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Root systems, symmetries and linear representations of Artin groups

Olivier Geneste
Jean-Yves Hée
Luis Paris

Abstract

Let Γ be a Coxeter graph, letW be its associated Coxeter group, and let G be a group of symmetries
of Γ. Recall that, by a theorem of Hée and Mühlherr,WG is a Coxeter group associated to some Coxeter
graph Γ̂. We denote by Φ+ the set of positive roots of Γ and by Φ̂+ the set of positive roots of Γ̂. Let
E be a vector space over a field K having a basis in one-to-one correspondence with Φ+. The action
of G on Γ induces an action of G on Φ+, and therefore on E . We show that EG contains a linearly
independent family of vectors naturally in one-to-one correspondence with Φ̂+ and we determine exactly
when this family is a basis of EG . This question is motivated by the construction of Krammer’s style
linear representations for non simply laced Artin groups.

Systèmes de racines, symétries et représentations linéaires des groupes
d’Artin
Résumé

Soient Γ un graphe de Coxeter,W son groupe de Coxeter associé et G un groupe de symétries de Γ.
Rappelons que, par un théorème de Hée et Mühlherr,WG est un groupe de Coxeter associé à un certain
graphe de Coxeter Γ̂. On note Φ+ l’ensemble des racines positives de Γ et Φ̂+ l’ensemble des racines
positives de Γ̂. Soit E un espace vectoriel sur un corps K ayant une base en bijection avec Φ+. L’action de
G sur Γ induit une action de G sur Φ+, et donc sur E . Nous montrons que EG contient une famille libre
de vecteurs naturellement en bijection avec Φ̂+ et nous déterminons exactement quand cette famille est
une base de EG . Cette question est motivée par la construction de représentations linéaires à la Krammer
de groupes d’Artin non simplement lacés.

1. Introduction

1.1. Motivation

Bigelow [1] andKrammer [20] proved that the braid groups are linear answering a historical
question in the subject. More precisely, they proved that some linear representation
ψ : Bn → GL(E) of the braid group Bn previously introduced by Lawrence [22] is
faithful. A useful information for us is that E is a vector space over the field K = Q(q, z)
of rational functions in two variables q, z over Q, and has a natural basis of the form
{ei, j | 1 ≤ i < j ≤ n}.

Keywords: Artin group, linear representation, Coxeter group, root system.
2010 Mathematics Subject Classification: 20F36.
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Let Γ be a Coxeter graph, letWΓ be its associated Coxeter group, let AΓ be its associated
Artin group, and let A+

Γ
be its associated Artin monoid. The Coxeter graph Γ is called of

spherical type if WΓ is finite, it is called simply laced if none of its edges is labelled, and
it is called triangle free if there are no three vertices in Γ two by two connected by edges.
Shortly after the release of the papers by Bigelow [1] and Krammer [20], Digne [12]
and independently Cohen–Wales [6] extended Krammer’s [20] constructions and proofs
to the Artin groups associated with simply laced Coxeter graphs of spherical type, and,
afterwards, Paris [25] extended them to all the Artin groups associated to simply laced
triangle free Coxeter graphs (see also Hée [16] for a simplified proof of the faithfulness
of the representation). More precisely, for a finite simply laced triangle free Coxeter
graph Γ, they constructed a linear representation ψ : AΓ → GL(E), they showed that this
representation is always faithful on the Artin monoid A+

Γ
, and they showed that it is faithful

on the whole group AΓ if Γ is of spherical type. What is important to know here is that E
is still a vector space over K = Q(q, z) and that E has a natural basis B = {eβ | β ∈ Φ+}
in one-to-one correspondence with the set Φ+ of positive roots of Γ.

The question that motivated the beginning of the present study is to find a way to
extend the construction of this linear representation to other Artin groups, or, at least, to
some Artin groups whose Coxeter graphs are not simply laced and triangle free. A first
approach would be to extend Paris’ [25] construction to other Coxeter graphs that are not
simply laced and triangle free. Unfortunately, explicit calculations on simple examples
convinced us that this approach does not work.

However, an idea for constructing such linear representations for some Artin groups
associated to non simply laced Coxeter graphs can be found in Digne [12]. In that paper
Digne takes a Coxeter graph Γ of type A2n+1, Dn, or E6 and consider some specific
symmetry g of Γ. By Hée [14] and Mühlherr [24] the subgroup Wg

Γ
of fixed elements by

g is itself a Coxeter group associated with a precise Coxeter graph Γ̂. By Michel [23],
Crisp [7, 8] and Dehornoy–Paris [10], the subgroup Ag

Γ
of AΓ of fixed elements by g is

an Artin group associated with Γ̂. On the other hand the symmetry g acts on the basis
B of E and the linear representation ψ : AΓ → GL(E) is equivariant in the sense that
ψ(g(a)) = g ψ(a) g−1 for all a ∈ AΓ. It follows that ψ induces a linear representation
ψg : A

Γ̂
→ GL(Eg), where Eg denotes the subspace of fixed vectors of E under the

action of g. Then Digne [12] proves that ψg is faithful and that Eg has a “natural” basis
in one-to-one correspondence with the set Φ̂+ of positive roots of Γ̂. This defines a linear
representation for the Artin groups associated with the Coxeter graphs Bn (n ≥ 2), G2
and F4.

Let Γ be a finite simply laced triangle free Coxeter graph and let G be a non-trivial
group of symmetries of Γ. Then G acts on the groups WΓ and AΓ and on the monoid A+

Γ
.
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We know by Hée [14] and Mühlherr [24] (see also Crisp [7, 8], Geneste–Paris [13] and
Theorem 2.5) that WG

Γ
is the Coxeter group associated with some precise Coxeter graph

Γ̂. Moreover, by Crisp [7, 8], the monoid A+G
Γ

is an Artin monoid associated with Γ̂ and
in many cases the group AG

Γ
is an Artin group associated with Γ̂. On the other hand, G

acts on the basis B of E , and the linear representation ψ : AΓ → GL(E) is equivariant
in the sense that ψ(g(a)) = g ψ(a) g−1 for all a ∈ AΓ and all g ∈ G. Thus, ψ induces a
linear representation ψG : A

Γ̂
→ GL(EG), where EG = {x ∈ E | g(x) = x for all g ∈ G}.

We also know by Castella [3, 5] that the induced representation ψG : A
Γ̂
→ GL(EG) is

faithful on the monoid A+
Γ̂
. So, it remains to determine when EG has a “natural” basis in

one-to-one correspondence with the set Φ̂+ of positive roots of Γ̂. The purpose of this
paper is to answer this question.

1.2. Statements

The simply laced triangle freeArtin groups and the linear representationsψ : AΓ → GL(E)
form the framework of our motivation, but they are not needed for the rest of the paper.
We will also work with any Coxeter graph, which may have labels and infinitely many
vertices. So, let Γ be a Coxeter graph associated with a Coxeter matrix M = (ms,t )s,t∈S ,
let K be a field, and let E be a vector space over K having a basis B = {eβ | β ∈ Φ+} in
one-to-one correspondence with the set Φ+ of positive roots of Γ.

A symmetry of Γ is defined to be a permutation g of S satisfying mg(s),g(t) = ms,t for all
s, t ∈ S. The group of symmetries of Γ will be denoted by Sym(Γ). Let G be a subgroup
of Sym(Γ). Again, we know by Hée [14] and Mühlherr [24] that WG

Γ
is the Coxeter group

associated with some Coxeter graph Γ̂. On the other hand, G acts on the set Φ+ of positive
roots of Γ and therefore on E . Let Φ̂+ be the set of positive roots of Γ̂. In this paper
we show that EG contains a “natural” linearly independent set B̂ = {êβ̂ | β̂ ∈ Φ̂

+} in
one-to-one correspondence with the set Φ̂+ and we determine when B̂ is a basis of EG .

From now on we will say that the pair (Γ,G) has the Φ̂+-basis property if the above
mentioned subset B̂ is a basis of EG .

We proceed in three steps to determine the pairs (Γ,G) that have the Φ̂+-basis property.
In a first step (see Subsection 4.1) we show that it suffices to consider the case where all
the orbits of S under the action of G are finite. Let Sfin denote the union of the finite orbits
of S under the action of G, and let Γfin denote the full subgraph of Γ spanned by Sfin. Each
symmetry g ∈ G stabilizes Sfin, hence induces a symmetry of Γfin. We denote by Gfin
the subgroup of Sym(Γfin) of all these symmetries. In Subsection 4.1 we will prove the
following.
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Theorem 1.1. The pair (Γ,G) has the Φ̂+-basis property if and only if the pair (Γfin,Gfin)

has the Φ̂+-basis property.

By Theorem 1.1 we can assume that all the orbits of S under the action of G are finite.
In a second step (see Subsection 4.2) we show that it suffices to consider the case where Γ
is connected. Let Γi , i ∈ I, be the connected components of Γ. For each i ∈ I we denote by
StabG(Γi) the stabilizer of Γi in G. Each symmetry g ∈ StabG(Γi) induces a symmetry of
Γi . We denote by Gi the subgroup of Sym(Γi) of all these symmetries. In Subsection 4.2
we will prove the following.

Theorem 1.2. Suppose that all the orbits of S under the action of G are finite. Then the
pair (Γ,G) has the Φ̂+-basis property if and only if for each i ∈ I the pair (Γi,Gi) has the
Φ̂+-basis property.

By Theorem 1.2 we can also assume that Γ is connected. In a third step (see
Subsection 4.3 and Subsection 4.4) we determine all the pairs (Γ,G) that have the
Φ̂+-basis property with Γ connected and all the orbits of S under the action of G being
finite.

One can associate with Γ a real vector space V =
⊕

s∈S Rαs whose basis is in
one-to-one correspondence with S and a canonical bilinear form 〈 · , · 〉 : V × V → R.
These objects will be defined in Subsection 2.1. We say that Γ is of spherical type if S is
finite and 〈 · , · 〉 is positive definite, and we say that Γ is of affine type if S is finite and
〈 · , · 〉 is positive but not positive definite. A classification of the connected spherical and
affine type Coxeter graphs can be found in Bourbaki [2]. In this paper we use the notations
Am (m ≥ 1),. . . , I2(p) (p = 5 or p ≥ 7) of Bourbaki [2, Chap. VI, §4, No 1, Thm. 1] for
the connected Coxeter graphs of spherical type, and the notations Ã1, Ãm (m ≥ 2),. . . ,
G̃2 of Bourbaki [2, Chap. VI, §4, No 2, Thm. 4] for the connected Coxeter graphs of
affine type. Moreover, we use the same numbering of the vertices of these Coxeter graphs
as the one in Bourbaki [2, Planches] with the convention that the unnumbered vertex in
Bourbaki [2, Planches] is here labelled with 0.

