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Weingarten integration over noncommutative
homogeneous spaces

Teodor Banica

Abstract

We discuss an extension of the Weingarten formula, to the case of noncom-
mutative homogeneous spaces, under suitable “easiness” assumptions. The spaces
that we consider are noncommutative algebraic manifolds, generalizing the spaces
of type X = G/H ⊂ CN , with H ⊂ G ⊂ UN being subgroups of the unitary
group, subject to certain uniformity conditions. We discuss various axiomatization
issues, then we establish the Weingarten formula, and we derive some probabilistic
consequences.

Intégration de Weingarten sur les espaces homogènes non
commutatifs

Résumé
On présente une extension de la formule d’intégration de Weingarten, pour

les espaces homogènes non commutatifs, vérifiant des hypothèses « d’aisance »
adéquates. Les espaces qu’on considère sont des variétés algebriques non commu-
tatives, généralisant les espaces du type X = G/H ⊂ CN , avec H ⊂ G ⊂ UN étant
des sous-groupes du groupe unitaire, vérifiant certaines conditions d’uniformité.
On traite d’abord les questions d’axiomatisation, ensuite on établit la formule de
Weingarten, et on finit avec quelques conséquences probabilistes.

Introduction

Given a compact group action G y X, assumed to be transitive, we
have X = G/H, where H = {g ∈ G | gx0 = x0} is the stabilizer of a
given point x0 ∈ X. Thus, we have an embedding C(X) ⊂ C(G). The
unique G-invariant integration on X is then obtained as a composition,∫

: C(X) ⊂ C(G)→ C, and can be explicitely computed provided that we
know how to integrate over G, for instance via a Weingarten type formula.

I would like to thank the referee for a careful reading of the manuscript and for a number
of useful suggestions.
Keywords: Noncommutative manifold, Weingarten integration.
2010 Mathematics Subject Classification: 46L51, 14A22, 60B15.
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We discuss here some noncommutative extensions of these facts, based
on some previous work in [1, 2, 4, 5]. The action O+

N y SN−1
R,+ , which is

the free analogue of the usual action ON y SN−1
R , was studied some time

ago, in [4]. Shortly afterwards, an extension to spaces of type GN/GN−M ,
with M ≤ N , and with G = (GN ) subject to some suitable uniformity as-
sumptions (“easiness”) was discussed in [5]. More recently, various spaces
of type (GM ×GN )/(GL ×GM−L ×GN−L), with L ≤ M ≤ N , and with
G = (GN ) belonging to more general families of quantum groups, were
studied in [1, 2].

The common feature of these spaces X = G/H is that they are “easy”,
in the sense that one can explicitely integrate on them, via a Weingarten
type formula. The purpose of the present paper is to provide an axiomatic
framework for such spaces, to advance at the level of the general theory,
and to enlarge the class of known examples.

The paper is organized as follows: Sections 1-2 are preliminary sections,
in Sections 3-4 we restrict the attention to the affine space case, in Sec-
tions 5-6 we discuss some basic examples, and in Sections 7-8 we focus on
the easy space case and we discuss a number of probabilistic aspects.

1. Homogeneous spaces

We use Woronowicz’s quantum group formalism in [19, 20], with the extra
assumption S2 = id. In other words, the quantum groups that we will
consider will be the abstract duals, in the sense of the general C∗-algebra
theory, of the Hopf C∗-algebras considered in [19, 20], whose antipode
satisfies the usual group-theoretic condition S2 = id.

The precise definition of these latter algebras is as follows:

Definition 1.1. A finitely generated Hopf C∗-algebra is a unital C∗-
algebra A, given with a unitary matrix u ∈ MN (A) whose coefficients
generate A, such that the formulae

∆(uij) =
∑
k

uik ⊗ ukj , ε(uij) = δij , S(uij) = u∗ji

define morphisms of C∗-algebras ∆ : A→ A⊗A, ε : A→ C, S : A→ Aopp.
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Weingarten integration

The morphisms ∆, ε, S are called comultiplication, counit and antipode.
They satisfy the usual Hopf algebra axioms, on the dense ∗-subalgebra
〈uij〉 ⊂ A.

There are two basic classes of examples of such algebras, as follows:

(1) The function algebra A = C(G), with G ⊂ UN being a compact
Lie group, together with the matrix of standard coordinates,
uij(g) = gij .

(2) The group algebra A = C∗(Γ), with Γ = 〈g1, . . . , gN 〉 being a
finitely generated discrete group, taken with the matrix u =
diag(g1, . . . , gN ).

In view of these examples, we write in general A = C(G) = C∗(Γ),
with G being a compact quantum group, and Γ being a discrete quantum
group. See [19, 20].

A closed quantum subgroup of a compact quantum group, H ⊂ G, cor-
responds by definition to a morphism of C∗-algebras ρ : C(G) → C(H),
mapping standard coordinates to standard coordinates. Observe that such
a morphism is automatically surjective, and transforms the structural
maps ∆, ε, S of the algebra C(G) into those of C(H).

Let us recall as well that given a noncommutative compact space X, an
action G y X corresponds by definition to a coaction map Φ : C(X) →
C(G)⊗C(X), which is subject to the coassociativity condition (id⊗Φ)Φ =
(∆⊗ id)Φ. See e.g. [5].

Let us discuss now the quotient space construction:

Proposition 1.2. Given a quantum subgroup H ⊂ G, with associated
quotient map ρ : C(G)→ C(H), if we define the quotient space X = G/H
by setting

C(X) =
{
f ∈ C(G)

∣∣∣ (id⊗ρ)∆f = f ⊗ 1
}

then we have a coaction Φ : C(X) → C(G) ⊗ C(X), obtained as the
restriction of the comultiplication of C(G). In the classical case, we obtain
the usual space X = G/H.

Proof. Observe that C(X) ⊂ C(G) is indeed a subalgebra, because it is
defined via a relation of type ϕ(f) = ψ(f), with ϕ,ψ morphisms. Observe
also that in the classical case we obtain the algebra of continuous functions
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on X = G/H, because:

(id⊗ρ)∆f = f ⊗ 1
⇐⇒ (id⊗ρ)∆f(g, h) = (f ⊗ 1)(g, h) , ∀ g ∈ G, ∀ h ∈ H
⇐⇒ f(gh) = f(g ), ∀ g ∈ G, ∀ h ∈ H
⇐⇒ f(gh) = f(gk) , ∀ g ∈ G, ∀ h, k ∈ H .

Regarding now the construction of Φ, observe that for f ∈ C(X) we
have:

(id⊗ id⊗ρ)(id⊗∆)∆f = (id⊗ id⊗ρ)(∆⊗ id)∆f
= (∆⊗ id)(id⊗ρ)∆f
= (∆⊗ id)(f ⊗ 1)
= ∆f ⊗ 1 .

