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Composite values of polynomial power sums

Clemens Fuchs
Christina Karolus

Abstract

Let (Gn(x))
∞
n=0 be a d-th order linear recurrence sequence having polynomial characteristic roots,

one of which has degree strictly greater than the others. Moreover, letm ≥ 2 be a given integer. We ask for
n ∈ N such that the equation Gn(x) = g ◦ h is satisfied for a polynomial g ∈ C[x] with deg g = m and
some polynomial h ∈ C[x]with degh > 1. We prove that for all but finitely many n these decompositions
can be described in “finite terms” coming from a generic decomposition parameterized by an algebraic
variety. All data in this description will be shown to be effectively computable.

1. Introduction and results

Let C[x] be the polynomial ring in the indeterminate x (we remark right away that Cmight
be replaced by an algebraically closed field of characteristic 0; however, all polynomials
below are assumed to have coefficients inC). Composition of polynomials is a well-defined
operation on C[x]. It is associative and has with f (x) = x an identity element, but it is
neither commutative nor distributive. There aremany reasons to be interested in polynomial
composition, e.g. the knowledge of a composition of f ∈ C[x] can be of use if one wishes
to factor a given polynomial. We illustrate this with a simple example. The polynomial
f (x) = x8 − 14x4 + 7 is irreducible over the rationals. However, since f (x) = g(h(x)),
where g(x) = x2 − 14x + 7 and h(x) = x4, we can easily determine all solutions of
f (x) = 0 in radicals by first calculating the roots y of y2 − 14y + 7 and then determining
the corresponding x from y = x4. Even though in the present paper we restrict ourselves
to polynomials over C, we also mention that, if for given f ∈ k[x] over an arbitrary field
k there is a g ∈ k[x] with f ◦ g irreducible over k, then f is an irreducible polynomial
in k[x] as well. Another example is that the decompositions of f exhibit arithmetical
properties associated with f , which is used to solve equations of separated variable type
(cf. [2, 3]). The invertible elements in C[x] with respect to decomposition are the linear
polynomials. We call f (x) = g ◦ h a non-trivial decomposition if neither g nor h is linear.
Let m ≥ 2 be an integer; we call f (x) = g◦h an m-decomposition if deg g = m and we say
that f is m-decomposable if an m-decomposition of f exists. We call f indecomposable if
f admits only trivial decompositions. A pair (g, h) ∈ C[x]2 is called equivalent to (g′, h′)
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if there are a, b ∈ C, a , 0 such that g(x) = g′(ax + b), h(x) = (h′(x) − b)/a. It is easy
to see that every polynomial f ∈ C[x] can be decomposed as f (x) = f1 ◦ f2 ◦ · · · ◦ fk
with fi indecomposable. Moreover, this decomposition is unique in the following sense:
if f (x) = f ′1 ◦ · · · ◦ f ′

l
with f ′j indecomposable is another decomposition, then k = l

and f1, . . . , fk are obtained applying certain transformations a finite number of times,
where in each step a neighboring pair of f ′1 , . . . , f ′

l
is replaced by another one having

the same composition. (This is known as Ritt’s first theorem; cf. [19].) There is a nice
algebraic description of decompositions of a polynomial f ∈ C[x] since they are (up
to equivalence) in one-to-one correspondence to intermediate fields between C(x) and
C( f (x)) (cf. again [19]).

We start with a few general remarks. First, it might happen that for a given f ∈ C[x]
and a given g ∈ C[x] we have different h1, h2 ∈ C[x] such that f (x) = g ◦ h1 = g ◦ h2.
However, in this case g(X) = g(Y ) has a solution X = h1(x),Y = h2(x). This situation
was completely solved in [1]. It follows that g = g′ ◦ xk for some g′ ∈ C[x], k > 1 and
h1 and h2 just differ by a constant (to be more precise, by a k-th root of unity). Second,
by linear equivalence we can control the leading coefficient and the constant term of h.
E.g. we may assume that h ∈ C[x] is monic and satisfies h(0) = 0 (every other value in
C is fine as well). Moreover, assume that f is given and that we have f (x) = g ◦ h with
f , g, h ∈ C[x]. Let a ∈ C\{0} be the leading coefficient of f . Then we may also assume
that g is monic by writing f (x) = a(g ◦ h). Third, assume that f , h ∈ C[x] are given. Then
there are at most finitely many g ∈ C[x] with f (x) = g ◦ h. This can be seen as follows:
We may assume that f , g, h are all monic. Write g(x) = (x − b1) . . . (x − bm), where
b1, . . . , bm ∈ C are not necessarily distinct. Assume that f (x) = (x − a1) . . . (x − an) with
a1, . . . , an ∈ C. Then g(h(x)) = (h(x)− b1) . . . (h(x)− bm) = (x− a1) . . . (x− an) = f (x).
It follows that there is a partition of the multi-set {a1, . . . , an} with equally large blocks
(of size deg h) that describe g uniquely. If we assume that h(0) = 0, then the bi are just the
product of all elements in the i-th block. The unique g can be found, without calculating
the roots of f , by comparing coefficients in f (x) = g ◦ h (cf. [17]).

In this paper we are interested in non-trivial decompositions (with two factors, an
“inner” and an “outer” factor) of polynomials with coefficients in C. This problem is
hard in general since the decompositions of polynomials can be anything a priori (since
conversely, every pair (g, h) gives a polynomial g ◦ h). Therefore, it is natural to restrict
to a subset of C[x] which is described by a finite amount of data and then to ask whether
or not all decompositions in this subset can be described in finite terms depending on
the data describing the subset. We give a few (important and non-trivial) examples to
illustrate this approach.

Let n ≥ 2 be a given integer. We consider the set of all polynomials f ∈ C[x] of
degree n. Then there is an integer J and for every 1 ≤ j ≤ J an algebraic variety

2



Composite values of polynomial power sums

Vj ⊂ A
n+tj for some 2 ≤ tj ≤ n defined over Q for which equations can be written down

effectively and there are polynomials fj, hj, gj with coefficients in the coordinate ring
of the variety and depending on integers k1, . . . , ktj and (l1, . . . , ln) ∈ {0, 1, . . . , n − 1}n
such that the following holds: a) gj ◦ hj = fj is a polynomial of degree n with coefficients
in the coordinate ring; b) for every point P ∈ Vj(C) and integers k1, . . . , ktj , l1, . . . , ln
one gets a decomposition fj(P, x) = gj(P, hj(P, x)); c) conversely, for every polynomial
f ∈ C[x] of degree n and every non-trivial decomposition f (x) = g ◦ h with g(x) not
of the shape (ax + b)m,m ∈ N, a, b ∈ C there are P ∈ Vj(C), k1, . . . , ktj , l1, . . . , ln such
that f (x) = fj(P, x), g(x) = gj(P, x), h(x) = hj(P, x). This result (formulated in different
forms) can be found in [4, 12, 17].