To the Coxeter graphs of spherical type and affine type we must add the two infinite
Coxeter graphs ∞A∞ and D∞ drawn in Figure 1.1. The Coxeter graph A∞ of the figure
does not appear in the statement of Theorem 1.3 but it will appear in its proof. These
Coxeter graphs are part of the family of so-called locally spherical Coxeter graphs studied
by Hée [15, Texte 10].

Now, the conclusion of the third step which is in some sense the main result of the
paper is the following theorem, proved in Subsection 4.4.

28



Linear representations of Artin groups
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Figure 1.1. Locally spherical Coxeter graphs

Theorem 1.3. Suppose that Γ is connected, G is non-trivial and all the orbits of S under
the action of G are finite. Then (Γ,G) has the Φ̂+-basis property if and only if (Γ,G) is up
to isomorphism one of the following pairs (see Figure 1.2, Figure 1.3 and Figure 1.4).

(i) Γ = A2m+1 (m ≥ 1) and G = 〈g〉 where

g(si) = s2m+2−i (1 ≤ i ≤ 2m + 1) .

(ii) Γ = Dm (m ≥ 4) and G = 〈g〉 where

g(si) = si (1 ≤ i ≤ m − 2) , g(sm−1) = sm , g(sm) = sm−1 .

(iii) Γ = D4 and 〈g1〉 ⊂ G ⊂ 〈g1, g2〉 where
g1(s1) = s3 , g1(s2) = s2 , g1(s3) = s4 , g1(s4) = s1 ,

g2(s1) = s1 , g2(s2) = s2 , g2(s3) = s4 , g2(s4) = s3 .

(iv) Γ = E6 and G = 〈g〉 where

g(s1) = s6 , g(s2) = s2 , g(s3) = s5 , g(s4) = s4 , g(s5) = s3 , g(s6) = s1 .

(v) Γ = Ã2m+1 (m ≥ 1) and G = 〈g〉 where

g(s0) = s0 , g(si) = s2m+2−i (1 ≤ i ≤ 2m + 1) .

(vi) Γ = D̃m (m ≥ 4) and G = 〈g〉 where

g(si) = si (0 ≤ i ≤ m − 2) , g(sm−1) = sm , g(sm) = sm−1 .

(vii) Γ = D̃4 and 〈g1〉 ⊂ G ⊂ 〈g1, g2〉 where
g1(s0) = s0 , g1(s1) = s3 , g1(s2) = s2 , g1(s3) = s4 , g1(s4) = s1 ,

g2(s0) = s0 , g2(s1) = s1 , g2(s2) = s2 , g2(s3) = s4 , g2(s4) = s3 .
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(viii) Γ = Ẽ6 and G = 〈g〉 where

g(s0) = s0 , g(s1) = s6 , g(s2) = s2 , g(s3) = s5 , g(s4) = s4 , g(s5) = s3 , g(s6) = s1 .

(ix) Γ = ∞A∞ and G = 〈g〉 where

g(si) = s−i (i ∈ Z) .

(x) Γ = D∞ and G = 〈g〉 where

g(s1) = s2 , g(s2) = s1 , g(si) = si (i ≥ 3) .

1 2 m

m+1

m+22m2m+1

g
1 2 m-3 m-2

m-1

m

g

(i) (A2m+1, 〈g〉) (ii) (Dm, 〈g〉)

1 2

3

4

g1

g2
2 4

3 1

5 6

g

(iii) (D4, 〈g1, g2〉) (iv) (E6, 〈g〉)

Figure 1.2. Pairs with the Φ̂+-basis property: spherical type cases

1.3. Linear representations

We return to our initial motivation before starting the proofs. Recall that a Coxeter graph
Γ is called simply laced if ms,t ∈ {2, 3} for all s, t ∈ S, s , t, and that Γ is called triangle
free if there are no three distinct vertices s, t, r ∈ S such that ms,t,mt,r,mr,s ≥ 3. Suppose
that Γ is a finite, simply laced and triangle free Coxeter graph. Let AΓ be the Artin group
and A+

Γ
be the Artin monoid associated with Γ. Suppose that K = Q(q, z) and E is a

vector space over K having a basis B = {eα | α ∈ Φ+} in one-to-one correspondence
with the set Φ+ of positive roots of Γ. By Krammer [20], Cohen–Wales [6], Digne [12]
and Paris [25], there is a linear representation ψ : AΓ → GL(E) which is faithful if Γ
is of spherical type and which is always faithful on the monoid A+

Γ
. Let G be a group

of symmetries of Γ. Recall from Subsection 1.1 that WG
Γ
is a Coxeter group associated

with a precise Coxeter graph Γ̂ and by Crisp [7, 8] we have (A+
Γ
)G = A+

Γ̂
. Then G acts
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0
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g

(v) (Ã2m+1, 〈g〉) (vi) (D̃m, 〈g〉)

1

2

0

3

4

g1

g2
0 2 4

3 1
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g

(vii) (D̃4, 〈g1, g2〉) (viii) (Ẽ6, 〈g〉)

Figure 1.3. Pairs with the Φ̂+-basis property: affine type cases

0

1 2 n

-1 -2 -n

g

1

2

3 4 n
g

(ix) (∞A∞, 〈g〉) (x) (D∞, 〈g〉)

Figure 1.4. Pairs with the Φ̂+-basis property: locally spherical type cases

on E , the linear representation ψ is equivariant, and it induces a linear representation
ψG : A

Γ̂
→ GL(EG). By Castella [3, 5] this representation is always faithful on A+

Γ̂
and

is faithful on the whole A
Γ̂
if Γ is of spherical type.

One can find an explicit description of Γ̂ in Crisp [7, 8] and in Geneste–Paris [13]. In
particular, we have Γ̂ = Bm+1 in Case (i) of Theorem 1.3, we have Γ̂ = Bm−1 in Case (ii),
Γ̂ = G2 in Case (iii), Γ̂ = F4 in Case (iv), Γ̂ = C̃m+1 if m ≥ 2 and Γ̂ = B̃2 if m = 1 in
Case (v), Γ̂ = B̃m−1 in Case (vi), Γ̂ = G̃2 in Case (vii), and Γ̂ = F̃4 in Case (viii).

So, concerning a description of a linear representation ψ : AΓ → GL(E) as above,
where E has a given basis B = {eα | α ∈ Φ+} in one-to-one correspondence with the
set Φ+ of positive roots of Γ, for Γ of spherical or affine type, the situation is as follows.
For the following Coxeter graphs of spherical type the construction is done and the
representation is faithful on the whole group AΓ.

• Am, (m ≥ 1): original work of Krammer [20].
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• Dm (m ≥ 4), E6, E7, E8: due to Digne [12] and independently to Cohen–
Wales [6].

• Bm (m ≥ 2), F4, G2: due to Digne [12].

Such representations for the Coxeter graphs H3, H4 and I2(p) (p = 5 or p ≥ 7) are
unknown. For the following Coxeter graphs of affine type the construction is done and the
representation is faithful on the Artin monoid A+

Γ
.

• Ãm (m ≥ 3), D̃m (m ≥ 4), Ẽ6, Ẽ7, Ẽ8: due to Paris [25].

• Ã2: due to Castella [4].

• B̃m (m ≥ 2), C̃m (m ≥ 3), F̃4, G̃2: due Castella [3, 5] for the construction of the
representation ψ : AΓ → GL(E) and for the proof of the faithfulness of ψ on A+

Γ
,

and due to the present work for an explicit construction of a basis in one-to-one
correspondence with Φ+.

Curiously a construction for the remaining Coxeter graph of affine type, Ã1, is unknown.

1.4. Organization of the paper

The paper is organized as follows. In Subsection 2.1 and Subsection 2.2 we give
preliminaries on root systems and symmetries. In Section 3 we define the subset B̂ =
{êβ̂ | β̂ ∈ Φ̂

+} of EG . Section 4 is dedicated to the proofs. Theorem 1.1 is proved in
Subsection 4.1 and Theorem 1.2 is proved in Subsection 4.2. The proof of Theorem 1.3
is divided into two parts. In a first part (see Subsection 4.3) we show that, under the
assumptions “finite orbits and Γ connected”, the Φ̂+-basis property is quite restrictive.
More precisely we prove the following.

Proposition 1.4. Suppose that Γ is a connected Coxeter graph, G is a non-trivial group
of symmetries of Γ, and all the orbits of S under the action of G are finite. If (Γ,G) has
the Φ̂+-basis property, then Γ is one of the following Coxeter graphs: A2m+1 (m ≥ 1), Dm

(m ≥ 4), E6, Ã2m+1 (m ≥ 1), D̃m (m ≥ 4), Ẽ6, Ẽ7, ∞A∞, D∞.

In a second part (see Subsection 4.4) we study all the possible pairs (Γ,G) with Γ in
the list of Proposition 1.4 and G non-trivial to prove Theorem 1.3.
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2. Preliminaries

2.1. Root systems

Let S be a (finite or infinite) set. A Coxeter matrix on S is a square matrix M = (ms,t )s,t∈S

indexed by the elements of S with coefficients in N∪ {∞}, such that ms,s = 1 for all s ∈ S,
and ms,t = mt,s ≥ 2 for all s, t ∈ S, s , t. This matrix is represented by its Coxeter graph,
Γ, defined as follows. The set of vertices of Γ is S, two vertices s, t are connected by an
edge if ms,t ≥ 3, and this edge is labelled with ms,t if ms,t ≥ 4.

The Coxeter group associated with Γ is the group W = WΓ defined by the presentation

W = 〈S | s2 = 1 for all s ∈ S , (st)ms, t = 1 for all s, t ∈ S , s , t and ms,t , ∞〉 .

