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Type A admissible cells are
Kazhdan–Lusztig

Van Minh Nguyen

Abstract Admissible W-graphs were defined and combinatorially characterized by Stembridge
in [13]. The theory of admissible W-graphs was motivated by the need to construct W-graphs
for Kazhdan–Lusztig cells, which play an important role in the representation theory of Hecke
algebras, without computing Kazhdan–Lusztig polynomials. In this paper, we shall show that
type A-admissible W-cells are Kazhdan–Lusztig as conjectured by Stembridge in his original
paper.

1. Introduction
Let (W,S) be a Coxeter system and H(W ) its Hecke algebra over Z[q, q−1], the ring
of Laurent polynomials in the indeterminate q. We are interested in representations of
W and H(W ) that can be described by combinatorial objects, namely W-graphs. In
particular, we are interested inW-graphs corresponding to Kazhdan–Lusztig left cells.

In principle, when computing left cells one encounters the problem of having to
compute a large number of Kazhdan–Lusztig polynomials before any explicit de-
scription of their W-graphs can be given. In [13], Stembridge introduced admissible
W-graphs; these can be described combinatorially and can be constructed without
calculating Kazhdan–Lusztig polynomials. Moreover, the W-graphs corresponding to
Kazhdan–Lusztig left cells are admissible. Stembridge showed in [15] that for any
given finite W there are only finitely many stongly connected admissible W-graphs.
It was conjectured by Stembridge that in type A all strongly connected admissible
W -graphs are isomorphic to Kazhdan–Lusztig left cells. In this paper we complete
the proof of Stembridge’s conjecture.

We shall work with S-coloured graphs (as defined in Section 3 below), of which
W-graphs are examples. These graphs have both edges (bi-directional) and arcs (uni-
directional). A cell in such a graph Γ is by definition a strongly connected component
of Γ, and a simple part is a connected component of the graph obtained by removing
all arcs that are not edges and edges of weight greater than 1. A simple component
is the full subgraph spanned by a simple part. Stembridge introduced W-molecular
graphs, defined by conditions that are weaker than those for admissible W-graphs.
Simple components of molecular graphs are called molecules.

By an admissible W-cell we mean a cell in an admissible W-graph (rather than a
cell in a W-molecular graph).
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In [4], Chmutov established the first step towards the proof of Stembridge’s con-
jecture, showing that if (W,S) is of type An−1 then the simple part of a W-molecule
is isomorphic to the simple part of a Kazhdan–Lusztig left cell. The proof made use
of the axiomatisation of dual equivalence graphs on standard tableaux generated by
dual Knuth equivalence relations, given in an earlier paper by Assaf [1].

By Chmutov’s result each molecule of an arbitrary admissible W-graph of
type An−1 is associated with a partition of n, and the vertices within each molecule
are parametrized by the set of standard tableaux of the corresponding shape. The
Bruhat order on W induces a partial order on these tableaux, and this extends natu-
rally to a partial order on the set of all n-box standard tableaux (see Section 7 below),
thus giving rise to a partial order on the vertex set of the graph. We are able to use the
combinatorics of tableaux to show that type A admissible W-graphs are ordered, in
the sense of Definition 8.1: if an arc has tail corresponding to a standard tableau t and
head corresponding to a standard tableau u then either u < t, or else head and tail
belong to the same molecule and u = st for some simple transposition s. This property
of admissible W-graphs is the key to our proof of the conjecture of Stembridge.

The proof of Proposition 9.5 furnishes an algorithm for computation of W-graphs
for left cells in type An−1 (avoiding the computation of Kazhdan–Lusztig polynomi-
als). This has been implemented in Magma and checked for a variety of partitions λ
with n 6 16, and module dimension up to 171600 (for λ = (5, 5, 3, 3)). The Magma
code is available on request.

We organize the paper in the following sections. Section 2 and Section 3 deal with
the background on Coxeter groups and the corresponding Hecke algebras. In Section 4
the definition and properties of W-graphs are recalled. In Section 5, we recall the
definitions of admissible W-graphs and molecules and how these can be characterized
combinatorially. Section 6 presents combinatorics of tableaux and the relationship
between Kazhdan–Lusztig left cells, dual Knuth equivalence classes and admissible
molecules. We introduce the paired dual Knuth equivalence relation in Section 7. In
Section 8, we prove the first main result, namely that for type An−1, all admissible
W-graphs are ordered. The proof that type A admissible W-cells are isomorphic to
Kazhdan–Lusztig left cells is completed in Section 9.

2. Coxeter groups
Let (W,S) be a Coxeter system and l the length function on W . The Coxeter group
W comes equipped with the left weak order, the right weak order and the Bruhat
order, respectively denoted by 6L, 6R and 6, and defined as follows.

Definition 2.1. The left weak order is the partial order on W generated by the rela-
tions x 6L y for all x, y ∈W with l(x) < l(y) and yx−1 ∈ S.

The right weak order is the partial order on W generated by the relations x 6R y
for all x y ∈W with l(x) < l(y) and x−1y ∈ S.

The Bruhat order is the partial order on W generated by the relations x 6 y for
all x, y ∈W with l(x) < l(y) and yx−1 conjugate to an element of S.

Observe that the weak orders are characterized by the property that x 6R xy and
y 6L xy whenever l(xy) = l(x) + l(y).

For each J ⊆ S let WJ be the (standard parabolic) subgroup of W generated by J ,
and let DJ the set of distinguished (or minimal) representatives of the left cosets of
WJ in W . Thus each w ∈ W has a unique factorization w = du with d ∈ DJ and
u ∈ WJ , and l(du) = l(d) + l(u) holds for all d ∈ DJ and u ∈ WJ . It is easily seen
that DJ is an ideal of (W,6L), in the sense that if w ∈ DJ and v ∈ W with v 6L w
then v ∈ DJ .
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IfWJ is finite then we denote the longest element ofWJ by wJ . By [8, Lemma 2.2.1],
if W is finite then DJ = {d ∈ W | d 6L dJ}, where dJ is the unique element in
DJ ∩ wSWJ .

3. Hecke algebras
Let A = Z[q, q−1], the ring of Laurent polynomials with integer coefficients in the
indeterminate q, and let A+ = Z[q]. The Hecke algebra of a Coxeter system (W,S),
denoted by H(W ) or simply by H, is an associative A-algebra with A-basis {Hw |
w ∈W } satisfying

H2
s = 1 + (q − q−1)Hs for all s ∈ S,

Hxy = HxHy for all x, y ∈W with l(xy) = l(x) + l(y).

We let a 7→ a be the involutory automorphism of A = Z[q, q−1] defined by q = q−1.
It is well known that this extends to an involutory automorphism of H satisfying

Hs = H−1
s = Hs − (q − q−1) for all s ∈ S.

If J ⊆ S then H(WJ), the Hecke algebra associated with the Coxeter system
(WJ , J), is isomorphic to the subalgebra of H(W ) generated by {Hs | s ∈ J }. We
shall identify H(WJ) with this subalgebra.

4. W -graphs
Given a set S, we define an S-coloured graph to be a triple Γ = (V, µ, τ) consisting
of a set V, a function µ : V × V → Z[q, q−1] and a function τ from V to P(S), the
power set of S. The elements of V are the vertices of Γ, and if v ∈ V then τ(v) is the
colour of the vertex. To interpret Γ as a (directed) graph, we adopt the convention
that if v, u ∈ V then (v, u) is an arc from v to u of Γ if and only if µ(u, v) 6= 0 and
τ(u) * τ(v), and {v, u} is an edge of Γ if and only if (v, u) and (u, v) are both arcs.
We call µ(u, v) the weight of the arc (v, u). An edge {u, v} is said to be symmetric if
µ(u, v) = µ(v, u), and simple if µ(u, v) = µ(v, u) = 1.

An S-coloured graph is reduced if µ(u, v) = 0 whenever τ(u) ⊆ τ(v). Except when
stated otherwise, all S-coloured graphs we consider are assumed to be reduced.

If (W,S) is a Coxeter system, then a W-graph is an S-coloured graph Γ = (V, µ, τ)
such that the free A-module with basis V admits an H-module structure satisfying

(1) Hsv =
{
−q−1v if s ∈ τ(v)
qv +

∑
{u∈V |s∈τ(u)} µ(u, v)u if s /∈ τ(v),

for all s ∈ S and v ∈ V. We write MΓ for the H-module given by the W-graph Γ in
this way.

Note that µ(u, v) appears in Eq. (1) only if there is an s with s ∈ τ(u) and s /∈ τ(v).
Thus redefining µ(u, v) = 0 whenever τ(u) ⊆ τ(v) does not alterMΓ. So a non-reduced
S-coloured graph is a W -graph if and only if the corresponding reduced S-coloured
graph is a W -graph.

Since MΓ is A-free with basis V it admits an A-semilinear involution α 7→ α,
uniquely determined by the condition that v = v for all v ∈ V . We call this the bar
involution on MΓ. It is a consequence of (1) that hα = hα for all h ∈ H and α ∈MΓ.

We shall sometimes write Γ(V ) for the W-graph with vertex set V, if the functions
µ and τ are clear from the context.

If Γ = (V, µ, τ) is an S-coloured graph and J ⊆ S then the WJ -restriction of Γ is
defined to be the J-coloured graph ΓJ = (V, µJ , τJ) where τJ(v) = τ(v) ∩ J for all
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v ∈ V and

µJ(u, v) =
{
µ(u, v) if τJ(u) * τJ(v),
0 if τJ(u) ⊆ τJ(v).

It is clear that if J ⊆ S and Γ = (V, µ, τ) is a W-graph then ΓJ = (V, µJ , τJ) is a
WJ -graph.

Following [9], define a preorder 6Γ on V as follows: u 6Γ v if there exists a sequence
of vertices u = x0, x1, . . . , xm = v such that τ(xi−1) * τ(xi) and µ(xi−1, xi) 6= 0 for
all i ∈ [1,m]. That is, u 6Γ v if there is a directed path from v to u in Γ. Let ∼Γ be the
equivalence relation determined by this preorder. The equivalence classes with respect
to ∼Γ are called the cells of Γ. That is, the cells are the strongly connected components
of the directed graph Γ. Each equivalence class, regarded as a full subgraph of Γ, is
itself a W-graph, with the µ and τ functions being the restrictions of those for Γ.
The preorder 6Γ induces a partial order on the set of cells: if C and C′ are cells, then
C 6Γ C′ if u 6Γ v for some u ∈ C and v ∈ C′.

It follows readily from (1) that a subset of V spans a H(W )-submodule of MΓ if
and only if it is Γ-closed, in the sense that for every vertex v in the subset, each u ∈ V
satisfying µ(u, v) 6= 0 and τ(u) * τ(v) is also in the subset. Thus U ⊆ V is a Γ-closed
subset of V if and only if U =

⋃
v∈U{u ∈ V | u 6Γ v }. Clearly, a subset of V is

Γ-closed if and only if it is the union of cells that form an ideal with respect to the
partial order 6Γ on the set of cells.

