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A note on non-reduced reflection
factorizations of Coxeter elements

Patrick Wegener & Sophiane Yahiatene

Abstract We extend a result of Lewis and Reiner from finite Coxeter groups to Coxeter groups
of finite rank by showing that two reflection factorizations of a Coxeter element lie in the same
Hurwitz orbit if and only if they share the same multiset of conjugacy classes.

1. Introduction
Given a Coxeter system (W,S) with set of reflections T , the braid group (e.g. see [1]
for a definition) acts on reflection factorizations of a given element w ∈ W , that is
it acts on tuples (t1, . . . , tm) ∈ Tm of reflections such that w = t1 · · · tm. This action
is called Hurwitz action. A standard braid group generator σi (resp. its inverse σ−1

i )
acts by a Hurwitz move on a reflection factorization:

σi(t1, . . . , ti−1, ti, ti+1, ti+2, . . . , tn) = (t1, . . . , ti−1, t
ti
i+1, ti, ti+2, . . . , tn),

σ−1
i (t1, . . . , ti−1, ti, ti+1, ti+2, . . . , tn) = (t1, . . . , ti−1, ti+1, t

ti+1
i , ti+2, . . . , tn),

where we use the notation gh := hgh−1 for conjugation.
We call a reflection factorization (t1, . . . , tm) of an element w ∈ W reduced if w

cannot be written as a product of less than m reflections. It has been first observed
by Deligne [3] that this action is transitive on reduced reflection factorizations of a
Coxeter element if W is finite. The first published proof is due to Bessis [2, Propo-
sition 1.6.1]. Igusa and Schiffler showed that this statement is true for every Coxeter
group [7, Theorem 1.4].

The question of how these results extend to non-reduced reflection factorizations
has been first addressed by Lewis and Reiner.

Theorem (Lewis–Reiner, [8, Theorem 1.1]). In a finite real reflection group, two re-
flection factorizations of a Coxeter element lie in the same Hurwitz orbit if and only
if they share the same multiset of conjugacy classes.

Their proof makes heavy use of the following remarkable result for finite Coxeter
groups.
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Lemma 1.1 (Lewis–Reiner, [8, Corollary 1.4]). Let (W,S) be a finite Coxeter system
and w ∈ W . Then every reflection factorization of w lies in the same Hurwitz orbit
of some reflection factorization (t1, . . . , tm) of w such that (t1, . . . , t`) is a reduced
reflection factorization of w for some ` 6 m and

t`+1 = t`+2, t`+3 = t`+4, . . . , tm−1 = tm.

This result is proved by a case-by-case analysis and seems not to extend to infinite
Coxeter groups in general. We give a case-free proof of a similar (but weaker) result
for all Coxeter groups of finite rank (see Lemma 2.3). In this way, we obtain that the
result of Lewis and Reiner extends to all Coxeter groups of finite rank which provides
a positive answer to a question of Lewis and Reiner [8, Question 6.2].

Theorem 1.2. Let (W,S) be a Coxeter system of finite rank. Then two reflection
factorizations of a Coxeter element in W lie in the same Hurwitz orbit if and only if
they share the same multiset of conjugacy classes.

2. The proof
Throughout this note let (W,S) be a Coxeter system of finite rank n ∈ N with set of
reflections T = {wsw−1 | w ∈ W, s ∈ S}. All necessary definitions and facts about
Coxeter groups we will use are covered by [1, 4, 5, 6].

A subgroupW ′ ofW is called a reflection subgroup ifW ′ = 〈W ′∩T 〉. Each reflection
subgroup W ′ admits a canonical set of generators χ(W ′) such that (W ′, χ(W ′)) is a
Coxeter system and the set of reflections for (W ′, χ(W ′)) is given by W ′ ∩ T =⋃
w∈W ′ wχ(W ′)w−1 (see [4, (3.3) Theorem]). A reflection subgroup of the form 〈I〉

for some I ⊆ S, is called parabolic subgroup.
Let S = {s1, . . . , sn}. For each permutation π of the numbers {1, . . . , n}, the ele-

ment c = sπ(1) · · · sπ(n) is called a Coxeter element. A Coxeter element of a parabolic
subgroup is called parabolic Coxeter element.

We denote by `S (resp. `T ) the length function onW with respect to the generating
set S (resp. T ).

Definition 2.1. We define the Bruhat graph of (W,S) to be the directed graph Ω(W,S)
on vertex set W with a directed edge from x to y if there exists t ∈ T such that y = xt
and `S(x) < `S(y).

Moreover, we denote by Ω(W,S) the corresponding undirected graph and for a subset
X ⊆W we denote by Ω(W,S)(X) the full subgraph of Ω(W,S) on the vertex set X.

Note that Ω(W,S) is exactly the Cayley graph of W with generating set T .

We use the notation (t1, . . . , tm) ∼ (r1, . . . , rm) to indicate that both tuples lie in
the same orbit under the Hurwitz action.