The pair (W, S) is called the Coxeter system associated with Γ.
There are several notions of “root systems” attached to all Coxeter groups. The most

commonly used is that defined by Deodhar [11] and taken up by Humphreys [17]. As
Geneste–Paris [13] pointed out, this definition is not suitable for studying symmetries
of Coxeter graphs. In that case it is better to take the more general definition given by
Krammer [19, 21] and taken up by Davis [9], or the even more general one given by
Hée [14]. We will use the latter in this paper.

We call root prebasis a quadruple B = (S,V,Π,R), where S is a (finite or infinite) set,
Π = {αs | s ∈ S} is a set in one-to-one correspondence with S, V =

⊕
s∈S Rαs is a real

vector space with Π as a basis, and R = {σs | s ∈ S} is a collection of linear reflections of
V such that σs(αs) = −αs for all s ∈ S. For all s, t ∈ S we denote by ms,t the order of σsσt .
Then M = (ms,t )s,t∈S is a Coxeter matrix. The Coxeter group of this matrix is denoted by
W(B). We have a linear representation f : W(B) → GL(V) which sends s to σs for all
s ∈ S. Since we do not need to specify the map f in general, for w ∈ W and x ∈ V , the
vector f (w)(x) will be simply written w(x). We set Φ(B) = {w(αs) | s ∈ S and w ∈ W}
and we denote by Φ(B)+ (resp. Φ(B)−) the set of elements β ∈ Φ(B) that are written
β =

∑
s∈S λsαs with λs ≥ 0 (resp. λs ≤ 0) for all s ∈ S. We say that B is a root basis if we

have the disjoint union Φ(B) = Φ(B)+ t Φ(B)−. In that case Φ(B) is called a root system
and the elements of Φ(B)+ (resp. Φ(B)−) are called positive roots (resp. negative roots).
Finally, we say that B is a reduced root basis and that Φ(B) is a reduced root system if, in
addition, we have Rαs ∩ Φ(B) = {αs,−αs} for all s ∈ S.

Example. Let Γ be a Coxeter graph associated with a Coxeter matrix M = (ms,t )s,t∈S .
As before, we set Π = {αs | s ∈ S} and V =

⊕
s∈S Rαs . We define a symmetric bilinear

form 〈 · , · 〉 : V × V → R by

〈αs, αt〉 =

{
−2 cos(π/ms,t ) if ms,t , ∞ ,

−2 if ms,t = ∞ .
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For each s ∈ S we define a reflection σs : V → V by σs(x) = x − 〈αs, x〉αs and we set
R = {σs | s ∈ S}. By Deodhar [11], B = (S,V,Π,R) is a root basis and, by Bourbaki [2],
WΓ = W(B) and the representation f : WΓ → GL(V) is faithful. This root basis is reduced
since we have 〈β, β〉 = 2 for all β ∈ Φ(B). It is called the canonical root basis of Γ and
the bilinear form 〈 · , · 〉 is called the canonical bilinear form of Γ.

In this subsection we give the results on root systems that we will need, and we refer to
Hée [14] for the proofs and more results.

Theorem 2.1 (Hée [14]). Let B = (S,V,Π,R) be a root basis. Then the induced linear
representation f : W(B) → GL(V) is faithful.

Let (W, S) be a Coxeter system. The word length of an element w ∈ W with respect to
S will be denoted by lg(w) = lgS(w). The set of reflections of (W, S) is defined to be R =
{wsw−1 | w ∈ W and s ∈ S}. The following explains why the basis B = {eβ | β ∈ Φ+} of
our vector space E will depend only on the Coxeter graph (or on the Coxeter system) and
not on the root system.

Theorem 2.2 (Hée [14]). Let B = (S,V,Π,R) be a reduced root basis, let W = W(B),
and let Φ = Φ(B). Let R be the set of reflections of (W, S). Let β ∈ Φ. Let w ∈ W and
s ∈ S such that w(αs) = β. We have β ∈ Φ+ if and only if lg(ws) > lg(w). In that case
the element $(β) = wsw−1 ∈ R does not depend on the choice of w and s. Moreover, the
map $ : Φ+ → R defined in this way is a one-to-one correspondence.

Let Γ be a Coxeter graph and let (W, S) be its associated Coxeter system. For X ⊂ S
we denote by ΓX the full subgraph of Γ spanned by X and by WX the subgroup of W
generated by X . By Bourbaki [2], (WX, X) is the Coxeter system of ΓX . If B = (S,V,Π,R)
is a reduced root basis, then we denote by VX the vector subspace of V spanned by
ΠX = {αs | s ∈ X} and we set RX = {σs |VX | s ∈ X}.

Proposition 2.3 (Hée [14]). Let B = (S,V,Π,R) be a reduced root basis and let X ⊂ S.
Let W = W(B). Then σs(VX ) = VX for all s ∈ X , the quadruple BX = (X,VX,ΠX,RX ) is
a reduced root basis, Φ(BX ) = Φ(B) ∩ VX , and WX = W(BX ).

The following is proved in Bourbaki [2] and is crucial in many works on Coxeter
groups. It is important to us as well.

Proposition 2.4 (Bourbaki [2]). The following conditions on an element w0 ∈ W are
equivalent.

(i) For all u ∈ W we have lg(w0) = lg(u) + lg(u−1w0).

(ii) For all s ∈ S we have lg(sw0) < lg(w0).
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Moreover, such an element w0 exists if and only W is finite. If w0 satisfies (i) and/or (ii)
then w0 is unique, w0 is involutive (i.e. w2

0 = 1), and w0Sw0 = S.

When W is finite the element w0 in Proposition 2.4 is called the longest element of W .

2.2. Symmetries

Recall that a symmetry of a Coxeter graph Γ associated with a Coxeter matrix M =

(ms,t )s,t∈S is a permutation g of S satisfying mg(s),g(t) = ms,t for all s, t ∈ S. Recall also
that Sym(Γ) denotes the group of all symmetries of Γ. Let G be a subgroup of Sym(Γ).
We denote by O the set of orbits of S under the action of G. Two subsets of O will play a
special role. First, the set Ofin consisting of finite orbits. Then, the subset S ⊂ Ofin formed
by the orbits X ∈ Ofin such that WX is finite. For X ∈ S we denote by uX the longest
element of WX (see Proposition 2.4) and, for X,Y ∈ S, we denote by m̂X,Y the order of
uXuY . Note that M̂ = (m̂X,Y )X,Y ∈S is a Coxeter matrix. Its Coxeter graph is denoted by
Γ̂ = Γ̂G . Finally, we denote by WG the subgroup of W of fixed elements under the action
of G.

Theorem 2.5 (Hée [14], Mühlherr [24]). Let Γ be a Coxeter graph, let G be a group of
symmetries of Γ, and let (W, S) be the Coxeter system associated with Γ. Then WG is
generated by SW = {uX | X ∈ S} and (WG,SW ) is a Coxeter system associated with Γ̂.

Take a root basis B = (S,V,Π,R) such that W = W(B). The action of G on S induces
an action of G on V defined by g(αs) = αg(s) for all s ∈ S and g ∈ G. We say that B is
symmetric with respect to G if σg(s) = gσsg

−1 for all s ∈ S and g ∈ G. Note that the
canonical root basis is symmetric whatever is G. Suppose that B is symmetric with respect
to G. Then the linear representation f : W → GL(V) associated with B is equivariant
in the sense that f (g(w)) = g f (w) g−1 for all w ∈ W and g ∈ G. So, it induces a linear
representation f G : WG → GL(VG), where VG = {x ∈ V | g(x) = x for all g ∈ G}.

For each X ∈ S we set α̂X =
∑

s∈X αs and we denote by V̂ the vector subspace of V
spanned by Π̂ = {α̂X | X ∈ S}. We have V̂ ⊂ VG but we have no equality in general.
However, we have f G(w)(V̂) = V̂ for all w ∈ WG . We set σ̂X = f G(uX )|V̂ for all X ∈ S
and R̂ = {σ̂X | X ∈ S}.

Theorem 2.6 (Hée [14]). The quadruple B̂ = (S, V̂, Π̂, R̂) is a root basis which is reduced
if B is reduced. Moreover, we have W(B̂) = WG .

The root basis B̂ of Theorem 2.6 will be called the equivariant root basis of B/G.
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3. Definition of B̂

From now on Γ denotes a given Coxeter graph, M = (ms,t )s,t∈S denotes its Coxeter matrix,
and (W, S) denotes its Coxeter system. We take a group G of symmetries of Γ and a
reduced root basis B = (S,V,Π,R) such that W = W(B). We assume that B is symmetric
with respect to G and we use again the notations of Subsection 2.2 (Γ̂, M̂ = (m̂X,Y )X,Y ∈S ,
WG , B̂ = (S, V̂, Π̂, R̂), and so on). We set Φ = Φ(B) and Φ̂ = Φ(B̂).

Let K be a field. We denote by E the vector space over K having a basis B = {eα | α ∈
Φ+} in one-to-one correspondence with the set Φ+ of positive roots. The group G acts on
E via its action on Φ+ and we denote by EG the vector subspace of E of fixed vectors
under this action. We denote by Ω the set of orbits and by Ωfin the set of finite orbits of
Φ+ under the action of G. For each ω ∈ Ωfin we set êω =

∑
α∈ω eα. It is easily shown that

B0 = {êω |ω ∈ Ωfin} is a basis of EG .
The definition of B̂ requires the following two lemmas. The proof of the first one is

left to the reader.

Lemma 3.1. Set V+ =
∑

s∈S R+αs. Let x, y ∈ V+ and s ∈ S. If x + y ∈ R+αs, then
x, y ∈ R+αs .

For X ∈ S we set ωX = {αs | s ∈ X}. Note that ωX ∈ Ωfin for all X ∈ S. More
generally, we have w(ωX ) ∈ Ωfin for all X ∈ S and all w ∈ WG .

Lemma 3.2. Let X, X ′ ∈ S andw,w′ ∈ WG . Ifw(α̂X ) = w′(α̂X′), thenw(ωX ) = w′(ωX′).

