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Distribution of short sums of classical Kloosterman sums of prime
powers moduli

Guillaume Ricotta

In memory of Prince Rogers Nelson and David Robert Jones. Enjoy your new career in your new purple town
Abstract

In [13], the author proved, under some very general conditions, that short sums of `-adic trace
functions over finite fields of varying center converges in law to a Gaussian random variable or vector.
The main inputs are P. Deligne’s equidistribution theorem, N. Katz’ works and the results surveyed in [3].
In particular, this applies to 2-dimensional Kloosterman sums Kl2,Fq studied by N. Katz in [6] and in [7]
when the field Fq gets large.

This article considers the case of short sums of normalized classical Kloosterman sums of prime
powers moduli Klpn , as p tends to infinity among the prime numbers and n > 2 is a fixed integer. A
convergence in law towards a real-valued standard Gaussian random variable is proved under some very
natural conditions.

Distribution des sommes courtes des sommes de Kloosterman classiques de
module une puissance d’un nombre premier

Résumé
Dans [13], l’auteur démontre, sous des hypothèses très générales, que les sommes courtes des fonctions

traces `-adiques sur des corps finis de centre variable convergent en loi vers une variable aléatoire
gaussienne ou un vecteur aléatoire gaussien. Les ingrédients principaux sont le théorème d’équirépartition
de P. Deligne, les travaux de N. Katz et les résultats présentés dans [3]. Ceci s’applique en particulier au
sommes de Kloosterman Kl2,Fq de dimension 2 étudiées par N. Katz dans [6] et [7] lorsque le corps Fq
grandit.

Dans cet article, on considère le cas des sommes courtes des sommes de Kloosterman normalisées
de module une puissance d’un nombre premier Klpn , lorsque p tend vers l’infini parmi les nombres
premiers et n > 2 est un entier fixé. Sous des hypothèses très naturelles, on démontre la convergence en
loi vers une variable aléatoire gaussienne réelle standard.

1. Introduction and statement of the results

Let p be an odd prime number. For Fq the finite field of cardinality q and of characteristic
p, tq a complex-valued function on Fq and Iq a subset of Fq , the normalized partial sum
of tq over Iq is defined by

S(tq, Iq) B
1√
|Iq |

∑
x∈Iq

tq(x).

Keywords: Kloosterman sums, moments.
2010 Mathematics Subject Classification: 11T23, 11L05.
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where as usual |Iq | stands for the cardinality of Iq . Such sums have a long history in
analytic number theory, confer [5, Chapter 12]. The normalization is explained by the
fact that in a number theory context one expects the square-root cancellation philosophy.
One can define a complex-valued random variable on Fq endowed with the uniform
measure by

∀ x ∈ Fq, S(tq, Iq; x) B S(tq, Iq + x)

where as usual Iq + x stands for the translate of Iq by x for any x in Fq .
Given a sequence tq of `-adic trace functions over Fq and a sequence Iq of subsets

of Fq , C. Perret-Gentil got interested in [13] in the distribution as q and |Iq | tend to
infinity of the sequence of complex-valued random variables S(tq, Iq; ∗) and proved a
deep general result under very natural conditions. Let us mention that his general result is
not only a generalization but also an improvement over previous works such as [2], [10],
[11] and [12].

Let us state the case of the normalized Kloosterman sums of rank 2 given by

∀ x ∈ Fq, tq(x) = Kl2,Fq (x) B
−1
√

q

∑
(x1,x2)∈F

×
q×F

×
q

x1x2=x

e
(TrFq |Fp (x1 + x2)

p

)
∈ R

where as usual e(z) B exp (2iπz) for any complex number z.
C. Perret-Gentil proved the following qualitative result.

Theorem 1.1 (C. Perret-Gentil (Qualitative result)). As q and |Iq | tend to infinity with
log (|Iq |) = o(log (q)) then the sequence of real-valued random variables S(Kl2,Fq , Iq; ∗)
converges in law to a real-valued standard Gaussian random variable.

He also proved the following quantitative result.

