Carlo PANDISCIA

Ergodic Dilation of a Quantum Dynamical System

<http://cml.cedram.org/item?id=CML_2014__6_1_77_0>
ERGODIC DILATION OF A QUANTUM DYNAMICAL SYSTEM

CARLO PANDISCIA

Abstract. Using the Nagy dilation of linear contractions on Hilbert space and the Stinespring’s theorem for completely positive maps, we prove that any quantum dynamical system admits a dilation in the sense of Muhly and Solel which satisfies the same ergodic properties of the original quantum dynamical system.

1. Introduction

A quantum dynamical system is a pair \((\mathcal{M}, \Phi)\) consisting of a von Neumann algebra \(\mathcal{M}\) and a normal, i.e. \(\sigma\)-weakly continuous, unital completely positive map \(\Phi : \mathcal{M} \to \mathcal{M}\).

In this work we will prove that it is possible to dilate any quantum dynamical system to a quantum dynamical system where the dynamics \(\Phi\) is a \(*\)-homomorphism of a larger von Neumann algebra.

The existence of a dilation for a quantum dynamical system has been proven by Muhly and Solel [8, Prop. 2.24] using the minimal isometric dilation of completely contractive covariant representations of particular \(W^*\)-correspondences over von Neumann algebras. In contrast, we prove the existence of a dilation for a quantum dynamical system using the Nagy dilations for linear contractions on Hilbert spaces (see [9]) and a particular representation obtained by the Stinespring theorem for completely positive maps (see [13]).

Throughout this paper we will use the abbreviation ucp-map for unital completely positive maps, and we denote by \(\mathcal{B}(\mathcal{H})\) the \(C^*\)-algebra of all bounded linear operators on a Hilbert space \(\mathcal{H}\).

In the present paper by a dilation of a quantum dynamical system \((\mathcal{M}, \Phi)\), with \(\mathcal{M}\) defined on a Hilbert space \(\mathcal{H}\) we mean a quadruple \((\mathcal{R}, \Theta, K, Z)\) where \(\mathcal{R}\) defined on Hilbert space \(K\) and \(\Theta\) is a \(*\)-homomorphism of \(\mathcal{R}\); and \(Z : \mathcal{H} \to K\) is an isometry satisfying the following properties (see [8]):

- \(Z\mathcal{M}Z^* \subset \mathcal{R}\);
- \(Z^*\mathcal{R}Z \subset \mathcal{M}\);
- \(\Phi^n(A) = Z^*\Theta^n(ZAZ^*)Z\) for \(A \in \mathcal{M}\) and \(n \in \mathbb{N}\);
- \(Z^*\Theta^n(X)Z = \Phi^n(Z^*XZ)\) for \(X \in \mathcal{R}\) and \(n \in \mathbb{N}\).

Hence, we have the following commutative diagram:

\[
\begin{array}{ccc}
\mathcal{M} & \xrightarrow{\Phi^n} & \mathcal{M} \\
Z \cdot Z^* & \uparrow & \downarrow \quad Z^* \cdot Z \\
\mathcal{M} & \xrightarrow{\Theta^n} & \mathcal{M}
\end{array}
\]

Notice that in the literature of dynamical systems the dilation problem has taken meanings different from that used here, see e.g. [2, 3, 4, 12].

By a representation of a quantum dynamical system \((\mathcal{M}, \Phi)\) we mean a triple \((\pi, \mathcal{H}, V)\), where \(\pi : \mathcal{M} \to \mathcal{B}(\mathcal{H})\) is a normal faithful representation on the Hilbert space \(\mathcal{H}\) and \(V\) is an isometry on \(\mathcal{H}\) such that

\[\pi(\Phi(A)) = V^*\pi(A)V \quad \text{for} \quad A \in \mathcal{M}.
\]

Keywords: Quantum Markov process, completely positive maps, Nagy dilation, ergodic state.
Since \(\pi \) is faithful and normal, we identify the quantum dynamical system \((\mathcal{M}, \Phi)\) with \((\pi(\mathcal{M}), \Phi)\) where \(\Phi \) is the ucp-map \(\Phi(A) = V^*\pi(A)V \), for any \(A \in \mathcal{M} \). This this leads us to the study of invariant algebras under the action of isometries.

In fact, in Section 3, we consider a concrete \(C^* \)-algebra \(\mathfrak{A} \) with unit, fundamental for the proof of the main result of this paper.

Before proving the existence of a dilation of a quantum dynamical system, it is necessary to recall the fundamental Nagy dilation theorem. This is the subject of Section 4. We prove a Stinespring-type theorem for ucp-maps between \(C^* \)-algebras (see [1, 5, 7, 10] for the relation between reversible processes, modular operators and \(\varphi \)-adjointness). If \((\mathcal{M}, \Theta) \) is our dilation of the quantum dynamical system \((\mathcal{M}, \Phi)\), we shall prove that if the dynamics \(\Phi \) admits a \(\varphi \)-adjoint (see [6]) if there is a normal ucp-map \(\Phi : \mathcal{M} \to \mathcal{M} \) such that for each \(A, B \in \mathcal{M} \)

\[
\varphi(\Phi(A)B) = \varphi(A\Phi(B)),
\]

(see [1, 5, 7, 10] for the relation between reversible processes, modular operators and \(\varphi \)-adjointness). If \((\mathcal{M}, \Theta) \) is our dilation of the quantum dynamical system \((\mathcal{M}, \Phi)\), we shall prove that if the dynamics \(\Phi \) admits a \(\varphi \)-adjoint and

\[
\lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^{n} |\varphi(\Phi^k(B)) - \varphi(A)\varphi(B)| = 0 \quad \text{for} \quad A, B \in \mathcal{M},
\]

then

\[
\lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^{n} |\varphi(Z^*X\Theta^k(Y)Z) - \varphi(Z^*XZ)\varphi(Z^*YZ)| = 0 \quad \text{for} \quad X, Y \in \mathcal{M}.
\]

Before proving the existence of a dilation of a quantum dynamical system, it is necessary to recall the fundamental Nagy dilation theorem. This is the subject of the next section.

2. Nagy dilation theorem

If \(V \) is an isometry on a Hilbert space \(\mathcal{H} \), there is a triple \((\hat{V}, \hat{\mathcal{H}}, Z)\) where \(\hat{\mathcal{H}} \) is a Hilbert space, \(Z : \mathcal{H} \to \hat{\mathcal{H}} \) is an isometry and \(\hat{V} \) is a unitary operator on \(\hat{\mathcal{H}} \) with

\[
\hat{V}Z = ZV
\]

satisfying the following minimal property:

\[
\hat{\mathcal{H}} = \bigvee_{k \in \mathbb{Z}} \hat{V}^kZ\mathcal{H},
\]

see [9]. However, for our purposes it is still useful to recall here the structure of the unitary minimal dilation of an isometry.
For a Hilbert space \mathcal{K} recall that $l^2(\mathcal{K})$ denotes the Hilbert space $\{\xi : \mathbb{N} \rightarrow \mathcal{K} : \sum_{n \geq 0} |\xi(n)|^2 < \infty\}$. Consider the Hilbert space

$$\hat{\mathcal{H}} = \mathcal{H} \oplus l^2(\mathcal{F} \mathcal{H}) \quad (2.3)$$

and the unitary operator on $\hat{\mathcal{H}}$ defined as

$$\hat{V} = \begin{vmatrix} V & F \Pi_0 \\ 0 & W \end{vmatrix}, \quad (2.4)$$

where $F = I - VV^*$ and $\Pi_j : l^2(\mathcal{F} \mathcal{H}) \rightarrow \mathcal{H}$ is the canonical projection

$$\Pi_j(\xi_0, \xi_1, \ldots, \xi_n, \ldots) = \xi_j \quad \text{for} \quad j \in \mathbb{N},$$

while $W : l^2(\mathcal{F} \mathcal{H}) \rightarrow l^2(\mathcal{F} \mathcal{H})$ is the operator

$$W(\xi_0, \xi_1, \ldots, \xi_n, \ldots) = (0, 0, \ldots, 0, \xi_0, \xi_1, \ldots).$$

If $Z : \mathcal{H} \rightarrow \hat{\mathcal{H}}$ is the isometry defined by $Zh = h \oplus 0$ for all $h \in \mathcal{H}$, it is simple to prove that the relations (2.1) and (2.2) are verified.