Suppose that U is a Γ-closed subset of V , and let Γ(U) and Γ(V r U) be the full
subgraphs of Γ induced by U and V rU , with arc weights and vertex colours inherited
from Γ. Then Γ(U) and Γ(V r U) are themselves W-graphs, and

MΓ(VrU) ∼= MΓ(V )/MΓ(U)

as H(W )-modules.
We end this section by recalling the original Kazhdan–Lusztig W-graph for the

regular representation of H(W ). For each w ∈W , define the sets

L(w) = {s ∈ S | l(sw) < l(w)}

and

R(w) = {s ∈ S | l(ws) < l(w)},

the elements of which are called the left descents of w and the right descents of w,
respectively. Kazhdan and Lusztig give a recursive procedure that defines polynomials
Py,w whenever y, w ∈ W and y < w. These polynomials satisfy degPy,w 6 1

2 (l(w)−
l(y) − 1), and µy,w is defined to be the leading coefficient of Py,w if the degree is
1
2 (l(w)− l(y)− 1), or 0 otherwise.

Define W o = {wo | w ∈ W } to be the group opposite to W, and observe that
(W ×W o, S t So) is a Coxeter system. Kazhdan and Lusztig show that if µ and τ̄
are defined by the formulas

µ(w, y) = µ(y, w) =
{
µy,w if y < w

µw,y if w < y

τ̄(w) = L(w) tR(w)o

then (W,µ, τ̄) is a (W ×W o)-graph (usually not reduced). Thus M = AW may be
regarded as an (H,H)-bimodule. Furthermore, the construction produces an explicit
(H,H)-bimodule isomorphism M ∼= H.

It follows easily from the definition of µy,w that µ(y, w) 6= 0 only if l(w) − l(y)
is odd; thus (W,µ, τ̄) is a bipartite graph. The non-negativity of all coefficients of
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the Kazhdan–Lusztig polynomials, conjectured in [9], has been proved by Elias and
Williamson in [6].

Since W and W o are standard parabolic subgroups of W × W o, it follows that
Γ = (W,µ, τ) is a W-graph and Γo = (W,µ, τo) is a W o-graph, where τ and τo are
defined by τ(w) = L(w) and τo(w) = R(w)o, for all w ∈W .

In accordance with the theory described above, there are preorders on W deter-
mined by the (W ×W o)-graph structure, the W-graph structure and the W o-graph
structure. We call these the two-sided preorder (denoted by �LR), the left preorder
(�L) and the right preorder (�R). The corresponding cells are the two-sided cells, the
left cells and the right cells.

5. Admissible W -graphs
Let (W,S) be a Coxeter system, not necessarily finite. For s, t ∈ S, let m(s, t) be
the order of st in W. Thus {s, t} is a bond in the Coxeter diagram if and only if
m(s, t) > 2.

Definition 5.1 ([13, Definition 2.1]). An S-coloured graph Γ = (V, µ, τ) is admissible
if the following three conditions are satisfied:

(i) µ(V × V ) ⊆ N;
(ii) Γ is symmetric, that is, µ(u, v) = µ(v, u) if τ(u) * τ(v) and τ(v) * τ(u);
(iii) Γ has a bipartition.

Remark 5.2. As we have seen in Sec. 4, the Kazhdan–LusztigW-graph Γ = Γ(W,µ, τ)
is admissible. So its cells are admissible.

Let (W,S) be a braid finite Coxeter system. (That is, m(s, t) <∞ for all s, t ∈ S.)

Definition 5.3 ([14, Definition 2.1]). An S-coloured graph Γ = (V, µ, τ) is said to
satisfy the Compatibility Rule if for all u, v ∈ V with µ(u, v) 6= 0, each s ∈ τ(u)rτ(v)
and each t ∈ τ(v) r τ(u) are joined by a bond in the Coxeter diagram of W .

By [13, Proposition 4.1], every W-graph satisfies the Compatibility Rule.

Definition 5.4 ([14, Definition 2.3]). An S-coloured graph Γ = (V, µ, τ) is said to
satisfy the Simplicity Rule if for all u, v ∈ V with µ(u, v) 6= 0, either τ(v) $ τ(u) and
µ(v, u) = 0 or else τ(u) and τ(v) are not comparable and µ(u, v) = µ(v, u) = 1.

The Simplicity Rule implies that if µ(u, v) 6= 0 and µ(v, u) 6= 0 then µ(u, v) =
µ(v, u) = 1. That is, all edges are simple. Furthermore if {u, v} is an edge then τ(u)
and τ(v) are not comparable, so that there exist at least one s ∈ τ(u) r τ(v) and at
least one t ∈ τ(v) r τ(u). If the Compatibility Rule is also satisfied, then {s, t} must
be a bond in the Coxeter diagram.

If (W,S) is simply-laced then every W-graph with non-negative integer arc weights
satisfies the Simplicity Rule, even if it fails to be admissible: see [13, Remark 4.3].

Definition 5.5 ([14, Definition 2.4]). An admissible S-coloured graph Γ = (V, µ, τ)
satisfies the Bonding Rule if for all s, t ∈ S with m(s, t) > 2, the vertices v of Γ
satisfying either s ∈ τ(v) and t /∈ τ(v) or s /∈ τ(v) and t ∈ τ(v), together with edges
of {u, v} of Γ such that s ∈ τ(u)r τ(v) and t ∈ τ(v)r τ(u), form a disjoint union of
Dynkin diagrams of types A, D or E with Coxeter numbers that divide m(s, t).

Equivalently, an admissible S-coloured graph Γ satisfies the Bonding Rule if and
only if for all s, t ∈ S with m(s, t) > 2 the graphs of the cells in the W{s,t}-restriction
of Γ are all Dynkin diagrams of types A, D or E with Coxeter numbers that di-
vide m(s, t). (Note that in the W{s,t}-restriction of Γ each edge joins a vertex of
colour {s} to a vertex of colour {t}.)
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Remark 5.6. In the case m(s, t) = 3, the Bonding Rule becomes the Simply-Laced
Bonding Rule: for every vertex u such that s ∈ τ(u) and t /∈ τ(u), there exists a
unique adjacent vertex v such that t ∈ τ(v) and s /∈ τ(v).

By [13, Proposition 4.4], admissible W-graphs satisfy the Bonding Rule.
Let Γ = (V, µ, τ) be an S-coloured graph. Let s, t ∈ S with m(s, t) = m > 2.

Suppose that u, v ∈ V with s, t /∈ τ(u) and s, t ∈ τ(v). For 2 6 k 6 m, a directed
path (u, v1, . . . , vk−1, v) in Γ is said to be alternating of type (s, t) if s ∈ τ(vi) and
t /∈ τ(vi) for odd i and t ∈ τ(vi) and s /∈ τ(vi) for even i. Define

(2) Nk
s,t(Γ;u, v) =

∑
v1,...,vk−1

µ(v, vk−1)µ(vk−1vk−2) · · ·µ(v2, v1)µ(v1, u),

where the sum extends over all paths (u, v1, . . . , vk−1, v) that are alternating of type
(s, t).

Note that if Γ is admissible then all terms in (2) are positive.

Definition 5.7 ([14, Definition 2.9]). An admissible S-coloured graph Γ = (V, µ, τ)
satisfies the Polygon Rule if for all s, t ∈ S and all u, v ∈ V such that s, t ∈ τ(v)rτ(u),
we have

Nk
s,t(Γ;u, v) = Nk

t,s(Γ;u, v) for all r such that 2 6 k 6 m(s, t).

By [13, Proposition 4.7], all W-graphs with integer arc weights satisfy the Polygon
Rule.

The next result provides a necessary and sufficient condition for an admissible
S-coloured graph to be a W-graph.

Theorem 5.8 ([13, Theorem 4.9]). An admissible S-coloured graph Γ = (V, µ, τ) is
a W-graph if and only if it satisfies the Compatibility Rule, the Simplicity Rule, the
Bonding Rule and the Polygon Rule.

It is convenient to introduce a weakened version of the Polygon Rule.

Definition 5.9 ([14, Definition 2.9]). An admissible S-coloured graph Γ = (V, µ, τ)
satisfies the Local Polygon Rule if for all s, t ∈ S, all k such that 2 6 k 6 m(s, t),
and all u, v such that s, t ∈ τ(v) r τ(u), we have Nk

s,t(Γ;u, v) = Nk
t,s(Γ;u, v) under

any of the following conditions:
(i) k = 2, and τ(u) r τ(v) 6= ∅;
(ii) k = 3, and there exist r, r′ ∈ τ(u) r τ(v) (not necessarily distinct) such that
{r, s} and {r′, t} are not bonds in the Dynkin diagram of W ;

(iii) k > 4, and there is r ∈ τ(u) r τ(v) such that {r, s} and {r, t} are not bonds
in the Dynkin diagram of W .

Definition 5.10 ([14, Definition 3.3]). An admissible S-coloured graph is called a W-
molecular graph if it satisfies the Compatibility Rule, the Simplicity Rule, the Bonding
Rule and Local Polygon Rules.

A simple part of an S-coloured graph Γ is a connected component of the graph
obtained by removing all arcs and all non-simple edges, and a simple component of Γ
is the full subgraph spanned by a simple part.

Definition 5.11. AW-molecule is aW-molecular graph that has only one simple part.

Remark 5.12. If Γ is an admissible W-graph then its simple components are W-
molecules, by [14, Fact 3.1]. More generally, by [14, Fact 3.2], the full subgraph of Γ
induced by any union of simple parts is a W-molecular graph.
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It is easy to check that if Γ = (V, µ, τ) is a W-molecular graph then its WJ -
restriction ΓJ is a WJ -molecular graph. The WJ -molecules of ΓJ are called WJ -
submolecules of Γ.

Proposition 5.13 ([4, Lemma 1]). Let (W,S) be a Coxeter system and M = (V, µ, τ)
a W-molecular graph, and let J = {r, s, t} ⊆ S with m(s, t) = 3 and r /∈ {s, t}.
Suppose that v, v′, u, u′ ∈ V , and that {v, v′} and {u, u′} are simple edges with

τ(v) ∩ J = {s}, τ(u) ∩ J = {s, r},
τ(v′) ∩ J = {t}, τ(u′) ∩ J = {t, r}.

Then µ(u, v) = µ(u′, v′).

6. Tableaux, left cells and admissible molecules of type A

For the remainder of this paper we shall focus attention on Coxeter systems of
type A. For each positive integer n we write Wn for the symmetric group on the
set {1, 2, . . . , n}, and let Sn = {si | i ∈ [1, n − 1]}, where si is the transposition that
swaps i and i + 1. Then (Wn, Sn) is a Coxeter system of type An−1. We write Hn
for the Hecke algebra of Wn. If 1 6 h 6 k 6 n then we write W[h,k] for the standard
parabolic subgroup of Wn generated by { si | i ∈ [h, k− 1] }. We adopt a left operator
convention for permutations, writing wi for the image of i under the permutation w.
We also define sij ∈Wn to be the transposition that swaps i and j.

A sequence of nonnegative integers α = (α1, α2 . . . , αk) is called a composition
of n if

∑k
i=1 αi = n. The αi are called the parts of α. We adopt the convention that

αi = 0 for all i > k. A composition λ = (λ1, λ2, . . . , λk) is called a partition of n if
λ1 > · · · > λk > 0. We define C(n) and P (n) to be the sets of all compositions of n
and all partitions of n, respectively.