Thus f ∈ C(X) implies ∆f ∈ C(G)⊗C(X), and this gives the existence
of Φ. Finally, the fact that Φ is coassociative is clear from definitions, and
so is the fact that, in the classical case, we obtain in this way the standard
action Gy G/H. �

As an illustration, in the group dual case we have:

Proposition 1.3. Assume that G = Γ̂ is a discrete group dual.

(1) The quantum subgroups of G are H = Λ̂, with Γ → Λ being a
quotient group.

(2) For such a quantum subgroup Λ̂ ⊂ Γ̂, we have Γ̂/Λ̂ = Θ̂, where
Θ = ker(Γ→ Λ).

Proof. The first assertion follows by using the theory from [19]. Indeed,
since the algebra C(G) = C∗(Γ) is cocommutative, so are all its quotients,
and this gives the result.
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Regarding now (2), consider a quotient map r : Γ→ Λ, and denote by
ρ : C∗(Γ)→ C∗(Λ) its extension. With f =

∑
g∈Γ λg · g ∈ C∗(Γ) we have:

f ∈ C(Γ̂/Λ̂) ⇐⇒ (id⊗ρ)∆(f) = f ⊗ 1

⇐⇒
∑
g∈Γ

λg · g ⊗ r(g) =
∑
g∈Γ

λg · g ⊗ 1

⇐⇒ λg · r(g) = λg · 1 , ∀ g ∈ Γ
⇐⇒ supp(f) ⊂ ker(r) .

But this means Γ̂/Λ̂ = Θ̂, with Θ = ker(Γ→ Λ), as claimed. �

Given two noncommutative compact spaces X,Y , we say that X is
a quotient space of Y when we have an embedding of C∗-algebras α :
C(X) ⊂ C(Y ). We have:
Definition 1.4. We call a quotient space G → X homogeneous when
the comultiplication ∆ : C(G) → C(G) ⊗ C(G) satisfies ∆(C(X)) ⊂
C(G)⊗ C(X).

In other words, an homogeneous quotient space G → X is a noncom-
mutative space coming from a subalgebra C(X) ⊂ C(G), which is stable
under the comultiplication.

The relation with the quotient spaces from Proposition 1.2 is as follows:
Theorem 1.5. The following results hold:

(1) The quotient spaces X = G/H are homogeneous.

(2) In the classical case, any homogeneous space is of type G/H.

(3) In general, there are homogeneous spaces which are not of type
G/H.

Proof. Once again these results are well-known, the proof being as follows:
(1) This is clear from Proposition 1.2 above.
(2) Consider a quotient map p : G → X. The invariance condition in

the statement tells us that we must have an action G y X, given by
g(p(g′)) = p(gg′). Thus:

p(g′) = p(g′′) =⇒ p(gg′) = p(gg′′) , ∀ g ∈ G.
Now observe that H = {g ∈ G | p(g) = p(1)} is a group, because g, h ∈

H implies p(gh) = p(g) = p(1), so gh ∈ H, and the other axioms are
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satisfied as well. Our claim is that we have X = G/H, via p(g) → gH.
Indeed, p(g) → gH is well-defined and bijective, because p(g) = p(g′) is
equivalent to p(g−1g′) = p(1), so to gH = g′H, as desired.

(3) Given a discrete group Γ and an arbitrary subgroup Θ ⊂ Γ, the
quotient space Γ̂ → Θ̂ is homogeneous. Now by using Proposition 1.3
above, we can see that if Θ ⊂ Γ is not normal, the quotient space Γ̂→ Θ̂
is not of the form G/H. �

Let us try now to understand the general properties of the homogeneous
spaces G → X, in the sense of Theorem 1.5. We recall that any compact
quantum group G has a Haar integration functional

∫
: C(G)→ C, having

the following invariance properties:(∫
⊗ id

)
∆ =

(
id⊗

∫ )
∆ =

∫
( ·)1 .

For the existence and uniqueness of
∫
, we refer to Woronowicz’s pa-

per [19].
We have the following result, which is once again well-known:

Proposition 1.6. Assume that a quotient space G→ X is homogeneous.

(1) The restriction Φ : C(X)→ C(G)⊗ C(X) of ∆ is a coaction.

(2) We have Φ(f) = 1⊗ f =⇒ f ∈ C1, and (
∫
⊗ id)Φf =

∫
f .

(3) The restriction of
∫
is the unique unital form satisfying (id⊗τ)Φ =

τ( ·)1.

Proof. These results are all elementary, the proof being as follows:
(1) This is clear from definitions, because ∆ itself is a coaction.
(2) If f ∈ C(G) is such that ∆(f) = 1⊗ f then (id⊗ε)∆f = (id⊗ε)×

(1⊗f), and so f = ε(f)1. Regarding the second assertion, this follows from
the right invariance property (

∫
⊗ id)∆f =

∫
f of the Haar functional of

C(G), by restriction to C(X).
(3) The fact that tr=

∫
|C(X) isG-invariant, in the sense that (id⊗tr)Φf=

tr(f)1, follows from the left invariance property (id⊗
∫

)∆f =
∫
f of the

Haar functional of C(G). Conversely, assuming that τ : C(X)→ C satis-
fies (id⊗τ)Φf = τ(f)1, we have:(∫

⊗τ
)

Φ(f) =
{∫

(id⊗τ)Φ(f) =
∫

(τ(f)1) = τ(f)
τ(
∫
⊗ id)Φ(f) = τ(tr(f)1) = tr(f) .
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Thus we have τ(f) = tr(f) for any f ∈ C(X), and this finishes the
proof. �

Summarizing, we have a notion of noncommutative homogeneous space,
which perfectly covers the classical case. In general, however, the group
dual case shows that our formalism is more general than that of the quo-
tient spaces G/H. See [8, 10, 12, 13].

2. Extended formalism

We discuss now an extra issue, of analytic nature. The point is that for
one of the most basic examples of actions, O+

N y SN−1
R,+ , the associated

morphism α : C(X) → C(G) is not injective. In order to include such
examples, we must relax our axioms:

Definition 2.1. An extended homogeneous space consists of a morphism
of C∗-algebras α : C(X) → C(G), and a coaction map Φ : C(X) →
C(G)⊗ C(X), such that

C(X) Φ //

α

��

C(G)⊗ C(X)

id⊗α

��
C(G) ∆ // C(G)⊗ C(G)

C(X) Φ //

α

��

C(G)⊗ C(X)∫
⊗ id

��
C(G)

∫
( ·)1

// C(X)

both commute, where
∫

is the Haar integration over G. We then write
G→ X.

When α is injective we obtain an homogeneous space in the sense of
Section 1. The examples with α not injective include the standard action
O+
N y SN−1

R,+ , for which we refer to [4], and the standard action U+
N y

SN−1
C,+ , discussed in Section 3 below.
Here are a few general remarks on the above axioms:
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Proposition 2.2. Assume that we have morphisms of C∗-algebras α :
C(X)→ C(G) and Φ : C(X)→ C(G)⊗C(X), satisfying (id⊗α)Φ = ∆α.

(1) If α is injective on a dense ∗-subalgebra A ⊂ C(X), and Φ(A) ⊂
C(G)⊗A, then Φ is automatically a coaction map, and is unique.