We observe that for each $n \in \mathbb{N}$ we have

$$\hat{V}^n = \begin{vmatrix} V^n & C(n) \\ 0 & W^n \end{vmatrix}, \quad (2.5)$$

where $C(n) : l^2(\mathcal{F} \mathcal{H}) \rightarrow \mathcal{H}$ are the following operators:

$$C(n) := \sum_{j=1}^{m} V^n - j F \Pi_{j-1} \quad \text{for} \quad n \geq 1.$$

Furthermore, for each $n, m \in \mathbb{N}$ we obtain:

$$\Pi_n W^m = \Pi_{n+m} \quad \text{and} \quad \Pi_n W^m = \begin{cases} \Pi_{n-m} & \text{if} \quad n \geq m \\ 0 & \text{if} \quad n < m \end{cases}, \quad (2.6)$$

since

$$W^m(\xi_0, \xi_1, \ldots, \xi_n, \ldots) = (0, 0, \ldots, 0, \xi_0, \xi_1, \ldots),$$

while for each $k, p \in \mathbb{N}$ we obtain:

$$\Pi_p C(k)^* = \begin{cases} FV^{(k-p-1)} & \text{if} \quad k > p \\ 0 & \text{elsewhere} \end{cases} \quad (2.7)$$

since for each $h \in \mathcal{H}$ we have:

$$C(k)^*h = (FV^{(k-1)}h \ldots FV^*h, Fh, 0, 0 \ldots). \quad (2.8)$$

3. Isometric dilation and invariant algebras

In this section we consider a concrete unital C^*-algebra \mathfrak{A} of $\mathfrak{B}(\mathcal{H})$ and an isometry V on the Hilbert space \mathcal{H} such that

$$V^* \mathfrak{A} V \subseteq \mathfrak{A}.$$

If $(\hat{V}, \hat{\mathcal{H}}, Z)$ denotes the minimal unitary dilation of the isometry V, we will prove the following proposition:

PROPOSITION 3.1. — There exists a unital C^*-algebra $\hat{\mathfrak{A}} \subseteq \mathfrak{B}(\hat{\mathcal{H}})$ such that:

(a) $Z \mathfrak{A} Z^* \subseteq \hat{\mathfrak{A}}$;
(b) $Z^* \hat{\mathfrak{A}} Z \subseteq \mathfrak{A}$;
(c) $\hat{V}^* \hat{\mathfrak{A}} \hat{V} \subseteq \hat{\mathfrak{A}}$;
(d) $Z^* \hat{V}^* X \hat{V} Z = V^* Z^* X Z V$ for $X \in \hat{\mathfrak{A}}$;
(e) $Z^* \hat{V}^*(Z \mathfrak{A} Z^*) \hat{V} Z = V^* A V$ for $A \in \mathfrak{A}$.
The statements (d) and (e) are straightforward consequences of (a) and (b) and of the relationship $\tilde{V}Z = ZV$. In order to prove the other statements, we must study two classes of operators on the Hilbert space \mathcal{H}, associated to the pair (\mathfrak{A}, V) defined above, which we shall call the gamma and the napla operators.

3.1. Gamma operators. We consider the sequences

$$\alpha := (n_1, n_2 \ldots n_r, A_1, A_2 \ldots A_r),$$

with $n_j \in \mathbb{N}$ and $A_j \in \mathfrak{A}$ for $j = 1, 2, \ldots, r$. These elements α are called strings of \mathfrak{A} of length $l(\alpha) := r$ and weight $\dot{\alpha} := \sum_{i=1}^{r} n_i$.

To any string α of \mathfrak{A} correspond two operators of $\mathfrak{B}(\mathcal{H})$ defined by

$$|\alpha\rangle := A_1 V^{n_1} A_2 V^{n_2} \ldots A_r V^{n_r} \quad \text{and} \quad |\alpha| := V^{n_r} A_r V^{n_{r-1}} A_{r-1} \ldots V^{n_1} A_1. $$

Furthermore for each natural number n we define the sets

$$[n] := \{\alpha \in \mathfrak{B}(\mathcal{H}) : \dot{\alpha} = n\},$$

and

$$[n] \mathfrak{A} = \{[\alpha] A \in \mathfrak{B}(\mathcal{H}) : A \in \mathfrak{A} \text{ and } \alpha\text{-string of } \mathfrak{A} \text{ with } \dot{\alpha} = n\}.$$

The symbols $[n]$ and $\mathfrak{A}(n)$ have analogous meanings.

Proposition 3.2. Let α and β be strings of \mathfrak{A}. For each $R \in \mathfrak{A}$ we have:

$$\langle \alpha | R | \beta \rangle \in \begin{cases} \mathfrak{A}(\dot{\alpha} - \dot{\beta}) & \text{if } \dot{\alpha} \geq \dot{\beta} \\ (\dot{\beta} - \dot{\alpha}) \mathfrak{A} & \text{if } \dot{\alpha} < \dot{\beta} \end{cases} \quad (3.1)$$

and

$$|\alpha| R |\beta\rangle \in [\dot{\alpha} + \dot{\beta}] \quad (3.2)$$

Proof. For each $m, n \in \mathbb{N}$ and $R \in \mathfrak{A}$ we have:

$$V^{m_r} R V^n \in \begin{cases} V^{(m-n)r} \mathfrak{A} & \text{if } m \geq n \\ \mathfrak{A} V^{(n-m)} & \text{if } m < n \end{cases} \quad (3.3)$$

Given $\alpha = (m_1, m_2 \ldots m_r, A_1, A_2 \ldots A_r)$ and $\beta = (n_1, n_2 \ldots n_s, B_1, B_2 \ldots B_s)$ we have that

$$\langle \alpha | R | \beta \rangle = V^{m_r} A_r \ldots V^{m_1} A_1 R B_1 V^{n_1} \ldots B_s V^{n_s} = (\tilde{\alpha}|I|\tilde{\beta}),$$

where $\tilde{\alpha}$ and $\tilde{\beta}$ are strings of \mathfrak{A} with $l(\tilde{\alpha}) + l(\tilde{\beta}) = l(\alpha) + l(\beta) - 1$. Moreover if $\dot{\alpha} \geq \dot{\beta}$ then $\dot{\tilde{\alpha}} \geq \dot{\tilde{\beta}}$, while if $\dot{\alpha} < \dot{\beta}$ then $\dot{\tilde{\alpha}} < \dot{\tilde{\beta}}$. In fact if $m_1 \geq n_1$ we obtain:

$$\langle \alpha | R | \beta \rangle = V^{m_r} A_r \ldots V^{m_1} A_1 V^{(m_1-n_1)} R_1 B_2 V^{n_2} \ldots B_s V^{n_s} = (\tilde{\alpha}|I|\tilde{\beta}),$$

where

$$R_1 = V^{n_1} A_1 R B_1 V^{n_1},$$

$$\tilde{\alpha} = (m_1 - n_1, m_2 \ldots m_r, R_1, A_2 \ldots A_r) \quad \text{and} \quad$$

$$\tilde{\beta} = (n_2 \ldots n_s, B_2 \ldots B_s).$$

If $m_1 < n_1$ then we can write:

$$\langle \alpha | R | \beta \rangle = V^{m_r} A_r \ldots V^{m_2} A_2 R_1 V^{(n_1-m_1)} B_2 \ldots B_s V^{n_s} = (\tilde{\alpha}|I|\tilde{\beta}),$$

where

$$R_1 = V^{m_1} A_1 R B_1 V^{m_1},$$

$$\tilde{\alpha} = (m_2 \ldots m_r, A_2 \ldots A_r) \quad \text{and} \quad$$

$$\tilde{\beta} = (n_1 - m_1, n_2 \ldots n_s, R_1, B_2 \ldots B_s).$$

The proof of (3.1) follows by induction on the number $\nu = l(\alpha) + l(\beta)$. The equation (3.2) follows by a direct calculation. \square
Now, given the orthogonal projection $F = I - VV^*$ (see Section 2), for each string α of \mathfrak{A} with $\alpha \geq 1$ we define

$$\Gamma(\alpha) := (\alpha|F\Pi_A - 1,$$

which we call the gamma operator associated to $G(\mathfrak{A}, V)$. The linear space generated by all gamma operators $\Gamma(\alpha)$ for $\alpha \geq 1$ will be denoted by $G(\mathfrak{A}, V)$.

