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Averages and the `q,1 cohomology of Heisenberg groups

Pierre Pansu
Francesca Tripaldi

Abstract

Averages are invariants defined on the `1 cohomology of Lie groups. We prove that they vanish for
abelian and Heisenberg groups. This result completes work by other authors and allows to show that the
`1 cohomology vanishes in these cases.

Moyennes et cohomologie `q,1 des groupes d’Heisenberg
Résumé

Les moyennes sont des invariants definis sur la cohomologie `1 des groupes de Lie. Nous démontrons
que les moyennes dans les groupes abéliens et les groupes d’Heisenberg sont nulles. Ce résultat complète
des travaux précédents et montre que la cohomologie `1 est nulle pour les groupes de Lie étudiés.

1. Introduction

1.1. From isoperimetry to averages of L1 forms

The classical isoperimetric inequality implies that if u is a compactly supported function
on Rn, ‖u‖n′ ≤ C‖du‖1, where n′ = n

n−1 . Equivalently, every compactly supported closed
1-form ω admits a primitive u such that ‖u‖n′ ≤ C‖ω‖1. More generally, if ω is a closed
1-form on Rn which belongs to L1, does it have a primitive in Ln′?

There is an obstruction. We observe that if each component ai of ω =
∑n

i=1 aidxi
is again in L1, the integral

∫
Rn

ai dx1 . . . dxn is well defined and it is an obstruction
for ω to be the differential of an Lq function (for every finite q). Indeed, if ω = du,
an = ∂u

∂xn
. For almost every (x1, . . . , xn−1), the function t 7→ ∂u

∂xn
(x1, . . . , xn−1, t) belongs

to L1 and t 7→ u(x1, . . . , xn−1, t) belongs to Lq . Since u(x1, . . . , xn−1, t) tends to 0 along
subsequences tending to +∞ or −∞,∫

R

∂u
∂xn
(x1, . . . , xn−1, t) dt = 0, hence

∫
Rn

∂u
∂xn

dx1 . . . dxn = 0.

A similar argument applies to other coordinates. Note that an dx1∧· · ·∧dxn = (−1)n−1ω∧

(dx1 ∧ · · · ∧ dxn−1).
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More generally, if G is a Lie group of dimension n, there is a pairing, the average
pairing, between closed L1 k-formsω and closed left-invariant (n− k)-forms β, defined by

(ω, β) 7→

∫
G

ω ∧ β.

The integral vanishes if either ω = dφ where φ ∈ L1, or β = dα where α is left-invariant.
Indeed, Stokes formula

∫
M

dγ = 0 holds for every complete Riemannian manifold M and
every L1 form γ such that dγ ∈ L1. Hence the pairing descends to quotients, the L1,1

cohomology

L1,1Hk(G) = closed L1 k-forms/d(L1 (k − 1)-forms with differential in L1),

and the Lie algebra cohomology

Hn−k(g) = closed, left-invariant (n − k)-forms/d(left-invariant (n − k − 1)-forms).

1.2. `q,1 cohomology

It turns out that L1,1 cohomology has a topological content. By definition, the `q,p
cohomology of a bounded geometry Riemannian manifold is the `q,p cohomology of
every bounded geometry simplicial complex quasiisometric to it. For instance, of a
bounded geometry triangulation. Contractible Lie groups are examples of bounded
geometry Riemannian manifolds for which L1,1 cohomology is isomorphic to `1,1

cohomology.
We do not need define the `q,p cohomology of simplicial complexes here, since,

according to Theorem 3.3 of [7], every `q,p cohomology class of a contractible Lie
group can be represented by a form ω which belongs to Lp as well as an arbitrary finite
number of its derivatives. If the class vanishes, then there exists a primitive φ of ω which
belongs to Lq as well as an arbitrary finite number of its derivatives. This holds for all
1 ≤ p ≤ q ≤ ∞.

Although `p with p > 1, and especially `2 cohomology of Lie groups has been
computed and used for large families of Lie groups, very little is known about `1

cohomology.

1.3. From `1,1 to `q,1 cohomology

For instance, the averaging pairing is specific to `1 cohomology and it has never been
studied yet. The first question we want to address is whether the averaging pairing provides
information on `q,1 cohomology for certain q > 1.

Question 1.1. Given a Lie group G, for which exponents q and which degrees k is the
averaging pairing `q,1Hk(G) ⊗ Hn−k(g) → R well-defined?
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The question is whether there exists q > 1 such that the pairing vanishes on all L1

forms which are differentials of Lq forms. We just saw that for abelian groups Rn, the
pairing is well defined for k = 1 and all finite exponents q. Here is a more general result.

Theorem 1.2. Let G be a Carnot group. In each degree 1 ≤ k ≤ n, there is an explicit
exponent q(G, k) > 1 (see Definition 3.6) such that the averaging pairing is defined on
`q,1Hk(G) for q ∈ [1, q(G, k)].

We shall see that q(Rn, k) = n′ = n
n−1 in all degrees. For Heisenberg groups,

q(H2m+1, k) = 2m+2
2m+1 if k , m + 1, and q(H2m+1,m + 1) = 2m+2

2m .

1.4. Vanishing of the averaging pairing

The second question we want to address is whether the averaging pairing is trivial or not.

Question 1.3. Given a Lie group G, for which exponents q and which degrees k does the
averaging pairing `q,1Hk(G) ⊗ Hn−k(g) → R vanish?