Let ` be a given integer. We consider the set of lacunary polynomials (with respect
to `), that is the set of all polynomials f ∈ C[x] with ` non-constant terms. Then there
are integers p, J depending on ` and for every 1 ≤ j ≤ J an algebraic variety Vj

defined over Q and a lattice Λj for which equations can be written down explicitly and
(Laurent-)polynomials fj, hj ∈ Q[Vj][z±1

1 , . . . , z±1
p ], gj ∈ Q[Vj][z] with coefficients in

the coordinate ring of the variety such that the following holds: a) gj ◦hj = fj is a (Laurent-
)polynomial with ` non-constant terms with coefficients in the coordinate ring; b) for every
point P ∈ Vj(C) and (u1, . . . , up) ∈ Λj one gets a decomposition fj(P, xu1, . . . , xup ) =

gj(P, hj(P, xu1, . . . , xup )); c) conversely, for every polynomial f ∈ C[x] with ` non-
constant terms and every non-trivial decomposition f (x) = g ◦ h with h(x) not of the
shape axm + b,m ∈ N, a, b ∈ C there is a j, a point P ∈ Vj(C) and (u1, . . . , up) ∈ Λj

such that f (x) = fj(P, xu1, . . . , xup ), g(x) = gj(P, x), h(x) = hj(P, xu1, . . . , xup ). This
result can be found in [25]; cf. also [24, 26]. (A similar result holds for lacunary rational
functions f ∈ C(x) by a combination of [10] and [16].)

In the present paper we are interested in another subset of C[x] namely the subset
{Gn(x); n ∈ N} that consists of elements of a linear recurrence sequence (Gn(x))∞n=0 of
polynomials in C[x]. The sequence is fixed by the recurrence relation and by the initial
values. Equivalently, every element of the sequence can be written by a Binet-type formula
Gn(x) = a1α

n
1 + · · · + atαn

t , where α1, . . . , αt are the distinct roots of the characteristic
polynomial associated to the recurring relation and the ai are polynomials in n with
coefficients in the splitting field C(x, α1, . . . , αt ) of degree less than the corresponding
multiplicity of αi as a root of the characteristic equation. In this way all elements are given
by a finite amount of data. Our goal is to describe all decomposable Gn’s in this set and
all their decompositions in finite terms, depending only on the given data. To fix terms we
shall consider the d-th order linear recurrence sequence (Gn(x))∞n=0, given by the relation

Gn+d(x) = Ad−1(x)Gn+d−1(x) + · · · + A0(x)Gn(x), (1.1)
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with A0, . . . , Ad−1 ∈ C [x] and initial terms G0, . . . ,Gd−1 ∈ C[x]. Denote by α1, . . . , αt
the distinct characteristic roots of the sequence, that is the characteristic polynomial
G ∈ C(x)[T] splits as

G(T) = Td − Ad−1Td−1 − · · · − A0 = (T − α1)
k1 (T − α2)

k2 . . . (T − αt )kt ,

where k1, . . . , kt ∈ N. We assume that all roots are simple, i.e. t = d, and that they are
polynomials, i.e. αi ∈ C[x] for i = 1, . . . , d. Then Gn(x) admits a representation of the
form

Gn(x) = a1α
n
1 + a2α

n
2 + · · · + adα

n
d . (1.2)

By assumption we consider the special situation that a1, . . . , ad ∈ C and α1, . . . , αt ∈ C[x].
Finally, we assume that deg(α1) > deg(αi) for i > 1.

We mention that for binary recurrences the authors together with Kreso proved in [9]
that if Gn(x) = g ◦ h, then either deg g is bounded independently of n and only in
terms of the initial data, unless h is special (meaning that (g, h) is equivalent to (g′, xm)
or (g′′,Tm(x)) where (Tn(x))∞n=0 denotes the sequence of Chebyshev polynomials and
g′, g′′ ∈ C[x]) or a technical condition is not verified (see the paper for details). This
describes the “outer” decomposition factor in such a decomposition. In view of this result,
which we expect (without the technical condition) to hold in general, we restrict ourselves
to m-decompositions for an integer m ≥ 2 which we view as fixed from now on.

We further mention that for a given sequence (Gn(x))∞n=0 the decompositions of the
form Gn(x) = Gm ◦ h for a fixed polynomial h ∈ C[x], deg h ≥ 2 were considered
in [8, 13, 14]. It was Zannier who proved in general that this equation has only finitely
many solutions (n,m), n , m, unless we are in the cyclic or Chebyshev case as above
(cf. [23]). This result was made effective in [11]. A further result in this direction can be
found in [15].

There are a few trivial situations that we have to take into account below. If Gn(x) =
f (βn) with f , β ∈ C[x], then every decomposition f (x) = g ◦ h with deg g = m
leads to a sought decomposition Gn(x) = g(h(βn)) for every n ∈ N. Observe that
this situation might also lead to slightly different decompositions. Assume e.g. that
Gn(x) = a1α

n
1 + a2, a1, a2 ∈ C, α1 ∈ C[x]; if n is a multiple of m, i.e. n = m`, then

Gn(x) = g◦h with g(x) = a1xm+a2, h(x) = α`1 . More generally, when Gn(x) = g(Hn(x))
with g ∈ C[x], deg g = m and (Hn(x))∞n=0 is another linear recurrence sequence in C[x],
then obviously we again have a sought decomposition for every n ∈ N. Unfortunately it
seems that these cases are not exhaustive. There might be many “sporadic” solutions that
arise by polynomial-exponential equations that are complicated to control in general.
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We start with the following theorem, which clarifies the structure of the “inner”
decomposition factor that may appear in an m-decomposition of elements in the sequence
(Gn(x))∞n=0.

Theorem 1.1. Let (Gn(x))∞n=0 be a non-degenerate simple linear recurrence sequence of
order d ≥ 2with power sum representationGn(x) = a1α

n
1+· · ·+adα

n
d
with a1, . . . , ad ∈ C,

α1, . . . , αd ∈ C[x] satisfying degα1 > max{degα2, . . . , degαd}. Moreover, let m ≥ 2
be an integer. Write m0 for the least integer such that αm0/m

1 ∈ C[x]. Then there is an
effectively computable positive constant C such that the following holds: Assume that for
some n ∈ N with n > C we have Gn(x) = g ◦ h with deg g = m, deg h > 1. Then there
are c1, . . . , cl ∈ C such that

h(x) = c1γ
`
1 + · · · + clγ`l ,

where m0` = n and l ∈ N is bounded explicitly in terms of m, d and deg(α1)+ · · ·+deg(αd)
and γ1, . . . , γl ∈ C(x) can be given explicitly in terms of α1, . . . , αd , both independently
of n.

This result should be compared with Proposition 2 in [25].
We illustrate the result with an example. Let (Gn(x))∞n=0 be given by Gn(x) =

x3n + 3(2x2)n + 3(4x)n + 23n for all n ≥ 0 and let m = 3. We have α1 = x3, α2 =

2x2, α3 = 4x, α4 = 8 and m0 = 1. The proof of the theorem shows that we must
have n ≤ 30 or h(x) = c1xn + c2 with c1, c2 ∈ C. Let g(x) = x3. Then g(h(x)) =
(c1xn + c2)

3 = c3
1 x3n + 3c2

1c2x2n + 3c1c2
2 xn + c3

2 . Comparing g(h(x)) with Gn(x) shows
that c3

1 = 1, c2
1c2 = 2n, c1c2

2 = 4n, c3
2 = 8n. This defines a subvarietyV of A2 ×Gm. Up to

(possibly) finitely many exceptions for small n we have Gn(x) = g(h(x)) = (c1xn + c2)
3,

where (c1, c2, n) ∈ V(C).
Observe that m0 in the theorem can also be described as follows: Write α1(x) =

v(x − v1)
k1 . . . (x − vt )

kt and define ψ by ψm = α1. Put d = gcd(k1, . . . , kt,m). Then
m0 = m/d. Obviously, ψm/d ∈ C[x]. Conversely, observe that m0 is a divisor of m since
by definition of m0 the polynomial Tm0 − ψm0 is the minimal polynomial of ψ over C(x)
(cf. Proposition 2.2) and thus divides Tm − ψm over C(x, ψ). Since ψm0 ∈ C(x), it follows
m0ki/m ∈ N and thus m/m0 divides ki (thus gcd(k1, . . . , kt,m) = d) for i = 1, . . . , t. The
smallest such integer is obtained in the case of equality giving m = m0d as claimed.