Proof. Up to replacing the pair (w,w′) by (w′−1w, 1) we can assume that w′ = 1. Then
we have w(α̂X ) = α̂X′ and we must show that w(ωX ) = ωX′ . For that it suffices to show
that the intersection of the two orbits w(ωX ) and ωX′ is non-empty. Either all the roots
w(αs), s ∈ X , lie in Φ+, or all of them lie in Φ−. Moreover, their sum w(α̂X ) = α̂X′ lies in
V+X′ . So, they all lie in Φ+X′ . Similarly, since w−1(α̂X′) = α̂X , all the roots w−1(αt ), t ∈ X ′,
lie in Φ+X . Let s ∈ X . We have w(αs) =

∑
t∈X′ λtαt with λt ≥ 0 for all t ∈ X ′. Hence,

we have αs =
∑

t∈X′ λt w
−1(αt ) and all the vectors λt w−1(αt ), t ∈ X ′, lie in V+. By

Lemma 3.1 it follows that all these vectors lie in R+αs . But the family {w−1(αt ) | t ∈ X ′}
is linearly independent, hence only one λt is nonzero. Thus, there exists t ∈ X ′ such
that λt > 0 and w(αs) = λtαt . Since the root basis B is reduced, we have λt = 1, hence
w(αs) = αt ∈ w(ωX ) ∩ ωX′ , which completes the proof. �

Now we can define a map F = FB,G : Φ̂+ → Ωfin as follows. Let α̂ ∈ Φ̂+. Let X ∈ S
and w ∈ WG such that α̂ = w(α̂X ). Then we set F(α̂) = w(ωX ). By Lemma 3.2 the
definition of this map does not depend on the choices of w and X . Moreover, it is easily
shown that it is injective. Now, we set

B̂ = {êF(α̂) | α̂ ∈ Φ̂
+} ,
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and we say that the pair (Γ,G) has the Φ̂+-basis property if B̂ is a basis of EG . Note
that (Γ,G) has the Φ̂+-basis property if and only if B̂ = B0. Equivalently, (Γ,G) has the
Φ̂+-basis property if and only if F is a bijection (or a surjection).

4. Proofs

4.1. Proof of Theorem 1.1

In this subsection we denote by Sfin the union of the finite orbits of S under the action
of G, and we set Γfin = ΓSfin , Vfin = VSfin , Πfin = ΠSfin and Rfin = RSfin . We consider the
root basis Bfin = BSfin = (Sfin,Vfin,Πfin,Rfin) and its root system Φfin = ΦSfin = Φ(Bfin).
Each symmetry g ∈ G induces a symmetry of Γfin. We denote by Gfin the subgroup of
Sym(Γfin) of all these symmetries.

Lemma 4.1. Let α ∈ Φ. The following assertions are equivalent.

(1) The orbit ω(α) of α under the action of G is finite.

(2) The root α lies in Φfin.

Proof. Suppose that the orbit ω(α) is finite. The support of a vector x =
∑

s∈S λsαs ∈ V
is defined to be Supp(x) = {s ∈ S | λs , 0}. The union Xα of the supports of the roots
β ∈ ω(α) is a finite set and is stable under the action of G, hence Xα is a union of finite
orbits. This implies that Xα ⊂ Sfin, hence α ∈ Φ ∩ Vfin, and therefore, by Proposition 2.3,
α ∈ Φfin.

Suppose α ∈ Φfin. There exist t1, t2, . . . , tn, s ∈ Sfin such that α = (t1t2 · · · tn)(αs).
For each g ∈ G we have g(α) = (g(t1) g(t2) · · · g(tn))(αg(s)). The respective orbits of
t1, t2, . . . , tn and s are finite, hence the orbit ω(α) = {g(α) | g ∈ G} is finite. �

Proof of Theorem 1.1. We denote by Ω′ the set of orbits of Φ+fin under the action of Gfin.
On the other hand we denote by B̂fin the equivariant root basis of Bfin/Gfin. By Lemma 4.1
each orbit of Φ+fin under the action of Gfin is finite and each finite orbit in Φ+ is contained
in Φ+fin, hence Ω

′ = Ωfin. Moreover, since each element X ∈ S is contained in Sfin and
WG is generated by SW = {uX | X ∈ S} (see Theorem 2.5), we have (WSfin )

Gfin = WG

and B̂fin = B̂. So, we have Φ(B̂fin)
+ = Φ(B̂)+ and FB,G = FBfin,Gfin : Φ(B̂)+ → Ωfin. Since

we know that (Γ,G) has the Φ̂+-basis property if and only if FB,G is a bijection, (Γ,G)
has the Φ̂+-basis property if and only if (Γfin,Gfin) has the Φ̂+-basis property. �
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4.2. Proof of Theorem 1.2

From now on we assume that all the orbits of S under the action of G are finite. Then, by
Lemma 4.1, the orbits of Φ under the action of G are also finite.

Lemma 4.2. We assume that for each root α ∈ Φ+ there exist s ∈ S and w ∈ WG such
that α = w(αs). Let s, t ∈ S and g ∈ G such that t = g(s) , s. Then ms,t = 2.

Proof. Suppose instead that ms,t ≥ 3. Set α = s(αt ). We have α = αt + λαs where
λ > 0. In particular α ∈ Φ+. So, there exist w ∈ WG and r ∈ S such that w(α) = αr .
Since t = g(s), we have αt = g(αs), hence w(αt ) = w(g(αs)) = g(w(αs)). This shows
that either both roots w(αs) and w(αt ) lie in Φ+, or they both lie in Φ−. Moreover,
w(α) = w(αt ) + λ w(αs) = αr , hence the two roots w(αs) and w(αt ) lie in Φ+. Thus, by
Lemma 3.1, the two vectors w(αt ) and λ w(αs) lie in R+αr , which is a contradiction since,
t being different from s, these two vectors are linearly independent. �

Proposition 4.3. The following conditions are equivalent.

(1) The pair (Γ,G) has the Φ̂+-basis property.

(2) For each root α ∈ Φ+ there exist w ∈ WG and s ∈ S such that α = w(αs).

(3) For each root α ∈ Φ there exist w ∈ WG and s ∈ S such that α = w(αs).

Proof. Suppose that (Γ,G) has the Φ̂+-basis property. Let α ∈ Φ+. The orbit ω(α) lies
in Ωfin = Ω and the map F : Φ̂+ → Ωfin is a bijection, hence there exist w ∈ WG and
X ∈ S such that w(ωX ) = ω(α). In particular, there exists an element s ∈ X ⊂ S such
that w(αs) = α.

Suppose that for each α ∈ Φ+ there exist w ∈ WG and s ∈ S such that α = w(αs).
Let ω ∈ Ωfin = Ω. Let α ∈ ω. By assumption there exist w ∈ WG and s ∈ S such that
α = w(αs). Let X be the orbit of s under the action of G. The set X is finite since it is an
orbit and, by Lemma 4.2, WX is the direct product of |X | copies of Z/2Z. So, WX is finite
and X ∈ S. Set β̂ = w(α̂X ). We have β̂ ∈ Φ̂+ and the orbit F(β̂) = w(ωX ) contains the
root α = w(αs), hence it is equal to ω. So, the map F is a surjection, hence (Γ,G) has the
Φ̂+-basis property.

Suppose that for each α ∈ Φ+ there exist w ∈ WG and s ∈ S such that α = w(αs). In
order to show that for each α ∈ Φ there exist w ∈ WG and s ∈ S such that α = w(αs), it
suffices to consider a root α ∈ Φ−. By assumption, since −α ∈ Φ+, there exist w′ ∈ WG

and s ∈ S such that −α = w′(αs). Let X be the orbit of s. By Lemma 4.2 the Coxeter graph
ΓX is a finite union of isolated vertices, henceWX is finite, uX =

∏
t∈X t, and uX (αt ) = −αt

for all t ∈ X . Set w = w′uX . Then w ∈ WG and w(αs) = w′uX (αs) = w′(−αs) = α.
The implication (3)⇒ (2) is obvious. �
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By combining Lemma 4.2 and Proposition 4.3 we get the following.

Lemma 4.4. Suppose that (Γ,G) has the Φ̂+-basis property. Let X be an orbit of S under
the action of G. Then ΓX is a finite union of isolated vertices. In particular, X ∈ S,
uX =

∏
t∈X t, and uX (αt ) = −αt for all t ∈ X .

Proof of Theorem 1.2. Let Γi , i ∈ I, be the connected components of Γ. For i ∈ I we
denote by Si the set of vertices of Γi , and we set Vi = VSi , Πi = ΠSi , and Ri = RSi .
Consider the root basis Bi = BSi = (Si,Vi,Πi,Ri) and its root system Φi = ΦSi = Φ(Bi).
Note that Φ is the disjoint union of the Φi’s and W is the direct sum of the WSi ’s. Recall
that each symmetry g ∈ StabG(Γi) induces a symmetry of Γi and that Gi denotes the
subgroup of Sym(Γi) of these symmetries.

Suppose that (Γ,G) has the Φ̂+-basis property. Let i ∈ I. Let α ∈ Φi . By Proposition 4.3
there exist s ∈ S and w ∈ WG such that α = w(αs). Since W is the direct sum of the
WS j ’s, w is uniquely written w =

∏
j∈I wj , where wj ∈ WS j for all j ∈ I, and there

are only finitely many j ∈ I such that wj , 1. Let j ∈ I such that s ∈ Sj . We have
α = w(αs) = wj(αs) ∈ Φj , hence i = j and s ∈ Si . On the other hand, if g ∈ StabG(Γi),
then g(w) = w and g(WSi ) = WSi , hence g(wi) = wi . So, wi ∈ WGi

Si
and α = wi(αs). By

Proposition 4.3 we conclude that (Γi,Gi) has the Φ̂+-basis property.
Suppose that (Γi,Gi) has the Φ̂+-basis property for all i ∈ I. Let α ∈ Φ. Let i ∈ I such

that α ∈ Φi . By Proposition 4.3 there exist wi ∈ WGi

Si
and s ∈ Si such that α = wi(αs).