The pairing is always nonzero in top degree k = n. Indeed, there exist L1 n-forms
(even compactly supported ones) with nonvanishing integral. However, this seems not to
be the case in lower degrees.

Theorem 1.4. Let G be an abelian group or a Heisenberg group of dimension n. In each
degree 1 ≤ k < n, the averaging pairing vanishes on `q,1Hk(G) for q ∈ [1, q(G, k)].

In combination with results of [2], Theorem 1.4 implies a vanishing theorem for `q,1
cohomology. In fact, [2] shows how in the Heisenberg case (and more trivially in the
abelian case) it is possible to construct Lq(G,k) primitives for dc-closed L1 forms with
vanishing averages, for all degrees k except top degree. It should be stressed that in
proving this result, the vanishing of averages is a necessary extra assumption.

Corollary 1.5. Let G be an abelian group or a Heisenberg group of dimension n. In each
degree 0 ≤ k < n, `q,1Hk(G) = 0 for q ≥ q(G, k).

This is sharp. It is shown in [7] that `q,1Hk(G) , 0 if q < q(G, k). Also, in top degree,
not only is `q(G,n),1Hn(G) , 0, but the kernel of the averaging map `q(G,n),1Hn(G) →
R = H0(g)∗ does not vanish. This is in contrast with the results of [1] in the case where
p > 1, where it is proved that `q(G,k),pHk(G) = 0 for all degrees k, including top
degree. The results of [2] rely in an essential manner on analysis of the Laplacian on
L1, inaugurated by J. Bourgain and H. Brezis, [4], adapted to homogeneous groups by
S. Chanillo and J. van Schaftingen, [5].
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1.5. Methods

The Euclidean space Rn is n-parabolic, meaning that there exist smooth compactly
supported functions ξ on Rn taking value 1 on arbitrarily large balls, and whose gradient
has an arbitrarily small Ln norm. If ω is a closed L1 form and β a constant coefficient
form, and if ω = dψ, ψ ∈ Ln′ , Stokes theorem gives����∫ ξω ∧ β

���� = ����∫ ψ ∧ dξ ∧ β
���� ≤ ‖ψ‖n′ ‖dξ‖n‖β‖∞

which can be made arbitrarily small.
This argument extends to Carnot groups of homogeneous dimension Q, which are Q-

parabolic. For this, one uses Rumin’s complex, which has better homogeneity properties
under Carnot dilations than de Rham’s complex. When Rumin’s complex is exactly
homogeneous (e.g. for Heisenberg groups in all degrees, only for certain degrees in
general), one gets a sharp exponent q(G, k). This leads to Theorem 1.2.

In Euclidean space, every constant coefficient form β has a primitive α with linear
coefficients (for instance, dx1 ∧ · · · ∧ dxk = d(x1 dx2 ∧ · · · ∧ dxk)). On the other hand,
there exist cut-offs which decay like the inverse of the distance to the origin. Therefore����∫ ξω ∧ β

���� = ����∫ ω ∧ dξ ∧ α
���� ≤ ‖ω‖L1(supp(dξ))

which tends to 0. This argument extends to Heisenberg groups in all but one degree. To
complete the proof of Theorem 1.4, one performs the symmetric integration by parts,
integrating ω instead of β. For this, one produces primitives of ω on annuli, of linear
growth.

1.6. Organization of the paper

In Section 2, the needed cut-offs are constructed. Theorem 1.2 is proven in Section 3. In
order to integrate ω∧ β by parts, one needs understand the behaviour of wedge products in
Rumin’s complex on Heisenberg groups, this is performed in Section 4. Section 5 exploits
the linear growth primitives of left-invariant forms. In Section 6, controlled primitives of
L1 forms are designed, completing the proof of Theorem 1.4.

2. Cut-offs on Carnot groups

2.1. Annuli

We first construct cut-offs with an L∞ control on derivatives. In a Carnot group G, we
fix a subRiemannian metric and denote by B(R) the ball with center e and radius R. We
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fix an orthonormal basis of horizontal left-invariant vector fields W1, . . . ,Wn1 . Given a
smooth function u on G, and an integer m ∈ N, we denote by ∇mu the collection of order
m horizontal derivatives Wi1 . . .Wim , (i1, . . . , im) ∈ {1, . . . , n1}

m, and by |∇mu|2 the sum
of their squares.

Lemma 2.1. Let G be a Carnot group. Let λ > 1. There exists C = C(λ) such that for all
R > 0, there exists a smooth function ξR such that

(1) ξR = 1 on B(R).

(2) ξR = 0 outside B(λR).

(3) For all m ∈ N, |∇mξR | ≤ C/Rm.

Proof. We achieve this first when R = 1, and then set ξR = ξ1 ◦ δ1/R. �

Lemma 2.2. Given f a (vector valued) function which is homogeneous of degree d ∈ N
under dilations, then ∇ f is homogeneous of degree d − 1.

Proof. Given f : G → R homogeneous of degree d under dilations, we have that
f (δλp) = λd f (p).

By applying a horizontal derivative to the left hand side of the equation, namely
∇ = Wj with j ∈ {1, . . . , n1}, we get

∇[ f (δλp)] = Wj[ f (δλp)] = d f ◦ dδλ(Wj)p = d f
(
λ(Wj)δλp

)
= λ · d f

(
Wj

)
δλp

.

If we now apply ∇ to the right hand side, we get

∇[λd f (p)] = Wj[λ
d f (p)] = λd · d f (Wj)p .