Proposition 3.3. For any strings α and β of \mathfrak{A} with $\alpha, \beta \geq 1$, we have

$$\Gamma(\alpha)\Gamma(\beta)^* \in \mathfrak{A}.$$

Proof. Note that

$$\Gamma(\alpha)\Gamma(\beta)^* = (\alpha|F\Pi_{\alpha - 1}\Pi_{\beta - 1}^*F|\beta) = \begin{cases} (\alpha|F|\beta) & \text{if } \hat{\alpha} = \hat{\beta} \\ 0 & \text{if } \hat{\alpha} \neq \hat{\beta} \end{cases}.$$

In fact if $\hat{\alpha} = \hat{\beta}$ we have that

$$(\alpha|F|\beta) = (\alpha|(I - VV^*)|\alpha) = (\alpha|I|\alpha) - (\alpha|VV^*|\alpha) \in \mathfrak{A},$$

since $(\alpha|V| \in (\alpha - 1)$ and $V^*|\alpha) \in |\alpha - 1)$, and $(\alpha - 1|I|\alpha - 1) \in \mathfrak{A}$ by relationship (3.1). \hfill \Box

The gamma operators associated to $G(\mathfrak{A}, V)$ define an operator system Σ of the form $\mathfrak{B}(l^2(FH))$ by

$$\Sigma := \{ T \in \mathfrak{B}(l^2(FH)) : \Gamma_1T\Gamma_2^* \in \mathfrak{A} \quad \text{for all } \Gamma_1, \Gamma_2 \in G(\mathfrak{A}, V) \}.$$ (3.4)

We observe that the unit I belongs to Σ and that

$$\Gamma_1^*A\Gamma_2 \in \Sigma \quad \text{for } A \in \mathfrak{A},$$

for any pair of gamma operators Γ_1, Γ_2. Furthermore, it is easy to prove that Σ is norm closed, and it is weakly closed if \mathfrak{A} is a W^*-algebra.

3.2. Napla operators

For strings α and β of \mathfrak{A}, any $A \in \mathfrak{A}$ and $k \in \mathbb{N}$ we define

$$\Delta_k(A, \alpha, \beta) := \Pi_{\alpha+k}^*F|\alpha)A(\beta|F\Pi_{\beta+k}^*.$$

We call these operators of $\mathfrak{B}(l^2(FH))$ the napla operators associated to the pair (\mathfrak{A}, V).

In the next lines we show that the linear space generated by the napla operators form a \ast-algebra. To this end, it is easily seen that $\Delta_k(A, \alpha, \beta)^* = \Delta_k(A^{*\prime}, \beta^{\prime}, \alpha)$ for any $h, k \geq 0$. Moreover we have the following two relationships: if $k + \beta \neq h + \gamma$, then

$$\Delta_k(A, \alpha, \beta)\Delta_h(B, \gamma, \delta) = 0,$$ (3.5)

while if $k + \beta = h + \gamma$, then there is ϑ and $R \in \mathfrak{A}$ with

$$\Delta_k(A, \alpha, \beta)\Delta_h(B, \gamma, \delta) = \begin{cases} \Delta_k(R, \alpha, \vartheta) & \text{if } h - k \geq 0, \text{ where } \hat{\vartheta} = \hat{\delta} + h - k \\ \Delta_h(R, \vartheta, \delta) & \text{if } h - k < 0, \text{ where } \hat{\vartheta} = \hat{\delta} + k - h. \end{cases}$$ (3.6)

In fact, notice that

$$\Delta_k(A, \alpha, \beta)\Delta_h(B, \gamma, \delta) = \Pi_{\alpha+k}^*F|\alpha)A(\beta|F\Pi_{\beta+k}^*\Pi_{\gamma+h}^*F|\gamma)B(\delta|F\Pi_{\delta+h}^*.$$ If $k + \beta \neq h + \gamma$ it follows that $\Pi_{\beta+k}\Pi_{\gamma+h}^* = 0$, and this shows (3.5). If $k + \beta = h + \gamma$, without loss of generality we can assume that $h \geq k$. So $\beta = \gamma + h - k \geq \gamma$ and, by relationship (3.1), we have that $|\beta|F|\gamma) \in \mathfrak{A}(\beta - \gamma|$. Consequently, $A(\beta|F|\gamma)B(\delta| \in \mathfrak{A}(\delta + \beta - \gamma|$, and there exists a ϑ string of \mathfrak{A} and an element $R \in \mathfrak{A}$ such that $\hat{\vartheta} = \hat{\delta} + \beta - \gamma$ and $A(\beta|F|\gamma)B(\delta| = R(\vartheta)$. Now, since $\hat{\vartheta} = \hat{\delta} + h - k$ we have:

$$\Delta_k(A, \alpha, \beta)\Delta_h(B, \gamma, \delta) = \Pi_{\alpha+k}^*F|\alpha)R(\vartheta|F\Pi_{\delta+k}^*$$

$$= \Pi_{\alpha+k}^*F|\alpha)R(\vartheta|F\Pi_{\delta+k} = \Delta_k(R, \alpha, \vartheta),$$

showing relationship (3.6).
Proposition 3.4. — The linear space \mathcal{X}_α generated by the napla operators is a *-subalgebra of $\mathfrak{B}(l^2(FH))$ included in the operator systems Σ defined in (3.4).

Proof. — From relationships (3.5),(3.6) the linear space \mathcal{X}_α is a *-algebra. Furthermore for each pair $\Gamma(\alpha)$, $\Gamma(\beta)$ of gamma operators we obtain:

$$\Gamma(\alpha)\Delta_k(A,\gamma,\delta)\Gamma(\beta)^* = (\alpha|F\Pi_{\alpha-1}^{\gamma}F_\gamma|\gamma)A(\delta|F\Pi_{\beta-1}^{\gamma}F_\beta|\beta) \in \mathfrak{A},$$

since by the relationships (3.1) and (3.2) we have

$$(\alpha|F\Pi_{\alpha-1}^{\gamma}F_\gamma|\gamma)A(\delta|F\Pi_{\beta-1}^{\gamma}F_\beta|\beta) \in \left\{ \begin{array}{ll}(k+1)|\mathfrak{A}|k+1 & \text{if } \hat{\alpha} - 1 = \hat{\gamma} + k, \\
0 & \text{elsewhere} \end{array} \right.$$

In fact, if $\hat{\alpha} = \hat{\gamma} + k + 1$ we can write

$$(\alpha|F\Pi_{\alpha-1}^{\gamma}F_\gamma|\gamma) = (\alpha|F|\gamma) - (\alpha|VV^*|\gamma) \in \mathfrak{A}(k+1),$$

since $(\alpha|I|\gamma) \in \mathfrak{A}(k+1)$ and $(\alpha|VV^*|\gamma) \in \mathfrak{A}(k+1)$. If $\hat{\beta} = \hat{\delta} + k + 1$ we have

$$(\delta|F\Pi_{\beta-1}^{\gamma}F_\beta|\beta) \in (k+1)|\mathfrak{A}|, \text{ completing the proof.} \quad \square$$

The next result is concerned with W-invariance.

Proposition 3.5. — The *-algebra \mathcal{X}_α and the operator system Σ are W-invariants:

$$W^*\mathcal{X}_\alpha W \subset \mathcal{X}_\alpha \quad \text{and} \quad W^*\Sigma W \subset \Sigma.$$

Proof. — The first inclusion follows by (2.6). Concerning the second one, let $T \in \Sigma$. For each pair $\Gamma(\alpha)$, $\Gamma(\beta)$ of gamma operators

$$\Gamma(\alpha)(W^*TW)\Gamma(\beta)^* = (\alpha|F\Pi_{\alpha-1}^{\gamma}F_\gamma|\gamma)A(\beta|F\Pi_{\beta-1}^{\gamma}F_\beta|\beta) \in (\alpha|W^*\Gamma_1(o_\alpha)TT_2(\beta_\alpha)V\mathfrak{A}|,$$

where α_α and β_β are strings of \mathfrak{A} with $\hat{\alpha}_\alpha = \hat{\alpha} - 1$ and $\hat{\beta}_\beta = \hat{\beta} - 1$. In fact if $\alpha = (m_1, m_2, \ldots, m_r, A_1, A_2, \ldots, A_r)$, then, by definition of the gamma operator, there is $i \leq r$ with $m_i \geq 1$ such that

$$(\alpha|F\Pi_{\alpha-1}F_\gamma|\gamma) = A_1 \cdots A_{r-1}V^*(\alpha_\alpha|F\Pi_{\alpha-2}F_\gamma|\gamma) = A_1 \cdots A_rV^*(\alpha_\alpha),$$

where

$$\alpha_\alpha = (0, \ldots, 0, m_i - 1, m_{i+1} \ldots, m_r, A_1, A_2, \ldots, A_r)$$

with $\hat{\alpha}_\alpha = \hat{\alpha} - 1$. Consequently

$$\Gamma(\alpha)(W^*TW)\Gamma(\beta)^* \subset V^*\mathfrak{A}W \subset \mathfrak{A},$$

completing the proof. \quad \square

3.3. The algebra generated by the napla and gamma operators. Let \mathcal{X} be the closure in norm of the *-algebra \mathcal{X}_α of the apla operators previously defined. Since the operator system Σ defined in (3.4) is a norm closed set, we have $\mathcal{X} \subset \Sigma$. Notice that in case \mathfrak{A} is a von Neumann algebra of $\mathfrak{B}(H)$, the operator system Σ is weakly closed and $\mathcal{X}'' \subset \Sigma$.