Theorem 1.2 (C. Perret-Gentil (Quantitative result)). As q and |Iq | tend to infinity with
log (|Iq |) = o(log (q)) then��{x ∈ Fq, α 6 S(Kl2,Fq , Iq; x) 6 β

}��
q

=
1
√

2π

∫ β

α
exp

(
−x2

2

)
dx +Oε

(
(β − α)

(
q−1/2+ε +

( log (|Iq |)
log (q)

)2/5
+

1√
|Iq |

))
for any real numbers α < β and for any 0 < ε < 1/2.

The main purpose of this work is to consider the case of Kloosterman sums of prime
powers moduli, namely to replace finite fields by finite rings, and to give a probabilistic
meaning to the histogram given in Figure 1.1.
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The normalized Kloosterman sum of modulus pn is the real number given by

Klpn (a) B
1

pn/2
S (a, 1; pn) =

1
pn/2

∑
16x6pn

p-x

e
(

ax + x
pn

)
for any integer a and where as usual x stands for the inverse of x modulo pn.

For any subset Ipn of (Z/pnZ)×, let

S
(
Klpn, Ipn

)
B

1√
|Ipn |

∑
x∈Ipn

Klpn (x)

be the normalized partial sum over Ipn .
Given a sequence of sets Ipn of Z/pnZ, we are interested in the distribution of the

sequence of real random variables over (Z/pnZ)× endowed with the uniform measure
given by

∀ x ∈ (Z/pnZ)× , S
(
Klpn, Ipn ; x

)
B S

(
Klpn, Ipn + x

)
.

Figure 1.1. Distribution of S (Kl412, I412 ; ∗), namely p = 41 and n = 2,
for a set I412 of cardinality 29. In bold, the density function of a standard
Gaussian real-valued random variable.
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Let us state the qualitative result of this work.

Theorem 1.3 (Qualitative result). Let n > 2 be a fixed integer. Assume that

∀ (x, y) ∈ Ipn × Ipn, x , y ⇒ p - x − y. (1.1)

for any prime number p. If p and |Ipn | tend to infinity with

log
(
|Ipn |

)
= o (log (p)) (1.2)

then the sequence of real-valued random variables S
(
Klpn, Ipn ; ∗

)
converges in law to a

standard Gaussian real-valued random variable.

Remark 1.4. This theorem is the analogue of Theorem 1.1. The condition (1.1) is new
and comes from the context of finite rings in this work instead of finite fields in [13]
whereas the condition (1.2) is exactly the same and is inherent to the method of proof
itself namely the method of moments. Note that the condition (1.1) requires that |Ipn | < p
holds, which is automatically satisfied by (1.2).

Let us state the quantitative result of this work.

Theorem 1.5 (Quantitative result). Let n > 2 be a fixed integer and

βn B

{
1/2 if 2 6 n 6 5,
4(n−1)

2n otherwise.

Assume that

∀ (x, y) ∈ Ipn × Ipn, x , y ⇒ p - x − y. (1.3)

for any prime number p. If p and |Ipn | tend to infinity with

log
(
|Ipn |

)
= o (log (p)) (1.4)

then��{x ∈ (Z/pnZ)× , α 6 S
(
Klpn, Ipn ; x

)
6 β

}��
ϕ (pn)

=
1
√

2π

∫ β

α
exp

(
−x2

2

)
dx +Oε

(
max

(
1
|Ipn |

,

( log
(
|Ipn |

)
log (p)

)3/4)
+ p−βn+3ε +

β − α√
|Ipn |

)
for any real numbers α < β and for any 0 < ε < βn/3.

Remark 1.6. Once again, this theorem is the perfect analogue of Theorem 1.2.
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Organization of the paper. The main tool involved in Theorem 1.3 is recalled in
Subsection 2.1. The technical results required in Theorem 1.5 are stated in Subsection 2.2.
Theorem 1.3 is proved in Section 3. The proof of Theorem 1.5 is given in Section 4.

Notations.

• The main parameter in this paper is an odd prime number p, which tends to
infinity. Thus, if f and g are some C-valued function of the real variable then the
notations f (p) = OA(g(p)) or f (p) �A g(p) mean that | f (p)| is smaller than a
“constant”, which only depends on A, times g(p) at least for p large enough.

• n > 2 is a fixed integer.

• For any real number x and integer k, ek(x) B exp
(

2iπx
k

)
.