We have therefore proved that d f
��
δλp
= λd−1 · d f

��
p
when restricted to horizontal

derivatives, so we finally get our result

∇ f (δλp) = λd−1∇ f (p) . �

2.2. Parabolicity

Second, we construct cut-offs with a sharper LQ control on derivatives.
Let r be a smooth, positive function on G \ {e} that is homogeneous of degree 1 under

dilations (one could think of a CC-distance from the origin, but smooth) and let us define
the following function

χ(r) =
log(λR/r)
log(λR/R)

=
log(λR/r)

log(λ)
. (2.1)

One should notice that χ(λR) = 0, χ(R) = 1, and that χ is smooth.
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Definition 2.3. Using the smooth function χ introduced in (2.1), we can then define the
cut-off function ξ as follows

ξ(r) =


1, on B(R)

χ(r), on B(λR) \ B(R)

0, outside B(λR) .

Lemma 2.4. The cut-off function ξ defined above has the following property: for every
integer m ∈ N, ‖∇mξ‖Q/m → 0 as λ→∞.

Proof. We compute

∇ξ =

{
1

logλ
∇r
r if R < r < λR,

0 otherwise.

Let f be the vector valued function f = ∇rr on G \ {e}. Then f is homogeneous of degree
−1. According to Lemma 2.2, ∇m−1 f is homogeneous of degree m. It follows that∫

B(λR)\B(R)

����∇m−1 f
����Q/m ≤ C

∫ λR

R

���� 1
rm

����Q/mrQ−1dr

= C
∫ λR

R

rQ−1

rQ
dr = C log(λ).

Therefore
‖∇mξ‖Q/m ≤ C (log λ)−1+(m/Q)

tends to 0 as λ tends to infinity, provided m < Q. Let us stress that, in general, for values
of m greater than or equal to Q, the final limit will not be zero. However, the values of m
which we will be considering are very specific.

This estimate will in fact be used in the proof of Proposition 3.3, and in that setting
the degrees m that can arise will be all the possible degrees (or equivalently weights) of
the differential dc on an arbitrary Rumin k-form φ of weight w. If we denote by M the
maximal m that could arise in this situation, then one can show that M < Q.

Let us first assume that the maximal order M for the dc on k-forms (which is non
trivial for 0 ≤ k < n) is greater or equal to Q. Then, given φ a Rumin k-form of weight
w, then dcφ =

∑M
i=1 βw+i , where each βw+i is a Rumin (k + 1)-form of weight w + i.

If we consider the Hodge of the βw+i with Q ≤ i ≤ M, then these forms are Rumin
(n − k − 1)-forms of weight Q − (w + i) = Q − w − i ≤ Q − w −Q < −w ≤ 0, which is
impossible.

Therefore M < Q, which means that indeed in all the cases that we will take into
consideration, the LQ/m norm of ∇mξ will always go to zero as λ→∞. �
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Remark 2.5. One says that a Riemannian manifold M is p-parabolic (see [8]) if for every
compact set K , there exist smooth compactly supported functions on M taking value 1 on
K whose gradient has an arbitrarily small Lp norm. The definition obviously extends to
subRiemannian manifolds.

Lemma 2.4 implies that a Carnot group of homogeneous dimension Q is Q-parabolic.

3. The averaging map in general Carnot groups descends to cohomology

Definition 3.1. Let G be a Carnot group of dimension n and homogeneous dimension
Q. For k = 1, . . . , n, letW(k) denote the set of weights arising in Rumin’s complex in
degree k. For a Rumin k-form ω, let

ω =
∑

w∈W(k)

ωw

be its decomposition into components of weight w.
Let dc =

∑
j dc, j be the decomposition of dc into weights/orders. Let J(k,w) denote

the set of weights/orders j such that dc, j on k-forms of weight w is nonzero, in other
words,

J(k,w) := { j ∈ N | dc, jωw , 0 for some ω of degree k} .

We will denote by J(k) the set of all the possible weights/orders, that is

J(k) =
⋃

w∈W(k)

J(k,w) .

Let us define Lχ(k) as follows

Lχ(k) =

{
φ =

∑
w∈W(k−1)

φw ∈ Ek−1
0

����� ∀ j ∈ J(k − 1,w) , φw ∈ LQ/Q−j

}
and if J(k − 1, ŵ) = ∅ for some ŵ, then we don’t require anything on φŵ .

Lemma 3.2. Let G be a Carnot group. Fix a left-invariant subRiemannian metric making
the direct sum g =

⊕
gi orthogonal. The L2-adjoint d∗c of dc is a differential operator.

Fix a degree k. Let
dc =

∑
j∈J(k)

dc, j

be the decomposition of dc into weights (dc, j increases weights of Rumin forms by j,
hence it has horizontal order j). Then the decomposition of d∗c on a (k + 1)-form into
weights/orders is

d∗c =
∑

j∈J∗(k)

d∗c, j .
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In other words, the adjoint d∗c, j of dc, j decreases weights by j and has horizontal
order j. In fact, if we denote by J ∗(k + 1, w̃) the set of weights/orders j such that d∗c, j on
(k + 1)-forms of weight w̃ is non-zero, that is

J ∗(k + 1, w̃) = { j ∈ N | d∗c, jαw̃ , 0 for some α of degree k + 1} ,

then there is a clear relationship between the sets of indices J(k,w) and J ∗(k + 1, w̃),
namely

J ∗(k + 1, w̃) =
⋃

w∈W(k)

{ j ∈ J(k,w) | w + j = w̃} .