The action of G on S induces an action of G on I defined by g(Γi) = Γg(i), for g ∈ G
and i ∈ I. Since the orbits of S under the action of G are finite, the orbits of I under the
action of G are also finite. Let J ⊂ I be the orbit of i. For each j ∈ J we choose g ∈ G
such that g(i) = j and we set wj = g(wi) ∈ WS j . The fact that wi ∈ WGi

Si
implies that the

definition of wj does not depend on the choice of g. Let w =
∏

j∈J wj . Then w ∈ WG

and w(αs) = wi(αs) = α. By Proposition 4.3 we conclude that (Γ,G) has the Φ̂+-basis
property. �

4.3. Proof of Proposition 1.4

From now on we assume that Γ is connected, that G is nontrivial, and that all the
orbits of S under the action of G are finite. We also assume that B is the canonical root
basis, 〈 · , · 〉 : V × V → R is the canonical bilinear form of Γ, as they are defined in
Subsection 2.1, and that Φ = Φ(B) is the so-called canonical root system.

Recall that for all s, t ∈ S we have 〈αs, αt〉 = −2 cos(π/ms,t ). In particular 〈αs, αt〉 = 2
if s = t, 〈αs, αt〉 = 0 if ms,t = 2, 〈αs, αt〉 = −1 if ms,t = 3, and −2 ≤ 〈αs, αt〉 < −1 if
4 ≤ ms,t ≤ ∞. Let ≡ denote the equivalence relation on Φ generated by the relation ≡1
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defined by: α ≡1 β ⇔ 〈α, β〉 < {0, 1,−1}. Note that the relation ≡1 is reflexive (since
〈α, α〉 = 2 for all α ∈ Φ) and symmetric.

The proof of Proposition 1.4 is divided into two parts. In a first part (see Corollary 4.13)
we prove that, if ≡ has at least two equivalence classes, then Γ is one of the Coxeter graphs
Am (m ≥ 1), Dm (m ≥ 4), Em (6 ≤ m ≤ 8), Ãm (m ≥ 2), D̃m (m ≥ 4), Ẽm (6 ≤ m ≤ 8),
A∞, ∞A∞, D∞. In a second part (see Proposition 4.17) we prove that, if (Γ,G) has the
Φ̂+-basis property, then ≡ has at least two equivalence classes.

For α ∈ Φwe denote by rα : V → V the linear reflection defined by rα(x) = x−〈α, x〉α.
Note that, if s ∈ S and w ∈ W are such that α = w(αs), then rα = wsw−1. In particular
rα ∈ W for all α ∈ Φ and rαs = s for all s ∈ S.

Lemma 4.5.

(1) We have α ≡1 −α for all α ∈ Φ.

(2) Let α, β ∈ Φ such that α ≡ β. Then w(α) ≡ w(β) for all w ∈ W .

(3) Let α, β ∈ Φ such that α ≡ β. Then α ≡ rα(β) and β ≡ rα(β).

Proof. Part (1) is true since 〈α,−α〉 = −2 < {0, 1,−1}. Part (2) follows from the fact that
each w ∈ W preserves the bilinear form 〈 · , · 〉. Let α, β ∈ Φ such that α ≡ β. By Part (2)
we have rα(α) ≡ rα(β). But rα(α) = −α hence, by Part (1), α ≡ rα(β). We also have
β ≡ rα(β) since α ≡ β. �

Lemma 4.6. Assume that αs ≡ αt for all s, t ∈ S. Then all the elements of Φ are
equivalent modulo the relation ≡.

Proof. It suffices to prove that for each α ∈ Φ there exists s ∈ S such that α ≡ αs. Let
α ∈ Φ. There exist t ∈ S and w ∈ W such that α = w(αt ). We argue by induction on the
length of w. We can assume that w , 1. Then we have w = sw′ with s ∈ S, w′ ∈ W
and lg(w′) < lg(w). Set β = w′(αt ). By induction there exists u ∈ S such that β ≡ αu .
We have α = w(αt ) = (sw′)(αt ) = s(β) hence, by Lemma 4.5(2), α ≡ s(αu). But, by
assumption, αu ≡ αs , hence, by Lemma 4.5(3), αs ≡ s(αu) ≡ α. �

Recall that the support of a vector x =
∑

s∈S λsαs ∈ V is Supp(x) = {s ∈ S | λs , 0}.
Let s, t ∈ S. A path from s to t of length ` is a sequence s0, s1, . . . , s` in S of length ` + 1
such that s0 = s, s` = t and msi−1,si ≥ 3 for all i ∈ {1, . . . , `}. The distance between s
and t, denoted by d(s, t), is the shortest length of a path from s to t. Then the distance
between an element s ∈ S and a subset X ⊂ S is d(s, X) = min{d(s, t) | t ∈ X}.

Lemma 4.7. Let α =
∑

s∈S λsαs ∈ Φ
+, t ∈ S \ Supp(α) and t0 ∈ Supp(α). Assume that

d(t, Supp(α)) = d(t, t0) and λt0 > 1. Then α ≡ αt .
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Proof. We argue by induction on d = d(t, Supp(α)). There exists a path t0, t1, . . . , td of
length d from t0 to t. We first show that α ≡1 αt1 . We have 〈α, αt1〉 =

∑
s∈S λs 〈αs, αt1〉.

For each s ∈ Supp(α) we have λs > 0 and 〈αs, αt1〉 ≤ 0 (since s , t1), hence 〈α, αt1〉 ≤
λt0 〈αt0, αt1〉. Moreover, we have λt0 > 1 and 〈αt0, αt1〉 ≤ −1 (since mt0,t1 ≥ 3), hence
〈α, αt1〉 < −1, and therefore α ≡1 αt1 . By Lemma 4.5(3) we also have α ≡ α′, where
α′ = t1(α).

Nowwe can assume that d ≥ 2.Wewriteα′ =
∑

s∈S λ
′
sαs .We haveα′ = α−〈α, αt1〉αt1 ,

hence Supp(α′) = Supp(α) ∪ {t1}, λ′t1 = −〈α, αt1〉 > 1, and d(t, Supp(α′)) = d(t, t1) =
d − 1, therefore, by induction, α′ ≡ αt . Finally, we have α ≡ α′ and α′ ≡ αt , hence
α ≡ αt . �

Lemma 4.8. Assume that there are s, t ∈ S such that ms,t ≥ 4. Then the relation ≡ has
only one equivalence class.

Proof. We have 〈αs, αt〉 = −2 cos(π/ms,t ) ≤ −2 cos(π/4) = −
√

2 < −1, hence αs ≡ αt .
By Lemma 4.5(3) we also have αs ≡ α where α = s(αt ). Let u ∈ S \ {s, t}. By
Lemma 4.6 it suffices to show that either αu ≡ αs or αu ≡ αt . We can and do assume that
d(u, s) ≤ d(u, t) and we show that αu ≡ αs . Set α = λsαs +αt . We have Supp(α) = {s, t},
d(u, Supp(α)) = d(u, s), and λs = −〈αs, αt〉 > 1, hence, by Lemma 4.7, αu ≡ α. So, since
αs ≡ α, we have αu ≡ αs . �

Lemma 4.9. If S contains a subset Y such that

(1) ∅ , Y , S, and

(2) for all s ∈ Y there exists α =
∑

r ∈Y λrαr ∈ Φ
+
Y such that α ≡ αs and λr > 1 for

all r ∈ Supp(α),

then ≡ has only one equivalence class.

Proof. Let s ∈ Y and t ∈ S \Y . There exists a root α =
∑

r ∈Y λrαr ∈ Φ
+
Y such that α ≡ αs

and λr > 1 for all r ∈ Supp(α). Then, by Lemma 4.7, α ≡ αt . So, since α ≡ αs , we have
αs ≡ αt . Let s, s′ ∈ Y . Since Y , S, we can take t ∈ S \ Y . By the above, αs ≡ αt and
αs′ ≡ αt , hence αs ≡ αs′ . Let t, t ′ ∈ S \ Y . Since Y , ∅, we can take s ∈ Y . By the above,
αs ≡ αt and αs ≡ αt′ , hence αt ≡ αt′ . We conclude by applying Lemma 4.6. �

Lemma 4.10. Suppose that Γ is one of the following Coxeter graphs of affine type: Ãm

(m ≥ 2), D̃m (m ≥ 4), Ẽ6, Ẽ7, Ẽ8. For each s ∈ S there exists a root α =
∑

r ∈S λrαr ∈ Φ
+

such that 〈αs, α〉 = −2 and λr ≥ 2 for all r ∈ S.

Proof. We number the elements of S as in Bourbaki [2, Planches] with the convention
that the unnumbered vertex in Bourbaki [2, Planches] is here labelled with 0. Let β denote
the greatest root of ΦS\{0}. Here is the value of β according to Γ.
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• If Γ = Ãm (m ≥ 2), then β = α1 + α2 + · · · + αm.

• If Γ = D̃m (m ≥ 4), then β = α1 + 2α2 + · · · + 2αm−2 + αm−1 + αm.

• If Γ = Ẽ6, then β = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6.

• If Γ = Ẽ7, then β = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7.

• If Γ = Ẽ8, then β = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8.

We observe in each case that 〈α0, β〉 = −2. In particular, we have s0(β) = 2α0 + β. Set
δ = α0 + β. Then α0 + δ = s0(β) ∈ Φ.

Observe that all the coordinates of δ in the basis Π are ≥ 1. On the other hand, for
each root α ∈ Φ we have (α + δ) ∈ Φ and 〈α, δ〉 = 0. Indeed, we see case by case that,
for each s ∈ S, 〈αs, δ〉 = 0. Subsequently 〈α, δ〉 = 0 for all α ∈ Φ and w(δ) = δ for all
w ∈ W . Now, Γ is connected and simply laced, hence for each α ∈ Φ there exists w ∈ W
such that α = w(α0). So, α + δ = w(α0 + δ) = (ws0)(β) ∈ Φ.

Let s ∈ S. Since Γ is simply laced and connected there exists w ∈ W such that
αs = w(α0). We set α′ = w(β) and we choose k ≥ 1 so that all the coordinates of
α = α′ + kδ in the basis Π are ≥ 2. Then, by the above, α ∈ Φ and 〈αs, α〉 = 〈αs, α′〉 =
〈w(α0),w(β)〉 = 〈α0, β〉 = −2. �

Corollary 4.11. Suppose that there is a proper subset Y of S such that ΓY is one of the
following Coxeter graphs of affine type: Ãm (m ≥ 2), D̃m (m ≥ 4), Ẽ6, Ẽ7, Ẽ8. Then the
relation ≡ has only one equivalence class.