(2) The ergodicity type condition (
∫
⊗ id)Φ =

∫
α( ·)1 is equivalent to

the existence of a linear form λ : C(X)→ C such that (
∫
⊗ id)Φ =

λ( ·)1.

Proof. Assuming that we have a dense ∗-subalgebra A ⊂ C(X) as in (1),
the restriction Φ|A is given by Φ|A = (id⊗α|A)−1∆α|A, and is therefore
coassociative, and unique. By continuity, Φ itself follows to be coassocia-
tive and unique.

Regarding now (2), assuming (
∫
⊗ id)Φ = λ( ·)1, we have (

∫
⊗α)Φ =

λ( ·)1. But (
∫
⊗α)Φ = (

∫
⊗ id)∆α =

∫
α( ·)1, and so we have λ =

∫
α, as

claimed. �

Given an extended homogeneous space G → X, with associated map
α : C(X) → C(G), we can consider the image of this latter map, α :
C(X) → C(Y ) ⊂ C(G). Equivalently, at the level of noncommutative
spaces, we can factorize G→ Y ⊂ X. We have:

Proposition 2.3. Consider an extended homogeneous space G→ X.

(1) Φ(f) = 1⊗ f =⇒ f ∈ C1.

(2) tr =
∫
α is the unique unital G-invariant form on C(X).

(3) The image space obtained by factorizing, G→ Y , is homogeneous.

Proof. The first assertion follows from (
∫
⊗ id)Φ(f) =

∫
α(f)1, which gives

f =
∫
α(f)1. The fact that tr =

∫
α is indeed G-invariant can be checked

as follows:

(id⊗ tr)Φf = (id⊗∫ α)Φf = (id⊗∫)∆αf = ∫ α(f)1 = tr(f)1 .

As for the uniqueness assertion, this follows as in the proof of Proposi-
tion 1.6.
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Finally, the condition (id⊗α)Φ = ∆α, together with the fact that i is
injective, allows us to factorize ∆ into a morphism Ψ, as follows:

C(X) Φ //

α

��

C(G)⊗ C(X)

id⊗α
��

C(Y ) Ψ //

i

��

C(G)⊗ C(Y )

id⊗i
��

C(G) ∆ // C(G)⊗ C(G) .

Thus the image spaceG→ Y is indeed homogeneous, and we are done. �

Finally, we have the following result:

Theorem 2.4. Let G→ X be an extended homogeneous space, and con-
struct quotients X → X ′, G → G′ by performing the GNS construction
with respect to

∫
α,
∫
. Then α factorizes into an inclusion α′ : C(X ′) →

C(G′), and we have an homogeneous space.

Proof. We factorize G→ Y ⊂ X as in Proposition 2.3(3). By performing
the GNS construction with respect to

∫
iα,
∫
i,
∫
, we obtain a diagram as

follows:

C(X) p //

α

��

C(X ′)

α′

��

tr′

((
C(Y ) q //

i

��

C(Y ′)

i′

��

C

C(G) r // C(G′)

∫ ′

66

Indeed, with tr =
∫
α, the GNS quotient maps p, q, r are defined re-

spectively by:

ker p = {f ∈ C(X) | tr(f∗f) = 0}
ker q = {f ∈ C(Y ) | ∫(f∗f) = 0}
ker r = {f ∈ C(G) | ∫(f∗f) = 0} .
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Next, we can define factorizations i′, α′ as above. Observe that i′ is
injective, and that α′ is surjective. Our claim now is that α′ is injective as
well. Indeed:

α′p(f) = 0 =⇒ qα(f) = 0 =⇒
∫
α(f∗f) = 0

=⇒ tr(f∗f) = 0 =⇒ p(f) = 0 .

We conclude that we have X ′ = Y ′, and this gives the result. �

3. Affine spaces

We discuss now the case that we are really interested in, where X is an
algebraic manifold, and G acts affinely on it. Let us first recall that the
free complex sphere SN−1

C,+ and the free unitary quantum group U+
N are

constructed as follows:

C(SN−1
C,+ ) = C∗

(
x1, . . . , xN

∣∣∣∣∣∑
i

xix
∗
i =

∑
i

x∗ixi = 1
)

C(U+
N ) = C∗

(
(uij)i,j=1,...,N

∣∣∣u∗ = u−1, ut = ū−1
)
.

Here u = (uij) is the square matrix formed by the generators of C(U+
N ).

See [17].
It is known that SN−1

C,+ is an extended homogeneous space over U+
N ,

the associated morphisms α,Φ being given by α(xi) = ui1 and Φ(xi) =∑
a uia ⊗ xa. See [4].
Motivated by this fundamental example, let us formulate:

Definition 3.1. An extended homogeneous space G→ X is called affine
when X ⊂ SN−1

C,+ is an algebraic submanifold, G ⊂ U+
N is a closed quantum

subgroup, and we have

α(xi) = 1√
|I|
∑
b∈I

uib , Φ(xi) =
∑
a

uia ⊗ xa

for a certain set of indices I ⊂ {1, . . . , N}.

Here the notion of algebraic manifold is the usual one, the coordinates
x1, . . . , xN being subject to a number of (noncommutative) polynomial
relations. As for the notion of quantum subgroup, we use here the general
formalism from Section 1 above.
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Observe that U+
N → SN−1

C,+ is indeed affine in this sense, with I = {1}.
Observe also that the 1/

√
|I| constant appearing above is the correct one,

because:∑
i

∑
b∈I

uib

∑
b∈I

uib

∗ =
∑
i

∑
b,c∈I

uibu
∗
ic =

∑
b,c∈I

(utū)bc = |I| .

In general now, a first remark is that the first extended homogeneous
space axiom in Definition 2.1, namely (id⊗α)Φ = ∆α, is automatic, be-
cause we have:

(id⊗α)Φ(xi) =
∑
a

uia ⊗ α(xa) = 1√
|I|
∑
a

∑
b∈I

uia ⊗ uab

∆α(xi) = 1√
|I|
∑
b∈I

∆(uib) = 1√
|I|
∑
b∈I

∑
a

uia ⊗ uab .

We make the standard convention that all the tensor exponents k are
“colored integers”, that is, k = e1 . . . ek with ei ∈ {◦, •}, with ◦ correspond-
ing to the usual variables, and with • corresponding to their adjoints. With
this convention, we have:

Proposition 3.2. The ergodicity condition (
∫
⊗ id)Φ =

∫
α( ·)1 is equiv-

alent to

(Px⊗k)i1...ik = 1√
|I|k

∑
b1...bk∈I

Pi1...ik,b1...bk
, ∀ k, ∀ i1, . . . , ik

where Pi1...ik,j1...jk =
∫
ue1
i1j1

. . . uek
ikjk

, and where (x⊗k)i1...ik = xe1
i1
. . . xek

ik
.