Proposition 3.6. — The set

$$\mathcal{S} = \left\{ \begin{array}{c} \begin{array}{c} A \\ \Gamma_1^* \\ \Gamma_2^* \\ T \end{array} \\ : A \in \mathfrak{A}, T \in \mathcal{X} \text{ and } \Gamma_1, \Gamma_2 \in \mathfrak{G}(\mathfrak{A}, \mathfrak{V}) \end{array} \right\} \quad (3.7)$$

is an operator system of $\mathfrak{B}(\tilde{H})$ such that:

$$\tilde{V}^*\mathcal{S}\tilde{V} \subset \mathcal{S}.$$

Furthermore

$$\tilde{V}^*\mathcal{A}^*(\mathcal{S})\tilde{V} \subset \mathcal{A}^*(\mathcal{S}),$$

where $\mathcal{A}^*(\mathcal{S})$ is the *-algebra generated by the set \mathcal{S}.
Proof. — From relationship (2.4) we obtain:
\[\hat{V}^* \hat{S} \hat{V} = \begin{vmatrix} V^*AV & V^*AC(1) + V^*\Gamma_1W \\ C(1)^*AV + W^*\Gamma_2V & C(1)^*AC(1) + W^*\Gamma_2C(1) + C(1)^*\Gamma_1W + W^*TW \end{vmatrix} \]

We observe that \(V^*\Gamma_1W \) and \(V^*AC(1) \) are gamma operators associated to the pair \((\mathfrak{A}, V)\), while \(C(1)^*AC(1), C(1)^*\Gamma(1)W \) and \(W^*TW \) are operators belonging to \(\mathfrak{X} \). In fact we have \(V^*AC(1) = V^*AF\Pi_0 = \Gamma(\vartheta) \) with \(\vartheta = (1, A) \); while if \(\alpha = (m_1, m_2 \ldots m_r, A_1, A_2 \ldots A_r) \), then \(V^*\Gamma_1W = V^*\alpha|F\Pi_{a-1}W = \Gamma(\vartheta) \), with \(\vartheta = (m_1 + 1, m_2 \ldots m_r, A_1, A_2 \ldots A_r) \) since \(\Pi_{a-1}W = \Pi_a \). Furthermore
\[C(1)^*AC(1) = \Pi_0^*FAF\Pi_0 = \Delta_0(A, \alpha, \beta), \]
with \(\alpha = \beta = (0, I) \); while

\[C(1)^*\Gamma_1W = \Pi_0^*F(\alpha|F\Pi_{a-1}W = \Pi_0^*F|\gamma)(\alpha|F\Pi_{a+0} = \Delta_0(I, \gamma, \alpha) \]

with \(\gamma = (0, I) \), where the last statement follows from the fact that \(\hat{V} \) is unitary. \(\square \)

We observe that \(\mathcal{A}^*(\mathcal{S}) \), the *-algebra generated by the operator system \(\mathcal{S} \) defined in (3.7), is the linear space generated by the following elements of \(\mathfrak{B}(\hat{\mathcal{H}}) \):
\[\begin{vmatrix} A_1 \\ T_2 \Gamma_2 A_3 \\ T_3 \end{vmatrix} \]
with \(A_i \in \mathfrak{A}, \Gamma_j \in \mathfrak{G}(\mathfrak{A}, V) \) and \(T_k \in \mathfrak{X} \) for all \(i, k = 1, 2, 3 \) and \(j = 1, 2 \). We list here some easy properties of the *-algebra \(\mathcal{A}^*(\mathcal{S}) \):

(a) \(\mathfrak{Z}\mathfrak{A}\mathfrak{Z}^* \subset \mathcal{A}^*(\mathcal{S}) \);
(b) \(\mathfrak{Z}^*\mathcal{A}^*(\mathcal{S}) \mathfrak{Z} \subset \mathfrak{A} \);
(c) \(\hat{V}^*\mathcal{A}^*(\mathcal{S})\hat{V} \subset \mathcal{A}^*(\mathcal{S}) \).

Furthermore, since \(\hat{V}Z = ZV \) we have:

(d) \(\mathfrak{Z}^*\hat{V}^*X\hat{V}Z = \mathfrak{V}^*Z^*XZV \);
(e) \(\mathfrak{Z}^*\hat{V}^*(Z\mathfrak{A}\mathfrak{Z}^*)\hat{V}Z = \mathfrak{V}^*AV \).

Using these results we prove the Proposition 3.1.

Proof of Proposition 3.1. — Let \(\hat{\mathfrak{A}} \) be the C*-subalgebra of \(\mathfrak{B}(\hat{\mathcal{H}}) \) generated by
\[\bigcup_{k=0}^{\infty} \hat{V}^k \mathfrak{Z} \mathfrak{A} \mathfrak{Z}^* \hat{V}^k \quad \text{for} \quad A \in \mathfrak{A}. \] (3.8)

For each natural number \(k \) we have that \(\hat{V}^{k+} \mathfrak{Z} \mathfrak{A} \mathfrak{Z}^* \hat{V}^k \subset \hat{V}^{k+} \mathcal{S} \hat{V}^k \subset \mathcal{S} \), since \(\mathfrak{Z} \mathfrak{A} \mathfrak{Z}^* \subset \mathcal{S} \); so \(\hat{\mathfrak{A}} \subset \mathcal{A}^*(\mathcal{S}) \), the norm closure of the *-algebra \(\mathcal{A}^*(\mathcal{S}) \). It is easily seen that \(\hat{\mathfrak{A}} \) satisfies the conditions of Proposition 3.1, completing the proof. \(\square \)

Remark 3.7. — It is straightforward to show that if \(\mathfrak{A} \) is a von Neumann algebra of \(\mathfrak{B}(\mathcal{H}) \), then the Proposition 3.1 still holds true, with \(\hat{\mathfrak{A}} \) the von Neumann algebra of \(\mathfrak{B}(\hat{\mathcal{H}}) \) generated by the elements (3.8).

4. STINESPREG REPRESENTATION AND QUANTUM DYNAMICAL SYSTEMS

We consider a concrete C*-algebra \(\mathfrak{A} \) of \(\mathfrak{B}(\mathcal{H}) \) with unit and a ucp-map \(\Phi : \mathfrak{A} \to \mathfrak{A} \).

On the algebraic tensor product \(\mathfrak{A} \otimes \mathcal{H} \) we can define a semi-inner product by
\[\langle A_1 \otimes h_1, A_2 \otimes h_2 \rangle_\Phi := (h_1, \Phi(A_1^*A_2)h_2)_\mathcal{H}, \]
for all \(A_1, A_2 \in \mathfrak{A} \) and \(h_1, h_2 \in \mathcal{H} \). We denote by \(\overline{\mathfrak{A} \otimes \Phi \mathcal{H}} \) the Hilbert space completion of the quotient space of \(\mathfrak{A} \otimes \mathcal{H} \) by the linear subspace \(\{ T \in \mathfrak{A} \otimes \mathcal{H} : \langle T, T \rangle_\Phi = 0 \} \),
So, iterating this procedure we obtain, for each natural number \(n \) satisfying the equation

\[\langle A_1 \overline{\Phi} h_1, A_2 \overline{\Phi} h_2 \rangle_{\mathfrak{A} \overline{\Phi} \mathcal{H}} = \langle h_1, \Phi(A_1^* A_2) h_2 \rangle_{\mathcal{H}} \]

for all \(A_1, A_2 \in \mathfrak{A} \) and \(h_1, h_2 \in \mathcal{H} \).