Proof. This follows from Lemma 4.9 and Lemma 4.10. �

Lemma 4.12. Suppose that Γ is simply laced. Then one of the following three assertions
is satisfied.

(1) Γ is one of the following Coxeter graphs of spherical type: Am (m ≥ 1), Dm

(m ≥ 4), E6, E7, E8.

(2) Γ is one of the following locally spherical Coxeter graphs: A∞, ∞A∞, D∞.

(3) There exists a subset Y of S such that ΓY is one of the following Coxeter graphs
of affine type: Ãm (m ≥ 2), D̃m (m ≥ 4), Ẽ6, Ẽ7, Ẽ8.

Proof. If Γ contains a circuit, then there is a subset Y of S such that ΓY = Ãm (m ≥ 2).
So, we can assume that Γ is a tree. If all the vertices of Γ are of valence ≤ 2, then
Γ ∈ {Am |m ≥ 1} ∪ {A∞,∞A∞}. So, we can assume that Γ has at least one vertex of
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valence ≥ 3. If Γ has at least two vertices of valence ≥ 3, then there exists a subset Y of S
such that ΓY = D̃m (m ≥ 5). So, we can assume that Γ has a unique vertex s0 of valence
≥ 3. If the valence of s0 is ≥ 4, then there is a subsetY of S such that ΓY = D̃4. So, we can
assume that the valence of s0 is 3. We denote by `1, `2, `3 the (finite or infinite) lengths of
the branches from s0 and we assume that 1 ≤ `1 ≤ `2 ≤ `3 ≤ ∞. If `1 ≥ 2, then there is a
subset Y of S such that ΓY = Ẽ6. So, we can assume that `1 = 1. If `2 ≥ 3, then there is a
subset Y of S such that ΓY = Ẽ7. If `2 = 1 and `3 < ∞, then Γ = Dm where m = `3 + 3.
If `2 = 1 and `3 = ∞, then Γ = D∞. So, we can assume that `2 = 2. If `3 = 2, 3, 4, then
Γ = E6, E7, E8, respectively. If `3 ≥ 5, then there is a subset Y of S such that ΓY = Ẽ8. �

Corollary 4.13. If the relation ≡ has at least two equivalence classes, then Γ is one of
the following Coxeter graphs: Am (m ≥ 1), Dm (m ≥ 4), Em (6 ≤ m ≤ 8), Ãm (m ≥ 2),
D̃m (m ≥ 4), Ẽm (6 ≤ m ≤ 8), A∞, ∞A∞, D∞.

Proof. This follows from Lemma 4.8, Corollary 4.11 and Lemma 4.12. �

Now we start the second part of the proof of Proposition 1.4.

Lemma 4.14. Assume that (Γ,G) has the Φ̂+-basis property. Let α, β ∈ Φ and g ∈ G
such that β = g(α) , α. Then 〈α, β〉 = 0.

Proof. By Proposition 4.3 there exist w ∈ WG and s ∈ S such that α = w(αs). Set
t = g(s). We have αt = g(αs), hence β = g(α) = g(w(αs)) = w(g(αs)) = w(αt ). Since
β , α, we have αt , αs , thus t , s. By Lemma 4.4 we have ms,t = 2, hence 〈αs, αt〉 = 0,
and therefore 〈α, β〉 = 〈w(αs),w(αt )〉 = 〈αs, αt〉 = 0. �

Lemma 4.15. Suppose that (Γ,G) has the Φ̂+-basis property. Let α, β ∈ Φ and g ∈ G
such that g(α) = α and 〈α, β〉 < {0, 1,−1}. Then g(β) = β.

Proof. Set γ = rβ(α). We have γ = α − 〈α, β〉β, hence g(γ) = g(α) − 〈α, β〉g(β) =

α − 〈α, β〉g(β), and therefore

〈γ, g(γ)〉 = 〈α − 〈α, β〉β, α − 〈α, β〉g(β)〉

= 〈α, α〉 − 〈α, β〉〈β, α〉 − 〈α, β〉〈α, g(β)〉 + 〈α, β〉2〈β, g(β)〉

= 2 − 2〈α, β〉2 + 〈α, β〉2〈β, g(β)〉 ,

since 〈α, α〉 = 2 and 〈α, g(β)〉 = 〈g(α), g(β)〉 = 〈α, β〉. Suppose that g(β) , β. Then,
since 〈α, β〉 , 0, we also have g(γ) , γ. Then, by Lemma 4.14, we get 〈β, g(β)〉 = 0 and
〈γ, g(γ)〉 = 0. It follows that 2− 2〈α, β〉2 = 0, hence 〈α, β〉2 = 1, which is a contradiction
as 〈α, β〉 < {1,−1}. So, g(β) = β. �

Lemma 4.16. Suppose that (Γ,G) has the Φ̂+-basis property. Let g ∈ G. Then there
exists s ∈ S such that g(s) = s.
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Proof. Suppose instead that g(s) , s for all s ∈ S. Take an element s in S such
that the distance ` = d(s, g(s)) is minimal. By Lemma 4.4 we have ` ≥ 2. Let
s = s0, s1, . . . , s` = g(s) be a path of length ` from s to g(s). The minimality of `
implies that the sets {s0, s1, . . . , s`−1} and {s` = g(s0), g(s1), . . . , g(s`−1)} are disjoint.
Set α = (s0s1 · · · s`−2)(αs`−1 ) and β = g(α). We have α = λ0αs0 + λ1αs1 + · · · +

λ`−2αs`−2 + αs`−1 where λi > 0 for all i ∈ {1, . . . , ` − 2}. Thus β = g(α) = λ0αg(s0) +

λ1αg(s1) + · · · + λ`−2αg(s`−2) + αg(s`−1). In particular, β , α. However, since Supp(α) ∩
Supp(β) = ∅, s`−1 ∈ Supp(α), s` = g(s0) ∈ Supp(β), and ms`−1,s` ≥ 3, we have
〈α, β〉 < 0. This contradicts Lemma 4.14. �

Proposition 4.17. Suppose that (Γ,G) has the Φ̂+-basis property. Then the relation ≡
has at least two equivalence classes.

Proof. Suppose instead that ≡ has a unique equivalence class. Let g ∈ G. Set U = {x ∈
V | g(x) = x}. By Lemma 4.16 there exists s ∈ S such that g(s) = s. Then g(αs) = αs.
Let β ∈ Φ. By assumption we have αs ≡ β. It follows from Lemma 4.15 that g(β) = β.
Thus, U contains Φ, hence U = V . So, G = {id} which is a contradiction since we are
under the assumption G , {id}. So, ≡ has at least two equivalence classes. �

Proof of Proposition 1.4. Suppose that (Γ,G) has the Φ̂+-basis property. By Proposi-
tion 4.17 the relation ≡ has at least two equivalence classes, hence, by Corollary 4.13,
Γ is one of the following Coxeter graphs: Am (m ≥ 1), Dm (m ≥ 4), Em (6 ≤ m ≤ 8),
Ãm (m ≥ 2), D̃m (m ≥ 4), Ẽm (6 ≤ m ≤ 8), A∞, ∞A∞, D∞. The Coxeter graphs A1, E7,
E8, Ẽ8 and A∞ have no nontrivial symmetry, hence Γ is not one of these graphs. The
Coxeter graph A2m has no nontrivial symmetry fixing an element of S and we know by
Lemma 4.16 that each element of G fixes at least one element of S, hence neither Γ is
A2m. If g is a nontrivial symmetry of the Coxeter graph Ã2m that fixes an element of S,
then there exist s, t ∈ S such that ms,t = 3 and g(s) = t, hence, by Lemma 4.2, such an
element cannot lie in G. Thus, Γ is also different from Ã2m. So, Γ is one of the following
Coxeter graphs: A2m+1 (m ≥ 1), Dm (m ≥ 4), E6, Ã2m+1 (m ≥ 1), D̃m (m ≥ 4), Ẽ6, Ẽ7,
∞A∞, D∞. �

4.4. Proof of Theorem 1.3

We assume again that Γ is connected, that G is non-trivial, and that the orbits of S under
the action of G are finite. We also assume that Φ is the canonical root system of Γ and
that 〈 · , · 〉 : V × V → R is its canonical bilinear form.

Lemma 4.18. Assume that (Γ,G) has the Φ̂+-basis property. Then (Γ,G) is up to
isomorphism one of the pairs given in the statement of Theorem 1.3.
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Proof. By Proposition 1.4 we know that Γ is one of the following Coxeter graphs:
A2m+1 (m ≥ 1), Dm (m ≥ 4), E6, Ã2m+1 (m ≥ 1), D̃m (m ≥ 4), Ẽ6, Ẽ7, ∞A∞, D∞. By
Lemma 4.16 we also know that for each g ∈ G there exists s ∈ S such that g(s) = s.
If Γ = Ã2m+1 and g1, g2 are two distinct symmetries of Γ conjugated to the symmetry
described in Case (v) of Theorem 1.3, then g = g1g2 does not fix any element of S.
By Lemma 4.16 such an element cannot lie in G. Similarly, if g1, g2 are two distinct
symmetries of ∞A∞ conjugated to the symmetry described in Case (ix) of Theorem 1.3,
then g = g1g2 does not fix any element of S, hence such an element cannot lie in G.
Observe that, if H is a subgroup of the symmetric group S4 which contains no cycle
of length 4 and no product of two disjoint transpositions, then H fixes an element of
{1, 2, 3, 4}. Using this observation it is easily seen that, when Γ = D̃4, we are either in
Case (vi) or Case (vii) of Theorem 1.3, or in the following Case (a) or Case (c). So, it
remains to prove that (Γ,G) is not one of the following pairs (see Figure 4.1).

(a) Γ = D̃m (m ≥ 4) and G contains an element g of order 2 such that

g(s0) = s1, g(s1) = s0, g(si) = si (2 ≤ i ≤ m − 2), g(sm−1) = sm, g(sm) = sm−1 .

(b) Γ = D̃2m (m ≥ 3) and G contains an element g of order 2 such that

g(si) = s2m−i (0 ≤ i ≤ 2m) .