Proof. We have indeed the following computation:(∫
⊗ id

)
Φ =

∫
α( ·)1

⇐⇒
(∫
⊗ id

)
Φ(xe1

i1
. . . xek

ik
) =

∫
α(xe1

i1
. . . xek

ik
), ∀ k, ∀ i1, . . . ik

⇐⇒
∑
a1...ak

Pi1...ik,a1...ak
xe1
a1 . . . x

ek
ak

= 1√
|I|k

∑
b1...bk∈I

Pi1...ik,b1...bk
, ∀ k, ∀ i1, . . . , ik .

But this gives the formula in the statement, and we are done. �
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As a consequence, we have the following result:

Theorem 3.3. Given a closed quantum subgroup G ⊂ U+
N , and a set I ⊂

{1, . . . , N}, if we consider the following C∗-subalgebra and the following
quotient C∗-algebra,

C(Xmin
G,I ) =

〈
1√
|I|
∑
b∈I

uib

∣∣∣∣∣∣ i = 1, . . . , N
〉
⊂ C(G)

C(Xmax
G,I ) = C(SN−1

C,+ )
/

〈
(Px⊗k)i1...ik = 1√

|I|k
∑

b1...bk∈I
Pi1...ik,b1...bk

∣∣∣∣∣∣ ∀ k, ∀ i1, . . . ik
〉

then we have maps G→ Xmin
G,I ⊂ Xmax

G,I ⊂ SN−1
C,+ , the space G→ Xmax

G,I is
affine extended homogeneous, and any affine homogeneous space G → X
appears as Xmin

G,I ⊂ X ⊂ Xmax
G,I .

Proof. Consider the standard coordinates on Xmin
G,I , namely

Xi = 1√
|I|
∑
b∈I

uib .

The fact that we have Xmin
G,I ⊂ S

N−1
C,+ follows from the following computa-

tions:

∑
i

XiX
∗
i = 1
|I|
∑
i

∑
b,c∈I

uibu
∗
ic = 1

|I|
∑
b,c∈I

(utū)bc = 1 ,

∑
i

X∗iXi = 1
|I|
∑
i

∑
b,c∈I

u∗ibuic = 1
|I|

∑
b,c∈I

(u∗u)bc = 1 .

In order to prove now that we have Xmin
G,I ⊂ Xmax

G,I , we must check the
fact that the defining relations for Xmax

G,I are satisfied by the variables Xi.
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But, we have indeed:

(PX⊗k)i1...ik = 1√
|I|k

∑
a1...ak

Pi1...ik,a1...ak

∑
b1...bk∈I

ue1
a1b1

. . . uek
akbk

= 1√
|I|k

∑
b1...bk∈I

(Pu⊗k)i1...ik,b1...bk

= 1√
|I|k

∑
b1...bk∈I

Pi1...ik,b1...bk
.

Here Pu⊗k = P comes from the invariance properties of
∫
. See [19].

Let us prove now that we have an action Gy Xmax
G,I . For this purpose,

we must show that the variables Zi =
∑
a uia ⊗ xa satisfy the defining

relations for Xmax
G,I . We have:

(PZ⊗k)i1...ik =
∑
a1...ak

Pi1...ik,a1...ak

∑
c1...ck

ue1
a1c1 . . . u

ek
akck
⊗ xe1

c1 . . . x
ek
ck

=
∑
c1...ck

(Pu⊗k)i1...ik,c1...ck
⊗ xe1

c1 . . . x
ek
ck

=
∑
c1...ck

Pi1...ik,c1...ck
⊗ xe1

c1 . . . x
ek
ck

= 1⊗ 1√
|I|k

(Px⊗k)i1...ik = 1⊗ 1√
|I|k

∑
b1...bk∈I

Pi1...ik,b1...bk
.

Thus we have an action G y Xmax
G,I , and since this action is ergodic

by Proposition 3.2, we have an extended homogeneous space. Finally, the
last assertion is clear. �

As a conclusion, the affine homogeneous spaces over a given closed
subgroup G ⊂ U+

N , in the sense of Definition 3.1, are the intermediate
spaces Xmin

G,I ⊂ X ⊂ Xmax
G,I having an action of G, with the maximal space

Xmax
G,I known to be affine homogeneous.

4. Integration theory

In this section we improve Theorem 3.3, by constructing a “canonical”
intermediate space Xmin

G,I ⊂ XG,I ⊂ Xmax
G,I , using the Schur–Weyl dual of
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G, and we present as well a Weingarten integration formula, valid for any
affine homogeneous space G→ X.

Let us first recall the usual Weingarten formula [3, 9, 18]:

Proposition 4.1. Assuming that {ξπ |π ∈ D} is a basis of Fix(u⊗k), we
have ∫

ue1
i1j1

. . . uek
ikjk

=
∑
π,σ∈D

(ξπ)i1...ik(ξσ)j1...jkWkN (π, σ)

where WkN = G−1
kN , with GkN (π, σ) = 〈ξπ, ξσ〉.

Proof. When the exponent k = e1 . . . ek is fixed, and the indices i1, . . . , ik
and j1, . . . , jk vary, the quantities on the left in the statement form the
matrix P , and the quantities on the right form a certain matrix P ′. We
must prove that we have P = P ′.

For any vector x ∈ (CN )⊗k, written x = (xi1...ik), we have:

(P ′x)i1...ik =
∑
j1...jk

∑
π,σ∈D

(ξπ)i1...ik(ξσ)j1...jkWkN (π, σ)xj1...jk

=
∑
π,σ∈D

〈x, ξσ〉WkN (π, σ)(ξπ)i1...ik .

Since this equality holds for any choice of i1, . . . , ik, we deduce that we
have:

P ′x =
∑
π,σ∈D

〈x, ξσ〉WkN (π, σ)ξπ .

By standard linear algebra, we have then Px = P ′x, and so P = P ′.
See [3]. �

As a first application, we have the following result:

Proposition 4.2. If G → X is an extended homogeneous space, the in-
tegration map

∫
X =

∫
α is given by the Weingarten type formula∫

X
xe1
i1
. . . xek

ik
=

∑
π,σ∈D

(ξπ)i1...ikKI(σ)WkN (π, σ)

where {ξπ |π ∈ D} is a basis of Fix(u⊗k), and

KI(σ) = 1√
|I|k

∑
b1...bk∈I

(ξσ)b1...bk
.
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Proof. By using the formula in Proposition 4.1, we have:∫
X
xe1
i1
. . . xek

ik
= 1√

|I|k
∑

b1...bk∈I

∫
ue1
i1b1

. . . uek
ikbk

= 1√
|I|k

∑
b1...bk∈I

∑
π,σ∈D

(ξπ)i1...ik(ξσ)b1...bk
WkN (π, σ) .

But this gives the formula in the statement, and we are done. �

Let us go back now to Theorem 3.3. We know from there that Xmax
G,I ⊂

SN−1
C,+ is constructed by imposing to the coordinates the conditions Px⊗k =
P I , where:

Pi1...ik,j1...jk =
∫
ue1
i1j1

. . . uek
ikjk

, P Ii1...ik = 1√
|I|k

∑
j1...jk∈I

Pi1...ik,j1...jk .