The structure of all m-decompositions for a given m ≥ 2 can now be described as
follows.

Theorem 1.2. Let (Gn(x))∞n=0 be a non-degenerate simple linear recurrence sequence of
order d ≥ 2with power sum representationGn(x) = a1α

n
1+· · ·+adα

n
d
with a1, . . . , ad ∈ C,

α1, . . . , αd ∈ C[x] satisfying degα1 > max{degα2, . . . , degαd}. Moreover, let m ≥ 2
be an integer. Write m0 for the least integer such that αm0/m

1 ∈ C[x]. Then there is an
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explicitly computable positive constant C, and a subvarietyV of Al+m+1 × Gt
m with t, l

bounded explicitly in terms of m, d and deg(α1) + · · · + deg(αd) for which a system of
polynomial-exponential equations in the polynomial variables c1, . . . , cl, g0, . . . , gm and
the exponential variable ` (with coefficients in Q) can be written down explicitly such
that the following holds:

(1) Defining G(x) = g0xm + g1xm−1 + · · · + gm ∈ C[V][x] and H` = c1γ
`
1 + c2γ

`
2 +

· · ·+ clγ`l ∈ C[V][x], where γ1, . . . , γl ∈ C(x) can be given explicitly in terms of
α1, . . . , αd , then Gm0` = G ◦H` holds as an equation in x with coefficients in the
coordinate ring ofV. In particular, for any point P = (c1, . . . , cl, g0, . . . , gm, `) ∈

V(C) we get a decomposition Gn(x) = g ◦ h, g(x) = G(P, x) ∈ C[x] and
h(x) = Hl(P, x) ∈ C[x] (with n = m0`).

(2) Conversely, let Gn(x) = g ◦ h be a decomposition of Gn(x) for some n ∈ N with
g, h ∈ C[x], deg g = m, deg h > 1. Then either n ≤ C or there exists a point
P = (g0, . . . , gm, c1, . . . , cl, `) ∈ V(C) with g(x) = G(P, x) and h(x) = H`(P, x)
and n = m0`.

Remarks and special cases.

(a) Binary case: Let (Gn(x))∞n=0 be a non-degenerate binary simple linear recurrence
which does not satisfy a recurrence relation of order less than 2; thus, we have
Gn(x) = a1α

n
1+a2α

n
2 with a1, a2 ∈ C.We assume thatα1, α2 ∈ C[x] and degα1 >

degα2. Moreover, we assume that one of the conditions of [9, Theorem 2] is
satisfied. Then there is an effectively computable constant C and there are finitely
many subvarieties Vi of Ami+1+li × Gti

m and equations Gm0, i`(x) = G(i) ◦ H(i)
`
,

where deg G(i) = mi ≥ 2, in the coordinate ring of Vi such that the following
holds: If Gn(x) = g ◦ h for some n ∈ N and g, h ∈ C[x], deg g, deg h > 1 with
h(x) indecomposable and not of the shape axm + b,m ∈ N, a, b ∈ C, then either
n ≤ C or there is an i and a P = (gi0, . . . , gimi , ci1, . . . , cili , `) ∈ Vi(C) such that
n = m0,i`, g(x) = G(i)(P, x), h(x) = H(i)

`
(P, x).

(b) When all αi are monic, then the varieties can be chosen without the Gm-part.

(c) Assume that α1 ∈ C[x] satisfies 1 ≤ k := degα1 ≤ m. Then Gn(x) = g ◦ h with
n > C implies that h is of the form c1 + c2α

degGn/(mk)
1 with c1, c2 ∈ C.

(d) Assume that α1 = β
m1, α2 = β

m2, . . . , αd = β
md with m1 > m2 ≥ · · · ≥ md ≥ 0.

Then Gn(x) = f (βn), where f (x) = f1xm1 + f2xm2 + · · · + fdxmd . In this case
it follows that either n ≤ C or h(x) = c1β

k1` + · · · + clβkl` = h′(β`) for some
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h′ ∈ C[x]. Thus if Gn(x) = g ◦ h = (g ◦ h′)(β`) = f (βm0`). Therefore, the
problem reduces to find all m-decompositions of the polynomial f ◦ xm0 .

(e) The proof shows that if (Gn(x))∞n=0 is defined over a number field, i.e. the
coefficients of the Binet-type equation (1.2) as well as the characteristic roots
are polynomials with coefficients in some number field K , then all decompo-
sition factors g, h are defined over K as well. In this case we are interested in
decompositions over K , which can be described by the above conclusion of the
statements.

(f) We also remark that the above results include a description in finite terms of
all m-th powers in a linear recurring sequence of polynomials satisfying the
conditions of the theorem (i.e. the sequence is non-degenerate and simple and the
characteristic roots are polynomials where one has degree larger than all others).
This follows by fixing g(x) = xm and then going through the proof of the above
theorem.

(g) Finally, we mention that if we know that the ci can be parametrized by power
sums as well (in particular if they are constant) and that we have a decomposition
for any ` (or for all members along an arithmetic progression), then these families
are easy to calculate. This follows since we may identify varying powers by
indeterminates (see e.g. [6, Lemma 2.1]) and then use the algorithm in [4]
for polynomials in several variables (actually, we view such a polynomial as a
polynomial in one of the variables; the other variables can be embedded into C
so that we may view the polynomial again as an element in C[x]) to determine
the decompositions.

The proof of the theorems follows essentially the ideas of [25]. Assume that Gn(x) =
g ◦ h. This equality is viewed as an equation for the unknown h = h(x); it is a root of
g(T) − Gn(x) = 0 over the (rational) function field C(Gn(x)). Thus we can expand h as a
Puiseux series in terms of quantities Gn(x)s/m, s = 1, 0,−1, . . . , where m = deg g. Then
one uses the multinomial series to expand Gn(x)s/m for any s; in order to justify this
multiple expansion, the “dominant root condition” on the degrees of the characteristic
roots is needed. Afterwards we use, as in [25], a function field variant of the Schmidt
subspace theorem (Proposition 2.4) proved in [25], to find that either n is bounded or h
can be expressed as given in Theorem 1.1. Using this information, one views the c1, . . . , cl
as well as the coefficients g0, . . . , gm of g, while the degree of g is fixed, as indeterminants
and then compares g ◦ h with Gn(x) for the given n ∈ N. Using unit equations over
function fields, this either implies that n is bounded or we have two linear recurrences

7
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that are related (see [20] for this notation). In the latter case, up to a permutation, the
characteristic roots have to match up and then, since they are monic polynomials at that
point, the coefficients coincide. This gives polynomial-exponential equations that can be
written down explicitly and which define a variety. From this the statement follows.

The rest of the paper is organized as follows. In the next section we collect some
auxiliary results that will be needed for the proof of the theorems. In Section 3 we give
the proofs of Theorem 1.1 and 1.2. In Section 4 we give some more details justifying the
remarks and special cases.

2. Auxiliary results

In this section, we recall some basic information and collect some statements, which we
will make use of in our proofs later on.

