9.8)

Proof. — This is a direct consequence of corollary 8.13. �

The Feynman rules are defined for U = E(resΓ) by:

ĨΓ,Γ
(
ϕ(Γ)

)
∈ F̃(S̄2

+U
∗),

where ϕ(Γ) is the integrand defined by the formula (5.1), which can also be written
as being a Feynman type function on S̄2

+U
∗, in the form:

ϕ(Γ)(p) =
∏

v∈V(Γ)

gv
∏

{e,σ(e)},σ(e) 6=e

Geσ(e)(p∗β(e, e))
∏

σ(e)=e

Ge(p∗β(e, e)). (9.9)

9.3. Birkhoff decomposition. Let ϕ be an element of the group G(k[z−1, z]]),
that is to say a character of DT with values in the unitary commutative algebra
A := End B̃([z−1, z]]), where we have extended the commutative product • to A by
k[z−1, z]]-linearity. We equipped A by the minimal renormalization scheme:

A = A− ⊕A+, (9.10)

where A+ := End B̃[[z]] and A− := End z−1B̃[z−1]. We denote by P the projection
on A− parallel to A+.
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Theorem 9.4. — (1) Any character ϕ has a unique Birkhoff decomposition inG

ϕ = ϕ>−1
− > ϕ+ (9.11)

compatible with the renormalization scheme chosen.
(2) The components ϕ+ and ϕ− are given by simple recursive formulas: For

all (Γ̄, γ̄) of degree zero, ϕ−(Γ̄, γ̄) = ϕ+(Γ̄, γ̄) = ϕ(Γ̄, γ̄) = IdB, and for all
(Γ̄, γ̄) of degree n we put:

ϕ−(Γ̄, γ̄) = −P
(
ϕ(Γ̄, γ̄) +

∑
δ̄( γ̄
γ̄/δ̄ ∈T

ϕ(Γ̄/δ̄, γ̄/δ̄) ◦ ϕ−(Γ̄, δ̄)
)
, (9.12)

ϕ+(Γ̄, γ̄) = (I − P )
(
ϕ(Γ̄, γ̄) +

∑
δ̄( γ̄
γ̄/δ̄ ∈T

ϕ(Γ̄/δ̄, γ̄/δ̄) ◦ ϕ−(Γ̄, δ̄)
)
. (9.13)

(3) ϕ+ and ϕ− are two characters. We will call ϕ+ the renormalized character
and ϕ− the character of the counterterms.

Proof. —
(1) The existence of the Birkhoff decomposition of ϕ is given by the formulas

(9.12) and (9.13), and we have ϕ = ϕ>−1
− >ϕ+. We now prove uniqueness:

We assume that ϕ admits two decompositions, i.e.

ϕ = ϕ−1
− > ϕ+ = ψ−1

− > ψ+.

Then we obtain the following equation:

ϕ+ > ψ−1
+ = ϕ− > ψ−1

− .

For all (Γ̄, γ̄) ∈ DT we have ϕ+∗ψ−1
+ (Γ̄, γ̄) ∈ A+ and ϕ−>ψ−1

− (Γ̄, γ̄) ∈ A−.
Hence

ϕ+ > ψ−1
+ = ϕ− > ψ−1

− = E,

and consequently

ϕ+ = ψ+ and ϕ− = ψ−.

(2) The proof is lengthy but straightforward, similar to the proof of Theorem
7.5. �

From formulas (9.12) and (9.13) we get the algebraic frame explaining Smirnov’s
approach [13, §8.2]. Finally, this definition allows us to make sense of the renor-
malized Feynman rules.

Definition 9.5. — The Feynman rules define an element Ĩ of G:

Ĩ : D̃T −→ A (Γ, γ) 7−→ Ĩ(Γ, γ) := ĨDΓ,γ

such that:
Ĩ = Ĩ>−1

− > Ĩ+,

where Ĩ− is the character of the counterterms. The renormalized character is Ĩ+
evaluated at D = d.
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