And from this relationship, we get directly the following identity:

J ∗(k + 1) =
⋃

w̃∈W(k+1)
J ∗(k + 1, w̃) = J(k) .

Moreover, since the formula d∗c = (−1)n(k+1)+1 ∗ dc∗ applies to any Rumin k-form, we
also have the equality J ∗(n − k,Q − w) = J(k,w).

Let us stress that this also implies J(k) = J ∗(n − k) = J(n − k − 1).

Proposition 3.3. If ω, φ, β are Rumin forms with ω ∈ L1 of degree k, β left-invariant of
complementary degree n − k, φ ∈ Lχ(k) and dcφ = ω, then∫

G

ω ∧ β = 0.

Proof. Without loss of generality, one can assume that β has pure weight Q − w for some
w ∈ W(k). Then its Hodge-star ∗β has pure weight w. Let ξ be a smooth cut-off. By
definition of the L2-adjoint, we have∫

G

(dcφ) ∧ ξβ =
∫
G

〈dcφ, ∗ξβ〉 dvol =
∫
G

〈φ, d∗c(∗ξβ)〉 dvol

=
∑

j∈J∗(k,w)

∫
G

〈φw−j, d∗c, j(∗ξβ)〉 dvol .

Since φ ∈ Lχ(k), for any j ∈ J ∗(w − j) we have φw−j ∈ LQ/Q−j , by definition of
Lχ(k). Hence, applying Hölder’s inequality, we obtain����∫

G

ω ∧ ξβ

���� ≤ ∑
j∈J∗(k,w)

‖φw−j ‖Q/(Q−j)‖∇
jξ‖Q/j ‖β‖∞.

It is therefore sufficient to take ξ as the cut-off function introduced in Definition 2.3,
so that by Lemma 2.4 we get that

∫
G
ω ∧ β = 0. �
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Example 3.4. Euclidean space Rn. ThenW(k) = {k} and J(k) = {1} in all degrees.
Proposition 3.3 states that the averaging map descends to Lq,1 cohomology, where
q = n

n−1 .

Example 3.5. Heisenberg groups H2m+1. We have thatW(k) = {k} for k ≤ m, and
W(k) = {k + 1} when k ≥ m + 1. J(k) = {1} in all degrees but k = m, where
J(m) = {2}, so that Proposition 3.3 states that the averaging map descends to Lq,1

cohomology, where q = Q
Q−2 in degree m + 1 and q = Q

Q−1 in all other degrees.

3.1. Link with `q,1 cohomology

Let 1 ≤ p ≤ q ≤ ∞. According to Theorem 3.3 of [7], every `q,p cohomology class of a
Carnot group contains a form ω which belongs to Lp as well as an arbitrary finite number
of its derivatives. If the class vanishes, then there exists a primitive φ of ω which belongs
to Lq as well as an arbitrary finite number of its derivatives. There exists a homotopy
between de Rham and Rumin’s complex given by differential operators, therefore the
same statement applies to Rumin’s complex. In particular, Rumin forms can be used to
compute `q,p cohomology.

Let ω be a Rumin k-form which belongs to L1 as well as a large number of its
horizontal derivatives. Assume that ω represents the trivial cohomology class. Then there
exists a Rumin (k − 1)-form φ which belongs to Lq as well as its horizontal derivatives
up to order Q, and such that dcφ = ω. By Sobolev’s embedding theorem, φ belongs to
L∞, hence to Lq′ for all q′ ≥ q. This suggests the following notation.

Definition 3.6. Let G be a Carnot group of dimension n and homogeneous dimension Q.
Let 1 ≤ k ≤ n. Define

j(k) = min
⋃

w∈W(k)

J(k − 1,w).

and
q(G, k) :=

Q
Q − j(k)

.

Proof of Theorem 1.2. Let G be a Carnot group. Let ω be a Rumin k-form on G, which
belongs to L1 as well as a large number of its derivatives. Assume that ω = dcφ with
φ ∈ Lq(G,k). Then

∀ w ∈ W(k), ∀ j ∈ J(k − 1,w), φw−j ∈ LQ/(Q−j),

therefore φ ∈ Lχ(k). Proposition 3.3 implies that averages
∫
ω ∧ β vanish. This completes

the proof of Theorem 1.2. �

Example 3.7. Euclidean space. Then j(k) = 1 in all degrees.
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Example 3.8. Heisenberg groups H2m+1. Then j(k) = 1 in all degrees but k = m + 1,
where j(m + 1) = 2.

For these examples, as we saw before, one need not invoke [7] since J(k) has only
one element in each degree.

Example 3.9. Engel group E4. Then j(k) = 1 in degrees 1 and 4, j(k) = 2 in degrees 2
and 3. One concludes that the averaging map is well-defined in `q,1 cohomology for
q ≤ Q

Q−1 in degrees 1 and 4, and for q ≤ Q
Q−2 in degrees 2 and 3. Here, Q = 7.

3.2. Results for Heisenberg groups H2m+1

In [2], it is proven that every closed L1 k-form, k ≤ 2m, whose averages
∫
ω ∧ β vanish,

is the differential of a form in Lq , where q = q(k) = Q
Q−1 unless when k = m + 1, where

q(m + 1) = Q
Q−2 . In other words,

Theorem 3.10 ([2]). Let G = H2m+1 and let k = 1, . . . , 2m. The averaging map
Lq(k),1Hk(G) → H2m+1−k(g)∗ is injective.