Since some of the conventions we are about to adopt are slightly non-standard, it
seems appropriate to first make the following motivational remarks.

If Γ = (V, µ, τ) is the Wn-graph associated with a Kazhdan–Lusztig left cell in Wn

then the Hn-module M(Γ) is irreducible, and specializing to q = 1 yields a Wn-
module M(Γ)1 that is isomorphic to a Specht module. It follows that V is in bijective
correspondence with the set of standard Young tableaux of some shape. For each
v ∈ V the set τ(v) ⊆ Sn generates a parabolic subgroup of Wn, which acts on the
1-dimensional subspace of M(Γ)1 spanned by v via the sign character. Now since a
Young tableau is conventionally associated with the 1-character of its row group and
the sign character of its column group, it becomes more natural for our purposes to
focus on columns rather than rows. Hence we make the following definition.

Definition 6.1. For each α = (α1, . . . , αk) ∈ C(n) we define
[α] = { (i, j) | 1 6 i 6 αj and 1 6 j 6 k },

and call this as the diagram of α.

Pictorially [α] is represented by a top-justified array of boxes with αj boxes in the
j-th column; the pair (i, j) ∈ [α] corresponds to the i-th box in the j-th column. So
the diagram of α = (3, 4, 2) is

.
Thus if λ is a partition, the diagram [λ] in our sense is the transpose of the usual
Young diagram of λ.
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If λ ∈ P (n) then λ∗ denotes the conjugate of λ, defined to be the partition whose
diagram is the transpose of [λ]; that is, [λ∗] = {(j, i) | (i, j) ∈ λ} (which is the Young
diagram of λ).

Let λ ∈ P (n). If (i, j) ∈ [λ] and [λ] r {(i, j)} is still the diagram of a partition, we
say that the box (i, j) is λ-removable. Similarly, if (i, j) /∈ [λ] and [λ]∪{(i, j)} is again
the diagram of a partition, we say that the box (i, j) is λ-addable.

If α ∈ C(n) then an α-tableau is a bijection t : [α] → T , where T is a totally
ordered set with n elements. We call T the target of t. In this paper the target will
always be an interval [m + 1,m + n], with m = 0 unless otherwise specified. The
composition α is called the shape of t, and we write α = Shape(t). For each i ∈ [1, n]
we define rowt(i) and colt(i) to be the row index and column index of i in t (so that
t−1(i) = (rowt(i), colt(i))). We define Tabm(α) to be the set of all α-tableaux with
target T = [m+ 1,m+n], and Tab(α) = Tab0(α). If h ∈ Z and t ∈ Tabm(α) then we
define t+ h ∈ Tabm+h(α) to be the tableau obtained by adding h to all entries of t.

We define τα ∈ Tab(α) to be the specific α-tableau given by τα(i, j) = i+
∑j−1
h=1 αh

for all (i, j) ∈ [α]. That is, in τα the numbers 1, 2, . . . , α1 fill the first column of [α]
in order from top to bottom, then the numbers α1 + 1, α1 + 2, . . . , α1 + α2 similarly
fill the second column, and so on. If λ ∈ P (n) then we also define τλ to be the λ-
tableau that is the transpose of τλ∗ . Whenever λ ∈ P (n) and t ∈ Tabm(λ) we define
t∗ ∈ Tabm(λ∗) to be the transpose of t. For example, if α = (3, 2) then

τα = 1 4

2 5

3

, τ∗α = 1 2 3

4 5
and τα = 1 2

3 4

5

.

We call τ−1
α (i) the i-th box of [α] in the top-to-bottom-left-to-right reading order,

or TBLR order. (Below we shall also have occasion to make use of the BTLR order.)
Let α ∈ C(n) and t ∈ Tab(α). We say that t is column standard if the entries

increase down each column. That is, t is column standard if t(i, j) < t(i + 1, j)
whenever (i, j) and (i + 1, j) are both in [α]. We define CStd(α) to be the set of all
column standard α-tableaux. In the case λ ∈ P (n) we say that t is row standard if its
transpose is column standard (so that t(i, j) < t(i, j+ 1) whenever (i, j) and (i, j+ 1)
are both in [λ]), and we say that t is standard if it is both row standard and column
standard. For example, if

t =
1 3

2 4

5
, u =

2 1

4 3

5

then t is standard, while u is column standard but not row standard.
For each λ ∈ P (n) we write Std(λ) for the set of all standard λ-tableaux (which is

the set of all standard Young tableaux associated with λ∗). We also define Std(n) =⋃
λ∈P (n) Std(λ).
It is clear that for any fixed composition α ∈ C(n) the groupWn acts on Tab(α), via

(wt)(i, j) = w(t(i, j)) for all (i, j) ∈ [α], for all α-tableaux t and all w ∈Wn. Moreover,
the map from Wn to Tab(α) defined by w 7→ wτα for all w ∈ Wn is bijective. We
define the map tblr : Tab(α) 7→ Wn to be the inverse of w 7→ wτα, and use this to
transfer the left weak order and the Bruhat order from Wn to Tab(α). Thus if t1 and
t2 are arbitrary α-tableaux, we write t1 6L t2 if and only if tblr(t1) 6L tblr(t2), and
t1 6 t2 if and only if tblr(t1) 6 tblr(t2). Similarly, we define the length of t ∈ Tab(α)
by l(t) = l(tblr(t)). Since the identity element of Wn is the unique minimal element
of (Wn,6L) and also of (Wn,6), it follows that τα is the unique minimal element of
(Tab(α),6L) and of (Tab(α),6).
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Remark 6.2. It follows from Definition 2.1 that the Bruhat order on Tab(α) is gener-
ated by the requirement that t 6 sijt whenever i < j and i precedes j in t the TBLR
reading order.

We also define a bijection btlr : Tab(α) → Wn by using the BTLR reading order
instead of the TBLR order. Thus if t ∈ Tab(α) and b1, . . . , bn is the sequence given
by reading t in bottom-to-top-left-to-right order, then btlr(t) ∈Wn is given by i 7→ bi
for all i ∈ {1, . . . , n}.

Remark 6.3. It is easily seen that if α ∈ C(n) and t ∈ Tab(α) then tblr(t) =
btlr(t)w−1

α , where wα = btlr(τα).

Given α ∈ C(n) we define Jα to be the subset of S consisting of those si such
that i and i + 1 lie in the same column of τα, and Wα to be the standard parabolic
subgroup of Wn generated by Jα. Note that the longest element of Wα is the element
wα = btlr(τα) defined in Remark 6.3 above. We write Dα for the set of minimal
length representatives of the left cosets of Wα in Wn. Since l(dsi) > l(d) if and only
if di < d(i + 1), it follows that Dα = { d ∈ Wn | di < d(i + 1) whenever si ∈Wα },
and the set of column standard α-tableaux is precisely { dτα | d ∈ Dα }.

We shall also need to work with tableaux defined on skew diagrams.

Definition 6.4. If m and n are nonnegative inegers and λ ∈ P (m+n) and π ∈ P (m)
are such that [π] ⊆ [λ] then we define

[λ/π] = [λ] r [π] = {(i, j) | (i, j) ∈ [λ] and (i, j) /∈ [π]}
and call this a skew diagram of shape λ/π. We also write λ/π ` n and call λ/π a
skew partition of n. In the case m = 0 we identify λ/π with λ, and say that λ/π is a
normal shape.

Thus the skew diagram corresponding to λ/π is the transpose of the skew Young
diagram corresponding to λ/π.

Definition 6.5. A skew tableau of shape λ/π, or (λ/π)-tableau, where λ/π is a skew
partition of n, is a bijective map t : [λ/π]→ T , where T is a totally ordered set with n
elements. We write Tabm(λ/π) for the set of all (λ/π)-tableaux for which the target
set T is the interval [m+ 1,m+ n]. We shall omit the subscript m if m = 0.

Let λ/π be a skew partition of n. We define τλ/π ∈ Tab(λ/π) by

(3) τλ/π(i, j) = i− πj +
j−1∑
h=1

(λh − πh)

for all (i, j) ∈ [λ/π], and define τλ/π ∈ Tab(λ/π) to be the transpose of τλ∗/π∗ .
If λ/π ` n and m ∈ Z then W[m+1,m+n] acts naturally on Tabm(λ/π), and as for

normal shapes we define tblr : Tabm(λ/π)→W[m+1,m+n] to be the inverse of the map
w 7→ wτλ/π. We transfer the Bruhat order and the left weak order from W[m+1,m+n]
to Tabm(λ/π) via the bijection tblr, just as for normal shapes.

All of our notation and terminology for partitions and tableaux extends naturally
to skew partitions and tableaux, and will be used without further comment.

Let α ∈ C(n) and t a column standard α-tableau. For each m ∈ Z we define t6m

to be the tableau obtained by removing from t all boxes with entries greater than m.
Thus if β = Shape(t6m) then β ∈ C(m) and [β] = { b ∈ [α] | t(b) 6 m }, and
t6m : [β] → [1,m] is the restriction of t. It is clear that t6m is column standard.
Moreover, if α = λ ∈ P (n) and t ∈ Std(λ) then β = π ∈ P (m) and t6m ∈ Std(π).

Similarly, if λ ∈ P (n) and t ∈ Std(λ) then for each m ∈ Z we define t>m to be the
skew tableau obtained by removing from t all boxes with entries less than or equal
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to m. Observe that { b ∈ [λ] | t(b) 6 m } is the diagram of a partition ν ∈ P (n), and
λ/ν is a skew partition of n − m. Clearly t>m is the restriction of t to [λ/ν], and
t>m ∈ Stdm(λ/ν).

We also let t<m = t6m−1 and t>m = t>m−1. For example, if t =
1 2

3 5

4
∈

Std((3, 2)) then

t< 5 = t6 4 =
1 2

3

4
∈ Std((3, 1)),

t> 2 = t> 1 =
2

3 5

4
∈ Std1((3, 2)/(1)).

For the next two definitions we follow the conventions of [10] (although we use
columns rather than rows).
Definition 6.6. Let n be a nonnegative integer and α, β ∈ C(n). We say that α
dominates β, and write α D β, if

∑k
i=1 αi >

∑k
i=1 βi for each positive integer k.

Definition 6.7. Let α ∈ C(n) and t, u ∈ CStd(α). We say that t dominates u, and
write t D u, if Shape(t6m) D Shape(u6m) for all m ∈ [1, n].

In [10] Mathas defines a partial order D on Wn as follows: if v, w ∈Wn then v D w
if and only if v has a reduced expression that is a subexpression of some reduced
expression for w. By [5, Theorem 1.1] we see that this order is the reverse of the usual
Bruhat order on W (as defined in Definition 2.1), in that v D w if and only if v 6 w.
Hence restating [10, Theorem 3.8] gives the following theorem.
Theorem 6.8. Let α ∈ C(n), and let t and u be column standard α-tableaux. Then
t D u if and only if tblr(t) 6 tblr(u).

By our previous definitions, this says that if t, u ∈ CStd(α) then t D u if and only
if t 6 u. Accordingly, we make the following definition.
Definition 6.9. If α, β ∈ C(n) we define α 6 β if and only if α D β. We call 6 the
Bruhat order on C(n).