The following fact is already part of the proof of [1, Proposition 2.2]. For sake of
completeness we include a proof (which can also be found in the first author’s Ph.D.
thesis [9, Proposition 2.3.6]).

Proposition 2.2. Let w ∈W and t1, t2 ∈ T with t1 6= t2 such that
w wt1 wt1t2

in Ω(W,S). Then there exist t′1, t′2 ∈ 〈t1, t2〉 ∩ T with (t1, t2) ∼ (t′1, t′2) such that one of
the following cases hold:

(1) w wt′1 wt′1t
′
2 = wt1t2;

(2) w wt′1 wt′1t
′
2 = wt1t2;

(3) w wt′1 wt′1t
′
2 = wt1t2;

Furthermore, in each of these cases we have `S(wt′1) < `S(wt1).
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Proof. Consider the dihedral reflection subgroup W ′ := 〈t1, t2〉 and let S′ := χ(W ′).
We have w,wt1, wt1t2 ∈ wW ′. Therefore we just have to consider the coset wW ′ to
prove the claim. By [5, (1.4) Theorem] we have

Ω(W,S)(W ′) ∼= Ω(W,S)(wW ′) ∼= Ω(W ′,S′),

where (W ′, S′) is dihedral and we can check the claim there directly. Any reflection
(element of odd S′-length) of W ′ is joined by an edge to a rotation (element of even
S′-length) which in Ω(W ′,S′) is oriented towards the element of greater S′-length. For
x ∈W ′ there are three possible situations:

• `S′(x) < `S′(xt1t2)
• `S′(x) > `S′(xt1t2)
• `S′(x) = `S′(xt1t2) (in particular x 6= e since t1 6= t2).

We can choose t′1, t′2 ∈ W ′ ∩ T with t′1t′2 = t1t2 in the three situations such that we
have one of the following situations:

• x xt′1 xt′1t
′
2

• x xt′1 xt′1t
′
2

• x xt′1 xt′1t
′
2

To see this, note that x and xt1t2 are both either reflections or rotations. Therefore
both are either of odd or even S′-length. Thus `S′(x) < `S′(xt1t2) implies `S′(x)+2 6
`S′(xt1t2) and we find t′1 with `S′(x) < `S′(xt′1) < `S′(xt1t2). By setting t′2 := t′1t1t2
we obtain x xt′1 xt′1t

′
2 and t′1t′2 = t1t2. The remaining cases are similar.

It is easy to see that the Hurwitz orbit of (t1, t2) is the set of all pairs (r1, r2) of
reflections of W ′ such that t1t2 = r1r2 (see also [1]). Hence we have (t1, t2) ∼ (t′1, t′2).

It remains to show that `S(wt′1) < `S(wt1) in each of the cases (1)-(3). Since the
initial path is of the form w wt1 wt1t2, we have:

(i) `S(w) < `S(wt1), and
(ii) `S(wt1t2) < `S(wt1).

In case (1) we have an edge wt′1 wt′1t
′
2 = wt1t2, thus

`S(wt′1) < `S(wt′1t′2) = `S(wt1t2)
(ii)
< `S(wt1).

In cases (2) and (3) we have an edge w wt′1, thus

`S(wt′1) < `S(w)
(i)
< `S(wt1). �

Lemma 2.3. Let w ∈ W with `S(w) = m and w = t1 · · · tm+2k with ti ∈ T for
1 6 i 6 m+ 2k and some k ∈ Z>0. Then there exists a braid σ ∈ Bm+2k such that

σ(t1, . . . , tm+2k) = (r1, . . . , rm, ri1 , ri1 , . . . , rik , rik ).

Proof. We proceed by induction on k. The case k = 0 is trivially satisfied. Therefore
let k > 1 and assume that all factorizations in Bm+2k(t1, . . . , tm+2k) consist of pairwise
different factors. Consider the path of Ω(W,S) starting in e and ending in w induced
by (t1, . . . , tm+2k). Then Proposition 2.2 allows us to replace successively the parts of
the path of shape ? ? ? by

? ? ?, ? ? ?, or ? ? ?

only using the Hurwitz action. The latter is possible since the reflections of the fac-
torizations in the Hurwitz orbit are pairwise different. Since by Proposition 2.2 each
replacement reduces the sum of the length of the vertices, eventually we get after
finitely many replacements a path of the form

e t′1 t′1t
′
2 . . . t′1t

′
2 · · · t′p t′1t

′
2 · · · t′pt′p+1 . . . t′1 · · · t′m+2k = w
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with t′i ∈ T for 1 6 i 6 m+ 2k, that is, the path is first decreasing, then increasing.
Since the path starts with e, it holds p = 0 and therefore it has no decreasing part.
Altogether the initial path can be transformed to

e t′1 t′1t
′
2 . . . t′1 · · · t′m+2k = w

by using the Hurwitz action. Since the length of w is m and k > 1, there cannot be an
increasing path of length m+ 2k, so we arrive at a contradiction. Thus there exists a
factorization (t′1, . . . , t′m+2(k−1), rik , rik ) in Bm+2k(t1, . . . , tm+2k). From the induction
hypothesis follows