These quantities can be computed by using the Weingarten formula,
and working out the details leads to the construction of a certain smaller
space XG,I , as follows:

Theorem 4.3. Given a closed quantum subgroup G ⊂ U+
N , and a set

I ⊂ {1, . . . , N}, if we consider the following quotient algebra

C(XG,I) = C(SN−1
C,+ )

/
〈 ∑
a1...ak

ξa1...ak
xe1
a1 . . . x

ek
ak

= 1√
|I|k

∑
b1...bk∈I

ξb1...bk

∣∣∣∣∣∣ ∀ k, ∀ξ ∈ Fix(u⊗k)
〉

we obtain in this way an affine homogeneous space G→ XG,I .

Proof. We use Theorem 3.3. Let us first prove that we have an inclusion
XG,I ⊂ Xmax

G,I . According to the integration formula in Proposition 4.1,
we have:

(Px⊗k)i1...ik =
∑
a1...ak

∑
π,σ∈D

(ξπ)i1...ik(ξσ)a1...ak
WkN (π, σ)xe1

a1 . . . x
ek
ak
,

P Ii1...ik = 1√
|I|k

∑
b1...bk∈I

∑
π,σ∈D

(ξπ)i1...ik(ξσ)b1...bk
WkN (π, σ) .
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We can see that the defining relations for XG,I ⊂ SN−1
C,+ imply Px⊗k =

P I , and so imply the relations defining Xmax
G,I ⊂ SN−1

C,+ . Thus, we have an
inclusion XG,I ⊂ Xmax

G,I .
Let us prove now that we have Xmin

G,I ⊂ XG,I . We must check here that
the variables Xi = 1√

|I|

∑
b∈I uib ∈ C(Xmin

G,I ) satisfy the relations defining
XG,I , and we have indeed:∑

a1...ak

ξa1...ak
Xe1
a1 . . . X

ek
ak

= 1√
|I|k

∑
a1...ak

ξa1...ak

∑
b1...bk∈I

ue1
a1b1

. . . uek
akbk

= 1√
|I|k

∑
b1...bk∈I

ξb1...bk
.

Finally, in order to construct an action G y XG,I , we must show that
the variables Za =

∑
i uai ⊗ xi satisfy the defining relations for XG,I . We

have:∑
a1...ak

ξa1...ak
Ze1
a1 . . . Z

ek
ak

=
∑
a1...ak

∑
i1...ik

ξa1...ak
ue1
a1i1

. . . uek
akik
⊗ xe1

i1
. . . xek

ik

=
∑
i1...ik

ξi1...ik ⊗ x
e1
i1
. . . xek

ik

= 1⊗ 1√
|I|k

∑
b1...bk∈I

ξb1...bk
.

Thus we have an action Gy XG,I , and this finishes the proof. �

5. Basic examples

We discuss now some basic examples of affine homogeneous spaces, namely
those coming from the classical groups, and those coming from the group
duals. We will need:

Proposition 5.1. Assuming that a closed subset X ⊂ SN−1
C,+ is affine ho-

mogeneous over a classical group, G ⊂ UN , then X itself must be classical,
X ⊂ SN−1

C .

Proof. We use the well-known fact that, since the standard coordinates
uij ∈ C(G) commute, the corepresentation u◦◦•• = u⊗2 ⊗ ū⊗2 has the
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following fixed vector:

ξ =
∑
ij

ei ⊗ ej ⊗ ei ⊗ ej .

With k = ◦◦• • and with this vector ξ, the formula in Theorem 4.3 reads:∑
ij

xixjx
∗
ix
∗
j = 1√

|I|4
∑
i,j∈I

1 = 1 .

By using this formula, along with
∑
i xix

∗
i =

∑
i x
∗
ixi = 1, we obtain:∑

ij

(xixj − xjxi)(x∗jx∗i − x∗ix∗j )

=
∑
ij

xixjx
∗
jx
∗
i − xixjx∗ix∗j − xjxix∗jx∗i + xjxix

∗
ix
∗
j

= 1− 1− 1 + 1 = 0 .

We conclude that we have [xi, xj ] = 0, for any i, j. By using now this
commutation relation, plus once again the relations defining SN−1

C,+ , we
have as well:∑

ij

(xix∗j − x∗jxi)(xjx∗i − x∗ixj)

=
∑
ij

xix
∗
jxjx

∗
i − xix∗jx∗ixj − x∗jxixjx∗i + x∗jxix

∗
ixj

=
∑
ij

xix
∗
jxjx

∗
i − xix∗ix∗jxj − x∗jxjxix∗i + x∗jxix

∗
ixj

= 1− 1− 1 + 1 = 0 .

Thus we have [xi, x∗j ] = 0 as well, and so X ⊂ SN−1
C , as claimed. �

We can now formulate the result in the classical case, as follows:

Proposition 5.2. In the classical case, G ⊂ UN , there is only one affine
homogeneous space, for each index set I = {1, . . . , N}, namely the quotient
space

X = G/(G ∩ CIN )
where CIN ⊂ UN is the group of unitaries fixing the vector ξI = 1√

|I|
(δi∈I)i.
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Proof. Consider an affine homogeneous space G → X. We already know
from Proposition 5.1 above that X is classical. We will first prove that we
have X = Xmin

G,I , and then we will prove that Xmin
G,I equals the quotient

space in the statement.
We use the well-known fact that the functional E = (

∫
⊗ id)Φ is the

projection onto the fixed point algebra C(X)Φ = {f ∈ C(X) |Φ(f) =
1 ⊗ f}. Thus our ergodicity condition, namely E =

∫
α( ·)1, shows that

we must have C(X)Φ = C1. Now since in the classical case the condition
Φ(f) = 1⊗ f reads f(gx) = f(x) for any g ∈ G and x ∈ X, we recover in
this way the usual ergodicity condition, stating that whenever a function
f ∈ C(X) is constant on the orbits of the action, it must be constant.

Now observe that for an affine action, the orbits are closed. Thus an
affine action which is ergodic must be transitive, and we deduce from this
that we have X = Xmin

G,I .
We know that the inclusion C(X) ⊂ C(G) comes via xi = 1√

|I|

∑
j∈I uij .

Thus, the quotient map p : G → X ⊂ SN−1
C is given by the following

formula:

p(g) =

 1√
|I|
∑
j∈I

gij


i

.

In particular, the image of the unit matrix 1 ∈ G is the following vector:

p(1) =

 1√
|I|
∑
j∈I

δij


i

=
(

1√
|I|
δi∈I

)
i

= ξI .

But this gives the result, and we are done. �

Let us discuss now the group dual case. Given a discrete group Γ =
〈g1, . . . , gN 〉, we can consider the embedding Γ̂ ⊂ U+

N given by uij = δijgi.
We have then:

Proposition 5.3. In the group dual case, G = Γ̂ with Γ = 〈g1, . . . , gN 〉,
we have

X = Γ̂I , ΓI = 〈gi | i ∈ I〉 ⊂ Γ
for any affine homogeneous space X, when identifying full and reduced
group algebras.