We obtain the following variant of Definition 6.7.
Proposition 6.10. Let α ∈ C(n), and let t and u be column standard α-tableaux.
Then t 6 u if and only if Shape(t6m) 6 Shape(u6m) for all m ∈ [1, n].
Example. Let t, u ∈ C(1, 2, 1, 1) be given by

t = 2 1 4 5

3
, u = 2 3 4 1

5

and consider u6m and t6m and their shapes for each m ∈ [1, 5].

t6m : 1 2 1
2 1

3

2 1 4

3

2 1 4 5

3

Shape(t6m) : (0, 1, 0, 0) (1, 1, 0, 0) (1, 2, 0, 0) (1, 2, 1, 0) (1, 2, 1, 1)

u6m : 1 2 1 2 3 1 2 3 4 1
2 3 4 1

5

Shape(u6m) : (0, 0, 0, 1) (1, 0, 0, 1) (1, 1, 0, 1) (1, 1, 1, 1) (1, 2, 1, 1).
We find that Shape(t6m) 6 Shape(u6m) for all m ∈ [1, 5], and so t 6 u by Proposi-
tion 6.10.
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Let α, β ∈ C(n) with α 6= β, and suppose that α > β. Then
∑k
i=1 αi 6

∑k
i=1 βi

for all k ∈ N, and so the least k such that αk 6= βk must satisfy αk < βk. We make
the following definition.
Definition 6.11. Let α, β ∈ C(n). We write α >lex β (or β <lex α) if there exists a
positive integer k such that αk < βk and αi = βi for all i < k. We write α >lex β if
α = β or α >lex β.

It is clear that >lex is a total order on C(n), and the remarks preceding Defini-
tion 6.11 have established the next proposition, which says that >lex is a refinement
of >.
Proposition 6.12. If α, β ∈ C(n) with α > β then α >lex β.

We call >lex the lexicographic order on C(n). Note, however, that our lexicographic
order is the reverse of the one defined in [10], which is defined as a refinement of D
rather than >.
Remark 6.13. Let γ ∈ C(n) and t, u ∈ CStd(γ) with t 6= u. Since t6 0 = u6 0 and
t6n 6= u6n, we can choose i ∈ [0, n−1] satisfying t6 i = u6 i and t6 (i+1) 6= u6 (i+1).
We shall show that if t > u in the Bruhat order then i + 1 occurs in a later column
in t than in u.

Note that t6 (i+1) and u6 (i+1) have different shapes, since t6 (i+1) is obtained by
adding the number i + 1 to the bottom of some column of t6 i = u6 i, and clearly
u6 (i+1) must be obtained by adding i+1 to the bottom of a different column. Let α =
Shape(t6 (i+1)) and β = Shape(u6 (i+1)), and let k = colt(i+ 1) and l = colu(i+ 1).
Then k 6= l, and αj = βj for all j < m = min(k, l). Furthermore, αm = βm + 1 if
m = k, and βm = αm + 1 if m = l. Thus αm < βm if and only if m = l. So α >lex β
if and only if min(k, l) = l.

Now suppose that t > u. Since t6 i = u6 i we have Shape(t6h) = Shape(u6h) for
all h 6 i, and by Proposition 6.10, we must have Shape(t6 (i+1)) > Shape(u6 (i+1)).
That is, α > β. By Proposition 6.12 it follows that α >lex β, and so colt(i+ 1) = k >
l = colu(i+ 1).

Let α = (α1, . . . , αk) ∈ C(n). For each t ∈ Tab(α), we define cp(t) to be the
composition of the number

∑k
i=1 iαi given by cp(t)i = colt(n + 1 − i), the column

index of n+ 1− i in t, for all i ∈ [1, n]. Thus, for example, putting

t =

1 9 5 4

6 2 7

3

8

, u =

1 9 5 4

3 2 7

6

8

gives cp(t) = (2, 2, 4, 1, 3, 4, 2, 2, 1) and cp(u) = (2, 2, 4, 2, 3, 4, 1, 2, 1).
Notation. Let α ∈ C(n) and t, u ∈ Tab(α). We write t >lex u if cp(t) >lex cp(u),
and we write t >lex u if cp(t) >lex cp(u).

In the example above, since cp(t)4 < cp(u)4 and cp(t)i = cp(u)i for i = 1, 2, 3, it
follows that cp(t) >lex cp(u), whence t >lex u.

Observe that cp(t) = cp(u) if and only if each column of t contains the same
numbers as the corresponding column of u. Thus >lex is not a partial order on Tab(α)
but merely a preorder. It is, however, a total preorder, in the sense that any two
elements of Tab(α) are comparable, and it becomes a total order when restricted
to CStd(α).
Definition 6.14. Given α ∈ C(n), we call the restriction of >lex to CStd(α) the
lexicographic order on CStd(α).
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Remark 6.15. If t, u ∈ Tab(α) then t >lex u if and only if there exists an integer
k ∈ [1, n] such that cp(t)k < cp(u)k and cp(t)l = cp(u)l for all l < k. That is, t >lex u
if and only if there exists k ∈ [1, n] such that colt(n + 1 − k) < colu(n + 1 − k) and
colt(n+1−l) = colu(n+1−l) for all l < k. Writing j = n+1−k, this says that t >lex u
if and only if there exists j ∈ [1, n] such that colt(j) < colu(j) and colt(h) = colu(h)
for all h ∈ [j + 1, n]. Observe that if u and t are column standard then the latter
condition is equivalent to t>j = u>j .

Lemma 6.16. Let α ∈ C(n), and let t, u ∈ Tab(α). If t > u then t >lex u.

Proof. By Remark 6.2 it suffices to show that if 1 6 i < j 6 n and i precedes j in u
in the TBLR order, then t = (i, j)u >lex u. We may assume that colu(i) 6= colu(j),
since otherwise cp(t) = cp(u) and t >lex u certainly holds. Since i < j and i precedes
j in u, we see that colt(j) = colu(i) < colu(j) and j is the maximum element of
{ k | colt(k) 6= colu(k) } = {i, j}, and it follows from Remark 6.15 that t >lex u, as
required. �

Corollary 6.17. For each α ∈ C(n), the lexicographic order on CStd(α) is a total
order that refines the Bruhat order.

Definition 6.18. Let λ ∈ P (n). For each t ∈ Std(λ) we define

SA(t) = {i ∈ [1, n− 1] | rowt(i) > rowt(i+ 1) },
SD(t) = {i ∈ [1, n− 1] | colt(i) > colt(i+ 1)},

WA(t) = {i ∈ [1, n− 1] | rowt(i) = rowt(i+ 1)},
WD(t) = {i ∈ [1, n− 1] | colt(i) = colt(i+ 1)},

and call the elements of these (respectively) the strong ascents, strong descents, weak
ascents and weak descents of t. We also define A(t) = SA(t) ∪WA(t) and D(t) =
SD(t) ∪WD(t).

Remark 6.19. It is easily checked that i ∈ SA(t) if and only if sit ∈ Std(λ) and
sit > t, while i ∈ SD(t) if and only if sit < t (which implies that sit ∈ Std(λ)). Note
also that if w = tblr(t) then i ∈ D(t) if and only if si ∈ L(wwλ); this is proved in [11,
Lemma 5.2].

Lemma 6.20. Let λ ∈ P (n) and t ∈ Std(λ). If i ∈ SA(t) then D(sit) r D(t) = {i}.

Proof. By Remark 6.19 the condition i ∈ SA(t) implies i ∈ SD(sit). Thus i ∈ D(sit)r
D(t).

Since t and sit differ only in the positions of i and i+ 1, it is clear that if j < i− 1
or j > i + 1 then j and j + 1 occupy the same positions in t and in sit, and it is
immediate from Definition 6.18 that j ∈ D(sit) if and only if j ∈ D(t). So it remains
to check that if j ∈ {i− 1, i+ 1} and j ∈ D(sit) then j ∈ D(t). If i− 1 ∈ D(sit) then
colsit(i−1) > colsit(i), and colt(i−1) = colsit(i−1) > colsit(i) > colsit(i+1) = colt(i).
If colsit(i+1) > colsit(i+2) then colt(i+1) = colsit(i) > colsit(i+1) > colsit(i+2) =
colt(i+ 2), and the result follows. �

Remark 6.21. It is clear that if λ/π ` n and m ∈ Z then m + τλ/π is the unique
minimal element of Stdm(λ/π) with respect to the Bruhat order and the left weak
order. Accordingly, we call m + τλ/π the minimal element of Stdm(λ/π). It is easily
shown that if t ∈ Stdm(λ/π) then t = m + τλ/π if and only if SD(t) = ∅. That is, t
is minimal if and only if D(t) = WD(t).

For technical reasons it is convenient to make the following definition.
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Definition 6.22. Let λ/π ` n > 1 and m ∈ Z. Let i be minimal such that λi > πi,
and assume that λi+1 > πi+1. The m-critical tableau of shape λ/π is the tableau
t ∈ Stdm−1(λ/π) such that colt(m) = i and colt(m + 1) = i + 1, and t> (m+1) is the
minimal tableau of its shape.

For example, if we put

u =

5 7

4 6 8

3

, v =

5 8 9

7

4

6

then u is the 3-critical tableau of shape (4, 4, 2, 2, 2)/(4, 3, 1) and v is the 4-critical
tableau of shape (4, 2, 1, 1)/(2). (Note that the first column of u is empty, as is its
third row.)

If t is the m-critical tableau of shape λ/π then, with i as in the definition, column i
of t is the first nonempty column, the number m goes at the top of column i and m+1
goes at the top of column i+ 1, after which the numbers m+ 2, m+ 3, . . . , m+n− 1
are inserted into the remaining places, in TBLR order. Thus colt(m + 2) = i if and
only if λi − πi > 1.
Lemma 6.23. Let λ ∈ P (n) and m ∈ Z, and let t ∈ Std(λ) satisfy colt(m + 1) =
colt(m) + 1. Then t>m is m-critical if and only if the following two conditions both
hold:

(1) either colt(m) = colt(m+ 2) or m+ 1 /∈ SD(t),
(2) every j ∈ D(t) with j > m+ 1 is in WD(t).

Proof. Let Shape(t>m) = λ/π, and put i = colt(m). Note that since m + 1 is in
column i+ 1 of t>m, it follows that λi+1 > πi+1.

Given that colt(m + 1) = colt(m) + 1, the second alternative in condition (1) is
equivalent to colt(m)+1 6 colt(m+2). Hence condition (1) is equivalent to colt(m) 6
colt(m+2). But by Remark 6.21, condition (2) holds if and only if t> (m+1) is minimal,
which in turn is equivalent to colt(m+2) 6 colt(m+3) 6 · · · 6 colt(n). So (1) and (2)
both hold if and only if t> (m+1) is minimal and colt(j) > colt(m) for all j > m.

Since colt(m+1) = i+1, it follows from the definition that t>m is m-critical if and
only if t> (m+1) is minimal and i = colt(m) is equal to min{ j | λj > πj }. But this
last condition holds if and only if m is in the first nonempty column of t>m, and since
this holds if and only if colt(j) > colt(m) for all j > m, the result is established. �

Recall that if w ∈Wn then applying the Robinson–Schensted algorithm to the se-
quence (w1, w2, . . . , wn) produces a pair RS(w) = (P(w),Q(w)), where P(w), Q(w) ∈
Std(λ) for some λ ∈ P (n). Details of the algorithm can be found (for example) in [12,
Section 3.1]. The first component of RS(w) is called the insertion tableau and the
second component is called the recording tableau.