Moreover, we define a representation \(\sigma_\Phi : \mathfrak{A} \to \mathcal{B}(\mathfrak{A} \overline{\Phi} \mathcal{H}) \) by

\[\sigma_\Phi(A)(X \overline{\Phi} h) := AX \overline{\Phi} h \quad \text{for} \quad A \in \mathfrak{A} \text{ and } X \overline{\Phi} h \in \mathfrak{A} \overline{\Phi} \mathcal{H}, \]

and a linear isometry \(V_\Phi : \mathcal{H} \to \mathfrak{A} \overline{\Phi} \mathcal{H} \) by

\[V_\Phi h := \overline{\Phi} h \quad \text{for} \quad h \in \mathcal{H}, \]

satisfying the equation

\[\Phi(A) = V_\Phi^* \sigma_\Phi(A) V_\Phi \quad \text{for} \quad A \in \mathfrak{A}. \tag{4.1} \]

The triple \((V_\Phi, \sigma_\Phi, \mathfrak{A} \overline{\Phi} \mathcal{H})\) is the Stinespring representation of the ucp-map \(\Phi \) (see [13]).

Our aim is to analyze the behaviour of the isometry \(V_\Phi \) and of its adjoint \(V_\Phi^* \) on the multiplicative domain of the ucp-map \(\Phi \). To this end note that the adjoint \(V_\Phi^* \) verifies \(V_\Phi^* A \overline{\Phi} h = \Phi(A) h \) for any \(A \in \mathfrak{A} \) and \(h \in \mathcal{H} \). Furthermore, recall that the multiplicative domain of the ucp-map \(\Phi : \mathfrak{A} \to \mathfrak{A} \) is the C*-subalgebra with unit of \(\mathfrak{A} \) defined as

\[D_\Phi = \{ A \in \mathfrak{A} : \Phi(A^*) \Phi(A) = \Phi(A^* A) \text{ and } \Phi(A) \Phi(A^*) = \Phi(A A^*) \}, \]

see [11]. The multiplicative domain is characterized by the following relationship

\[A \in D_\Phi \iff \sigma_\Phi(A) V_\Phi V_\Phi^* = V_\Phi V_\Phi^* \sigma_\Phi(A). \tag{4.2} \]

In fact, we first note that

\[A \overline{\Phi} h = 1 \overline{\Phi} \Phi(A) h \quad \text{for all} \quad h \in \mathcal{H} \iff \Phi(A^* A) = \Phi(A^*) \Phi(A), \]

since

\[|A \overline{\Phi} h - 1 \overline{\Phi} \Phi(A) h|^2 = \langle h, \Phi(A^* A) h \rangle - \langle h, \Phi(A^*) \Phi(A) h \rangle. \]

Consequently, for any \(A \in D_\Phi \) and \(B \overline{\Phi} h \in \mathfrak{A} \overline{\Phi} \mathcal{H} \) we have

\[\sigma_\Phi(A) V_\Phi V_\Phi^* B \overline{\Phi} h = A \overline{\Phi} \Phi(B) h = 1 \overline{\Phi} \Phi(A) \Phi(B) h = 1 \overline{\Phi} \Phi(AB) h = V_\Phi V_\Phi^* \sigma_\Phi(A) B \overline{\Phi} h, \]

where we have used the property of the multiplicative domain \(\Phi(A) \Phi(B) = \Phi(AB) \) (see [13]). Conversely, if \(\sigma_\Phi(A) V_\Phi V_\Phi^* = V_\Phi V_\Phi^* \sigma_\Phi(A) \) then

\[\Phi(A^* A) = V_\Phi^* \sigma_\Phi(A^* A) V_\Phi = V_\Phi^* \sigma_\Phi(A^*) \sigma_\Phi(A) V_\Phi V_\Phi^* V_\Phi = V_\Phi^* \sigma_\Phi(A^*) V_\Phi^* \sigma_\Phi(A) V_\Phi = \Phi(A^*) \Phi(A), \]

and this completes the proof of (4.2).

It is easily seen from (4.2) that \(\Phi \) is a *-homomorphism if, and only if, \(V_\Phi \) is a unitary operator.

The next steps provides some simple applications of the Stinespring representation of ucp-maps.

Let \(\mathfrak{A} \) be a concrete C*-subalgebra with unit of \(\mathcal{B}(\mathcal{H}) \) and \(\Phi : \mathfrak{A} \to \mathfrak{A} \) a ucp-map. By the Stinespring's theorem we obtain a triple \((V_0, \sigma_1, \mathcal{H}_1) \), with \(\mathcal{H}_1 = \mathfrak{A} \overline{\Phi} \mathcal{H} \) such that \(\Phi(A) = V_0^* \sigma_1(A) V_0 \) for all \(A \in \mathfrak{A} \). Moreover the application \(\Phi_1 : \mathfrak{A} \to \mathcal{B}(\mathcal{H}_1) \) defined by \(\Phi_1(A) := \sigma_1(\Phi(A)) \), for \(A \in \mathfrak{A} \), is a ucp-map because it is a composition of ucp-maps. By applying the Stinespring's theorem to \(\Phi_1 \), we have a new triple \((V_1, \sigma_2, \mathcal{H}_2) \), with \(\mathcal{H}_2 = \mathfrak{A} \overline{\Phi} \mathcal{H}_1 \) such that \(\Phi_1(A) = V_1^* \sigma_2(A) V_1 \) for all \(A \in \mathfrak{A} \). So, iterating this procedure we obtain, for each natural number \(n \geq 1 \), a ucp-map \(\Phi_n : \mathfrak{A} \to \mathcal{B}(\mathcal{H}_n) \) such that

\[\Phi_n(A) = \sigma_n(\Phi(A)) \quad \text{for} \quad A \in \mathfrak{A}, \tag{4.3} \]
and a new triple \((V_n, \sigma_{n+1}, H_{n+1})\), where \(H_{n+1} = \mathcal{A} \otimes \phi_n H_n\), and an isometry \(V_n : H_n \rightarrow H_{n+1}\) such that \(\Phi_n(A) = V_n^* \sigma_{n+1}(A)V_n\) for all \(A \in \mathcal{A}\).

Now we prove the following Stinespring-type theorem (see [14]):

Proposition 4.1. — Let \(\mathcal{A}\) be a concrete C*-algebra with unit of \(\mathcal{B}(H)\) and \(\Phi : \mathcal{A} \rightarrow \mathcal{A}\) a ucp-map. There exists an injective representation \((\pi_\infty, H_\infty)\) of \(\mathcal{A}\) and a linear isometry \(V_\infty\) on the Hilbert Space \(H_\infty\) such that

\[
\pi_\infty(\Phi(A)) = V_\infty^* \pi_\infty(A) V_\infty \quad \text{for} \quad A \in \mathcal{A}.
\]

Furthermore, \(A \in \mathcal{D}_\Phi\) if, and only if, \(V_\infty V_\infty^* \pi_\infty(A) = \pi_\infty(A) V_\infty V_\infty^*\).

Proof. We consider for each natural number \(n\) the ucp-map \(\Phi_n : \mathcal{A} \rightarrow \mathcal{B}(H_0)\) defined in (4.3) and its Stinespring representation \((V_n, \sigma_{n+1}, H_{n+1})\) with \(H_0 = H\) and \(\sigma_0 = \text{id}\). Then, we obtain a faithful representation \(\pi_\infty : \mathcal{A} \rightarrow \mathcal{B}(H_\infty)\) on the Hilbert space \(H_\infty = \bigoplus_{n \geq 0} H_n\) by defining

\[
\pi_\infty(A) := \bigoplus_{n \geq 0} \sigma_n(A) \quad \text{for} \quad A \in \mathcal{A}.
\]

Now, let \(V_\infty : H_\infty \rightarrow H_\infty\) be the isometry defined by

\[
V_\infty(h_0, h_1, \ldots, h_n) := (0, V_0 h_0, V_1 h_1 \ldots V_n h_n),
\]

for all \(h_n \in H_n\) and \(n \in \mathbb{N}\). Note that the adjoint of \(V_\infty\) is

\[
V_\infty^*(h_0, h_1, \ldots, h_n) = (V_0^* h_1, V_1^* h_2 \ldots V_n^* h_n)
\]

for all \(h_n \in H_n\) and \(n \in \mathbb{N}\). Hence, for any \(n\) and \(h_n \in H_n\) we have

\[
V_\infty^* \pi_\infty(A) V_\infty \bigoplus_{n \geq 0} h_n = \bigoplus_{n \geq 0} \Phi_n(A) h_n = \bigoplus_{n \geq 0} \sigma_n(\Phi(A)) h_n = \pi_\infty(\Phi(A)) \bigoplus_{n \geq 0} h_n.
\]

Finally, the last statement easily follows by 4.2.