Proof. Assume indeed that we have an affine homogeneous space G→ X,
as in Definition 3.1. In terms of the rescaled coordinates hi =

√
|I|xi, our
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axioms for α,Φ read:
α(hi) = δi∈Igi , Φ(hi) = gi ⊗ hi .

As for the ergodicity condition, this translates as follows:(∫
⊗ id

)
Φ(he1

i1
. . . h

ep

ip
) =

∫
α(hep

i1
. . . h

ep

ip
)

⇐⇒
(∫
⊗ id

)
(ge1
i1
. . . g

ep

ip
⊗ he1

i1
. . . h

ep

ip
) =

∫
G
δi1∈I . . . δip∈Ig

e1
i1
. . . g

ep

ip

⇐⇒ δge1
i1
...g

ep
ip
,1h

e1
i1
. . . h

ep

ip
= δge1

i1
...g

ep
ip
,1δi1∈I . . . δip∈I

⇐⇒
[
ge1
i1
. . . g

ep

ip
= 1 =⇒ he1

i1
. . . h

ep

ip
= δi1∈I . . . δip∈I

]
.

Now observe that from gig
∗
i = g∗i gi = 1 we obtain in this way hih∗i =

h∗ihi = δi∈I . Thus the elements hi vanish for i /∈ I, and are unitaries for
i ∈ I. We conclude that we have X = Λ̂, where Λ = 〈hi | i ∈ I〉 is the
group generated by these unitaries.

In order to finish the proof, our claim is that for indices ix ∈ I we have:
ge1
i1
. . . g

ep

ip
= 1 ⇐⇒ he1

i1
. . . h

ep

ip
= 1 .

Indeed, =⇒ comes from the ergodicity condition, as processed above,
and ⇐= comes from the existence of the morphism α, which is given by
α(hi) = gi, for i ∈ I. �

Let us go back now to the general case, and discuss a number of further
axiomatization issues, based on the examples that we have. We will need:

Proposition 5.4. The closed subspace CI+N ⊂ U+
N defined via

C(CI+N ) = C(U+
N )
/
〈uξI = ξI〉

where ξI = 1√
|I|

(δi∈I)i, is a compact quantum group.

Proof. We must check Woronowicz’s axioms, and the proof goes as follows:
(1) Let us set Uij =

∑
k uik ⊗ ukj . We have then:

(UξI)i = 1√
|I|
∑
j∈I

Uij = 1√
|I|
∑
j∈I

∑
k

uik ⊗ ukj =
∑
k

uik ⊗ (uξI)k

=
∑
k

uik ⊗ (ξI)k = 1√
|I|
∑
k∈I

uik ⊗ 1 = (uξI)i ⊗ 1 = (ξI)i ⊗ 1 .
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Thus we can define indeed a comultiplication map, by ∆(uij) = Uij .
(2) In order to construct the counit map, ε(uij) = δij , we must prove

that the identity matrix 1 = (δij)ij satisfies 1ξI = ξI . But this is clear.
(3) In order to construct the antipode, S(uij) = u∗ji, we must prove that

the adjoint matrix u∗ = (u∗ji)ij satisfies u∗ξI = ξI . But this is clear from
uξI = ξI . �

Based on the computations that we have so far, we can formulate:

Theorem 5.5. Given a closed quantum subgroup G ⊂ U+
N and a set

I ⊂ {1, . . . , N}, we have a quotient map and an inclusion map as follows:

G/(G ∩ CI+N )→ Xmin
G,I ⊂ Xmax

G,I .

These maps are both isomorphisms in the classical case. In general, they
are both proper.

Proof. Consider the quantum group H = G ∩ CI+N , which is by definition
such that at the level of the corresponding algebras, we have C(H) =
C(G)

/
〈uξI = ξI〉.

In order to construct a quotient map G/H → Xmin
G,I , we must check

that the defining relations for C(G/H) hold for the standard generators
xi ∈ C(Xmin

G,I ). But if we denote by ρ : C(G) → C(H) the quotient map,
then we have, as desired:

(id⊗ρ)∆xi = (id⊗ρ)

 1√
|I|
∑
j∈I

∑
k

uik ⊗ ukj

 =
∑
k

uik ⊗ (ξI)k = xi ⊗ 1 .

In the classical case, Proposition 5.2 shows that both the maps in the
statement are isomorphisms. For the group duals, however, these maps are
not isomorphisms, in general. This follows indeed from Proposition 5.3,
and from the general theory in [5]. �

It is quite unclear when the maps in Theorem 5.5 are both isomor-
phisms. Our conjecture is that this should happen when the dual of
G ⊂ U+

N is amenable.
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6. Further examples

We discuss now a number of further examples of affine homogeneous
spaces, namely the quantum groups themselves, and their “column spaces”
from [5]. We will need:

Proposition 6.1. Given a compact matrix quantum group G = (G, u),
the pair Gt = (G, ut), where (ut)ij = uji, is a compact matrix quantum
group as well.

Proof. The construction of the comultiplication is as follows, where Σ is
the flip map:

∆t[(ut)ij ] =
∑
k

(ut)ik ⊗ (ut)kj ⇐⇒ ∆t(uji) =
∑
k

uki ⊗ ujk

⇐⇒ ∆t = Σ∆ .

As for the corresponding counit and antipode, these can be simply taken
to be (ε, S), and the conditions in Definition 1.1 above are satisfied. �

We will need as well the following result, which is standard as well:

Proposition 6.2. Given two closed subgroups G ⊂ U+
N and H ⊂ U+

M ,
with fundamental corepresentations denoted u = (uij) and v = (vab), their
product is a closed subgroup G×H ⊂ U+

NM , with fundamental corepresen-
tation wia,jb = uij ⊗ vab.

Proof. The corresponding structural maps are ∆(α⊗β) = ∆(α)13∆(β)24,
ε(α⊗ β) = ε(α)ε(β) and S(α⊗ β) = S(α)S(β), the verifications being as
follows:

∆(wia,jb) = ∆(uij)13∆(vab)24 =
∑
kc

uik ⊗ vac ⊗ ukj ⊗ vcb

=
∑
kc

wia,kc ⊗ wkc,jb ,

ε(wia,jb) = ε(uij)ε(vab) = δijδab = δia,jb ,

S(wia,jb) = S(uij)S(vab) = v∗bau
∗
ji = (ujivba)∗ = w∗jb,ia .

We refer to Wang’s paper [17] for more details regarding this construc-
tion. �

Let us call a closed quantum subgroup G ⊂ U+
N self-transpose when we

have an automorphism T : C(G)→ C(G) given by T (uij) = uji. Observe
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that in the classical case, this amounts in G ⊂ UN to be closed under the
transposition operation g → gt.

Finally, let us call G ⊂ U+
N reduced when its Haar functional is faithful.