The next two results are well-known.
Theorem 6.24 ([12, Theorem 3.1.1]). The map RS: Wn →

⋃
λ∈P (n) Std(λ)2 is bijec-

tive.
Theorem 6.25 ([12, Theorem 3.6.6]). Let w ∈Wn. If RS(w) = (t, x) then RS(w−1) =
(x, t).

The next lemma will be used below in the discussion of dual Knuth equivalence
classes.
Lemma 6.26 ([11, Lemma 6.3]). Let λ ∈ P (n) and let w ∈Wn. Then RS(w) = (t, τλ)
for some t ∈ Std(λ) if and only if w = vwλ for some v ∈Wn such that vτλ ∈ Std(λ).
When these conditions hold, t = vτλ.
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Definition 6.27. The dual Knuth equivalence relation is the equivalence relation ≈
on Wn generated by the requirements that for all x ∈Wn and k ∈ [1, n− 2],

(1) x ≈ sk+1x whenever L(x) ∩ {sk, sk+1} = {sk} and L(sk+1x) ∩ {sk, sk+1} =
{sk+1},

(2) x ≈ skx whenever L(x)∩{sk, sk+1} = {sk+1} and L(skx)∩{sk, sk+1} = {sk}.
The relations (1) and (2) above are known as the dual Knuth relations of the first

kind and second kind, respectively.
Remark 6.28. It is not hard to check that (1) and (2) above can be combined to give
an alternative formulation of Definition 6.27, as follows: ≈ is the equivalence relation
on Wn generated by the requirement that x ≈ sx for all x ∈ Wn and s ∈ Sn such
that x < sx and L(x) * L(sx). In [9] Kazhdan and Lusztig show that whenever this
holds then x and sx are joined by a simple edge in the Kazhdan–Lusztig W -graph
Γ = Γ(Wn). Furthermore, they show that the dual Knuth equivalence classes coincide
with the left cells in Γ(Wn).

The following result is well-known.
Theorem 6.29 ([12, Theorem 3.6.10]). Let x, y ∈ Wn. Then x ≈ y if and only if
Q(x) = Q(y).

Let λ ∈ P (n), and for each t ∈ Std(λ) define C(t) = {w ∈ Wn | Q(w) = t }.
Theorem 6.29 says that these sets are the dual Knuth equivalence classes in Wn. It
follows from Lemma 6.26 that C(τλ) = { vwλ | vτλ ∈ Std(λ) } = { tblr(t)wλ | t ∈
Std(λ) } = { btlr(t) | t ∈ Std(λ) }.

Let t, u ∈ Std(λ), and suppose that t = sku for some k ∈ [2, n−1]. By Remark 6.19
above, if x = btlr(u) then L(x)∩{sk−1, sk} = {sk−1} and L(skx)∩{sk−1, sk} = {sk}
if and only if D(u) ∩ {k − 1, k} = {k − 1} and D(t) ∩ {k − 1, k} = {k}. Under
these circumstances we write u →∗1 t, and say that there is a dual Knuth move of
the first kind from u to t. Similarly, if t = sku for some k ∈ [1, n − 2] such that
D(u) ∩ {k, k + 1} = {k + 1} and D(t) ∩ {k, k + 1} = {k} then we write u→∗2 t, and
say that there is a dual Knuth move of the second kind from u to t. Since C(τλ) is a
single dual Knuth equivalence class, we obtain the following result.
Proposition 6.30. Let λ ∈ P (n) and t, u ∈ Std(λ). Then t can be transformed into
u by a sequence of dual Knuth moves or inverse dual Knuth moves.

We call the integer k above the index of the corresponding dual Knuth move, and
denote it by ind(u, t). For convenience, we shall abbreviate “dual Knuth Move” to
“DKM”.
Remark 6.31. DKMs are also defined for standard skew tableaux; the definitions are
exactly the same as for tableaux of normal shape. If λ/π ` n and u, t ∈ Std(λ/π)
then we write u ≈ t if and only if u and t are related by a sequence of DKMs.
Definition 6.32. For each J ⊆ Sn let ≈J be the equivalence relation on Wn generated
by the requirement that x ≈J sx for all s ∈ J and x ∈ Wn such that x < sx and
L(x) ∩ J * L(sx).
Remark 6.33. Let J ⊆ Sn, let (W,S) = (Wn, Sn) and let Γ be the regular Kazhdan–
Lusztig W -graph. By the results of Section 4 we know that a simple edge {x, y} of
Γ remains a simple edge of ΓJ provided that L(x) ∩ J * L(y) ∩ J and L(y) ∩ J *
L(x)∩J . Recall that the simple edges of Γ all have the form {x, sx}, where s ∈ S and
x < sx ∈W . Given that x < sx, the condition L(sx)∩J * L(x)∩J holds if and only if
s ∈ J , and so {x, sx} is a simple edge of ΓJ if and only if s ∈ J and L(x)∩J * L(sx).
Thus ≈J is the equivalence relation on W generated by the requirement that x ≈J y
whenever {x, y} is a simple edge of ΓJ .
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Definition 6.34. Let λ ∈ P (n) and 1 6 m 6 n. Let ≈m be the equivalence relation on
Std(λ) defined by the requirement that u ≈m t whenever there is a DKM of index at
most m − 1 from u to t and D(u) ∩ [1,m − 1] * D(t). We shall call such a DKM
a (6 m)-DKM. The ≈m equivalence classes in Std(λ) will be called the (6 m)-
subclasses of Std(λ), and we shall say that u, t ∈ Std(λ) are (6 m) dual Knuth
equivalent whenever u ≈m t.

Remark 6.35. Assume that λ ∈ P (n) and 1 6 m 6 n, and let u, t ∈ Std(λ). If u→∗2 t
and ind(u, t) 6 m−1 then D(u)∩ [1,m−1] * D(t) if and only if ind(u, t) ∈ [1,m−2].
Clearly this holds if and only if u>m = t>m and u6m →∗2 t6m. If u →∗1 t and
ind(u, t) 6 m−1 then ind(u, t) ∈ [2,m−1], and D(u)∩[1,m−1] * D(t) is automatically
satisfied. Clearly this holds if and only if u>m = t>m and u6m →∗1 t6m. It follows
that u ≈m t if and only if u>m = t>m, since Shape(u6m) = Shape(t6m) guarantees
that u6m and t6m are related by a sequence of DKMs. So in fact u ≈m t if and only
if t = wu for some w ∈Wm.

It is a consequence of Definitions 6.32 and 6.34 that if u, t ∈ Std(λ) then u ≈m t if
and only if btlr(u) ≈J btlr(t), where J = Sm. The set of all (6 m)-subclasses of Std(λ)
is in bijective correspondence with the set { v ∈ Stdm(λ/π) | π ∈ P (m) and [π] ⊆
[λ] }, and each (6 m)-subclass of Std(λ) is in bijective correspondence with Std(π)
for some π ∈ P (m) with [π] ⊆ [λ]. If t ∈ Std(λ) then the (6 m)-subclass that contains
t is denoted by Cm(t) and is given by Cm(t) = {u ∈ Std(λ) | u>m = t>m }.

In view of Remark 6.28 and Theorem 6.29, the following theorem follows from the
results of Kazhdan and Lusztig [9, §5].

Theorem 6.36. With Γ as in Remark 6.33, if t, t′ ∈ Std(n) then the Wn-graphs
Γ(C(t)) and Γ(C(t′)) are isomorphic if and only if Shape(t) = Shape(t′). In particu-
lar, if λ ∈ P (n) then Γ(C(t)) ∼= Γ(C(τλ)) for every t ∈ Std(λ).

Corollary 6.37. Let Γ be the Wn-graph of a Kazhdan–Lusztig left cell of Wn. Then
Γ is isomorphic to Γ(C(τλ)) for some λ ∈ P (n).

Clearly for each λ ∈ P (n) the bijection t 7→ btlr(t) from Std(λ) to C(τλ) can be
used to create a Wn-graph isomorphic to Γ(C(τλ)) with Std(λ) as the vertex set.

Notation 6.38. For each λ ∈ P (n) we write Γλ = Γ(Std(λ), µ(λ), τ (λ)) for the Wn-
graph just described.

Remark 6.39. Let λ ∈ P (n) and let J = Sm ⊆ Sn. It follows from Remark 6.33 and
Definition 6.34 that the J-submolecules of Γλ are spanned by the (6 m)-subclasses
of Std(λ).

Now let λ ∈ P (n) and 1 6 m 6 n, and put J = Sn r Sm. The J-submolecules
of Γλ can be determined by an analysis similar to that used above. We define ≈m
to be the equivalence relation on Std(λ) generated by the requirement that u ≈m t
whenever there is a DKM of index at least m from u to t and D(u)∩ [m,n−1] * D(t).
The ≈m equivalence classes in Std(λ) will be called the (> m)-subclasses of Std(λ).
If u, t ∈ Std(λ) then u ≈m t if and only if btlr(u) ≈J btlr(t), with J = Sn r Sm.
An equivalent condition is that u<m = t<m and u>m ≈ t>m. It follows that if
t ∈ Std(λ) then the (> m)-subclass that contains t is the set Cm(t) = {u ∈ Std(λ) |
u<m = t<m and u>m ≈ t>m }.

Remark 6.40. Let λ ∈ P (n) and m ∈ [1, n], and put J = SnrSm. By the discussion
above, the J-submolecules of Γλ are spanned by the (> m)-subclasses of Std(λ).

We shall need to use some properties of the well-known “jeu-de-taquin” operation
on skew tableaux, which we now describe.
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Fix a positive integer n and a target set T = [m + 1,m + n]. It is convenient
to define a partial tableau to be a bijection t from a subset of { (i, j) | i, j ∈ Z+ }
to T . We shall also assume that the domain of t is always of the form [κ/ξ]r {(i, j)},
where κ/ξ is a skew partition of n + 1 and (i, j) ∈ [κ/ξ]. If (i, j) is ξ-addable then
t is a (κ/π)-tableau, with [π] = [ξ] ∪ {(i, j)}, and if (i, j) is κ-removable then t is a
(λ/ξ)-tableau, with [λ] = [κ] r {(i, j)}.

Now suppose that λ/π is a skew partition of n and t ∈ Std(λ/π), and suppose also
that c = (i, j) is a π-removable box. Note that t may be regarded as a partial tableau,
since [λ/π] = [κ/ξ] r {(i, j)}, where [κ] = [λ] and [ξ] = [π] r {(i, j)}. The (forward)
jeu-de-taquin slide on t into c is the process jdt(c, t) given as follows.

Start by defining t0 = t and b0 = (i, j). Proceeding recursively, suppose that k > 0
and that tk and bk are defined, with tk a partial tableau whose domain is [κ/ξ]r{bk}.
If bk is λ-removable then the process terminates, we define t′ = tk and put m = k.
If bk = (g, h) is not λ-removable we put x = min(tk(g + 1, h), tk(g, h + 1)), define
bk+1 = t−1

k (x), and define tk+1 to be the partial tableau with domain [κ/ξ] r {bk+1}
given by

tk+1(b) =
{
tk(b) whenever b is in the domain of tk and b 6= bk+1,
x if b = bk.