The goal of subsequent sections is to prove that the image of averaging map is 0 in all
degrees k ≤ 2m. This will prove that Lq(k),1Hk(G) = 0. Note that for k = 2m + 1, both
facts fail: the averaging map is not zero (one can check with compactly supported forms)
and it is not injective either (see [2]).

4. Wedge products between Rumin forms in Heisenberg groups

We shall rely on Stokes formula on Heisenberg groups H2m+1. We need a formula of the
form d(φ ∧ β) = (dcφ) ∧ β ± φ ∧ dcβ. This does not always hold in general for Carnot
groups. In fact, the complex of Rumin forms E•0 equals the Lie algebra cohomology H•(g),
and therefore carries a natural cup product induced by the wedge product, but which in
general differs from the wedge product. We shall see that in the case of Heisenberg groups,
the difference does not show up in many degrees. This has already been investigated
in [3].

Let us take into consideration the original construction of the Rumin complex in the
(2m + 1)-dimensional Heisenberg group H2m+1 as appears in [9].

Given Ω• the algebra of smooth differential forms, one can define the following two
differential ideals:

• I• := {α = γ1 ∧ τ + γ2 ∧ dτ}, the differential ideal generated by the contact
form τ, and
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• J • := {β ∈ Ω• | β ∧ τ = β ∧ dτ = 0}.

Remark 4.1. By construction, the ideal J • is in fact the annihilator of I•. In other words,
given two arbitrary forms α ∈ J • and β ∈ I•, we have α ∧ β=0.

One can quickly check that the subspaces Jh = J • ∩Ωh are non-trivial for h ≥ m+ 1,
whereas the quotients Ωh/Ih are non-trivial for h ≤ m, where Ih = I• ∩Ωh .

Moreover, the usual exterior differential descends to the quotients Ω•/I• and restricts
to the subspaces J• as first order differential operators:

dc : Ω•/I• → Ω
•/I• and dc : J • → J • .

In [9] Rumin then defines a second order linear differential operator

dc : Ωm/Im → Jm+1

which connects the non-trivial quotients Ω•/I• with the non-trivial subspaces J • into a
complex, that is dc ◦ dc = 0,

Ω
0/I0 dc

−−→ Ω
1/I1 dc

−−→ . . .
dc
−−→ Ω

m/Im dc
−−→ Jm+1 dc

−−→ Jm+2 dc
−−→ . . .

dc
−−→ J 2m+1 .

Proposition 4.2. InH2m+1, the wedge product of Rumin forms is well-defined and satisfies
the Leibniz rule

dc(α ∧ β) = dcα ∧ β + (−1)hα ∧ dcβ

if either h ≥ m + 1 or k ≥ m + 1 or h + k < m, where h = deg(α) and k = deg(β).

Proof. In order to study whether the wedge product between Rumin forms is well-defined,
we will consider this differential operator dc in the following two cases:

(i) dc : Ωh/Ih → Ωh+1/Ih+1 where h < m,

(ii) dc : Jh → Jh+1 where h > m.

Let us first stress that in the first case, given α ∈ Ωh/Ih , we have that

dcα = dα mod Ih+1 for h < m .

Since I is an ideal, if h + k ≤ m, α ∧ β ∈ Ωh+k/Ih+k is well defined.
If h + k < m, the identity d(α ∧ β) = (dα) ∧ β + (−1)hα ∧ dβ passes to the quotient.
It is important to notice that, however, if h+k = m, h > 0, k > 0, dcα∧β+(−1)hα∧dcβ

involves only first derivatives of α and β, and thus cannot be equal to dc(α ∧ β). If h = 0
and k = m, dc(α ∧ β) involves second derivatives of α, and therefore cannot be expressed
in terms of dcα.
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On the other hand, in the second case, given β ∈ Jh , the Rumin differential coincides
with the usual exterior differential,

dcβ = dβ for h > m .

Therefore, given α ∈ Ωh/Ih and β ∈ J k with h < m and k > m, the wedge product
α ∧ β is well-defined and belongs to Jh+k , and the usual Leibniz rule also applies:

dc(α ∧ β) = d(α ∧ β) = (dα) ∧ β + (−1)hα ∧ (dβ) = dcα ∧ β + (−1)hα ∧ dcβ .

If h = m and k ≥ m + 1, h + k ≥ 2m + 1, so the identity between differentials holds
trivially.

To conclude, the wedge product of Rumin forms is well defined and satisfies the
Leibniz rule dc(α ∧ β) = dcα ∧ β + (−1)hα ∧ dcβ if either h ≥ m + 1, or k ≥ m + 1, or
h + k < m. �

5. Averages on Heisenberg group: generic case

5.1. Primitives of linear growth

Lemma 5.1. Let β be a left-invariant Rumin h-form in the Heisenberg group H2m+1. If
h , m + 1, β admits a primitive α of linear growth, i.e. at Carnot–Carathéodory distance
r from the origin, |α | ≤ C r .

Proof. Let β ∈ Eh
0 be a left-invariant form. Then dcβ = 0, and β has weight w = h

(if h ≤ m) or h + 1 (if h > m + 1). We know that the Rumin complex is locally exact,
that is ∃ α ∈ Eh−1

0 such that dcα = β.
Let us consider the Taylor expansion of α at the origin in exponential coordinates, and

let us group terms according to their homogeneity under dilations δt :

α = α0 + · · · + αw−1 + αw + αw+1 + . . .

where we denote by αd the term with homogeneous degree d, i.e. δ∗t αd = tdαd .
Since dc commutes with the dilations δt , the expansion of dcα is therefore

dcα = dcα0 + · · · + dcαw−1 + dcαw + dcαw+1 + . . . .