• For any finite set S, |S | stands for its cardinality.

• We will denote by ε an absolute positive constant whose definition may change
from one line to the next one.

• The notation
∑× means that the summation is over a set of integers coprime

with p.

• Finally, if P is a property then δP is the Kronecker symbol, namely 1 if P is
satisfied and 0 otherwise.

2. The main ingredients

2.1. Moments of products of additively shifted Kloosterman sums

The crucial ingredient in the proof of Theorem 1.3 is the asymptotic evaluation of the
complete sums of products of shifted Kloosterman sums Spn (µ) defined by

Spn (µ) B
1

ϕ(pn)

∑
a∈(Z/pnZ)×

∏
τ∈Z/pnZ

Klpn (a + τ)µ(τ) (2.1)

for µ = (µ(τ))τ∈Z/pnZ a sequence of pn-tuples of non-negative integers different from the
0-tuple.

Let us define for such sequence µ,

T(µ) B {τ ∈ Z/pnZ, µ(τ) > 1} ⊂ Z/pnZ,

T(µ) B {τ mod p, τ ∈ T(µ)} ⊂ Z/pZ
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and
Apn (µ) B

{
a ∈ (Z/pnZ)× , ∀ τ ∈ T(µ), a + τ ∈

(
(Z/pnZ)×

)2
}
. (2.2)

The following proposition, which contains an asymptotic formula for the sums Spn (µ),
is an improvement of [14, Proposition 4.10] in the sense that the dependency in the tuple
µ in the error term has been made explicit.

Proposition 2.1. Let µ = (µ(τ))τ∈Z/pnZ be a sequence of pn-tuples of non-negative
integers satisfying ∑

τ∈Z/pnZ

µ(τ) 6 M (2.3)

for some absolute positive constant M . If

p > max(M, 2n − 5) (2.4)

then

Spn (µ) =


∏

τ∈Z/pnZ

δ2 |µ(τ)

(
µ(τ)

µ(τ)/2

)
��Apn (µ)

��
ϕ(pn)

+Oε

(
2
∑
τ∈T(µ) µ(τ)

(
p−

4(n−1)
2n +ε +

|T(µ)| × 2 |T(µ) |

p

))
(2.5)

for any ε > 0 and where the implied constant only depends on ε.

The dependency in the tuple µ in [14, Proposition 4.7] also has to be made explicit.
Let us recall some additional notations, which coincide exactly with the notations used
in [14] and whose motivations can be found in this reference. Let Bpn (µ) be the subset of
the |T(µ)|-tuples b = (bτ)τ∈T(µ) of integers in {1, . . . , (p − 1)/2} satisfying

∀ (τ, τ′) ∈ T(µ)2, b2
τ − τ ≡ b2

τ′ − τ
′ mod p (2.6)

and
∀ τ ∈ T(µ), p - b2

τ − τ. (2.7)
Let ` = (`τ)τ∈T(µ) be a |T(µ)|-tuple of integers. For any integer j in {1, . . . , n − 1}, let us
define

mb,`( j, j) =
∑
τ∈T(µ)

`τbτ
2j−1

(2.8)

and the following associated object

N(µ, `;w) B
∑

b∈Bpn (µ)
mb,` (1,1)≡w mod p

∀j∈{2,...,n−1}, mb,` (j, j)≡0 mod p

1 (2.9)

for any w modulo p.
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Lemma 2.2. Let µ = (µ(τ))τ∈Z/pnZ be a sequence of pn-tuples of non-negative integers
satisfying |T(µ)| = |T(µ)| and ` be a |T(µ)|-tuple of integers satisfying

∀ τ ∈ T(µ), |`τ | < p

and ` , 0. One uniformly has

N(µ, `;w) � |T(µ)| × 2 |T(µ) |

for any w mod p where the implied constant is absolute.

Proof of Lemma 2.2. Let us briefly indicate the required changes in the proof of [14,
Proposition 4.7]. Let k B |T(µ)| for simplicity. On the one hand, if (p,w) = 1 then the
polynomial ψ(R`(Y ;w)) in Fp[Z] defined in [14, p. 15] is of degree exactly k2k−1 and
admits at most k2k−1 roots. On the other hand, if w ≡ 0 (mod p) then the non-zero
polynomial ψ(S`(Y )) in Fp[Z] defined in [14, p. 507] is of degree at most (k − 1)2k−2

and admits at most (k − 1)2k−2 roots. �

Let us give the proof of Proposition 2.1.