(We say that x slides from bk+1 into bk.) The tableau t′ obtained by the above process
is denoted by jdt(c)(t). The sequence of boxes [b0, b1, . . . , bm] is called the slide path
of jdt(c, t), and we say that jdt(c, t) vacates the box d = bm and produces the tableau
jdt(c)(t).

Backward jeu-de-taquin slides are defined by similar rules: the slide path of a
backward slide is the reverse of the slide path of a forward slide. The backward slide
jdt(c, t) is defined whenever c is a λ-addable box, its slide path terminates with a π-
addable box d, and we write jdt(c)(t) for the tableau produced. We have the following
well-known result.

Proposition 6.41. Let λ/π ` n, let c be a π-removable box and d a λ-removable box,
and define π′ and λ′ by [π′] = [π] r {c} and [λ′] = [λ] r {d}. Let t ∈ Std(λ/π) and
t′ ∈ Std(λ′/π′). Then jdt(c, t) vacates d and produces t′ if and only if jdt(d, t′) vacates
c and produces t.

Example 6.42. Suppose that t ∈ Std((3, 3, 2)/(2, 1)) is given by

t =
2

3 4

1 5
,

and note that the box c = (1, 2) is (2, 1)-removable. The jeu-de-taquin slide on t into
c is

2

3 4

1 5
→

2

3 4

1 5
→

2 4

3

1 5
,

terminating here since the (3, 3, 2)-removable box (2, 3) has been vacated. Thus

jdt(c)(t) =
2 4

3

1 5
,

the slide path of jdt(c, t) is [(1, 2), (1, 3), (2, 3)], and the box vacated by jdt(c, t) is
(2, 3).

The following observation follows immediately from the definition of a slide path.
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Lemma 6.43. Let [(i0, j0), (i1, j1), . . . , (im, jm)] be the slide path of a jeu-de-taquin
slide, as described above. Then i0 6 i1 6 · · · 6 im and j0 6 j1 6 · · · 6 jm.

It is straightforward to check the following result.
Lemma 6.44. Let λ = (λ1, λ2, . . . , λl) ∈ P (n) and choose m so that λ1 = λ2 =
· · · = λm > λm+1. Let π = (1) ∈ P (1) and put t = τλ/π = (τλ)> 1 − 1. Then the
slide jdt((1, 1), t) vacates the box (λ1,m). Similarly, if u = τλ/π = (τλ)> 1 − 1 and
k satisfies λ∗1 = λ∗2 = · · · = λ∗k > λ∗k+1 then the slide jdt((1, 1), u) vacates the box
(k, λ∗1).

A sequence of boxes β = (b1, . . . , bl) is called a slide sequence for a standard
skew tableau t if there exists a sequence of standard skew tableaux t = t0, t1, . . . , tl
such that the jeu-de-taquin slide jdt(bi, ti−1) is defined for each i ∈ [1, l], and ti =
jdt(bi)(ti−1). We write tl = jdtβ(t). Note that the slide sequence β = (b1, . . . , bl) can
be extended to a longer slide sequence b1, . . . , bl+1 if and only if the skew tableau tl
is not of normal shape. Indeed, if Shape(tl) = λ/π and π is not the empty partition
then bl+1 may be chosen to be any π-removable box. If tl is of normal shape, so that
the slide sequence β is maximal, then Theorem 6.45 below shows that the tableau tl
depends only on the initial skew tableau t and not on the particular choice of maximal
slide sequence β. Accordingly, we write tl = jdt(t) whenever β is maximal.
Example. With t as in Example 6.42 above, there are two maximal slide sequences
for t, namely (1, 2), (2, 1), (1, 1) and (2, 1), (1, 2), (1, 1). They produce the following
sequences of standard skew tableaux, ending at the same standard tableau of normal
shape:

2

3 4

1 5
−→

2 4

3

1 5
−→

2 4

1 3

5
−→

1 2 4

3

5
,

2

3 4

1 5
−→

2

1 3 4

5
−→

2 4

1 3

5
−→

1 2 4

3

5
.

In fact, the standard tableau jdt(t) produced by applying a maximal slide sequence
to a standard skew tableau t is the Robinson–Schensted insertion tableau of btlr(t).
Theorem 6.45 ([12, Theorem 3.7.7]). Let λ/π be a skew partition of n and t ∈
Std(λ/π). If β is any maximal length slide sequence for t then jdtβ(t) = P(btlr(t)).

Skew tableaux u and t are said to be dual equivalent if the skew tableaux jdtβ(u)
and jdtβ(t) are of the same shape whenever β is a slide sequence for both u and t.
Dual equivalent skew tableaux are necessarily of the same shape, since β is allowed
to be the empty sequence. It is easily shown that if u and t are dual equivalent
then every slide sequence for u is also a slide sequence for t; so dual equivalence is
indeed an equivalence relation. Theorem 6.46 below says that this equivalence relation
coincides with dual Knuth equivalence. It is easily shown that D(t) = D(jdt(t)) holds
for all t ∈ Std(λ/π); indeed, if i ∈ [1, n − 1] and u is any partial tableau used in the
construction of jdt(t), then colt(i+ 1) 6 colt(i) if and only if colu(i+ 1) 6 colu(i).
Theorem 6.46 ([12, Theorem 3.8.8]). Let λ/π be a skew partition, and let u and t be
standard (λ/π)-tableaux. Then u is dual equivalent to t if and only if u ≈ t.

Note that Theorem 6.46 generalizes the fact that the set of standard tableaux of a
given normal shape form a single dual Knuth equivalence class.

If λ/π is a skew partition of n then the dual equivalence graph Gλ/π has vertex
set Std(λ/π) and edge set

{
{u, t} | u, t ∈ Std(λ/π) and u→∗1 t or u→∗2 t

}
. By
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Theorem 6.46, the connected components of Gλ/π correspond to the dual equivalence
classes in Std(λ/π); if C is a dual equivalence class we write Gλ/π(C) for component
with vertex set C. It follows from Proposition 6.30 that if π is the empty partition then
Gλ = Gλ/π is connected. We call Gλ the standard dual equivalence graph corresponding
to λ ∈ P (n).

Proposition 6.47. Let λ/π ` n and C ⊆ Std(λ/π) a dual equivalence class. Then
there exists a ξ ∈ P (n) such that u 7→ jdt(u) is a bijection C → Std(ξ) inducing
a graph isomorphism from Gλ/π(C) to Gξ. Furthermore, this isomorphism preserves
descent sets of vertices.

Proof. We use induction on the cardinality of [π], the result being trivial if [π] = ∅.
Now suppose that [π] 6= ∅, let c ∈ [π] be π-removable, and let C ′ = {jdt(c)(t) |
t ∈ C}. It follows from the definition of dual equivalence all elements of C ′ have the
same shape λ′/π′, where [π′] = [π] r {c} and [λ′] = [λ] r {d} for some λ-removable
d ∈ [λ]. Furthermore, since it is also clear from the definition that if t1, t2 ∈ C

then jdt(c)(t1) and jdt(c)(t2) are dual equivalent, there is a dual equivalence class
containing all elements of C ′. Now choose some t ∈ C and let t′ = jdt(c)(t). Let
u′ ∈ Std(λ′/π′) and put u = jdt(d)(u′). If u′ is dual equivalent to t′ then u′ ≈ t′

by [12, Theorem 3.8.8], that is, u′ = u0 →∗i1 u1 →∗i2 · · · →∗il−1 ul−1 →∗il ul = t′,
for some integer l and some i1, . . . , il ∈ {1, 2}. The proof of [12, Theorem 3.8.8] now
shows that u = jdt(d)(u0) →∗j1 jdt(d)(u1) →∗j2 · · · →∗jl−1 jdt(ul−1) →∗jl t for some
j1, . . . , jl ∈ {1, 2}, and so u is dual equivalent to t (by [12, Theorem 3.8.8]). Hence
u ∈ C, and so u′ = jdt(c)(u) ∈ C ′. Thus C ′ is a dual equivalence class in Std(λ′/π′)
and jdt(c) : C 7→ C ′ is surjective. Since jdt(d)(jdt(c)(t)) = t for all t ∈ C, the map jdt(c)

is also injective. Moreover, the proof of [12, Theorem 3.8.8] shows that u and t in C
are related by a DKM if and only if jdt(c)(u) and jdt(c)(t) in C ′are related by a DKM.
It follows that jdt(c) is an edge preserving bijection from C to a dual equivalence class
C ′ in Std(λ′/π′). Since the jeu-de-taquin process also preserves descent sets, as we
observed above, the result now follows simply by induction. �

If k ∈ [1, n−2] then each v ∈ Std(λ/π) with D(v)∩{k, k+1} = {k} is adjacent in the
dual equivalence graph to a unique v′ with D(v′)∩{k, k+1} = {k+1}, and each v with
D(v)∩{k, k+1} = {k+1} is adjacent to a unique v′ with D(v′)∩{k, k+1} = {k}. In
fact, v′ = skv if the box v−1(k+2) is between the boxes v−1(k) and v−1(k+1), in the
sense that colv(k) < colv(k + 2) 6 colv(k + 1) or colv(k + 1) < colv(k + 2) 6 colv(k),
while v′ = sk+1v if v−1(k) is between v−1(k + 1) and v−1(k + 2) (meaning that
colv(k + 1) 6 colv(k) < colv(k + 2) or colv(k + 2) 6 colv(k) < colv(k + 1)).

Definition 6.48. We call the above tableau v′ the k-neighbour of v, and write v′ =
k -neb(v).

It follows from Remark 6.28 that the standard dual equivalence graph Gλ is iso-
morphic to the simple part of each Kazhdan–Lusztig left cell Γ(C(t)) for t ∈ Std(λ).
Extending earlier work of Assaf [1], Chmutov showed in [4] that the simple part of an
admissible Wn-molecule is isomorphic to a standard dual equivalence graph. (Recall
thatW-molecules need not beW-graphs, since the Polygon Rule may not be satisfied.)
The following result is the main theorem of [4].

Theorem 6.49 ([4, Theorem 2]). The simple part of an admissible molecule of type
An−1 is isomorphic to the simple part of a Kazhdan–Lusztig left cell.

Remark 6.50. It follows that ifM = (V, µ, τ) is a molecule then there exists λ ∈ P (n)
and a bijection t 7→ ct from Std(λ) to V such that the simple edges ofM are the pairs
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{cu, ct} such that u, t ∈ Std(λ) and there is a DKM from u to t or from t to u, and
τ(ct) = { sj | j ∈ D(t) }. The molecule M is said to be of type λ.