See [19].
With these notions in hand, let us go back to the affine homogeneous

spaces. As a first result here, any closed subgroup G ⊂ U+
N appears as an

affine homogeneous space over an appropriate quantum group, as follows:

Proposition 6.3. Given a reduced quantum subgroup G ⊂ U+
N , we have

an identification Xmin
G,I ' G, given at the level of standard coordinates by

xij = 1√
N
uij, where:

(1) G = G×Gt ⊂ U+
N2, with coordinates wia,jb = uij ⊗ uba.

(2) I ⊂ {1, . . . , N}2 is the diagonal set, I = {(k, k) | k = 1, . . . , N}.

In the self-transpose case we can choose as well G = G×G, with wia,jb =
uij ⊗ uab.

Proof. In order to prove the first assertion, observe that α = ∆ and Φ =
(id⊗Σ)∆(2) are given by the usual formulae for the affine homogeneous
spaces, namely:

α(uij) =
∑
k

uik ⊗ ukj =
∑
k

wij,kk ,

Φ(uij) =
∑
kl

uik ⊗ ulj ⊗ ukl =
∑
kl

wij,kl ⊗ ukl .

The ergodicity condition being clear as well, this gives the result.
Regarding now the last assertion, assume that we are in the self-trans-

pose case, and so that we have an automorphism T : C(G)→ C(G) given
by T (uij) = uji. The maps α = (id⊗T )∆ and Φ = (id⊗T⊗id)(id⊗Σ)∆(2)

are then given by:

α(uij) =
∑
k

uik ⊗ ujk =
∑
k

wij,kk ,

Φ(uij) =
∑
kl

uik ⊗ ujl ⊗ ukl =
∑
kl

wij,kl ⊗ ukl .

Once again the ergodicity condition being clear as well, this gives the
result. �
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Let us discuss now the generalization of the above result, to the context
of the spaces introduced in [5]. We recall from there that we have the
following construction:

Definition 6.4. Given a closed subgroup G ⊂ U+
N and an integerM ≤ N

we set

C(GN×M ) = 〈uij | i ∈ {1, . . . , N}, j ∈ {1, . . . ,M}〉 ⊂ C(G)

and we call column space of G the underlying quotient space G→ GN×M .

As a basic example here, at M = N we obtain G itself. Also, at M = 1
we obtain the space whose coordinates are those on the first column of
coordinates on G. See [5].

Given G ⊂ U+
N and an integer M ≤ N , we can consider the quantum

group H = G ∩ U+
M , with the intersection taken inside U+

N , and with
U+
M ⊂ U+

N given by u = diag(v, 1N−M ). Observe that we have a quotient
map C(G)→ C(H), given by uij → vij .

We have the following extension of Proposition 6.3:

Theorem 6.5. Given a reduced quantum subgroup G ⊂ U+
N , we have an

identification Xmin
G,I ' GN×M , given at the level of standard coordinates

by xij = 1√
M
uij, where:

(1) G = G×Ht ⊂ U+
NM , where H = G∩U+

M , with coordinates wia,jb =
uij ⊗ vba.

(2) I ⊂ {1, . . . , N} × {1, . . . ,M} is the diagonal set, I = {(k, k) | k =
1, . . . ,M}.

In the self-transpose case we can choose as well G = G×G, with wia,jb =
uij ⊗ vab.

Proof. We will prove that the space X = GN×M , with coordinates xij =
1√
M
uij , coincides with the space Xmin

G,I constructed in the statement, with
its standard coordinates.

For this purpose, consider the following composition of morphisms,
where in the middle we have the comultiplication, and at left and right
we have the canonical maps:

C(X) ⊂ C(G)→ C(G)⊗ C(G)→ C(G)⊗ C(H) .
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The standard coordinates are then mapped as follows:

xij = 1√
M
uij −→

1√
M

∑
k

uik ⊗ ukj

−→ 1√
M

∑
k≤M

uik ⊗ vkj = 1√
M

∑
k≤M

wij,kk .

Thus we obtain the standard coordinates on the spaceXmin
G,I , as claimed.

Finally, the last assertion is standard as well, by suitably modifying the
above morphism. �

Let us mention that, with a little more work, one can prove that the
spaces GLN×M from [2], depending on an extra parameter L ∈ {1, . . . ,M},
are covered as well by our formalism, the idea here being to truncate the
index set, I = {(k, k) | k = 1, . . . , L}.

7. The easy case

We discuss now what happens whenG is easy, or more generally, motivated
by the examples in Section 6 above, when it is a product of easy quantum
groups.

Regarding easiness in general, we refer to [6, 14, 16]. In the context
of the present paper, let us go back to the Schur–Weyl considerations in
Section 4:

(1) We would need there explicit bases {ξπ |π ∈ D(k)} for the spaces
Fix(u⊗k), along with, if possible, explicit formulae for the vector
entries (ξπ)i1...ik .

(2) Equivalently, we would need bases {Tπ |π ∈ D(k, l)} for the spaces
Hom(u⊗k, u⊗l), along with explicit formulae for the matrix entries
(Tπ)i1...ik,j1,...jl .

Here the equivalence between (1) and (2) is standard, see [19]. Now in
order to do so, one idea is to use set-theoretic partitions, and the following
construction:
Definition 7.1. Associated to any partition π ∈ P (k, l) is the linear map

Tπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl
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where δπ ∈ {0, 1} equals 1 when the indices fit, and equals 0 otherwise.
Here π ∈ P (k, l) means that π has k upper legs and l lower legs, and by

“fitting” we mean that, when putting the indices on the legs, each block
contains equal indices.

In order to get now back to the quantum groups, we use Tannakian
duality. Let us recall from [6, 16] that a category of partitions is a collection
of subsets D(k, l) ⊂ P (k, l), one for each choice of colored integers k, l,
which is stable under vertical and horizontal concatenation, and under
upside-down turning. With this convention, we have:
Definition 7.2. A closed quantum subgroup G ⊂ U+

N is called easy when
we have

Hom(u⊗k, u⊗l) = span (Tπ |π ∈ D(k, l))
for a certain category of partitions D = (D(k, l)).

As basic examples, we have the groups SN , ON , UN , coming from the
categories of all partitions/pairings/matching pairings, and their free ana-
logues S+

N , O
+
N , U

+
N , coming from the categories of noncrossing partitions/

pairings/matching pairings. See [6, 16].
Now back to our homogeneous space questions, we have:

Proposition 7.3. When G ⊂ U+
N is easy, coming from a category of

partitions D, the space XG,I ⊂ SN−1
C,+ appears by imposing the relations∑

i1...ik

δπ(i1 . . . ik)xe1
i1
. . . xek

ik
= |I||π|−k/2 , ∀ k, ∀ π ∈ D(k)

where D(k) = D(0, k), and where | · | denotes the number of blocks.
Proof. We know by easiness that Fix(u⊗k) is spanned by the vectors ξπ =
Tπ, with π ∈ D(k). According to Definition 7.1, these latter vectors are
given by:

ξπ =
∑
i1...ik

δπ(i1 . . . ik)ei1 ⊗ . . .⊗ eik .