Proof of Proposition 2.1. By [14, p. 511], the error term to bound is given by

Errpn (µ) B
1

ϕ(pn)

∑
b∈Bpn (µ)

∏
τ∈T(µ)

(
bτ
pn

)µ(τ)
∑

a∈Z/pnZ

∀τ∈T(µ), a≡b2
τ−τ mod p

∏
τ∈T(µ)

∑◦

06uτ6µ(τ)

(
µ(τ)

uτ

)
cos

[
(µ(τ) − 2uτ)

(4πsa+τ,pn

pn
+ θpn

)]
where

∑◦ means that the summation is over the uτ’s satisfying

∃ τ0 ∈ T(µ), µ(τ0) − 2uτ0 , 0.

In the previous equation sa+τ,pn stands for any square-root modulo pn of a + τ for any
relevant a and τ.

Obviously,

Errpn (µ) =
1

ϕ(pn)

∑
b∈Bpn (µ)

∏
τ∈T(µ)

(
bτ
pn

)µ(τ) ∑◦

u=(uτ )τ∈T(µ)
∀τ∈T(µ), 06uτ6µ(τ)

∏
τ∈T(µ)

(
µ(τ)

uτ

)
∑

a∈Z/pnZ

∀τ∈T(µ), a≡b2
τ−τ mod p

∏
τ∈T(µ)

cos
[
(µ(τ) − 2uτ)

(4πsa+τ,pn

pn
+ θpn

)]
.
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By Euler’s formula,��Errpn (µ)
�� 6 ∑◦

u=(uτ )τ∈T(µ)
∀τ∈T(µ), 06uτ6µ(τ)

∏
τ∈T(µ)

(
µ(τ)

uτ

)
1

2 |T(µ) |
∑

J⊂T(µ)

1
ϕ(pn)

∑
b∈Bpn (µ)��������

∑
a∈Z/pnZ

∀τ∈T(µ), a≡b2
τ−τ mod p

epn

(∑
τ∈J

(µ(τ) − 2uτ) sa+τ,pn −
∑
τ∈Jc

(µ(τ) − 2uτ) sa+τ,pn

)�������� . (2.10)

Let us define

Errpn (µ, `) B
1

ϕ(pn)

∑
b∈Bpn (µ)

��������
∑

a∈Z/pnZ

∀τ∈T(µ), a≡b2
τ−τ mod p

epn
©«

∑
τ∈T(µ)

`τsa+τ,pn
ª®¬
��������

for any |T(µ)|-tuple ` of integers satisfying

` ∈
∏
τ∈T(µ)

[−µ(τ), µ(τ)] and ` , 0.

By [14, Equation (4.37)],

Errpn (µ, `) �ε p−
4(n−1)

2n +ε +
N(µ, `; 0)

p
+

n−1∑
k=1

1
pk

∑
v mod pn−k

(p,v)=1

1
|v |

N
(
µ, `; c′1vpk−1

)
for any ε > 0 and for some integer c′1 coprime with p defined in [14, Lemma 4.6], c′1
being its inverse modulo p.

By Lemma 2.2, one gets

Errpn (µ, `) �ε p−
4(n−1)

2n +ε +
|T(µ)| × 2 |T(µ) |

p
(2.11)

for any ε > 0.
By (2.10) and (2.11),

Errpn (µ) �ε 2
∑
τ∈T(µ) µ(τ)

(
p−

4(n−1)
2n +ε +

|T(µ)| × 2 |T(µ) |

p

)
for any ε > 0. �

The following proposition, which heavily relies on A. Weil’s proof of the Riemann
hypothesis for curves over finite fields and is [14, Proposition 4.8], states an asymptotic
formula for the cardinality of the sets Apn (µ).
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Proposition 2.3 (G. Ricotta-E. Royer). Let µ = (µ(τ))τ∈Z/pnZ be a sequence of pn-tuples
of non-negative integers. If p is odd then��Apn (µ)

�� = ϕ(pn)

2 |T(µ) |

(
1 +O

(
2 |T(µ) | |T(µ)|

p1/2

))
(2.12)

where the implied constant is absolute.