Let M = (V, µ, τ) be an arbitrary Sn-coloured molecular graph, and for each
λ ∈ P (n) let mλ be the number of molecules of type λ in M . For each λ such
that mλ 6= 0 let Iλ be some indexing set of cardinality mλ. Then we can write

(4) V =
⊔
λ∈Λ

⊔
α∈Iλ

Vα,λ,

where Λ = {λ ∈ P (n) | mλ 6= 0 }, each Vα,λ = { cα,t | t ∈ Std(λ) } is the vertex
set of a molecule of type λ, the simple edges of M are the pairs {cα,u, cβ,t} such
that α = β ∈ Iλ for some λ ∈ Λ and u, t ∈ Std(λ) are related by a DKM, and
τ(cα,t) = { sj | j ∈ D(t) } for all (α, t) ∈ Iλ × Std(λ). We call Λ the set of molecule
types for M .

Note that if Γ = (V, µ, τ) is an admissible Wn-graph then Γ is an Sn-coloured
molecular graph, by Remark 5.12, and hence Eq. (4) can be used to describe the
vertex set of Γ.

Remark 6.51. We know from Remark 5.2 and Corollary 6.37 that, for each λ ∈ P (n),
the Wn-graph Γλ = (Std(λ), µ(λ), τ (λ)) is admissible. Since {u, t} is a simple edge in
Γλ when u, t ∈ Std(λ) are related by a DKM, and Std(λ) is a single dual Knuth
equivalence class, we see that Γλ consists of a single molecule (of type λ).

Remark 6.52. Let Γ = (V, µ, τ) be an admissible Wn-graph, and continue with the
notation and terminology of Remark 6.50 above. Let m ∈ [1, n], and let K = Sm and
L = Sn r Sm.

Let λ ∈ Λ and α ∈ Iλ, and let Θ be the molecule of Γ whose vertex set is Vα,λ. By
Remark 6.50 applied to ΘK , the WK-restriction of Θ (as defined in Section 4 above),
we may write

Vα,λ =
⊔

κ∈ΛK,α,λ

⊔
β∈IK,α,λ,κ

Vα,λ,β,κ,

where ΛK,α,λ is the set of all κ ∈ P (m) such that Θ contains a K-submolecule
of type κ, and IK,α,λ,κ is an indexing set whose size is the number of such K-
submolecules. Each Vα,λ,β,κ is the vertex set of a K-submolecule of Θ of type κ.
Writing Vα,λ,β,κ = { c′β,u | u ∈ Std(κ) }, we see that each cα,t ∈ Vα,λ coincides with
some c′β,v with β ∈ IK,α,λ,κ and v ∈ Std(κ). It follows from Remark 6.39 above that
the K-submolecule of Θ containing a given vertex cα,t is spanned by the (6 m)-
subclass Cm(t) = {u ∈ Std(λ) | u>m = t>m }. Thus when we write cα,t = c′β,v as
above, we can identify v with t6 k.

Similarly, applying Remark 6.50 to ΘL, we may write

Vα,λ =
⊔

θ∈ΛL,α,λ

⊔
γ∈IL,α,λ,θ

Vα,λ,γ,θ,

where ΛL,α,λ is the set of all θ ∈ P (n−m+1) such that Θ contains an L-submolecule
of type θ, each Vα,λ,γ,θ is the vertex set of an L-submolecule of type θ, and the set
IL,α,λ,θ indexes these submolecules. Writing Vα,λ,γ,θ = { c′′γ,v | v ∈ Stdm−1(θ) } (where
Stdm−1(θ) is the set of standard θ-tableaux with target [m,n]), we see that each cα,t ∈
Vα,λ coincides with some c′′γ,v with γ ∈ IL,α,λ,θ and v ∈ Stdm−1(θ). By Remark 6.40
above we see that the L-submolecule of Θ containing a given vertex cα,t is spanned by
the (> m)-subclass Cm(t) = {u ∈ Std(λ) | u<m = t<m and u>m ≈ t>m }. Since
the condition u>m ≈ t>m is equivalent to 1 − m + (u>m) ≈ 1 − m + (t>m), it
follows from Proposition 6.47 that when we write cα,t = c′′β,v as above we can identify
v with jdt(t>m) = m− 1 + jdt(1−m+ (t>m)).
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7. Extended Bruhat order on Std(n) and paired dual Knuth
equivalence relation

Let n > 1 and let (Wn, Sn) be the Coxeter group of type An−1 Recall from Proposi-
tion 6.10 that if λ ∈ P (n) and u, t ∈ Std(λ) then u 6 t if and only if Shape(u6m) 6
Shape(t6m) for all m ∈ [1, n]. Hence it is natural to make the following definition.
Definition 7.1. Let λ, π ∈ P (n), and let u ∈ Std(λ) and t ∈ Std(π). We write u 6 t
if Shape(u6m) 6 Shape(t6m) for all m ∈ [1, n].

It is obvious that this is a partial order on Std(n) =
⋃
λ∈P (n) Std(λ) extending the

Bruhat order on each Std(λ).
Example. For n = 2 and n = 3 we obtain

1

2
< 1 2 and 1

2

3

< 1 3

2
< 1 2

3
< 1 2 3 .

Observe that u 6 t if and only if Shape(u) 6 Shape(t) and u6 (n−1) 6 t6 (n−1).
We remark that in [2] this order was used in the context of the representation

theory of symmetric groups, while in [3] it was used in the context of combinatorics
of permutations.
Lemma 7.2. Let π, λ ∈ P (n), let u ∈ Std(π) and t ∈ Std(λ), and let σ = Shape(u<n)
and θ = Shape(t<n). Suppose that σ 6 θ and colu(n) 6 colt(n). Then π 6 λ.
Proof. Let colu(n) = p and colt(n) = r, and assume that p 6 r. Recall that σ 6 θ is
equivalent to σ D θ, and so

∑l
m=1 σm >

∑l
m=1 θm for all l ∈ [1, r − 1]. Hence for all

l ∈ [1, p− 1] we have
l∑

m=1
πm =

l∑
m=1

σm >
l∑

m=1
θm =

l∑
m=1

λm,

while for all l ∈ [p, r − 1] we have
l∑

m=1
πm = (σp + 1) +

l∑
m=1
m 6=p

σm >

l∑
m=1

θm =
l∑

m=1
λm,

and for all l > r we have
l∑

m=1
πm = (σp + 1) +

l∑
m=1
m 6=p

σm > (θr + 1) +
l∑

m=1
m 6=r

θm =
l∑

m=1
λm.

Hence π 6 λ. �

Lemma 7.3. Let λ ∈ P (n) and t ∈ Std(λ). Suppose that i ∈ SD(t), and let p =
colt(i) and j = colt(i + 1). For all h ∈ [1, n − 1] let λ(h) = Shape(t6h) and θ(h) =
Shape(sit6h). Then

(5)
l∑

m=1
θ(i)
m =


∑l
m=1 λ

(i)
m =

∑l
m=1 λ

(i+1)
m =

∑l
m=1 λ

(i−1)
m if l < j∑l

m=1 λ
(i)
m + 1 =

∑l
m=1 λ

(i+1)
m =

∑l
m=1 λ

(i−1)
m + 1 if j 6 l < p∑l

m=1 λ
(i)
m =

∑l
m=1 λ

(i+1)
m − 1 =

∑l
m=1 λ

(i−1)
m + 1 if p < l

and

(6)
l∑

m=1
λ(i)
m =


∑l
m=1 θ

(i)
m =

∑l
m=1 θ

(i+1)
m =

∑l
m=1 θ

(i−1)
m if l < j∑l

m=1 θ
(i)
m − 1 =

∑l
m=1 θ

(i+1)
m − 1 =

∑l
m=1 θ

(i−1)
m if j 6 l < p∑l

m=1 θ
(i)
m =

∑l
m=1 θ

(i+1)
m − 1 =

∑l
m=1 θ

(i−1)
m + 1 if p < l.
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Proof. The results given by Eq. (5) and Eq. (6) are readily obtained from the following
formulae

(7) θ(i)
m =


λ

(i)
m + 1 = λ

(i+1)
m = λ

(i−1)
m + 1 if m = j

λ
(i)
m − 1 = λ

(i+1)
m − 1 = λ

(i−1)
m if m = p

λ
(i)
m = λ

(i+1)
m = λ

(i−1)
m if m 6= j, p

and

(8) λ(i)
m =


θ

(i)
m − 1 = θ

(i+1)
m − 1 = θ

(i−1)
m if m = j

θ
(i)
m + 1 = θ

(i+1)
m = θ

(i−1)
m + 1 if m = p

θ
(i)
m = θ

(i+1)
m = θ

(i−1)
m if m 6= j, p,

respectively. �

Lemma 7.4. Let π, λ ∈ P (n), let u ∈ Std(π) and t ∈ Std(λ). Suppose that i ∈
SD(u) ∩ SD(t). Then u 6 t if and only if siu 6 sit.

Proof. Let j = colt(i + 1) and let k = colu(i + 1). For all h ∈ [1, n] let
λ(h) = Shape(t6h), let θ(h) = Shape(sit6h), let π(h) = Shape(u6h) and let
σ(h) = Shape(siu6h).

Suppose that u 6 t. Since siu and sit differ from u and t respectively only in the
positions of i and i + 1, we have π(h) = σ(h) and λ(h) = θ(h) for all h 6= i. But since
π(h) 6 λ(h) for all h by our assumption, it follows that σ(h) 6 θ(h) for all h 6= i. Hence
to show that siu 6 sit it suffices to show that σ(i) 6 θ(i). Let l ∈ Z+ be arbitrary.
Case 1.
Suppose that l > k. By Lemma 7.3 applied to u, we have

∑l
m=1 σ

(i)
m =

∑l
m=1 π

(i−1)
m +

1, by the last two formulae of Eq.(5). Since π(i−1) 6 λ(i−1) gives
∑l
m=1 π

(i−1)
m >∑l

m=1 λ
(i−1)
m , it follows that

∑l
m=1 σ

(i)
m >

∑l
m=1 λ

(i−1)
m +1. But by Lemma 7.3 applied

to t, in each case in Eq.(5) we have
∑l
m=1 λ

(i−1)
m +1 >

∑l
m=1 θ

(i)
m . Hence

∑l
m=1 σ

(i)
m >∑l

m=1 θ
(i)
m .

Case 2.
Suppose that l < k. By Lemma 7.3 applied to u, we have

∑l
m=1 σ

(i)
m =

∑l
m=1 π

(i)
m =∑l

m=1 π
(i+1)
m , by the first formula of Eq. (5). Since π(i) 6 λ(i) and π(i+1) 6 λ(i+1),

for each h ∈ {i, i + 1} we obtain
∑l
m=1 π

(h)
m >

∑l
m=1 λ

(h)
m , and hence

∑l
m=1 σ

(i)
m >∑l

m=1 λ
(h)
m . By Lemma 7.3 applied to t, in each case in Eq.(5) there exists h ∈ {i, i+1}

such that
∑l
m=1 λ

(h)
m =

∑l
m=1 θ

(i)
m . Hence

∑l
m=1 σ

(i)
m >

∑l
m=1 θ

(i)
m .