The expansion of β is given instead by β = β, since it is a left-invariant form, hence
homogeneous of degree w, so that β = dcαw .

Let us notice that αw has degree h− 1 and h , m+ 1, so it has weight w − 1. Since it is
homogeneous of degree w under δλ, its coefficients are homogeneous of degree 1, that is
they are linear in horizontal coordinates, hence αw has linear growth, that is |α | ≤ C r . �
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Proposition 5.2. Given ω ∈ Ek
0 an L1, dc-closed Rumin form in H2m+1, then the integral∫

H2m+1
ω ∧ β

vanishes for all left-invariant Rumin forms β of complementary degree, β ∈ E2m+1−k
0 ,

provided k , m.

Proof. Let ω be an L1, dc-closed Rumin k-form, k , m. Let β be a left-invariant Rumin
h-form, with h = 2m + 1 − k , m + 1. Let α be a linear growth primitive of β, |α | ≤ C R.
Let ξ be a smooth cut-off such that ξ = 1 on B(R), ξ = 0 outside B(λR) and |dcξ | ≤ C ′/R.
Since, according to Proposition 4.2,

d(ξω ∧ α) = dc(ξω ∧ α) = dc(ξω) ∧ α + (−1)kξω ∧ dcα

= dcξ ∧ ω ∧ α + (−1)kξω ∧ β,

Stokes formula gives���� ∫
H2m+1

ξω ∧ β

���� = ���� ∫
B(λR)\B(R)

dcξ ∧ ω ∧ α
����

≤

∫
B(λR)\B(R)

|dcξ | |α | |ω|

≤ λCC ′‖ω‖L1(H2m+1\B(R)).

On the other hand, ���� ∫
H2m+1

(1 − ξ)ω ∧ β
���� ≤ ‖β‖∞‖ω‖L1(H2m+1\B(R)).

Both terms tend to 0 as R tends to infinity, thus
∫
H2m+1 ξω ∧ β = 0. �

This proves Theorem 1.4 except in degree k = m. The argument collapses in this case,
since primitives of left-invariant (m + 1)-forms have at least quadratic growth.

6. Averages on Heisenberg group: special case

We now describe a symmetric argument: produce a primitive of the L1 form ω with linear
growth. It applies for all degrees but m + 1, and so covers the special case k = m.

Since ω is not in L∞ but is L1, linear growth needs be taken in the L1 sense: the L1

norm of the primitive in a shell of radius R is O(R). It is not necessary to produce a global
primitive with this property. It is sufficient to produce such a primitive φR in the R-shell
B(λR) \ B(R). Indeed, Stokes formula leads to an integral∫

H2n+1
ξω ∧ β = ±

∫
B(λR)\B(R)

dcξ ∧ φ ∧ β
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which does not depend on the choice of primitive φ.

6.1. `q,1 cohomology of bounded geometryRiemannian and subRiemannian
manifolds

By definition, the `q,p cohomology of a bounded geometry Riemannian manifold is the
`q,p cohomology of every bounded geometry simplicial complex quasiisometric to it. For
instance, of a bounded geometry triangulation.

Combining results of [2] and Leray’s acyclic covering theorem (in the form described
in [6]), one gets that for q = n

n−1 , the `
q,1 cohomology of a bounded geometry Riemannian

n-manifold M is isomorphic to the quotient

Lq,1H ·(M) = L1(M) ∩ ker(d)/(L1 ∩ dLq(M))

of closed forms in L1 by differentials of forms in Lq . In particular, if M is compact, for
all p ≤ n

n−1 , Lp,1H ·(M) is isomorphic to the usual (topological) cohomology of M .
Similarly, if M is a bounded geometry contact subRiemannian manifold of dimen-

sion 2m + 1 (hence Hausdorff dimension Q = 2m + 2), for q = Q/(Q − 1) (respectively
q = Q/(Q − 2) in degree m + 1), the `q,1 cohomology of M is isomorphic to the quotient

Lq,1
c H ·(M) = L1(M) ∩ ker(dc)/(L1 ∩ dcLq(M))

of dc-closed Rumin forms by dc’s of Rumin forms in Lq .
This applies in particular to Heisenberg groupsH2m+1, and also to shells in Heisenberg

groups, but with a loss on the width of the shell.

6.2. L1 Poincaré inequality in shell B(λ) \ B(1)

Lemma 6.1. There exist radii 0 < µ < 1 < λ < µ′ such that every dc-exact L1 Rumin
k-form ω on B(µ′) \ B(µ) admits a primitive φ on B(λ) \ B(1) such that

‖φ‖L1(B(λ)\B(1)) ≤ C · ‖ω‖L1(B(µ′)\B(µ)).

In Euclidean space, the analogous statement can be proved as follows. Up to a
biLipschitz change of coordinates, one replaces shells with products [0, 1] × Sn−1. On
such a product, a differential form writes ω = at + dt ∧ bt where at and bt are differential
forms on Sn−1. ω is closed if and only if each at is closed and

∂at
∂t
= bt .

Given r ∈ [0, 1], define

φr = et + dt ∧ ft where et =
∫ t

r

bs ds, ft = 0.
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Then dφr = ω − ar . Set

φ =

∫ 1

0
φr dr, so that dφ = ω − ω̄ where ω̄ =

∫ 1

0
ar dr .