Generally, an algebraic function field F/K is a finite algebraic extension of K(x),
where x is some element transcendental over K . If F is itself of the shape F = K(x), then
F is said to be rational. The rational function field has genus gF = 0. Throughout this
paper, we will work over the complex numbers K = C, even though our proofs hold over
any other algebraically closed field as well. Then

C(x) =
{

f (x)
g(x)

; f (x), g(x) ∈ C[x], g(x) , 0
}
,

i.e. C(x) is the field of fractions of C[x]. On C(x) we define valuations as follows. For
each a ∈ C, let νa( f ) be the unique integer such that f (x) = (x − a)νa ( f )p(x)/q(x), where
p, q ∈ C[x] are such that p(a)q(a) , 0. Moreover, with the symbol ∞ we associate the
valuation ν∞( f ) = deg q − deg p, where f (x) = p(x)/q(x). If νa( f ) > 0 for an a ∈ C, a
is called a zero of f , and it is called a pole of f , if νa( f ) < 0. These functions are all
(normalized, up to equivalence) valuations on C(x) and for a finite extension L of C(x)
each one of them can be extended to at most [F : C(x)] valuations on F, which again
gives all discrete valuations on F. Both, in C(x) and in F, for any f ∈ F/C the so-called
sum formula holds, that is ∑

ν

ν( f ) = 0,

where the sum is taken over all valuations on the respective function field. There is a
one-to-one relation between valuations and places, namely for any valuation νa on C(x),
a ∈ C ∪ {∞}, there is a place Pa = { f ∈ C(x); νa( f ) > 0} (it is the unique maximal
ideal of the valuation ring OPa = { f ∈ C(x); νa( f ) ≥ 0}). Therefore, valuations are
sometimes introduced in terms of places (and often instead of Pa we simply write a).
We write PF for the set of places of the field F. Now let F ′ be an algebraic extension of
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the function field F. Then a place P′ ∈ PF′ is said to lie over P ∈ PF , if P ⊂ P′. We
write P′ |P in this case. Then there is an integer e = e(P′ |P), 1 ≤ e ≤ [F ′ : F], called
the ramification index of P′ over P, such that νP′(x) = e · νP(x) for all x ∈ F. We say
that P′ |P is ramified if e(P′ |P) > 1 and unramified otherwise. If e(P′ |P) = [F ′ : F],
there is exactly one place P′ ∈ F ′ lying above P ∈ F and P′ is said to be totally ramified.
The places P′ ∈ PF′ lying above P ∈ PF correspond to the extensions of the respective
valuation νP in F. Denote by FP the residue class field OP/P. We shall need the following
two statements, which can be found in [21].

Proposition 2.1. Let F/C be a function field in one variable and ϕ ∈ F [T],

ϕ(T) = anTn + an−1Tn−1 + · · · + a1T + a0.

If there is a place P ∈ PF such that νP(an) = 0, νP(ai) ≥ 0 for i = 1, . . . , n−1, νP(a0) < 0
and gcd(n, νP(a0)) = 1, then ϕ(T) is irreducible in F [T]. Furthermore, if F ′ = F(y),
where y is a root of ϕ(T), then P has a unique extension P′ ∈ PF′ and e(P′ |P) = n.

Proposition 2.2. Let F/C be a function field in one variable. Suppose that u ∈ F satisfies
u , wd for all w ∈ F and d |n, d > 1. Let F ′ = F(z) with zn = u. Then F ′ is said to be a
Kummer extension of F and we have:

(1) The polynomial ϕ(T) = Tn−u is the minimal polynomial of z over F (in particular,
it is irreducible over F). The extension F ′/F is Galois of degree n; its Galois
group is cyclic, and all automorphisms of F ′/F are given by σ(z) = ζ z, where
ζ ∈ C is an n-th root of unity.

(2) Let P ∈ PF and P′ ∈ PF′ be an extension of P. Let rP := gcd(n, νP(u)). Then
e(P′ |P) = n/rP .

(3) Denote by g (resp. g′) the genus of F/C (resp. F ′/C). Then

g
′ = 1 + n(g − 1) +

1
2

∑
P∈PF

(n − rP) deg P.

Our strategy also involves the use of height functions in function fields. Define the
projective heightH of u1, . . . , un ∈ F/C, where n ≥ 2 and not all ui are zero, via

H(u1, . . . , un) = −
∑
ν

min(ν(u1), . . . , ν(un)).

Also, for a single element f ∈ F∗, set

H( f ) = −
∑
ν

min(0, ν( f )).

9
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In both cases the sum is taken over all discrete valuations ν on F. Note that ν( f ) , 0 only
for a finite number of valuations ν and that H( f ) =

∑
ν max(0, ν( f )) if f ∈ F∗, by the

sum formula. For f = 0, we define H( f ) = ∞. We state some basic properties of the
projective height, cf. [9].

Lemma 2.3. Denote as above byH the projective height on F/C. Then for f , g ∈ F∗ the
following properties hold:

(1) H( f ) ≥ 0 andH( f ) = H(1/ f ),

(2) H( f ) − H(g) ≤ H( f + g) ≤ H( f ) +H(g),

(3) H( f ) − H(g) ≤ H( f g) ≤ H( f ) +H(g),

(4) H( f n) = |n| · H( f ),

(5) H( f ) = 0⇔ f ∈ C∗,

(6) H(A( f )) = deg A · H( f ) for any A ∈ C[T]\ {0}.

The following proposition is an important ingredient for the proof of our first theorem.
It can be seen as a function field analogue of the Schmidt subspace theorem, modelled by
Zannier, cf. [25].

Proposition 2.4 (Zannier). Let F/C be a function field in one variable, of genus g, let
ϕ1, . . . , ϕn ∈ F be linearly independent over C and let r ∈ {0, 1, . . . , n}. Let S be a finite
set of places of F containing all the poles of ϕ1, . . . , ϕn and all the zeros of ϕ1, . . . , ϕr .
Put σ =

∑n
i=1 ϕi . Then∑
ν∈S

(
ν(σ) − min

i=1,...,n
ν(ϕi)

)
≤

(
n
2

)
(|S | + 2g − 2) +

n∑
i=r+1

deg(ϕi).

Recall that for a finite set S of places (or valuations, respectively) of F, an element
f ∈ F is called an S-unit, if it has zeros and poles only at places in S, i.e. the set of S-units
is given by

O∗S = { f ∈ L; ν( f ) = 0 for all ν < S}.

We will also use the following result due to Brownawell and Masser [5] taken from [16],
giving an upper bound for the height of S-units, which arise as a solution of certain
S-unit-equations.

10
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Proposition 2.5 (Brownawell–Masser). Let F/C be a function field in one variable of
genus g. Moreover, for a finite set S of discrete valuations, let u1, . . . , un be S-units, not
all constant, and

1 + u1 + u2 + · · · + un = 0,

where no proper subsum of the left side vanishes. Then it holds

max
i=1,...,n

H(ui) ≤
1
2

n(n − 1)(|S | + 2g − 2).