In fact if \(A \in \mathcal{D}_\Phi\) then \(A \in \mathcal{D}_{\Phi_n}\) for all natural number \(n\), where \(\mathcal{D}_{\Phi_n}\) is the multiplicative domain of the ucp-map (4.3), then

\[
V_\infty V_\infty^* \in \pi_\infty(\bigcap_{n \geq 0} \mathcal{D}_{\Phi_n})' \subset \pi_\infty(\mathcal{D}_\Phi)'.
\]

\[\square\]

We have the following remark on the existence of a representation of a quantum dynamical system:

Remark 4.2. — Let \((\mathcal{M}, \Phi)\) be a quantum dynamical system. The injective representation \(\pi_\infty(A) : \mathcal{M} \rightarrow \mathcal{B}(H_\infty)\) defined in proposition 4.1 is normal, since the Stinespring representation \(\sigma_\Phi : \mathcal{A} \rightarrow \mathcal{B}(\mathcal{L}_\Phi)\) is a normal map. Then \((\pi_\infty, H_\infty, V_\infty)\) is a representation of the quantum dynamical system \((\mathcal{M}, \Phi)\).

4.1. Dilation of a quantum dynamical system. We use the results of the previous section to analyze the problem of dilation of quantum dynamical systems.

Consider a ucp-map \(\Phi : \mathcal{A} \rightarrow \mathcal{A}\) with \(\mathcal{A}\) a concrete C*-algebra with unit of \(\mathcal{B}(H)\). If \((H_\infty, \pi_\infty, V_\infty)\) is the Stinespring representation of Proposition 4.1, then

\[
V_\infty^* \pi_\infty(\mathcal{A}) V_\infty \subset \pi_\infty(\Phi(\mathcal{A})) \subset \pi_\infty(\mathcal{A}).
\]

Hence, we can define a normal ucp-map \(\Phi_\infty : \pi_\infty(\mathcal{A})' \rightarrow \pi_\infty(\mathcal{A})'\) as

\[
\Phi_\infty(B) := V_\infty^* B V_\infty \quad \text{for} \quad B \in \pi_\infty(\mathcal{A})'.
\]

Clearly we have that \(\Phi_\infty(\pi_\infty(A)) = \pi_\infty(\Phi(A))\) for all \(A \in \mathcal{A}\).

Now, if \((\hat{V}, \hat{H}, \hat{Z})\) is minimal unitary dilation of the isometry \(V_\infty : H_\infty \rightarrow H_\infty\), then by Proposition 3.1 there is a C*-algebra with unit \(\hat{\mathcal{A}}\) of \(\mathcal{B}(\hat{H})\) such that:

(a) \(Z \pi_\infty(\hat{\mathcal{A}}) Z^* \subset \hat{\mathcal{A}}\),
(b) \(Z^* \hat{\mathcal{A}} Z = \pi_\infty(\mathcal{A})\),
(c) \(\hat{V}^* \hat{\mathcal{A}} \hat{V} \subset \hat{\mathcal{A}}\).
Furthermore, we have a *-homomorphism \(\hat{\Phi} : \hat{A} \to \hat{A} \) defined by
\[
\hat{\Phi}(X) = \hat{V}^*X\hat{V} \quad \text{for} \quad X \in \hat{A},
\]
(4.6)
such that for any \(A \in \mathfrak{A} \), \(X \in \hat{A} \) and any natural number \(n \) we have:
\[
\pi_{\infty}(\Phi^n(A)) = Z^*\hat{\Phi}^n(ZAZ^*)Z,
\]
and
\[
\pi_{\infty}(\Phi^n(Z^*XZ)) = Z^*\hat{\Phi}^n(X)Z.
\]
In conclusion, it is straightforward to prove that \((\hat{A}'', \Theta, \hat{H}, Z)\), with \(\Theta : \hat{A}''' \to \hat{A}''' \) the normal *-homomorphism
\[
\Theta(X) := \hat{V}^*X\hat{V} \quad \text{for} \quad X \in \hat{A}'',
\]
is a dilation of the quantum dynamical system \((\pi_{\infty}(\mathfrak{M}), \Phi_{\infty})\) above defined.

4.2. The deterministic part of a quantum dynamical system and its dilations. In this section we study which relationships there are between the dilations and the deterministic part of a quantum dynamical system.

Let \(\Phi : \mathfrak{A} \to \mathfrak{A} \) be a ucp-map as described in previous section and \(C^\ast(S) \) the C*-algebra generated by the operator systems \(S \) defined in (3.7).

We recall that \(S \subset A^\ast(S) \subset C^\ast(S) \subset \mathfrak{B}(\hat{H}) \) where \(\hat{H} = H_\infty \oplus l^2(FH_\infty) \) with \(F = I - V_\infty V_\infty^* \). By relationships (a), (b) and (c) of Section 3.3, we can define a *-homomorphism \(\Lambda : C^\ast(S) \to C^\ast(S) \) as follows:
\[
\Lambda(X) = \hat{V}^*X\hat{V} \quad \text{for} \quad X \in C^\ast(S).
\]
(4.7)
Furthermore, we have a ucp-map \(\mathcal{E} : C^\ast(S) \to \mathfrak{A} \) such that
\[
\pi_{\infty}(\mathcal{E}(X)) = Z^*XZ \quad \text{for} \quad X \in C^\ast(S)
\]
and for any natural number \(n \in \mathbb{N} \)
\[
\mathcal{E} \circ \Lambda^n = \Phi^n \circ \mathcal{E}.
\]
Hence, we have the following diagram:
\[
\begin{array}{ccc}
C^\ast(S) & \xrightarrow{\Lambda^n} & C^\ast(S) \\
\mathcal{E} \downarrow & & \downarrow \mathcal{E} \\
\mathfrak{A} & \xrightarrow{\Phi^n} & \mathfrak{A}
\end{array}
\]
where \(\mathcal{E}(ZAZ^*) = A \) for all \(A \in \mathfrak{A} \).

We consider now the C*-algebra \(\mathcal{D} := \bigcap_{n \geq 0} D_{\Phi^n} \) where the set \(D_{\Phi^n} \) is the multiplicative domain of the ucp-map \(\Phi^n : \mathfrak{A} \to \mathfrak{A} \) for all natural numbers \(n \). The restriction of \(\Phi \) to \(\mathcal{D} \) is a *-homomorphism \(\Phi_{\infty} : \mathcal{D} \to \mathcal{D} \) of C*-algebras. It is said to be the **deterministic part** of the ucp-map \(\Phi : \mathfrak{A} \to \mathfrak{A} \).

The *-homomorphism \(\Lambda \) defined above is related to the deterministic part of \(\Phi \) in the following way:

PROPOSITION 4.3. — There is an injective *-homomorphism \(i : \mathcal{D} \to C^\ast(S) \) such that for each natural number \(n \) and \(D \in \mathcal{D} \) we have:
\[
\mathcal{E}(\Lambda^n(i(D))) = \Phi^n(D)
\]
and
\[
\Lambda^n(i(D)) = i(\Phi^n(D)).
\]
Proof. — Since \(F \in \pi_\infty(D \Phi) \subset \pi_\infty(D)' \) by Proposition 4.1, the map \(\Xi : \mathcal{D} \rightarrow \mathcal{B}(l^2(FH_\infty)) \) defined by

\[
\Xi(D) = \sum_{k \geq 0} \Pi_k^* F \pi_\infty(\Phi_r^{- (k + 1)}(D)) F \Pi_k \quad D \in \mathcal{D}
\]

is a representation. Furthermore for any \(D \in \mathcal{D} \) we have that \(\Xi(D) \) belongs to \(\mathcal{X}_0 \), the linear space generated by the napla operators defined in Proposition 3.4, since \(\Pi_k^* F \pi_\infty(\Phi_r^{- (k + 1)}(D)) F \Pi_k \) is the napla operator \(\Delta_k(\pi_\infty(\Phi_r^{- (k + 1)}(D)), \alpha, \beta) \) with the strings \(\alpha = \beta = (0, I) \).

We define a *-homomorphism \(i : \mathcal{D} \rightarrow C^*(\mathcal{S}) \) as follows

\[
i(D) = \pi_\infty(D) \oplus \Xi(D) \quad \text{for} \quad D \in \mathcal{D},
\]

and by relationship (2.5) we obtain that

\[
\Lambda^n(i(D)) = \begin{vmatrix} V^n \pi_\infty(D)V^n, & V^n \pi_\infty(D)C_n \\ C_n^* \pi_\infty(D)V^n, & C_n^* \pi_\infty(D)C_n + W^n \Xi(D)W^n \end{vmatrix}.
\]

It is straightforward to prove that

\[
C_n^* \pi_\infty(D)C_n + W^n \Xi(D)W^n = \Xi(\Phi^n(D))
\]

and \(C_n^* \pi_\infty(D)V^n = 0 \), since by relationship (2.8) we have

\[
FV^{(n-k)^*} \pi_\infty(D)V^n = \pi_\infty(\Phi^{(n-k)}(D))FV^k = 0
\]

for all \(1 \leq k \leq n \), completing the proof.