2.2. Various approximation results

The following lemma, which enables us to approximate characteristic functions of random
variables from their moments, is a reformulation of [13, Lemma 5.1].

Lemma 2.4. Let X1 and X2 be real-valued random variables. If

E
(
Xk

1

)
= E

(
Xk

2

)
+O (h(k))

for any non-negative integer k and for some function h : R→ R then

E
(
eiuX1

)
= E

(
eiuX2

)
+O

(
|u|k

k!

���E (
Xk/2

2

)��� + (
1 + |u|k

)
max
`<k
(|h(`)|)

)
for any even integer k > 1 and any real number u.

The following lemma, which allows us to approximate joint distributions of random
variables via their characteristic functions, follows from [9, Section 4].

Lemma 2.5. Let X1 and X2 be real-valued random variables andα < β be real numbers. If

E
(
e2iπuX1

)
= E

(
e2iπuX2

)
+O (g(|u|))

for any real number u and some continuous function g : R→ R+ then

P (X1 ∈ [α, β]) = P (X2 ∈ [α, β]) +O
((

1 +
1
t

) ∫ t

0
g(u) du +

1
t

∫ t

0

���E (
e2iπuX1

)��� du
)

for any real number t > 0.

Finally, the following lemma is an explicit version of the Berry–Esseen theorem in
dimension one (see [1, Theorem 13.2]).

Lemma 2.6. Let α < β be two real numbers. Let X1, . . . , Xh be centered independent
identically distributed real-valued random variables of variance 1 satisfying E(|X1 |

3) < ∞

and
SH =

X1 + · · · + XH
√

H
.
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One has

P (SH ∈ [α, β]) = P(X ∈ [α, β]) +O
(
β − α
√

H

)
for any standard Gaussian real-valued random variable X .

3. Proof of the qualitative result (Theorem 1.3)

3.1. Asymptotic expansion of the moments

The k-th moment of the real-valued random variable S
(
Klpn, Ipn ; ∗

)
is defined by

Mk

(
Klpn, Ipn

)
B

1
ϕ (pn)

∑×

x mod pn

S
(
Klpn, Ipn ; x

)k
for any non-negative integer k.

Let (Uh)h>1 be a sequence of independent identically distributed random variables of
probability law µ given by

µ =
1
2
δ0 + µ1

for the Dirac measure δ0 at 0 and

µ1( f ) =
1

2π

∫ 2

−2

f (x)dx
√

4 − x2

for any real-valued continuous function f on [−2, 2] and let

SH =
U1 + · · · +UH

√
H

. (3.1)

The following proposition is an asymptotic expansion of these moments.

Proposition 3.1. Let n > 2 be a fixed integer. Assume that

∀ (x, y) ∈ Ipn × Ipn, x , y ⇒ p - x − y (3.2)

for any prime number p. If p > max (k, 2n − 5) then

Mk

(
Klpn, Ipn

)
= E

(
Sk
H

)
+Oε

(
4k

(
Hk/2+1
√

p
+

Hk/2

p
4(n−1)

2n −ε

))
for any ε > 0 and where the implied constant only depends on ε.

Proof of Proposition 3.1. Let us fix a non-negative integer k and let us set

Ipn = {a1, . . . , aH } ⊂ Z/pnZ
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where H B
��Ipn

��. Obviously, H depends on p and n but such dependency has been
removed for clarity. With these notations,

Mk

(
Klpn, Ipn

)
=

1
Hk/2

1
ϕ (pn)

∑×

x mod pn

(
H∑
i=1

Klpn (ai + x)

)k
.