In our proof we will use an expansion of the polynomial h in Gn = g ◦ h as a Puiseux
series. Therefore, we give a quick review on formal power series, Laurent series and
Puiseux series (cf. [22] and [18]). Formally, a (complex) polynomial is a sequence
(a0, a1, . . . ), where ai ∈ C and where there exists an n ∈ N such that aj = 0 for all
j ≥ n. Such an element is associated with the finite sum a0 + a1x + · · · + anxn, where x
is an indeterminate identified with the element (0, 1, 0, 0, . . . ). Together with the usual
addition and multiplication this gives the C-algebra of (complex) polynomials C[x]. If we
also allow sequences with infinite support, we obtain the algebra of formal power series,
denoted by C[[x]], that is the set

C[[x]] = {(a0, a1, a2, . . . ); ai ∈ C} =
{
a0 + a1x + a2x2 + . . . ; ai ∈ C

}
,

where addition and multiplication are defined just in the same way as for polynomials. Note
that the notation as an infinite sum is meant only formally, i.e. questions of convergence are
disregarded. C[[x]] is an integral domain and the units in C[[x]] are precisely the elements
with non-zero constant term. The field of fractions of C[[x]] is the field of formal Laurent
series, denoted by C((x)). It is the localization of C[[x]] with respect to the ideal (x) and its
elements are given by the set

C((x)) = {(am, am+1, am+2, . . . ); m ∈ Z, ai ∈ C}

=
{
amxm + am+1xm+1 + am+2xm+2 + . . . ; m ∈ Z, ai ∈ C

}
,

so a Laurent series is the sum of a formal power series plus possibly a finite number of
terms with negative exponent. Defining ord( f ) to be the smallest i such that ai , 0 if
f , 0, and ord(0) = ∞ gives a discrete valuation on C((x)). The valuation ring is given by
C[[x]] and the residue field is C. Moreover, C((x)) is a field (in general, K((x)) is a field if K
is a field), which is the completion with respect to this valuation topology of the field
C(x) of rational functions.

As a generalization, the field of formal Puiseux series is obtained by allowing also
fractional exponents, i.e. Laurent series in C((x1/n)) for some n ∈ N. More precisely, the
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field of formal Puiseux series is given by

C((x1/∞)) =

∞⋃
n=0
C((x1/n)).

The valuation ord naturally extends to this field and it is complete with respect to
the induced topology. The classical Newton–Puiseux theorem shows that C((x1/∞)) is an
algebraic closure of the field of formal Laurent series C((x)).

If F/C is a function field in one variable of degree [F : C(x)] = n, then there is a
primitive element y ∈ F over C(x) which satisfies an irreducible equation

f (x,Y ) = Yn + c1(x)Yn−1 + · · · + cn(x) = 0 (2.1)

with coefficients ci(x) in C(x). Without loss of generality, we can also assume the ci(x)
to be polynomials. For the expansion of h as a Puiseux series, we rely on the following
classical theorem, cf. [7].

Proposition 2.6 (Puiseux’s Theorem). Let F/C be a function field in one variable of
degree [F : C(x)] = n. Then there are 1 ≤ r ≤ n natural numbers ei satisfying

e1 + e2 + · · · + er = n

which have the following meaning: the irreducible equation (2.1) satisfied by an arbitrary
function y in F has for solutions the r series

yi =

∞∑
k=νi

aik x−k/ei , aiνi , 0, i = 1, 2, . . . , r . (2.2)

With a primitive ei-th root of unity ζ form

yi j =
∑
k

aikζ jk x−k/ei , j = 0, . . . , ei − 1;

then f (x,Y ) is identical with

f (x,Y ) =
∏
i, j

(Y − yi j). (2.3)

The coefficients aik are constant, i.e. aik ∈ C, and their images under isomorphisms of C
give permutations of the yi j in (2.3).

We remark that in the above theorem r is the number of places Pi |P∞ for the unique
infinite place P∞ ∈ PC(x), where Pi ∈ PF . Moreover, νi = νPi (y) is the valuation of y at
Pi and ei = e(Pi |P∞) is the ramification index of Pi over P∞.

Finally, we state the following little lemma that will be useful in the proof.

Lemma 2.7. Let f ∈ C[x]. Then f (1/y) ∈ C(y) with a pole only at y = 0. Moreover, the
order of vanishing at y = 0 of f (1/y) is equal to − deg f .

12
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Proof. Write f (x) = f0(x − a1)
k1 . . . (x − at )kt with k1 + · · · + kt = deg f . Put y = 1/x.

Then f (1/y) = f (x) = y−(k1+· · ·+kt ) f0(1 − a1y)
k2 . . . (1 − at y)kt , which shows that the

multiplicity of y = 0 as a pole of f (1/y) in C(y) is equal to deg f . This is the claim. �

3. Proof of Theorem 1.1 and 1.2

3.1. Proof of Theorem 1.1

Let g ∈ C [x] be a polynomial of degree deg g = m ≥ 2 and (Gn(x))∞n=0 as given in the
theorem.

Let b1, . . . , bd ∈ C be the leading coefficients of α1, . . . , αd respectively. We write
αn
i = bni β

n
i for i = 1, . . . , d and therefore have

Gn(x) = a1bn1 β
n
1 + · · · + adbndβ

n
d,

where a1, . . . , ad, b1, . . . , bd ∈ C and β1, . . . , βd ∈ C[x] have leading coefficients equal
to 1 and satisfy deg β1 > max{deg β2, . . . , deg βd}.

Let K be the rational function field K = C(x) and let z be a root of ϕ(T) = g(T) − x =
g0Tm + · · · + gm ∈ K[T]. At the infinite place P = P∞ we have ν∞(g0) = ν∞(gi) = 0
for i = 1, . . . ,m − 1 and ν∞(gm) = ν∞(g(0) − x) = −1. Also, gcd(deg ϕ, ν∞(gm)) =
gcd(m,−1) = 1. Therefore, by Proposition 2.1, ϕ(T) is irreducible over C(x) and P∞
has a unique extension P′

∞′
∈ PL , where L = C(x)(z) = C(x, z). By Puiseux’s Theorem

(Theorem 2.6), it follows that there is an expansion of z of the form

z =
∞∑

k=ν∞′

uk(
m
√

1/x)k

= u−1(
m
√

1/x)−1 + u0(
m
√

1/x)0 + u1(
m
√

1/x)1 + u2(
m
√

1/x)2 + . . .

= u−1x1/m + u0 + u1x−1/m + u2x−2/m + . . . , (3.1)

where the u j ∈ C depend only on g. Note that we have used that ei(∞′) = m in Theorem 2.6,
by Proposition 2.1 and that ν∞′(z) = −1. This can be seen as follows. Since z is a root of
ϕ(T), we have that g(z) = x, hence ν∞′(g0zm+ · · ·+gm−1z+g(0)) = ν∞′(x) = m · ν∞(x) =
−m. By integrality we have ν∞′(z) < 0, so using the strict triangle inequality we get

m · ν∞′(z) = min
i=1,...,m

(i · ν∞′(z)) = min
i=1,...,m

(ν∞′(gm−izi)) = −m.

This expansion is understood as an equality in the algebraic closure of the field of formal
Laurent series C((x)), which itself is the usual metric completion of K (which has the
property that an infinite sum converges if and only if each fixed power of x appears in
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only finitely many terms). Hence, if Gn(x) = g ◦ h, substituting Gn(x) for x and h(x) for
z, this yields an expansion for h(x) of the form

h(x) = u−1Gn(x)1/m + u0 + u1Gn(x)−1/m + u2Gn(x)−2/m + . . . , (3.2)

for a suitable choice of the m-th root of Gn(x), where the coefficients ui ∈ C depend only
on g. As in [25], we expand the different roots Gn(x)s/m for s ∈ {1, 0,−1, . . .} using the
multinomial theorem and equation (1.2) to get

Gn(x)s/m = (a1α
n
1 + a2α

n
2 + · · · + adα

n
d)

s/m

= as/m
1 α

ns/m
1

(
1 +

a2
a1

(
α2
α1

)n
+ · · · +

ad

a1

(
αd
α1

)n)s/m
= as/m

1 α
ns/m
1

∑̄
h

bh̄ah2
2 . . . ahd

d
a−(h2+· · ·+hd )

1

(
αh2

2 . . . αhd

d
α
−(h2+· · ·+hd )