Note that each ar , and hence ω̄, is an exact form on Sn−1. Since

‖ω̄‖L1(Sn−1) ≤ ‖ω‖L1([0,1]×Sn−1),

according to Subsection 6.1, there exists a form φ̄ on Sn−1 such that dφ̄ = ω̄ and

‖φ̄‖L1(Sn−1) ≤ C ‖ω̄‖L1(Sn−1).

Hence φ − φ̄ is the required primitive.
The Heisenberg group case reduces to the Euclidean case thanks to a smoothing

homotopy constructed in [2]. In fact, since φ merely needs be estimated in L1 norm (and
not in the sharp Lq norm), only the first, elementary, steps of [2] are required, resulting in
the following result.

Lemma 6.2. For every radii µ < 1 < λ < µ′, there exists a constant C with the following
property. For every dc-exact L1 Rumin form ω on the large shell B(µ′) \ B(µ) of H2m+1,
there exist L1 Rumin forms Tω and Sω on the smaller shell B(λ) \ B(1) such that
ω = dcTω + Sω on the smaller shell,

‖Tω‖L1(B(λ)\B(1)) + ‖Sω‖W 1,1(B(λ)\B(1)) ≤ C ‖ω‖L1(B(µ′)\B(µ)).

Here, the W1,1 norm refers to the L1 norms of the first horizontal derivatives.

Proof. Pick a smooth function χ1 with compact support in the large shell A. According
to Lemma 6.2 of [2], there exists a left-invariant pseudodifferential operator K such that
the identity

χ1 = dcK χ1 + Kdc χ1

holds on the space of Rumin forms

L1 ∩ d−1
c L1 := {α ∈ L1(A) : dcα ∈ L1(A)}.

K is the operator of convolution with a kernel k of type 1 (resp. 2 in degree n + 1). Using
a cut-off, write k = k1 + k2 where k1 has support in an ε-ball and k2 is smooth. Since
k1 = O(r1−Q) or O(r2−Q) ∈ L1, the operator K1 of convolution with k1 is bounded on L1.
Hence T = K1 χ1 is bounded on L1 forms defined on A. Whereas S = dcK2 χ1 is bounded
from L1 to W s,1 for every integer s. If µ′ > λ + 2ε and µ < 1 − 2ε , the multiplication of
ω by χ1 has no effect on the restriction of dcK1ω or K1dcω to the smaller shell, hence, in
restriction to the smaller shell,

dcTω = dcK1 χ1ω = (dcK1 + K1dc)ω.
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It follows that

Sω = dcK2 χ1ω = (dcK2 + K2dc)ω,

and finally, in restriction to the smaller shell,

ω = dcTω + Sω. �

Proof of Lemma 6.1. Using the exponential map, one can use simultaneously Heisenberg
and Euclidean tools. Pick λ, µ, µ′ such that the mediumHeisenberg shell B(µ′−2ε)\B(µ+
2ε) contains the Euclidean shell Aeucl = Beucl(2) \ Beucl(1), which in turn contains the
smaller Heisenberg shell B(λ) \ B(1). Apply Lemma 6.2 to a dc-closed L1 form ω defined
on the larger Heisenberg shell. Up to dcTω, and up to restricting to the medium shell, one
can replace ω with Sω which has its first horizontal derivatives in L1. Apply Rumin’s
homotopy ΠE = 1 − dd−1

0 − d−1
0 d to get a usual d-closed differential form β = ΠESω

belonging to L1. Use the Euclidean version of Lemma 6.1 to get an L1 primitive γ, dγ = β,
on the Euclidean shell Aeucl. Apply the order zero homotopy ΠE0 = 1 − d0d−1

0 − d−1
0 d0

to get a Rumin form φ = ΠE0γ. Its restriction to the smaller Heisenberg shell satisfies
dcφ = ω and its L1 norm is controlled by ‖ω‖1. �

6.3. L1 Poincaré inequality in scaled shell B(λR) \ B(R)

Let 0 < µ < 1 < λ < µ′. Let ω be a Rumin k-form on the scaled annulus B(µ′R) \ B(µR).
Assume that there exists a Rumin (k − 1)-form φ on the thinner shell on B(λR) \ B(R)
such that ω = dcφ on that shell.

Let’s denote the dilation by R as

δR : B(λ) \ B(1) → B(λR) \ B(R)

then we can consider the pull-back of both forms:

• ωR := δ∗R(ω) on B(λ) \ B(1), and

• φR := δ∗R(φ) on B(λ) \ B(1).

Since δ∗R commutes with the Rumin differential dc , we have

ωR = δ
∗
R(ω) = δ

∗
R(dcφ) = dc(δ∗Rφ) = dcφR .
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Then, for ωR we have

‖δ∗Rω‖L1(B(λ)\B(1))

=

∫
B(λ)\B(1)

|ω(δR(x))| · Rwdx =︸︷︷︸
y=δR (x)

Rw

∫
B(λR)\B(R)

|ω |(y) ·
1

RQ−1 dy

= Rw−(Q−1)
∫
B(λR)\B(R)

|ω |(y)dy = Rw−(Q−1) · ‖ω‖L1(B(λR)\B(R) ,

so that

‖ωR ‖L1(B(λ)\B(1)) = Rw−(Q−1)‖ω‖L1(B(λR)\B(R)) (6.1)

where w is the weight of the k-form ω.
Likewise, for the (k − 1)-form φ we get

‖δ∗Rφ‖L1(B(λ)\B(1)) = Rw̃−(Q−1)‖φ‖L1(B(λR)\B(R)) , (6.2)

where in this case w̃ is the weight of the form φ.
Since we are working on H2m+1 and ω = dcφ (and likewise ωR = dcφR), we have

• w̃ = w − 1, if k , m + 1, and

• w̃ = w − 2, if k = m + 1.