By the multinomial formula,

Mk

(
Klpn, Ipn

)
=

1
Hk/2

∑
k=(k1,...,kH )∈Z

H
+

k1+· · ·+kH=k

(
k

k1, . . . , kH

)
1

ϕ (pn)

∑×

x mod pn

H∏
i=1

Klpn (ai + x)ki

=
1

Hk/2

∑
k=(k1,...,kH )∈Z

H
+

k1+· · ·+kH=k

(
k

k1, . . . , kH

)
Spn (µk )

where

µk (τ) =

{
ki if ∃ i ∈ {1, . . . ,H}, τ = ai ,
0 otherwise

for any τ in Z/pnZ.
By Proposition 2.1 and Proposition 2.3, if p > max (k, 2n − 5) then

Mk

(
Klpn, Ipn

)
=

1
Hk/2

∑
k=(k1,...,kH )∈Z

H
+

k1+· · ·+kH=k

(
k

k1, . . . , kH

) [
H∏
i=1

δ2 |ki

(
ki

ki/2

)]
1

2 |T(µk ) |

+Oε

(
4k

(
Hk/2+1
√

p
+

Hk/2

p
4(n−1)

2n −ε

))
(3.3)

for any ε > 0 since T(µk ) = T(µk ) by (3.2). The obvious fact that

|T(µk )| 6 min (H, k)

has been used.
One has

Mk

(
Klpn, Ipn

)
= E

(
Sk
H

)
+Oε

(
4k

(
Hk/2+1
√

p
+

Hk/2

p
4(n−1)

2n −ε

))
for any ε > 0 and where SH is defined in (3.1) and since

E
(
Um

1
)
=

{
1 if m = 0,
δ2|m

2
( m
m/2

)
if m > 1

by [14, Equation (3.1)] �
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3.2. Proof of Theorem 1.3

In order to prove Theorem 1.3, it is enough to prove that, for any non-negative integer k,
the k-th moment of the real-valued random variable S

(
Klpn, Ipn ; ∗

)
converges to the k-th

moment of a real-valued standard Gaussian random variable by [4, Section 5.8.4].
Let us fix a non-negative integer k. By Proposition 3.1, if p > max (k, 2n − 5) then

Mk

(
Klpn, Ipn

)
= E

(
Sk
H

)
+Oε

(
4k

(
Hk/2+1
√

p
+

Hk/2

p
4(n−1)

2n −ε

))
for any ε > 0 where H B

��Ipn

�� and SH is defined in (3.1).
By the central limit theorem, the random variable SH converges in law as H tends to

infinity to a real-valued standard Gaussian random variable U. The random variable SH
being uniformly integrable by [4, Chapter 5.5], one has

lim
H→+∞

E
(
Sk
H

)
= E

(
Uk

)
(3.4)

by [4, Theorem 7.5.1].
Finally,

lim
p,H→+∞

Mk

(
Klpn, Ipn

)
= E

(
Uk

)
by (3.4) in the regime given in (1.2), as desired.

4. Proof of the quantitative result (Theorem 1.5)

4.1. Bounds for the moments of the probabilistic model

The following proposition contains bounds for the moments of the random variable SH
defined in (3.1).

Proposition 4.1. Let k be any non-negative integer. One has E
(
Sk
H

)
= 0 if k is odd and

E
(
Sk
H

)
�

k!
(k/2)!

if k is even.

Remark 4.2. As explained in the proof of Theorem 1.3, E
(
Sk
H

)
converges to

δ2 |k
k!

2k/2(k/2)!
as H tends to infinity. Thus, the bound given in Proposition 4.1 is close from the truth and
is sufficient for our purposes.
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Remark 4.3. Corentin Perret-Gentil mentioned that this result is hidden in [13] in a more
theoretical language.

Proof of Proposition 4.1. By (3.3),

E
(
Sk
H

)
=

1
Hk/2

∑
k=(k1,...,kH )∈Z

H
+

k1+· · ·+kH=k

(
k

k1, . . . , kH

) [
H∏
i=1

δ2 |ki

(
ki

ki/2

)]
1

2 |T(µk ) |

The k-th moment vanishes if k is odd. Let us assume from now on that k is even, in which
case

E
(
Sk
H

)
6

1
Hk/2

k!
(k/2)!

∑
`=(`1,...,`H )∈Z

H
+

`1+· · ·+`H=k/2

(k/2)!
`1! . . . `H !

=
k!
(k/2)!