1

)n
,

where h̄ = (h2, . . . , hd) runs through Nd−1. Now, we put y = 1/x. Then we see that
h(x) = h(1/y) can be written as an infinite sum

h(1/y) = u−1Gn(1/y)1/m + u0 + u1Gn(1/y)−1/m + u2Gn(1/y)−2/m + . . .

of terms t(x) = th2,...,hd,s(1/y) of the shape

c · α1(1/y)ns/m−n(h2+· · ·+hd ) · α2(1/y)nh2 . . . αd(1/y)nhd , c ∈ C. (3.3)

Observe that as an element of C((y)) the rational function h(1/y) equals y− degh + . . . ,
since by Lemma 2.7 it can be written as y− degh times a polynomial in y starting
with a non-zero constant term (which is a unit in the ring C[[y]]). (Here we assume,
as we may, that h is monic; otherwise the series would start with y− degh times the
leading coefficient of h.) A similar consideration shows that each of the terms on the
right hand side, written down explicitly in (3.3), up to a non-zero constant equals
y(− degα1(s/m−(h2+· · ·+hd )−h2 degα2−···−hd degαd )n times a power series that is a unit in the
ring C[[y]]. The “smallest” such term (i.e. the term with smallest order as a Laurent series)
appears precisely with s = 1 and h2 = · · · = hd = 0 (since by assumption degα1 > degαi
for i ≥ 2), from which we see that the right hand side starts with y−n degα1/m up to
a constant in C. In view of deg Gn = n degα1 = m deg h = deg g deg h = deg(g ◦ h)
this perfectly makes sense. We also remark that only terms with s = 0, 1 contribute to
h(1/y) = y− degh + · · ·+ h0, where h0 = 0 = h(0), since terms with s < 0, up to a constant,
start with y |s | degα1n/m. We still have to show that the infinite sum converges as an element
of C((y)). This is clear since for s→ −∞ the power of y goes to∞. We give an alternative
proof: We show that for an arbitrary J ∈ N, there is an upper bound on the number L of
quantities t1(1/y), . . . , tL(1/y) in the expansion of h(1/y) that satisfy ν0(ti(1/y)) < nJ,
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where ν0 denotes the order on C((y)) (observe that n is considered at this point to be fixed
such that Gn(x) = g ◦ h). For a term of the shape (3.3), its order is given by

ν0(t(1/y)) = n ·
[ ( s

m
− (h2 + · · · + ht )

)
· ν0(α1(1/y)) + h2ν0(α2(1/y)) + . . .

· · · + hdν0(αd(1/y))
]

= n ·
[ s
m
· ν0(α1(1/y)) + h2(ν0(α2(1/y) − ν0(α1(1/y))) + . . .

· · · + hd(ν0(αd(1/y)) − ν0(α1(1/y)))
]
. (3.4)

Note again that by Lemma 2.7 we have ν0(αi(1/y)) = ν0(αi(x)) = − degαi . Since by
assumption degα1 > degαi for i ≥ 2, it follows that degα1 ≥ deg A0/d. In the case
s ≤ 0 we therefore find

ν0(t(1/y)) = n
[
−s
m

degα1 + h2(degα1 − degα2) + · · · + hd(degα1 − degαd)
]

≥ n
[
−s
m
·

deg A0
d
+ h2 + · · · + hd

]
.

We observe that if ν0(ti(1/y))<nJ, we must have that s∈ {0,−1, . . .,−Jmd/deg A0+1},
since otherwise we would get

ν0(t(1/y)) ≥ n
[
−s
m
·

deg A0
d
+ h2 + · · · + hd

]
≥ n

[
Jmd

deg A0
·

deg A0
md

]
= nJ .

To estimate the number of possible (d − 1)-tuples (h2, . . . , hd) ∈ N
d−1 for each s ∈

{0,−1, . . . ,−Jmd/deg A0 + 1}, it obviously must hold that

hi < J −
|s | deg A0

md
≤ J,

so for each such s there are at most Jd−1 such (h2, . . . , hd).
If s = 1 we have that

ν0(t(1/y)) = n
[
− degα1

m
+ h2(degα1 − degα2) + · · · + hd(degα1 − degαd)

]
≥ n

[
− degα1

m
+ h2 + · · · + hd

]
≥ n

[
− deg A0

m
+ h2 + · · · + hd

]
,

hence, if s = 1, we must have hi < J + deg A0
m . Then the number of possible (d − 1)-tuples

(h2, . . . , hd) is not greater than (J + deg A0
m )d−1.

We conclude that we may write

h(x) = h(1/y) = t1(1/y) + · · · + tL(1/y) +
∑

ν0(t(1/y))≥Jn
t(1/y), (3.5)
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where L is bounded above by

L ≤
(
J +

deg A0
m

)d−1
+ Jd md

deg A0
. (3.6)

This now justifies the above formal expansions. They are well-defined in the ring C((y)).
We now distinguish between two cases, namely that {t1, . . . , tL, h(x)} is linearly

dependent or linearly independent over C, respectively (we will often simply write ti
instead of ti(x)).

Case 1. Let us assume that the set {t1, . . . , tL, h(x)} is linearly independent over C.

With the intention of applying Proposition 2.4, let F = C(y, α1(1/y)1/m) and write
ϕ1 = −t1(1/y), . . . , ϕL = −tL(1/y) and ϕL+1 = h(1/y). Also, set σ =

∑L+1
i=1 ϕi =∑

ν0(t(1/y))≥Jn t(1/y). Observe that ϕ(T) = Tm0 − α1(1/y)m0/m is the minimal polynomial
of α1(1/y)1/m over C(y), where we use that the definition of m0 for α1 as a polynomial
in x over C implies that α1(1/y)m0/m is not a power of an element in C(y) for a
smaller power. Since this is a Kummer extension we can apply Proposition 2.2 ([21,
Theorem III.7.3]). Therefore, we get that only places in F above 0,∞ and the inverses
of non-zero roots of α1 (as a polynomial in C[x]) ramify. Thus for the genus gF
of F we find 2gF − 2 ≤ m0 degα1 ≤ m degα1. We define S to be the set of zeros
and poles of the t1, . . . , tL together with the poles of h(1/y). Observe that h(1/y)
has poles at most at places above 0,∞. Therefore S may contain at most the places
above 0,∞ and the inverses of the non-zero roots of α1, . . . , αd. This gives at most
m0(2 + degα1 + · · · + degαd) ≤ m(2 + deg A0) elements in S.

Note that for any place P in F above 0 in C(y) we have that

νP(σ) = νP

( ∑
ν0(t(1/y))≥Jn

t(1/y)
)
= e(P |0) · ν0

( ∑
ν0(t(1/y))≥Jn

t(1/y)
)
≥ Jn.

Clearly, P ∈ S. We will also need to give an upper bound on the degree deg h(1/y) =
[F : C(h(1/y))] = H(h(1/y)). Note that H(h(1/y)) = (deg h)H(1/y) = (deg h)[F :
C(1/y)] = (deg h)[F : C(x)] = m0 deg h ≤ m deg h. Hence, deg h(1/y) = m0 deg h.