(t′1, . . . , t′m+2(k−1)) ∼ (r1, . . . , rm, ri1 , ri1 , . . . , rik−1 , rik−1)

and the latter yields the assumption. �

Remark 2.4. Note that `T (w) 6 `S(w) for all w ∈W . Therefore the reflection factor-
ization w = r1 · · · rm obtained by Lemma 2.3 does not have to be a reduced reflection
factorization. This is the main difference compared with the key argument Lemma 1.1
in the proof of Lewis and Reiner. However, by [1, Lemma 2.1] we have `S(w) = `T (w)
for an element w ∈W if and only if w is a parabolic Coxeter element. Therefore, if w
is a parabolic Coxeter element, then Lemma 2.3 generalizes Lemma 1.1. In particular,
a reflection factorization of a parabolic Coxeter element can be reduced by just using
Hurwitz moves and deleting matching neighbors.

A proof of the following fact already implicitly appears in the proof of [8, Theo-
rem 1.1].

Lemma 2.5. Let t1, . . . , tn, t ∈ T . Then (t1, . . . , tn, t, t) ∼ (t1, . . . , tn, tw, tw) for all
w ∈ 〈t1, . . . , tn〉.

Proof. Let i ∈ {1, . . . , n} be arbitrary and assume w = ti (the general assertion follows
by induction). Denoting an omitted entry by t̂i, we obtain

(t1, . . . , tn, t, t) ∼ (t1, . . . , ti−1, t̂i, t
ti
i+1 . . . , t

ti
n , t

ti , tti , ti)
∼ (t1, . . . , ti−1, t̂i, t

ti
i+1 . . . , t

ti
n , ti, t

ti , tti)
∼ (t1, . . . , ti−1, ti, ti+1, . . . , tn, t

ti , tti). �

Proof of Theorem 1.2. Let c ∈W be a Coxeter element and

c = t′1 · · · t′n+2k = r′1 · · · r′n+2k

two reflection factorizations of c for some k ∈ Z>0 such that they share the same
multiset of conjugacy classes. By Lemma 2.3 we have

(t′1, . . . , t′n+2k) ∼ (t1, . . . , tn, ti1 , ti1 , . . . , tik , tik )
and (r′1, . . . , r′n+2k) ∼ (r1, . . . , rn, ri1 , ri1 , . . . , rik , rik ).

Since c = t1 · · · tn = r1 · · · rn and `S(c) = `T (c) = n by [1, Lemma 2.1], (t1, . . . , tn)
and (r1, . . . , rn) are reduced reflection factorizations of c. Hence we have (t1, . . . , tn) ∼
(r1, . . . , rn) by [1, Theorem 1.3]. In particular (t1, . . . , tn) and (r1, . . . , rn) share the
same multiset of conjugacy classes. Hence ti1 , . . . , tik and ri1 , . . . , rik have to share
the same multiset of conjugacy classes. Since (t, t, r, r) ∼ (r, r, t, t) for all r, t ∈ T , we
can assume after a possible renumbering that there exists wj ∈W such that twj

ij
= rij

for all j ∈ {1, . . . , k}. We proceed by induction on k. As we have seen above, the case
k = 0 is precisely [1, Theorem 1.3]. Therefore let k > 0. By induction we have

(t1, . . . , tn, ti1 , ti1 , . . . , tik−1 , tik−1 , tik , tik )∼ (r1, . . . , rn, ri1 , ri1 , . . . , rik−1 , rik−1 , tik , tik ).
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As a consequence of [1, Theorem 1.3], we have W = 〈r1, . . . , rn〉. By what we have
pointed out before, there exists wk ∈ 〈r1, . . . , rn〉 such that twk

ik
= rik . We conclude

(t′1, . . . , t′n+2k) ∼ (r1, . . . , rn, ri1 , ri1 , . . . , rik−1 , rik−1 , tik , tik )

∼ (r1, . . . , rn, tik , tik , ri1 , ri1 , . . . , rik−1 , rik−1)
2.5∼ (r1, . . . , rn, t

wk
ik
, twk
ik
, ri1 , ri1 , . . . , rik−1 , rik−1)

= (r1, . . . , rn, rik , rik , ri1 , ri1 , . . . , rik−1 , rik−1)

∼ (r1, . . . , rn, ri1 , ri1 , . . . , rik−1 , rik−1 , rik , rik )

∼ (r′1, . . . , r′n+2k). �

Corollary 2.6. If the Coxeter graph of (W,S) is connected and has a spanning tree
with odd labels on all its edges, then two reflection factorizations of the same length
of a Coxeter element in W lie in the same Hurwitz orbit.

Proof. Since the Coxeter graph of (W,S) contains a spanning tree, all elements of S
are conjugate. Therefore all reflections in T are conjugate. Thus the assertion follows
by Theorem 1.2. �
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