Finally, we observe that there is the following relationship between dilations and the deterministic part of a quantum dynamical system:

If \((\mathcal{M}, \Theta, \mathcal{K}, \mathcal{Z}) \) is any dilation of quantum dynamical system \((\mathcal{M}, \Phi) \), then for any natural number \(n \) and \(D \in \mathcal{D} \) we have:

\[
\Theta^n(\mathcal{Z}D\mathcal{Z}^*)\mathcal{Z} = Z\Phi^n(D),
\]

since if \(Y = \Theta^n(\mathcal{Z}D\mathcal{Z}^*)\mathcal{Z} - Z\Phi^n(D) \), then \(Y^*Y = 0 \).

5. Ergodic properties

Let \(\mathfrak{A} \) be a concrete C*-algebra of \(\mathcal{B}(\mathcal{H}) \) with unit, \(\Phi : \mathfrak{A} \rightarrow \mathfrak{A} \) a ucp-map and \(\varphi \) a state on \(\mathfrak{A} \) such that \(\varphi \circ \Phi = \varphi \). We recall that \(\varphi \) is an ergodic state, relative to the ucp-map \(\Phi \) (see [10]), if for each \(A, B \in \mathfrak{A} \)

\[
\lim_{n \rightarrow \infty} \frac{1}{n+1} \sum_{k=0}^n (\varphi(A\Phi^k(B)) - \varphi(A)\varphi(B)) = 0,
\]

and that \(\varphi \) is weakly mixing if for each \(A, B \in \mathfrak{A} \)

\[
\lim_{n \rightarrow \infty} \frac{1}{n+1} \sum_{k=0}^n |\varphi(A\Phi^k(B)) - \varphi(A)\varphi(B)| = 0.
\]

By Proposition 4.1 we can assume that \(\mathfrak{A} \) is a concrete C*-algebra of \(\mathcal{B}(\mathcal{H}) \), and that there is an isometry \(V \) on \(\mathcal{H} \) such that:

\[
\Phi(A) = V^* AV \quad \text{for} \quad A \in \mathfrak{A}.
\]

Let \((\hat{V}, \hat{\mathcal{H}}, \mathcal{Z}) \) be the minimal unitary dilation of \((V, \mathcal{H}) \) defined in (2.4), let \(\hat{\mathfrak{A}} \) be the C*-algebra included in \(\mathcal{B}(\hat{\mathcal{H}}) \) defined in Proposition 3.1, and let \(\hat{\Phi} : \hat{\mathfrak{A}} \rightarrow \hat{\mathfrak{A}} \) be the ucp-map defined in (4.6).

Proposition 5.1. — If the ucp-map \(\Phi \) admits a \(\varphi \)-adjoint and \(\varphi \) is an ergodic state, then:

\[
\lim_{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^N |\varphi(Z^*X\Phi^k(Y)Z) - \varphi(Z^*XZ\varphi(Z^*YZ))| = 0
\]
for all $X, Y \in \mathfrak{K}$, while if φ is weakly mixing, then:

$$
\lim_{N \to \infty} \frac{1}{N+1} \sum_{k=0}^{N} |\varphi(Z^k X \hat{\Phi}^k(Y)Z) - \varphi(Z^k XZ)\varphi(Z^k YZ)| = 0
$$

for all $X, Y \in \mathfrak{K}$.

The proof of this proposition is a straightforward consequence of the next lemma.

To this purpose, we make a preliminary observation. Recall that $\mathcal{H} = \mathcal{H} \oplus l^2(F\mathcal{H})$ and that, writing an element X of $B(\mathcal{H})$ in matrix representation

$$
X = \begin{bmatrix}
X_{1,1} & X_{1,2} \\
X_{2,1} & X_{2,2}
\end{bmatrix},
$$

the following relationship holds:

$$
\varphi(Z^k X \hat{\Phi}^k(Y)Z) = \varphi(X_{1,1} \Phi^k(Y_{1,1})) + \varphi(X_{1,2} C(k)^* Y_{1,1} V^k) + \varphi(X_{1,2} W^k Y_{2,1} V^k).
$$

Lemma 5.2. — Let $X \in \mathcal{A}^*(\mathcal{S})$, the $*$-algebra generated by the operator system \mathcal{S} defined in (3.7) and $Y \in \mathfrak{K}$. The following relations hold:

(a) If φ is an ergodic state then we have:

$$
\lim_{N \to \infty} \frac{1}{N+1} \sum_{k=0}^{N} \varphi(X_{1,2} C(k)^* Y_{1,1} V^k + X_{1,2} W^k Y_{2,1} V^k) = 0, \quad (5.1)
$$

(b) If φ is weakly mixing then we have:

$$
\lim_{N \to \infty} \frac{1}{N+1} \sum_{k=0}^{N} |\varphi(X_{1,2} C(k)^* Y_{1,1} V^k + X_{1,2} W^k Y_{2,1} V^k)| = 0. \quad (5.2)
$$

Proof. — Since $X \in \mathcal{A}^*(\mathcal{S})$, we can assume without loss of generality that $X_{1,2} = A\Gamma(\gamma) \Delta_m(B, \alpha, \beta)$ with $A, B \in \mathfrak{A}$ and α, β, γ strings of \mathfrak{A}. Then we can write

$$
X_{1,2} = \begin{cases}
A(\gamma|F|\alpha)B(\beta|F\Pi_{\beta+m}^\gamma) & \text{if } \gamma - 1 = \hat{\alpha} + m \\
0 & \text{elsewhere}
\end{cases} \quad (5.3)
$$

since

$$
X_{1,2} = A(\gamma|F\Pi_{\gamma-1} \Pi_{\hat{\alpha}+m}^\gamma F|\alpha)B(\beta|F\Pi_{\beta+m}^\gamma).
$$

Observe that we can find a natural number k_0 such that the relation

$$
X_{1,2} W^k Y_{2,1} V^k = 0 \quad (5.4)
$$

holds for each $k > k_0$. In fact

$$
W^k (\xi_0, \xi_1, \ldots, \xi_n, \ldots) = (0, 0, \ldots, 0, \xi_0, \xi_1, \ldots),
$$

for all vectors $(\xi_0, \xi_1, \ldots, \xi_n, \ldots) \in l^2(F\mathcal{H})$; so $\Pi_{\beta+m} W^k = 0$ for all $k > \hat{\beta} + m$. Then by equation (5.4) it follows that

$$
\lim_{N \to \infty} \frac{1}{N+1} \sum_{k=0}^{N} \varphi(X_{1,2} C(k)^* Y_{1,1} V^k + X_{1,2} W^k Y_{2,1} V^k) = \lim_{N \to \infty} \frac{1}{N+1} \sum_{k=0}^{N} \varphi(X_{1,2} C(k)^* Y_{1,1} V^k),
$$

Hence we have to compute only $\varphi(X_{1,2} C(k)^* Y_{1,1} V^k)$. Notice that

$$
X_{1,2} C(k)^* Y_{1,1} V^k = A(\gamma|F|\alpha)B(\beta|F\Pi_{\beta+m} C(k)^* Y_{1,1} V^k
$$

by relationship (5.3), and that

$$
\Pi_{\beta+m} C(k)^* = F V^{(k-\hat{\beta}-m-1)^*} \quad \text{for } k > \hat{\beta} + m,
$$
by relationship (2.7). It follows that

\[X_{1,2}C(k)^* Y_{1,1} V^k = A(\gamma | F(\alpha)) B(\beta | F V^{(k-\bar{\beta}+m+1)^*} Y_{1,1} V^k \]

\[= A(\gamma | F(\alpha)) B(\beta | F \Phi^{(k-\bar{\beta}+1)}(Y_{1,1}) V^{\bar{\beta}+m+1}). \]