By Proposition 2.4 we find that∑
ν∈S

(ν(σ) − min
i=1,...,L+1

ν(ϕi)) ≤
1
2

L(L + 1)(|S | + 2gF − 2) + deg h(1/y)

≤
1
2

L(L + 1)2m0(deg A0 + 1) + m0 deg h. (3.7)

On the other hand, since σ =
∑L+1

i=1 ϕi , it follows that ν(σ) −mini=1,...,L+1 ν(ϕi) ≥ 0
for every valuation ν ∈ S. Moreover, for νP(σ) ≥ Jn and mini=1,...,L+1 νP(ϕi) ≤
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νP(h(1/y)) ≤ m0ν0(h(1/y))) = −m0 deg h (by Lemma 2.7), we see that

Jn + m0 deg h ≤ νP(σ) − min
i=1,...,L+1

νP(ϕi) ≤
∑
ν∈S

(ν(σ) − min
i=1,...,L+1

ν(ϕi)).

We conclude that

Jn + m0 deg h ≤
∑
ν∈S

(ν(σ) − min
i=1,...,L+1

ν(ϕi)) (3.8)

≤ L(L + 1)m0(deg A0 + 2) + m0 deg h,

and therefore, for n we get the upper bound

n ≤ mL(L + 1)(deg A0 + 2)/J (3.9)

(recall that for J ∈ N one may take any natural number to get an upper bound, and that
L is bounded above by a constant depending only on J, m = deg g and the recurrence
sequence, but not on n).

Case 2. Let us now consider the second case, namely that the set {t1, . . . , tL, h(x)} is
linearly dependent over C.

We may assume that the t1, . . . , tL are linearly independent, since otherwise we just
group together the terms in question properly. Therefore, in a relation of linear dependency,
h(x) must appear and we may write h(x) as a linear combination of t1(x), . . . , tL(x), i.e.
there are wi ∈ C such that

h(x) =
L∑
i=1

witi(x). (3.10)

Recall, that the ti’s are all of the shape (3.3), where s and the hi’s are elements of a
finite set of numbers. After possibly renumbering the terms, we may assume that wi , 0
exactly for i = 1, . . . , l ≤ L and we get a power sum representation of h(x) of the shape

h(x) = w1d1δ
n
1 + · · · + wldlδnl ,

where we can control the δi’s, since they are elements of a finite set, namely

δi ∈ {α
s/m−(h2+· · ·+ht )
1 αh2

2 . . . αhd

d
; s ∈ A, hi ∈ B},

where A = {0, 1} and B = {0, 1, . . . , J + deg A0/m} (for A only terms ti with s = 0, 1
contribute, as we have already observed above). However, note that we have no control
over the coefficients widi ∈ C.

We pause a moment to investigate this relation. Remember that m0 was defined to be
the least integer such that αm0/m

1 ∈ C(x). Thus we have m0 = [F : C(x)]. Observe that m0
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is a divisor of m. We may then write h in the following form

h(x) =
m0−1∑
j=0

α
j/m
1 Λj,

where α j/m
1 Λj is the sum of the terms of the shape (3.3) for which sn ≡ j (mod m0);

in particular, Λj ∈ C(x). Since h ∈ C[x], we deduce that h(x) = Λ0. Note that at least
one ti with s = 1 has to appear since otherwise h would be constant. Moreover, for
Gn(x) = g(h(x)) to be true, the term with s = 1 and h2, . . . , hd = 0 must appear, hence
from the special shape of ti it follows that we therefore necessarily have n ≡ 0 (mod m0).
We shall write n = m0` from now on.

Putting widi = ci and δm0
i = γi for i = 1, . . . , l gives h(x) = c1γ

`
1 + · · · + clγ`l , which

is the claim in Theorem 1.1. �

3.2. Proof of Theorem 1.2

Define H` = c1γ
`
1 + · · · + clγ`l ∈ C[c1, . . . , cl](x) for any ` ∈ N, where l and the γi are

determined in Theorem 1.1. Moreover, we set

g(x) = g0xm + g1xm−1 + · · · + gm ∈ C[g0, . . . , gm][x].

We may write g ◦ H` as a finite sum of `-th-power terms:

g(H`(x)) = g(c1γ
`
1 + · · · + clγ`l ) = e1ε

`
1 + · · · + ekε`k .

Here, we can control the εi’s and k, but not the ei’s since they depend on the wi’s in (3.10).
In fact, we have that

εi ∈ {γi1 . . . γir ; 0 ≤ r ≤ m, 1 ≤ ij ≤ l, 1 ≤ j ≤ r},

and
k ≤ 1 + l + l2 + · · · + lm = (lm+1 − 1)/(l − 1),

and the ei are polynomial expressions in g0, . . . , gm, c1, . . . , cl with coefficients in Q,
which can be written down explicitly. Moreover, we can assume that εi/εj is not in C for
any 1 ≤ i < j ≤ k because otherwise we can join the two terms with the cost that the ei
are polynomial-exponential equations in g0, . . . , gm, c1, . . . , cl and exponentials in ` with
base in C, which again can be written down explicitly. Below we will have that all the εi’s
are polynomials over C in which case we can put out the leading coefficient, which is
another exponential expression in ` with base in C; we can put these exponentials also
inside the ei’s by modifying the ei’s and εi’s accordingly.
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Now from the proof of Theorem 1.1 we know that if Gn(x) = g(h(x)), then either n is
bounded above by (3.9) or n = m0` for some ` ∈ N and h(x) may be written as a power
sum as above. In this case we get the equation

a1bm0`
1 βm0`

1 + · · · + adbm0`
d

βm0`
d
= Gm0`(x) = e1ε

`
1 + · · · + ekε`k . (3.11)

We seek to apply Theorem 2.5 to this equation to, again, give an upper bound on possible
indices n ∈ N in this case, if possible. The last equation can be viewed as a homogeneous
S-unit-equation over K = C(x). Application of Theorem 2.5 requires the equation in
question not to have a proper vanishing subsum. Therefore we look at a minimal vanishing
subsum of (3.11) and again we distinguish between two possible cases. If there is
such a subsum consisting of at least three terms, we are able to apply the theorem and
consequently get an upper bound on n. On the other hand, this is not the case if and only if
each of the terms of the right hand side of equation (3.11) is identical to exactly one term
on the other side (note that in this case each minimal vanishing subsum consists of exactly
two terms, since it cannot consist of one term by minimality, and moreover, because of
the non-degeneracy it is not possible that two terms on the same side of equation (3.11)
coincide). Also, if we are in this exceptional situation, it follows that k = d and that
there is a unique permutation ρ ∈ Sd such that aiα

m0`
i = eρ(i)ε`ρ(i) (if there was another

permutation of this kind, we would again end up in the situation that two terms of the
same side coincide).

Now, assume that there is a proper vanishing subsum of (3.11) consisting of at least
three terms. Then we may write the equation in the form 1 + v1 + · · · + vn = 0 (where
2 ≤ n ≤ k + d − 1). Since for zeros and poles of the vi’s we can only have zeros and
poles of the αi’s, we can take K = C(x) and SK the set of places of K containing∞ and
the zeros of α1, . . . , αd. Similarly as above it follows that |SK | ≤ deg A0 + 1 and clearly
gK = 0, hence by Brownawell and Masser’s theorem (Theorem 2.5) it follows that

max
i=1,...,n

H(vi) ≤
1
2
(k + d − 1)(k + d − 2)(|SK | + 2gK − 2)

≤
1
2

(
Lm+1 − 1

L − 1
+ d − 1

)2

deg A0. (3.12)

Assume first that the vanishing subsum contains βi and βj for 1 ≤ i < j ≤ d. The case
when it contains two of the εi’s will be done afterwards. Now, we may obtain the equation
of shape 1 + v1 + · · · + vn = 0 by dividing the original one by ajb

m0`
j βm0`

j . Then we find
the following lower bound (note that we haveH(αi/αj) ≥ 1, by the non-degeneracy of
the sequence)

max
i=1,...,n

H(vi) ≥ H((αi/αj)
m0`) = m0` · H(αi/αj) ≥ m0` = n ≥ `. (3.13)
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Now assume that the vanishing subsum contains εi and εj for 1 ≤ i < j ≤ k. Then
as above (note now that we have H(εi/εj) ≥ 1 because we have taken the εi’s to be
non-degenerate)

max
i=1,...,n

H(vi) ≥ H((εi/εj)
`) = ` · H(εi/εj) ≥ `.