. �

4.2. Proof of Theorem 1.5

We follow essentially the method of proof of Theorem 1.2. Let H =
��Ipn

��. Firstly, note that
H
√

p
+

1

p
4(n−1)

2n
�

Hαn

pβn

where

(αn, βn) B
(1, 1/2) if 2 6 n 6 5,(

0, 4(n−1)
2n

)
otherwise

since
4(n − 1)

2n
>

1
2

if and only if 2 6 n 6 5

and by (1.4).
Let us fix 0 < ε < βn/3 and let k be an even integer suitably chosen later and satisfying

2αn 6 k 6 ε
log (p)

log (4H)
and k → +∞,

which is possible by (1.4).
By Proposition 3.1,

Mk

(
Klpn, Ipn

)
= E

(
Sk
H

)
+Oε

(
p−βn+2ε

)
(4.1)

where SH is defined in (3.1).
Let us denote by Φpn the characteristic function of S

(
Klpn, Ipn ; ∗

)
and by ΦH the

characteristic function of SH . By Lemma 2.4 and (4.1),

Φpn (u) = ΦH (u) +Oε

(
|u|k

k!

���E (
Sk/2
H

)��� + p−βn+2ε
(
1 + |u|k

))
(4.2)
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for any real number u.
Let α < β be two real numbers and t > 1 be a real number determined later. By

Lemma 2.5 and (4.2), one gets

P
({

x ∈ (Z/pnZ)× , α 6 S
(
Klpn, Ipn ; x

)
6 β

})
= P (SH ∈ [α, β]) +O

(∫ t

0
g(u)du +

1
t

∫ t

0
|ΦH (2πu)| du

)
(4.3)

where

g(u) B
(
(2πu)k

k!

���E (
Sk/2
H

)��� + p−βn+2ε
(
1 + (2πu)k

))
for any non-negative real number u.

Let us bound the second error term in (4.3). By the independence of the random
variables U1, . . . , UH ,

ΦH (2πu) =
(
E

(
e

2iπu√
H

U1
))H

for any real number u. The random variable U1 being 4-subgaussian, since it is centered
and bounded by 2 (see [15, p. 11] and [8, Proposition B.6.2]), it turns out that

E
(
e

2iπu√
H

U1
)
� e−8π2u2/H

for any real number u. Thus, the second error term in (4.3) satisfies

1
t

∫ t

0
|ΦH (2πu)| du �

1
t
. (4.4)

The first error term in (4.3) is trivially bounded by

(2π)k
tk+1

(k + 1)!

���E (
Sk/2
H

)��� + p−βn+2εt
(
1 +
(2πt)k

k + 1

)
.

By Proposition 4.1,

(2π)k
tk+1

(k + 1)!

���E (
Sk/2
H

)��� 6 (2πt)k+1 (k/2)!
(k + 1)!(k/4)!

�

(
2πe3/4t

)k+1
k−3k/4

by Stirling’s formula. Let us choose

t =
kγ

2πe3/4

where γ = γ(k) > 0 will be chosen later. Thus, the first error term in (4.3) is bounded by

� kγ(k+1)−3k/4 + p−βn+2εkγ(k+1). (4.5)
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By (4.5) and (4.4),

P
({

x ∈ (Z/pnZ)× , α 6 S
(
Klpn, Ipn ; x

)
6 β

})
= P (SH ∈ [α, β]) +Oε

(
k−γ + kγ(k+1)−3k/4 + p−βn+2εkγ(k+1)

)
.

Let us choose

γ = γ(k) =
3k

4(k + 1)
such that

P
({

x ∈ (Z/pnZ)× , α 6 S
(
Klpn, Ipn ; x

)
6 β

})
= P (SH ∈ [α, β]) +Oε

(
k−3/4 + p−βn+2εk3k/4

)
.

Let us choose

k = min
(
H4/3, ε

log (p)
log (4H)

)
→ +∞

such that
k3k/4 = e

3
4 k log (k) 6 eε

log (p)
log (4H ) log (H) 6 pε

and

P
({

x ∈ (Z/pnZ)× , α 6 S
(
Klpn, Ipn ; x

)
6 β

})
= P (SH ∈ [α, β]) +Oε

(
max

(
1
H
,

(
log (H)
log (p)

)3/4
)
+ p−βn+3ε

)
. (4.6)

Theorem 1.5 is implied by (4.6) and Lemma 2.6.
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