Since \(\bar{\gamma} = \alpha + m + 1 \), we have \(A(\gamma | F(\alpha)) B(\beta \in \mathfrak{A}(\bar{\beta} + m + 1) \) by relationship (3.1). Hence there is a string \(\vartheta \) of \(\mathfrak{A} \) with \(\vartheta = \bar{\beta} + m + 1 \) and an operator \(R \in \mathfrak{A} \), such that \(A(\gamma | F(\alpha)) B(\beta) = R(\vartheta) \). So we can write

\[X_{1,2}C(k)^* Y_{1,1} V^k = R(\vartheta | F \Phi^{(k-\bar{\beta}+1)}(Y_{1,1}) V^{\bar{\beta}+m+1}). \]

If we set \(\vartheta = (n_1, n_2, \ldots, n_r, A_1, A_2, \ldots, A_r) \) then we have \(n_1 + n_2 + \ldots + n_r = \bar{\beta} + m + 1 \) and

\[R_k = \Phi^{n_1}(A_1 \Phi^{(k-\bar{\beta}+1)}(Y_{1,1})) - \Phi^{n_1-1}(\Phi(A_1) \Phi^{(k-\beta)}(Y_{1,1})) \in \mathfrak{A}. \]

Using the \(\varphi \)-adjoint, we have

\[\varphi(X_{1,2}C(k)^* Y_{1,1} V^k) = \varphi(\Phi^{n_2}(\Phi^{n_3}(\ldots \Phi^{n_r} \Phi^{(R)(A_1) \ldots} \Phi(A_2) R_k)}. \]

In fact,

\[\varphi(X_{1,2}C(k)^* Y_{1,1} V^k) = \varphi(R \Phi^{n_r}(A_r \Phi^{n_{r-1}}(A_{r-1} \ldots \Phi^{n_2} \Phi^{(R)(A_1) \ldots} \Phi(A_2) R_k))) \]

\[= \varphi(\Phi^{n_r}(R) A_r \Phi^{n_{r-1}}(A_{r-1}(\ldots \Phi^{n_2} \Phi^{(R)(A_1) \ldots} \Phi(A_2) R_k))) \]

\[= \varphi(\Phi^{n_r}(\Phi^{n_3}(\ldots \Phi^{n_r} \Phi^{(R)(A_1) \ldots} \Phi(A_2) R_k))) \]

\[= \varphi(\Phi^{n_2}(\Phi^{n_3}(\ldots \Phi^{n_r} \Phi^{(R)(A_1) \ldots} \Phi(A_2) R_k))). \]

and replacing \(R_k \) we obtain that

\[\Phi^{n_2}(\Phi^{n_3}(\ldots \Phi^{n_r} \Phi^{(R)(A_1) \ldots} \Phi(A_2) R_k) = \Phi^{n_2}(\Phi^{n_3}(\ldots \Phi^{n_r} \Phi^{(R)(A_1) \ldots} \Phi(A_2) R_k) \ldots \Phi^{n_1}(A_1 \Phi^{(k-\beta+1)}(Y_{1,1}))). \]

Therefore

\[\varphi(X_{1,2}C(k)^* Y_{1,1} V^k) = \varphi(\Phi^{n_1}(\Phi^{n_2}(\ldots \Phi^{n_{r-1}}(\Phi^{n_r}(R) A_r) \ldots) \Phi(A_1) \Phi^{(k-\beta+1)}(Y_{1,1}))) \]

\[\varphi(\Phi^{n_1}(\Phi^{n_2}(\ldots \Phi^{n_{r-1}}(\Phi^{n_r}(R) A_r) \ldots) \Phi(A_1) \Phi^{(k-\beta)}(Y_{1,1}))). \]

Now, assume that \(\varphi \) is ergodic. Then we have that

\[\lim_{N \to \infty} \frac{1}{N + 1} \sum_{k=0}^{N} \varphi(\Phi^{n_1}(\Phi^{n_2}(\ldots \Phi^{n_{r-1}}(\Phi^{n_r}(R) A_r) \ldots) \Phi(A_1) \Phi^{(k-\beta+1)}(Y_{1,1}))) \]

\[\varphi(\Phi^{n_1}(\Phi^{n_2}(\ldots \Phi^{n_{r-1}}(\Phi^{n_r}(R) A_r) \ldots) \Phi(A_1) \Phi^{(k-\beta)(Y_{1,1}))), \]

and that

\[\lim_{N \to \infty} \frac{1}{N + 1} \sum_{k=0}^{N} \varphi(\Phi^{n_1}(\Phi^{n_2}(\ldots \Phi^{n_{r-1}}(\Phi^{n_r}(R) A_r) \ldots) \Phi(A_1) \Phi^{(k-\beta)(Y_{1,1}))) \]

\[\varphi(\Phi^{n_1}(\Phi^{n_2}(\ldots \Phi^{n_{r-1}}(\Phi^{n_r}(R) A_r) \ldots) \Phi(A_1) \Phi^{(k-\beta)}(Y_{1,1}))), \]

\[\varphi(\Phi^{n_1}(\Phi^{n_2}(\ldots \Phi^{n_{r-1}}(\Phi^{n_r}(R) A_r) \ldots) \Phi(A_1) \Phi^{(k-\beta)}(Y_{1,1}))). \]
Thus
\[
\lim_{N \to \infty} \frac{1}{N+1} \sum_{k=0}^{N} \varphi(X_{1,2}C(k)^*Y_{1,1}V^k) = 0,
\]
completing the proof of item (a).

In the weakly mixing case, using relationship (5.5) we obtain:
\[
|\varphi(X_{1,2}C_k^*Y_{1,1}V^k)| = |\varphi(T\Phi^{n_1}(A_1)\Phi^{(k-\beta-1)}(Y_{1,1})) - \varphi(T\Phi^{n_1-1}(\Phi(A_1)\Phi^{k-\beta})(Y_{1,1}))|,
\]
where \(T = \Phi^{n_2}R\cdots\Phi^{n_r}(R)\cdots\Phi^{n_2}A_2\).

Adding and subtracting the element \(\varphi(T\Phi^{n_1}(A_1))\varphi(Y_{1,1})\) we can write:
\[
|\varphi(X_{1,2}C_k^*Y_{1,1}V^k)| \leq |\varphi(T\Phi^{n_1}(A_1)\Phi^{(k-\beta-1)}(Y_{1,1})) - \varphi(T\Phi^{n_1}(A_1))\varphi(Y_{1,1})|
+ |\varphi(T\Phi^{n_1-1}(\Phi(A_1)\Phi^{(k-\beta)})(Y_{1,1})) - \varphi(T\Phi^{n_1}(A_1))\varphi(Y_{1,1})|.
\]
Moreover
\[
|\varphi(T\Phi^{n_1-1}(\Phi(A_1)\Phi^{(k-\beta)})(Y_{1,1})) - \varphi(T\Phi^{n_1}(A_1))\varphi(Y_{1,1})| = |\varphi(\Phi^{n_1-1}(T)\Phi(A_1)\Phi^{(k-\beta)})(Y_{1,1})) - \varphi(\Phi^{n_1-1}(T)\Phi(A_1))\varphi(Y_{1,1})|,
\]
and by the weakly mixing properties we obtain:
\[
\lim_{N \to \infty} \frac{1}{N+1} \sum_{k=0}^{N} |\varphi(T\Phi^{n_1}(A_1)\Phi^{(k-\beta-1)}(Y_{1,1})) - \varphi(T\Phi^{n_1}(A_1))\varphi(Y_{1,1})| = 0,
\]
and
\[
\lim_{N \to \infty} \frac{1}{N+1} \sum_{k=0}^{N} |\varphi(\Phi^{n_1-1}(T)\Phi(A_1)\Phi^{(k-\beta)})(Y_{1,1})) - \varphi(\Phi^{n_1-1}(T)\Phi(A_1))\varphi(Y_{1,1})| = 0
\]
completing the proof of item (b).

Finally, the proof of proposition Proposition 5.1 is a simple consequence of this lemma since the C*-algebra \(\mathfrak{A}\) is included in \(C^*(S)\), the norm closure of \(*\)-algebra \(\mathcal{A}(S)\).

It is clear that Proposition 5.1 can be extended to a quantum dynamical system \((\mathfrak{M}, \Phi)\) with \(\varphi\) a normal faithful state on \(\mathfrak{M}\).

Acknowledgments.

Thanks are due to László Zsidó and Giuseppe Ruzzi of the Università di Roma - Tor Vergata, for various fruitful discussions.

References

Manuscript received August 13, 2012,
revised June 11, 2013,
accepted April 18, 2014.

Carlo PANDISCIA
Università degli Studi di Roma “Tor Vergata”, Dipartimento di Ingegneria Elettronica, via del Politecnico, 00133 Roma, Italia
pandiscia@ing.uniroma2.it