By applying now Theorem 4.3, with this particular choice of the vectors
{ξπ}, we deduce that XG,I ⊂ SN−1

C,+ appears by imposing the following
relations:∑
i1...ik

δπ(i1 . . . ik)xe1
i1
. . . xek

ik
= 1√

|I|k
∑

b1...bk∈I
δπ(b1 . . . bk), ∀ k,∀π ∈ D(k) .

Now since the sum on the right equals |I||π|, this gives the result. �
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More generally now, in view of the examples from section 6 above,
making the link with [5], it is interesting to work out what happens when
G is a product of easy quantum groups, and the index set I appears as
I = {(c, . . . , c) | c ∈ J}, for a certain set J .

The result here, in its most general form, is as follows:

Theorem 7.4. For a product of easy quantum groups, G = G
(1)
N1
× . . . ×

G
(s)
Ns

, and with I = {(c, . . . , c) | c ∈ J}, the space XG,I ⊂ SN−1
C,+ appears by

imposing the relations∑
i1...ik

δπ(i1 . . . ik)xe1
i1
. . . xek

ik
= |J ||π1∨...∨πs|−k/2,

∀ k, ∀ π ∈ D(1)(k)× . . .×D(s)(k)

where D(r) ⊂ P is the category of partitions associated to G(r)
Nr
⊂ U+

Nr
, and

where the partition π1∨ . . .∨πs ∈ P (k) is the one obtained by superposing
π1, . . . , πs.

Proof. Since we are in a direct product situation, G = G
(1)
N1
× . . . × G(s)

Ns
,

the general theory in [17] applies, and shows that a basis for Fix(u⊗k)
is provided by the vectors ρπ = ξπ1 ⊗ . . . ⊗ ξπs , with π = (π1, . . . , πs) ∈
D(1)(k)× . . .×D(s)(k).

Once again Theorem 4.3 applies, and shows that the spaceXG,I ⊂ SN−1
C,+

appears by imposing the following relations to the standard coordinates:∑
i1...ik

δπ(i1 . . . ik)xe1
i1
. . . xek

ik
= 1√

|I|k
∑

b1...bk∈I
δπ(b1 . . . bk),

∀ k, ∀ π ∈ D(1)(k)× . . .×D(s)(k) .
Since the conditions b1, . . . , bk ∈ I read b1 = (c1, . . . , c1), . . . , bk =

(ck, . . . , ck), for certain elements c1, . . . ck ∈ J , the sums on the right are
given by:∑

b1...bk∈I
δπ(b1 . . . bk) =

∑
c1...ck∈J

δπ(c1, . . . , c1, . . . . . . , ck, . . . , ck)

=
∑

c1...ck∈J
δπ1(c1 . . . ck) . . . δπs(c1 . . . ck)

=
∑

c1...ck∈J
δπ1∨...∨πs(c1 . . . ck) .
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Now since the sum on the right equals |J ||π1∨...∨πs|, this gives the
result. �

8. Probabilistic aspects

Consider the spaces X = XG,I from Theorem 7.4. Our purpose now will
be to establish some liberation results, in the sense of the Bercovici–Pata
bijection [7].

As in [1, 2], we use suitable sums of “non-overlapping” coordinates.
To be more precise, since we are in a direct product situation, in N =
N1 . . . Ns dimensions, we can consider “diagonal” coordinates xi...i, and
then sum them over various indices i.

As a first result regarding such variables, we have:

Proposition 8.1. The moments of the variable χT =
∑
i≤T xi...i are given

by ∫
X
χkT '

1√
Mk

∑
π∈D(1)(k)∩...∩D(s)(k)

(
TM

N

)|π|
in the Ni →∞ limit, ∀ i, where M = |I|, and N = N1 . . . Ns.

Proof. We have the following formula:

π(xi1...is) = 1√
M

∑
c∈J

ui1c ⊗ . . .⊗ uisc .

For the variable in the statement, we therefore obtain:

π(χT ) = 1√
M

∑
i≤T

∑
c∈J

uic ⊗ . . .⊗ uic .

Now by raising to the power k and integrating, we obtain:∫
X
χkT = 1√

Mk

∑
i1...ik≤T

∑
c1...ck∈J

∫
G(1)

ui1c1 . . . uikck
. . . . . .

∫
G(s)

ui1c1 . . . uikck

= 1√
Mk

∑
ic

∑
πσ

δπ1(i)δσ1(c)W (1)
kN1

(π1, σ1) . . . δπs(i)δσs(c)W (s)
kNs

(πs, σs)

= 1√
Mk

∑
πσ

T |π1∨...∨πs|M |σ1∨...∨σs|W
(1)
kN1

(π1, σ1) . . .W (s)
kNs

(πs, σs) .
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We use now the standard fact, from [2], that the Weingarten functions
are concentrated on the diagonal. Thus in the limit we must have πi = σi
for any i, and we obtain:∫

X
χkT '

1√
Mk

∑
π

T |π1∨...∨πs|M |π1∨...∨πs|N
−|π1|
1 . . . N−|πs|

s

' 1√
Mk

∑
π∈D(1)∩...∩D(s)

T |π|M |π|(N1 . . . Ns)−|π|

= 1√
Mk

∑
π∈D(1)∩...∩D(s)

(
TM

N

)|π|
.

But this gives the formula in the statement, and we are done. �

As a consequence, we have the following result:

Theorem 8.2. In the context of a liberation operation for quantum groups,
G(i) → G(i)+, the laws of the variables

√
MχT are in Bercovici–Pata bi-

jection, in the Ni →∞ limit.

Proof. Assume indeed that we have easy quantum groups G(1), . . . , G(s),
with free versions G(1)+, . . . , G(s)+. At the level of the categories of parti-
tions, we have: ⋂

i

(
D(i) ∩NC

)
=
(⋂

i

D(i)
)
∩NC .

Since the intersection of Hom-spaces is the Hom-space for the generated
quantum group, we deduce that at the quantum group level, we have:

〈G(1)+, . . . , G(s)+〉 = 〈G(1), . . . , G(s)〉+ .
Thus the result follows from Proposition 8.1, and from the Bercovici–

Pata bijection result for truncated characters for this latter liberation
operation [6, 16]. �

As a conclusion, Theorem 7.4 provides a quite reasonable definition for
the notion of “easy homogeneous space”. There are of course several po-
tential extensions to be explored, by using for instance the more general
notions from [11, 15]. Interesting as well would be to try to understand
what an “easy algebraic manifold” should be, independently of the quan-
tum group context. Observe that this latter question makes indeed sense,
because in the context of the general considerations in Section 3 above,
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G ⊂ U+
N appears as a certain uniquely determined quantum subgroup of

the affine quantum isometry group of X ⊂ SN−1
C,+ . Thus, an axiomatiza-

tion of the easy algebraic manifolds is in principle possible, without direct
reference to the underlying compact quantum groups.
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