(c) Γ = D̃4 and G contains an element g of order 4 such that

g(s0) = s4, g(s1) = s0, g(s2) = s2, g(s3) = s1, g(s4) = s3 .

(d) Γ = Ẽ6 and G contains an element g of order 3 such that

g(s0) = s6, g(s1) = s0, g(s2) = s5, g(s3) = s2, g(s4) = s4, g(s5) = s3, g(s6) = s1 .

(e) Γ = Ẽ7 and G contains an element g of order 2 such that

g(s0) = s7, g(s1) = s6, g(s2) = s2, g(s3) = s5,

g(s4) = s4, g(s5) = s3, g(s6) = s1, g(s7) = s0 .

In each of the five cases we show a root α ∈ Φ such that g(α) , α and 〈α, g(α)〉 , 0.
By Lemma 4.14 this implies that (Γ,G) does not have the Φ̂+-basis property.

(a) We takeα = α1+α2+· · ·+αm−2+αm−1. Then g(α) = α0+α2+· · ·+αm−2+αm , α

and 〈α, g(α)〉 = −2 , 0.

(b) We take α = α0 + α1 + 2α2 + · · · + 2αm−1 + αm. Then g(α) = αm + 2αm+1 +

· · · + 2α2m−2 + α2m−1 + α2m , α and 〈α, g(α)〉 = −2 , 0.
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Figure 4.1. Pairs that do not have the Φ̂+-basis property

(c) We take α = α0+α2+α3. Then g(α) = α1+α2+α4 , α and 〈α, g(α)〉 = −2 , 0.

(d) We take α = α0 + α2 + α4 + α5. Then g(α) = α3 + α4 + α5 + α6 , α and
〈α, g(α)〉 = −1 , 0.

(e) We take α = α1 + α2 + α3 + 2α4 + 2α5 + α6 + α7. Then g(α) = α0 + α1 + α2 +

2α3 + 2α4 + α5 + α6 + α7 , α and 〈α, g(α)〉 = −2 , 0. �

It remains to show that the pairs of Theorem 1.3 have the Φ̂+-basis property. We start
with the pairs with a Coxeter graph of spherical type, that is, the first four cases. For
α ∈ Φ we denote by WGα the orbit of α under the action of WG .

Lemma 4.19. Suppose that (Γ,G) is one of the pairs of Theorem 1.3. Let α ∈ Φ.

(1) We have WG(−α) = −(WGα).

(2) For each g ∈ G we have g(WGα) = WGg(α).

(3) For each s ∈ S the orbit WGαs contains −αs so that WGαs = WG(−αs).

Proof. Let α ∈ Φ and w ∈ WG . Then w(−α) = −w(α) and g(w(α)) = w(g(α)) for all
g ∈ G. This shows Part (1) and Part (2). Let s ∈ S and let X be the orbit of s under the
action ofG. Recall that (Γ,G) is one of the pairs of Theorem 1.3. Observe that, in each case,
the Coxeter graph ΓX is a union of isolated vertices. Thus, uX =

∏
t∈X t and uX (αt ) = −αt

for all t ∈ X . So, uX ∈ WG and uX (αs) = −αs , hence WGαs = WG(−αs). �
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Lemma 4.20. If (Γ,G) is one of the pairs given in Case (i), Case (ii), Case (iii) and
Case (iv) of Theorem 1.3, then (Γ,G) has the Φ̂+-basis property.

Proof. Note that Γ is of spherical type in all the four cases. We number again the vertices
of Γ as in Bourbaki [2, Planches] (see also Figure 1.2) and we use the description of Φ+
given in that reference. By Proposition 4.3 it suffices to show that there exists a subset
X ⊂ S such that Φ = ∪s∈XWGαs . We argue case by case.

Case (i). We show that Φ = WGαm ∪WGαm+1. The orbits of S under the action of G are
X1 = {1, 2m+1}, X2 = {2, 2m}, . . . , Xm = {m,m+2} and {m+1}. Thus, by Theorem 2.5,
WG = 〈uX1, . . . , uXm, sm+1〉. By Lemma 4.19 it suffices to show that WGαm ∪WGαm+1
contains Φ+. First, we show that the orbit WGαm+1 contains all the roots α ∈ Φ+
such that g(α) = α. Indeed, such a root either is equal to αm+1, or is of the form
α =

∑2m+2−k
i=k αi with 1 ≤ k ≤ m. In the second case we have α = (uXk

· · · uXm )(αm+1).
Now, we show that WGαm contains all the roots α ∈ Φ+ such that g(α) , α, that is, the
set of roots α =

∑2m+1
i=1 λiαi ∈ Φ

+ such that
∑m

i=1 λi ,
∑2m+1

i=m+2 λi . For 2 ≤ k ≤ m we
have αk−1 = (uXk

uXk−1 )(αk). Hence WGαm contains the set {αk | 1 ≤ k ≤ m}. Now, let
1 ≤ k < ` ≤ m. Then αm + αm+1 = sm+1(αm) ∈ WGαm,∑̀

i=k

αi = (uX` · · · uXk+1 )(αk) ∈ WGαm ,

m+1∑
i=k

αi = (sm+1uXm · · · uXk+1 )(αk) ∈ WGαm ,

2m+2−`∑
i=k

αi = (uX` · · · uXm sm+1uXm · · · uXk+1 )(αk) ∈ WGαm .

So, the orbit WGαm contains the set Ψ of roots α =
∑2m+1

i=1 λiαi ∈ Φ
+ such that∑m

i=1 λi >
∑2m+1

i=m+2 λi . On the other hand, the orbit WGαm also contains the root
(sm+1uXm sm+1)(αm) = αm+2. Thus, this orbit contains αm and g(αm) = αm+2. By
Lemma 4.19(2), WGαm is stable by g, hence it contains the set g(Ψ) of roots α =∑2m+1

i=1 λiαi ∈ Φ
+ such that

∑m
i=1 λi <

∑2m+1
i=m+2 λi . This ends the proof of Case (i).

Case (ii). We show thatΦ = WGαm−2∪WGαm. The orbits of S under the action of G are
{1}, {2}, . . . , {m−2} and X = {m−1,m}. Thus, by Theorem 2.5,WG = 〈s1, . . . , sm−2, uX〉.
By Lemma 4.19 it suffices to show that WGαm−2 ∪WGαm contains Φ+. The orbit WGαm
contains αm. For 1 ≤ k ≤ m − 2 it contains (sk · · · sm−2)(αm) =

∑m−2
i=k αi + αm. It

also contains (sm−2uX sm−2)(αm) = αm−1 and, for each 1 ≤ k ≤ m − 2, the root
(sk · · · sm−2)(αm−1) =

∑m−2
i=k αi +αm−1. So, the orbit WGαm contains all the roots α ∈ Φ+

such that g(α) , α. Now, we show that WGαm−2 contains all the roots α ∈ Φ+ such that
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g(α) = α. For 1 ≤ k ≤ m − 3 we have αk = (sk+1sk)(αk+1). Thus, the orbit WGαm−2
contains the set {αk | 1 ≤ k ≤ m − 2}. It follows that it contains for each 1 ≤ ` <

k ≤ m − 2 the root
∑k

i=` αi = (s` · · · sk−1)(αk). On the other hand, WGαm−2 contains
αm−2+αm−1+αm = uX (αm−2). So, it contains

∑m
i=k αi = (sk · · · sm−3)(αm−2+αm−1+αm)

for each 1 ≤ k ≤ m − 3. It also contains for each 1 ≤ k < ` ≤ m − 2 the root

`−1∑
i=k

αi +

m−2∑
i=`

2αi + αm−1 + αm = (s` · · · sm−2)

(
m∑
i=k

αi

)
.

This completes the proof of Case (ii).

Case (iii). The orbits of S under the action of G are X = {1, 2, 3} and {2} hence,
by Theorem 2.5, WG = 〈uX, s2〉. We show that Φ = ∪4

i=1WGαi . By Lemma 4.19 it
suffices to show that ∪4

i=1WGαi contains the 12 positive roots of Φ. The orbit WGα1
contains α1, s2(α1) = α1 + α2 and (uX s2)(α1) = α2 + α3 + α4. Similarly, the orbit WGα3
contains α3, α2 + α3 and α1 + α2 + α4, and the orbit WGα4 contains α4, α2 + α4 and
α1 + α2 + α3. Finally, the orbit WGα2 contains the roots α2, uX (α2) = α1 + α2 + α3 + α4
and (s2uX )(α2) = α1 + 2α2 + α3 + α4.

Case (iv). We show that Φ = WGα3 ∪WGα4. The orbits of S under the action of G
are X = {1, 6},Y = {3, 5}, {4}, {2}. Thus, by Theorem 2.5, WG = 〈uX, uY, s4, s2〉. By
Lemma 4.19 it suffices to show that WGα3 ∪WGα4 contains the 36 positive roots of Φ.
The orbit WGα4 contains the 12 roots α ∈ Φ+ such that g(α) = α, namely:

γ1 = α4, γ2 = s2(α4) = α2 + α4, γ3 = s4(γ2) = α2, γ4 = uY (α4) = α3 + α4 + α5,

γ5 = s2(γ4) = α2 + α3 + α4 + α5, γ6 = uX (γ4) = α1 + α3 + α4 + α5 + α6,

γ7 = s2(γ6) = α1 + α2 + α3 + α4 + α5 + α6, γ8 = s4(γ5) = α2 + α3 + 2α4 + α5,

γ9 = s4(γ7) = α1 + α2 + α3 + 2α4 + α5 + α6,

γ10 = uY (γ9) = α1 + α2 + 2α3 + 2α4 + 2α5 + α6,

γ11 = s4(γ10) = α1 + α2 + 2α3 + 3α4 + 2α5 + α6,

γ12 = s2(γ11) = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6 .

Now, we show that the orbit WGα3 contains the 24 roots α ∈ Φ+ such that g(α) , α.
First, it contains the following 12 roots, that are the positive roots α =

∑6
i=1 λiαi such
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that λ1 + λ3 > λ5 + λ6.