According to Lemma 6.1, one can find a (k − 1)-form φR on B(λ) \ B(1) such that

‖φR ‖L1(B(λ)\B(1)) ≤ C · ‖ωR ‖L1(B(µ′)\B(µ))

so, using the equalities (6.1) and (6.2) we get the following inequality:

‖φ‖L1(B(λR)\B(R)) ≤ C · Rw−w̃ ‖ω‖L1(B(µ′R)\B(µR))

which divides into the following two cases

• ‖φ‖L1(B(λR)\B(R)) ≤ C · R · ‖ω‖L1(B(µ′R)\B(µR)) if k , m + 1, and

• ‖φ‖L1(B(λR)\B(R)) ≤ C · R2 · ‖ω‖L1(B(µ′R)\B(µR)) if k = m + 1.

Only the first case is useful for our purpose.
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6.4. Independence on the choice of primitive

Let us consider the exact Rumin form ω ∈ Ek
0 and let φ, ψ ∈ Ek−1

0 be two primitives of ω
on B(λR) \ B(R), i.e. dcψ = dcφ = ω. Let β be an arbitrary left-invariant Rumin form β

of complementary degree 2m + 1 − k.
If k , 2m, then Hk(B(λR) \ B(R)) = 0, which means that there exists a Rumin

(k − 2)-form α such that dcα = ψ − φ.
If k , m+1, the degree of β is 2m+1−k , m, so dc(ξβ) = (dcξ)∧β+ξdcβ = (dcξ)∧β,

thus γ = (dcξ) ∧ β is a well-defined dc-closed Rumin form (this is a special case of
Proposition 4.2).

If on top we also assume k , m + 2, given γ = dc(ξβ) = dcξ ∧ β, we have that the
form α ∧ γ has degree 2m ≥ m + 1, so we can apply Proposition 4.2 and obtain the
following equality

d(α ∧ γ) = dc(α ∧ γ) ± α ∧ dcγ = (dcα) ∧ γ = (ψ − φ) ∧ (dcξ) ∧ β.

Since by construction dcξ has compact support in B(λR) \ B(R),∫
H2m+1

dcξ ∧ (ψ − φ) ∧ β = 0.

Therefore, when k , m + 1,m + 2, 2m, we can replace a given primitive ψ with any other
arbitrary primitive φ of ω on the scaled shell B(λR) \ B(R).

6.5. Vanishing of averages

Proposition 6.3. Given ω ∈ Ek
0 an L1, dc-closed Rumin form in H2m+1, then the integral∫

H2m+1
ω ∧ β

vanishes for all left-invariant Rumin forms β of complementary degree, β ∈ E2m+1−k
0 ,

provided k , m + 1,m + 2, 2m.

Proof. We assume that k , m + 1,m + 2, 2m.
Let ψ be a global primitive of ω on H2m+1. Let us first analyse the following identities

ξω ∧ β = ξ(dcψ) ∧ β = −dcξ ∧ ψ ∧ β + d(ξψ ∧ β).

Let φ be the primitive of ω on B(λR) \ B(R) introduced in Section 6.3. We can then
replace

∫
H2m+1 dcξ ∧ ψ ∧ β with

∫
H2m+1 dcξ ∧ φ ∧ β, and by applying Stokes’ theorem, we
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get ���� ∫
H2m+1

ξω ∧ β

���� = ���� ∫
B(λR)\B(R)

dcξ ∧ ψ ∧ β
����

=

���� ∫
B(λR)\B(R)

dcξ ∧ φ ∧ β
����

≤ ‖dcξ‖∞‖β‖∞‖φ‖L1(B(λR)\B(R)).

Finally, knowing that ‖dcξ‖∞ ≤ C ′/R and applying the Poincaré inequality on the
shell

‖φ‖L1(B(λR)\B(R)) ≤ C · R · ‖ω‖L1(B(µ′R)\B(µR))

found in Subsection 6.3, we finally get���� ∫
H2n+1

ξω ∧ β

���� ≤ CC ′‖ω‖L1(B(µ′R)\B(µR)) .

Using the cut-off function ξ introduced in Definition 2.3, we have∫
H2m+1

ξω ∧ β =

∫
B(R)

ω ∧ β +

∫
B(λR)\B(R)

ξω ∧ β .

Hence ���� ∫
B(R)

ω ∧ β

���� ≤ ���� ∫
H2n+1

ξω ∧ β

���� + ���� ∫
B(λR)\B(R)

ξω ∧ β

����
≤ CC ′‖ω‖B(µ′R)\B(µR) +

∫
B(λR)\B(R)

‖β‖∞ · |ω |

≤ C ′′‖ω‖L1(B(µ′R)\B(µR)).

Since ‖ω‖L1(B(µ′R)\B(µR)) → 0 as R→∞, we get our result∫
H2m+1

ω ∧ β = 0 . �

This completes the proof of Theorem 1.4.

Remark 6.4. Let us notice that this method would not work in the case where k = m + 1,
since we would obtain the following inequality∫

B(R)

ω ∧ β ≤ C · R‖ω‖L1(B(λR)\B(R))

which is not conclusive.
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