Clearly, with ` we also have an upper bound for n = m0`. Hence, by (3.12) and (3.13) we
see, that again in this case there can only be finitely many n ∈ N such that Gn(x) = g(h(x))
for some polynomial h ∈ C[x], with an upper bound C ′ given by (3.12).

As we saw, the only remaining situation we have to consider is the situation that
in equation (3.11) each term on the left hand side coincides with exactly one term on
the right hand side. In particular, it holds that d = k. So let ρ ∈ Sd be such that
aiα

m0`
i = aib

m0`
i βm0`

i = eρ(i)ε`ρ(i) for all i = 1, . . . , d, or equivalently

(
βm0
i

ερ(i)

)`
=

eρ(i)

aib
m0`
i

(3.14)

for all i = 1, . . . , d. Since ai, bi, eρ(i) ∈ C are constant, it follows that βm0
i and ερ(i) are

polynomials that coincide up to some constant factor. We have already mentioned above
that we may assume that both polynomials have leading coefficient equal to one. Therefore
it follows that they have to be equal so that the quotient is equal to one for all `. It follows
that we have equalities aib

m0`
i = eρ(i) for i = 1, . . . , d. These are polynomial-exponential

equations in the unknowns g0, . . . , gm, c1, . . . , cl and ` which define a subvariety as
claimed in the theorem.

We have shown that there is a subvarietyV ofAl+m+1×Gt
m, where l and t are explicitly

bounded by the originally given data and which is given by polynomial-exponential
equations in the polynomial unknowns g0, . . . , gm, c1, . . . , cl and the exponential unknown
`which can bewritten down explicitly. If we then defineG(x) = g0xm+· · ·+gm ∈ C[V][x]
and H` = c1d1δ

`
1 + · · ·+cldlδ`l ∈ C[V](x), then by construction we have for all ` ∈ N that

Gm0`(x) = G ◦ H` as an equation in C[V](x) and the following holds: If Gn(x) = g ◦ h
with g, h ∈ C[x], deg g = m, deg h > 1, then either n is not greater than the maximum of
the bounds given in (3.9) and C ′ or n = m0` and there is a point P ∈ V(C) such that
g(x) = G(P, x) and h(x) = H`(P, x). Conversely, if P = (g0, . . . , gm, c1, . . . , cl, `) ∈ V(C)
is a given C-rational point on V and if we define g(x) = G(P, x) and h(x) = H`(P, x)
then we have Gm0`(x) = g ◦ h with deg g = m. By integrality it follows that h ∈ C[x].
Clearly, deg h > 1. This establishes the theorem. �
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4. Proof of the remarks and special cases

(a). We just have to apply [9, Theorem 1]. It follows that there is a constant C with
deg g ≤ C. We apply our Theorem 1.1 for each m with 2 ≤ m ≤ C. From this the
conclusion follows. �

(b). This follows directly by inspecting the proof. The equations for the varieties
arise from (3.14). By assumption bi = 1, βi, εj are monic and ej is a polynomial
in c1, . . . , cl, g0, . . . , gm with rational coefficients. We therefore get forV a subvariety of
Al+m+1 and there is no Gm-part. �

(c). Assume that Gn(x) = g ◦ h with deg g = m and n > C. Then by Theorem 1.1 it
follows that n = m0` and that h(x) = c1γ

`
1 + · · ·+ clγ`l , where the γi are (up to a constant)

of the shape (
α
si/m−(hi2+· · ·+hid )
1 αhi2

2 . . . αhid
d

)m0
,

where si ∈ A = {0, 1}, hi j ∈ B = {0, 1, . . . , J + deg A0/m}. We put k = degα1 and
assume that 1 ≤ k < m. In the case (hi2, . . . , hid) = (0, . . . , 0), if s = 0 then γi is constant,
and if s = 1 then γi = ξα

m0/m
1 ∈ C[x], where ξ ∈ C. Assume that there is an i with

(hi2, . . . , hid) , (0, . . . , 0) and let h = maxi
∑d

j=2 hi j . Then γi (up to a constant) is of the
shape (

α
si/m−(hi2+· · ·+hid )+h
1 αhi2

2 . . . αhid
d

αh
1

)m0

=

(
p(x)
αh

1

)m0

,

where p(x) ∈ C[x] is a polynomial with

deg p = ksi/m − k(hi2 + · · · + hid) + hk + hi2 degα2 + · · · + hid degαd

< 1 + hk +
d∑
j=2

hi j(degαj − k) ≤ hk .

Hence, subtracting possibly the terms with (h2, . . . , hd) = (0, . . . , 0) from h(x), we
get a polynomial h′(x) which can be written as the sum of `-th powers of terms of
the described shape, i.e. h′(x) = p′(x)/αhm0`

1 , where deg p′ < hkm0`. This gives a
contradiction to h′ ∈ C[x], except for the case p′ = 0. Thus we may assume that only the
summands with h2 = · · · = ht = 0 (and s = 0, 1) occur, that is h(x) = c1 + c2α

(m0`)/m
1 =

c1 + c2α
n/m
1 = c1 + c2α

degGn/(mk)
1 (since k = degα1 > degαi for i = 2, . . . , d we have

that deg Gn = n degα1 = kn). A similar argument (considering the valuation at 0) shows
that h(x) must also be of this shape in the case degα1 = k = m. Note that for the finitely
many remaining cases when m < k one can apply Theorems 1.1 and 1.2, respectively. �
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(d). We argue as in (c).We therefore have that γi = β(si/m−(hi2+· · ·+hid ))m1+h2m2+· · ·+hdmd =

βki for some ki ∈ Z. By integrality it follows that ki ∈ N. This shows the claim. �

(e). We assume that a1, . . . , ad ∈ K and α1, . . . , αd ∈ K[x] so that Gn(x) ∈ K[x] for all
n ≥ 0, where K is a number field. An application of Theorem 1.1 implies that either n ≤ C
or h(x) = c1γ

`
1 + · · · + clγ`l with n = m0`. We have γ1, . . . , γl ∈ K(x) and c1, . . . , cl ∈ C.

Taking a transcendence basis of K(c1, . . . , cl) ⊇ K and comparing coefficients in this
basis shows that we may assume that c1, . . . , cl are algebraic over K . Taking now a (field)
basis of K(c1, . . . , cl) ⊇ K and comparing coefficients in this basis shows that we may
assume c1, . . . , cl ∈ K . Since Gn(x) ∈ K[x] and h(x) ∈ K[x] determine g, we see that
g(x) ∈ K[x] as well (for this the algorithm in [17, Section 3] can be used). This proves
the claim. �

(f). This follows immediately by fixing g(x) = xm and then going through the proofs. �

(g). Assume that h(x) = c1γ
`
1 + · · ·+clγ`l with n = m0` appears as “inner” decomposition

factor for fixed c1, . . . , cl (independent of `) for any ` ∈ N. Then, as already mentioned
above, we can identify the varying powers by indeterminates and then use the algorithm
provided in [4] to explicitly calculate this family of decompositions. �
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