δ1 = α3, δ2 = uX (δ1) = α1 + α3, δ3 = uY (δ2) = α1, δ4 = s4(δ1) = α3 + α4,

δ5 = s4(δ2) = α1 + α3 + α4, δ6 = s2(δ4) = α2 + α3 + α4,

δ7 = s2(δ5) = α1 + α2 + α3 + α4, δ8 = uY (δ5) = α1 + α3 + α4 + α5,

δ9 = s2(δ8) = α1 + α2 + α3 + α4 + α5, δ10 = s4(δ9) = α1 + α2 + α3 + 2α4 + α5,

δ11 = uY (δ10) = α1 + α2 + 2α3 + 2α4 + α5,

δ12 = uX (δ11) = α1 + α2 + 2α3 + 2α4 + α5 + α6 .

On the other hand, the orbit WGα3 contains the root uY (δ4) = α4 + α5 = g(δ4). So, this
orbit contains δ4 and g(δ4). By Lemma 4.19(2) it is stable by g, hence it contains the
images by g of the 12 above enumerated roots, that is, the positive roots α =

∑6
i=1 λiαi

such that λ1 + λ3 < λ5 + λ6. This completes the proof of Case (iv). �

We turn now to study the pairs (Γ,G) of Theorem 1.3 where Γ is of affine type, that is,
the pairs of Case (v), Case (vi), Case (vii) and Case (viii). The proof of the following is
left to the reader.

Lemma 4.21.

(1) Let x, y ∈ V and w ∈ GL(V) such that w(x) = x + y and w(y) = y. Then
wk(x) = x + ky for all k ∈ Z.

(2) Let x, x ′, y ∈ V and w,w′ ∈ GL(V) such that w(x) = x ′ + y, w′(x ′) = x + y and
w(y) = w′(y) = y. Then (w′w)k(x) = x + 2ky, w(w′w)k(x) = x ′ + (2k + 1)y,
(ww′)k(x ′) = x ′ + 2ky, and w′(ww′)k(x ′) = x + (2k + 1)y, for all k ∈ Z.

Lemma 4.22. If (Γ,G) is one of the pairs of Case (v), Case (vi), Case (vii) and
Case (viii) of Theorem 1.3, then (Γ,G) has the Φ̂+-basis property.

Proof. We set S1 = S \ {0}, Γ1 = ΓS1 , B1 = BS1 , W1 = WS1 = W(B1) and Φ1 = ΦS1 =

Φ(B1). Note that the elements of G fix 0 and leave invariant S1. We denote by G1 the
subgroup of Sym(Γ1) induced by G.

Let β be the greatest root of Φ1 and let δ = α0 + β. Recall that 〈α, δ〉 = 0 for all α ∈ Φ
and w(δ) = δ for all w ∈ W (see the proof of Lemma 4.10). Here are the values of δ
according to Γ.

• If Γ = Ã2m+1 (m ≥ 1), then δ = α0 + α1 + α2 + · · · + α2m+1.

• If Γ = D̃m (m ≥ 4), then δ = α0 + α1 + 2α2 + · · · + 2αm−2 + αm−1 + αm.
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• If Γ = Ẽ6, then δ = α0 + α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6.

The following claim is proved in Kac [18, Prop. 6.3(a)].

Claim 4.23. We have Φ = {α + kδ | α ∈ Φ1 and k ∈ Z}.

As in the proof of Lemma 4.20 it suffices to show that there exists a subset X ⊂ S such
that Φ = ∪s∈XWGαs . For that we will use the following.

Claim 4.24. Let Y be a subset of S1 such that Φ1 = ∪s∈YWG1
1 αs .

(1) Suppose that αs + δ ∈ WGαs for all s ∈ Y . Then Φ = ∪s∈YWGαs .

(2) Suppose that there exists t ∈ Y such that αs + δ ∈ WGαs for all s ∈ Y \ {t},
αt + δ ∈ WGα0 and α0 + δ ∈ WGαt . Then Φ = ∪s∈Y∪{0}WGαs .

Proof of Claim 4.24. By Claim 4.23 each element of Φ is written α + kδ with α ∈ Φ1
and k ∈ Z. By assumption there exist s ∈ Y and w1 ∈ WG1

1 such that α = w1(αs). Since δ
is fixed by the elements of W we have α + kδ = w1(αs) + kδ = w1(αs + kδ). Under the
assumptions of Part (1) there exists w ∈ WG such that αs + δ = w(αs). It follows from
Lemma 4.21(1) that αs + kδ = wk(αs), hence α + kδ = w1(αs + kδ) = (w1w

k)(αs) ∈

WGαs . Now we assume the hypothesis of Part (2). If s , t, then we show as in the proof
of Part (1) that α + kδ ∈ WGαs. Suppose that s = t. Then there exist w,w′ ∈ WG such
that αt + δ = w(α0) and α0 + δ = w′(αt ). It follows from Lemma 4.21(2) that αt + kδ lies
in WGαt if k is even and αt + kδ lies in WGα0 if k is odd. Now, α + kδ = w1(αt + kδ),
hence α + kδ ∈ WGαt ∪WGα0. This ends the proof of Claim 4.24. �

The rest of the proof of Lemma 4.22 is case by case.

Case (v). We show that Φ = WGα0 ∪WGαm ∪WGαm+1. The orbits of S under the
action of G are {0}, X1 = {1, 2m + 1}, . . . , Xm = {m,m + 2}, {m + 1}. Thus WG =

〈s0, uX1, . . . , uXm, sm+1〉. We also know that Φ1 = WG1
1 αm ∪WG1

1 αm+1 (see the proof of
Lemma 4.20). So, by Claim 4.24 it suffices to show that α0 + δ ∈ WGαm+1, αm+1 + δ ∈

WGα0 and αm + δ ∈ WGαm. This follows from the following formulas.

α0 + δ = (s0uX1 · · · uXm )(αm+1), αm+1 + δ = (sm+1uXm · · · uX1 )(α0),

αm + δ = (uXm · · · uX1 s0uX1 · · · uXm sm+1)(αm) .

Case (vi). We show that Φ = WGαm−2 ∪WGαm. The orbits of S under the action of G
are {0}, {1}, {2}, . . . , {m − 2}, X = {m − 1,m}. Thus WG = 〈s0, s1, s2, . . . , sm−2, uX〉. On
the other hand, we know that Φ1 = WG1

1 αm−2 ∪WG1
1 αm (see the proof of Lemma 4.20).
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So, by Claim 4.24 it suffices to show that αm−2 + δ ∈ WGαm−2 and αm + δ ∈ WGαm.
This follows from the following formulas.

αm−2 + δ = (sm−2sm−3 · · · s2s0uX s1s2 · · · sm−3)(αm−2),

αm + δ = (uX sm−2 · · · s2s0uX s1s2 · · · sm−2)(αm) .

Case (vii). The orbits of S under the action of G are X = {1, 3, 4}, {2}, {0}, hence
WG = 〈uX, s2, s0〉. We show that Φ = ∪4

i=1WGαi . We know that Φ1 = ∪
4
i=1WG1

1 αi (see
the proof of Lemma 4.20). So, by Claim 4.24 it suffices to show that αi + δ ∈ WGαi for all
i ∈ {1, 2, 3, 4}. We have α1 + δ = (uX s2s0uX s2)(α1) ∈ WGα1. Similarly, α3 + δ ∈ WGα3
and α4 + δ ∈ WGα4. Finally, α2 + δ = (s2s0uX )(α2) ∈ WGα2.

Case (viii). We show that Φ = WGα3 ∪WGα4. The orbits of S under the action of G are
X = {1, 6},Y = {3, 5}, {0}, {2}, {4}. Thus WG = 〈uX, uY, s0, s2, s4〉. On the other hand
Φ1 = WG1

1 α3 ∪WG1
1 α4 (see the proof of Lemma 4.20). So, by Claim 4.24 it suffices

to show that α3 + δ ∈ WGα3 and α4 + δ ∈ WGα4. We use the notations of the proof
of Case (iv) of Lemma 4.20. We check that α3 + δ = (uY s4s2s0)(g(δ12)). Thus, since
g(δ12) ∈ WG1

1 α3, we have α3+δ ∈ WGα3. Similarly, we check that α4+δ = (s4s2s0)(γ10).
Thus, since γ10 ∈ WG1

1 α4, we have α4 + δ ∈ WGα4. �

The last two cases of Theorem 1.3, those with locally spherical Coxeter graphs
(Case (ix) and Case (x)), are easily deduced from Case (i) and Case (ii) as we will see
next.

Lemma 4.25. If (Γ,G) is one of the pairs of Case (ix) and Case (x) of Theorem 1.3, then
(Γ,G) has the Φ̂+-basis property.

Proof. As ever, it suffices to show that for each α ∈ Φ there exist s ∈ S and w ∈ WG such
that α = w(αs).

Case (ix). Let n ≥ 1. We set Sn = {−n, . . . ,−1, 0, 1, . . . , n}, Γn = ΓSn , Bn = BSn ,
Wn = WSn = W(Bn), Φn = ΦSn = Φ(Bn) and Πn = {αs | s ∈ Sn}. We denote by Vn the
vector subspace of V spanned by Πn. Recall that Φn = Vn ∩ Φ (see Proposition 2.3).
Note that the elements of G leave invariant the set Sn. We denote by Gn the subgroup of
Sym(Γn) induced by G. Let α ∈ Φ. Since α has finite support, there exists n ≥ 1 such
that α ∈ Vn ∩Φ = Φn. Then by Lemma 4.20 there exist s ∈ Sn ⊂ S and w ∈ WGn

n ⊂ WG

such that α = w(αs).

Case (x). We argue as in Case (ix). Let n ≥ 4. We set Sn = {1, 2, . . . , n}, Γn = ΓSn ,
Bn = BSn , Wn = WSn = W(Bn), Φn = ΦSn = Φ(Bn) and Πn = {αs | s ∈ Sn}, and we
denote by Vn the vector subspace of V spanned by Πn. The elements of G leave invariant
the set Sn, and we denote by Gn the subgroup of Sym(Γn) induced by G. Let α ∈ Φ. Since
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α has finite support, there exists n ≥ 4 such that α ∈ Vn ∩ Φ = Φn. Then by Lemma 4.20
there exist s ∈ Sn ⊂ S and w ∈ WGn

n ⊂ WG such that α = w(αs). �

Proof of Theorem 1.3. It directly follows from Lemma 4.18, Lemma 4.20, Lemma 4.22
and Lemma 4.25. �
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