Conversely, suppose that siu 6 sit. As above, it suffices to show that π(i) 6 λ(i).
Let l ∈ Z+ be arbitrary.
Case 1.
Suppose that l > j. By Lemma 7.3 applied to t, we have

∑l
m=1 λ

(i)
m =

∑l
m=1 θ

(i+1)
m −

1, by the last two formulae of Eq.(6). Since σ(i+1) 6 θ(i+1) gives
∑l
m=1 σ

(i+1)
m >∑l

m=1 θ
(i+1)
m , it follows that

∑l
m=1 σ

(i+1)
m −1 >

∑l
m=1 λ

(i)
m . But by Lemma 7.3 applied

to u, in each case in Eq.(6) we have
∑l
m=1 π

(i)
m >

∑l
m=1 σ

(i+1)−1. Hence
∑l
m=1 π

(i)
m >∑l

m=1 λ
(i)
m .

Case 2.
Suppose that l < j. By Lemma 7.3 applied to t, we have

∑l
m=1 λ

(i)
m =

∑l
m=1 θ

(i−1)
m =∑l

m=1 θ
(i)
m , by the first formula of Eq. (6). Since θ(i−1) > σ(i−1) and θ(i) > σ(i),

for each h ∈ {i − 1, i} we obtain
∑l
m=1 θ

(h)
m 6

∑l
m=1 σ

(h)
m , and hence

∑l
m=1 λ

(i)
m 6
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∑l
m=1 σ

(h)
m . By Lemma 7.3 applied to u, in each case in Eq. 6) there exists h ∈ {i−1, i}

such that
∑l
m=1 σ

(h)
m =

∑l
m=1 π

(i)
m . Hence

∑l
m=1 λ

(i)
m 6

∑l
m=1 π

(i)
m . �

Definition 7.5. Let λ, π ∈ P (n) and let 1 6 m 6 n. Let u, v ∈ Std(π) and t, x ∈
Std(λ), and let i ∈ {1, 2}. We say that there is a paired (6 m)-DKM of the i-th kind
from (u, t) to (v, x) if there exists k 6 m − 1 such that u →∗i v and t →∗i x are
(6 m)-DKMs of index k. When this holds we write (u, t) →∗i (v, x), and call k the
index of the paired move.

Definition 7.6. Let λ, π ∈ P (n). The paired (6 m) dual Knuth equivalence relation
is the equivalence relation ≈m on Std(π)× Std(λ) generated by paired (6 m)-DKMs.
When m = n we write ≈ for ≈n, and call it the paired dual Knuth equivalence relation.

We denote by Cm(u, t) the ≈m equivalence class that contains (u, t).

Remark 7.7. It is clear that (u, t) ≈m (v, x) implies (u, t) ≈m′ (v, x) whenever m 6
m′. In particular, (u, t) ≈m (v, x) implies (u, t) ≈ (v, x).

Remark 7.8. By Remark 6.35, if (v, x) ∈ Cm(u, t) then (v, x) = (wu,wt) for some
w ∈ Wm. Thus v >m = u>m and x>m = t>m. Now suppose that u6m = t6m,
and write ξ = Shape(u6m). It is clear that every (v, x) ∈ Cm(u, t) satifies v 6m =
x6m. Furthermore, since Std(ξ) is a single dual Knuth equivalence class, for every
y ∈ Std(ξ) there is a sequence of (6 m)-DKMs taking u6m to y. This same sequence
of DKMs takes (u, t) to (v, x), where v satisfies v 6m = y and v >m = u>m and
x satisfies x6m = y and x>m = t>m. So it follows that if u6m = t6m then
Cm(u, t) = { (v, x) ∈ Std(π)× Std(λ) | (v, x) = (wu,wt) for some w ∈Wm }.

Example. Suppose that π = (3, 1) and λ = (2, 1, 1). Then the set Std(π) × Std(λ)
has 9 elements. It is easily verified that there are seven paired dual Knuth equivalence
classes, of which two classes have 2 elements and five classes have 1 element only. The
two non-trivial classes are

 1 4

2

3

, 1 2 4

3

 ,

 1 3

2

4

, 1 2 3

4


and 

 1 3

2

4

, 1 3 4

2

 ,

 1 2

3

4

, 1 2 4

3

 .

Let π, λ ∈ P (n) and (u, t), (v, x) ∈ Std(π) × Std(λ), and suppose that (v, x) =
(siu, sit) for some i ∈ [1, n− 1]. If i ∈ SD(u) ∩ SD(t) then u 6 t if and only if v 6 x,
by Lemma 7.4, and it follows by interchanging the roles of (u, t) and (v, x) that the
same is true if i ∈ SA(u) ∩ SA(t). In particular, if there is a paired DKM from (u, t)
to (v, x) or from (v, x) to (u, t) then u 6 t if and only if v 6 x. An obvious induction
now yields the following result.

Proposition 7.9. Let π, λ ∈ P (n). Let (u, t), (v, x) ∈ Std(π) × Std(λ) and suppose
that (u, t) ≈ (v, x). Then u 6 t if and only if v 6 x.

Let π, λ ∈ P (n) and (u, t), (v, x) ∈ Std(π) × Std(λ). and suppose that (v, x) =
(siu, sit) for some i ∈ [1, n− 1]. If i ∈ SD(u) ∩ SD(t) then l(v)− l(x) = (l(u)− 1)−
(l(t)−1) = l(u)−l(t), and if i ∈ SA(u)∩SA(t) then l(v)−l(x) = (l(u)+1)−(l(t)+1) =
l(u)− l(t). In particular, l(v)− l(x) = l(u)− l(t) if there is a paired DKM from (u, t) to
(v, x) or from (v, x) to (u, t). It follows that l(x)−l(v) is constant for all (v, x) ∈ C(u, t).
Hence we obtain the following result.
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Proposition 7.10. Let π, λ ∈ P (n). Let (u, t), (v, x) ∈ Std(π)× Std(λ) and suppose
that (u, t) ≈ (v, x). Then u 6L v if and only if t 6L x.

Proof. Since (u, t) ≈ (v, x) there exists w ∈ Wm such that v = wu and x = wt. Now
u 6L v if and only if l(v) − l(u) = l(w), and t 6L x if and only if l(x) − l(t) = l(w),
by the definition of the left weak order. Since (u, t) ≈ (v, x) implies that l(v)− l(u) =
l(x)− l(t), the result follows. �

Definition 7.11. Let π, λ ∈ P (n) and (u, t) ∈ Std(π) × Std(λ). If j ∈ [1, n] and
u6 j = t6 j then we say that the pair (u, t) is j-restrictable.

Remark 7.12. It is clear that the set R(u, t) = { j ∈ [1, n] | (u, t) is j-restrictable } is
always nonempty, since 1 ∈ R(u, t). Moreover, R(u, t) = [1, k] for some k ∈ [1, n].

Definition 7.13. Let π, λ ∈ P (n) and (u, t) ∈ Std(π) × Std(λ). We shall call the
number k satisfying R(u, t) = [1, k] the restriction number of the pair (u, t). If k is
the restriction number of (u, t) then we say that (u, t) is k-restricted.

Remark 7.14. With (u, t) as above, the restriction number of (u, t) is at least 1 and
at most n. If k ∈ [1, n] then (u, t) is k-restricted if and only if it is k-restrictable and
not (k + 1)-restrictable. If (u, t) is k-restricted then k = n if and only if u = t, and if
k < n then colu(k + 1) 6= colt(k + 1) and rowu(k + 1) 6= rowt(k + 1).

Lemma 7.15. Let π, λ ∈ P (n), and let u ∈ Std(π) and t ∈ Std(λ). If n < 4 then
D(u) = D(t) implies u = t.

Proof. This is trivially proved by listing all the standard tableaux. �

Definition 7.16. Let π, λ ∈ P (n) and (u, t) ∈ Std(π)× Std(λ). We say that the pair
(u, t) is favourable if the restriction number of (u, t) lies in D(u)⊕D(t), the symmetric
difference of the descent sets of u and t.

Note that k ∈ D(u)⊕D(t) if in one of the two tableaux the column number of k+1
is less than or equal to the column number of k, and in the other the row number of
k + 1 is less than or equal to the row number of k.

Example 7.17. The pair

(u, t) =

 1 2

3 4

5
,

1 2 4

3 5


is 3-restricted, since 1, 2 and 3 occupy the same boxes in u and t but 4 does not, and
is not favourable since 3 is not a descent of either u or t.

Remark 7.18. Let π, λ ∈ P (n), and suppose that (u, t) ∈ Std(π) × Std(λ) is k-
restricted. Then no element of [1, k−1] can belong to D(u)⊕D(t), since the fact that
u6 k = t6 k means that D(u) ∩ [1, k − 1] = D(t) ∩ [1, k − 1]. So if (u, t) is favourable
then k = min(D(u)⊕D(t)), and if (u, t) is not favourable and D(u)⊕D(t) is nonempty
then k < min(D(u)⊕D(t)).

Let π, λ ∈ P (n), and let (u, t) ∈ Std(π)× Std(λ). Let i be the restriction number
of (u, t), and suppose that i 6= n. Let w = u6 i = t6 i ∈ Std(ξ), where ξ = Shape(w),
and let also (g, p) = u−1(i + 1) and (h, r) = t−1(i + 1), the boxes of u and t that
contain i + 1. Thus (g, p) and (h, r) are ξ-addable, and (g, p) 6= (h, r) since (u, t)
is not (i + 1)-restrictable. Clearly there is at least one ξ-removable box (d,m) that
lies between (g, p) and (h, r) (in the sense that either g > d > h and p 6 m < r,
or h > d > g and r 6 m < p), and note that i ∈ D(u) ⊕ D(t) if and only if the
ξ-removable box w−1(i) is such a box.
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With (d,m) as above, suppose that w′ ∈ Std(ξ) satisfies w′(d,m) = i. Then there
exist unique v ∈ Std(π) and x ∈ Std(λ) such that v satisfies v 6 i = w′ and v > i = u> i
and x satisfies x6 i = w′ and x> i = t> i. We see that (v, x) is i-restricted and
favourable. Furthermore, it follows from Remark 7.8 that (v, x) ≈i (u, t).

We denote by F (u, t) the set of all (v, x) obtained as above as (d,m) and w′ vary.
Thus
F (u, t) = {(v, x) ∈ Ci(u, t) | v−1(i) = x−1(i) lies between u−1(i+ 1) and t−1(i+ 1)}
where i is the restriction number of (u, t). Note that (u, t) ∈ F (u, t) if and only if
(u, t) is favourable.

Example. Let u and t be as in Example 7.17 above, so that i = 3 and w = u6 3 =

t6 3 = 1 2

3
.

The shape of w is ξ = (2, 1), and the boxes of u and t that contain 4 are (g, p) =
(2, 2) and (h, r) = (1, 3). Observe that these are indeed both ξ-addable. There are
two ξ-removable boxes, namely (2, 1) and (1, 2); the fact that (u, t) is not favourable
corresponds to the fact that w−1(3) = (2, 1) does not lie between (g, p) and (h, r).
Putting (d,m) = (1, 2), which (necessarily) does lie between (g, p) and (h, r), we
find that (in this small example) there is only one standard ξ-tableau w′ satisfying
w′(d,m) = 3, namely w′ = w∗. Hence the set F (u, t) consists of a single pair (v, x):

F (u, t) = {(v, x)} =


 1 3

2 4

5
,

1 3 4

2 5

 .

Since w and w′ are the only standard ξ-tableaux, we see that C3(u, t) = {(u, t), (v, x)}.

Lemma 7.19. Let π, λ ∈ P (n) and let (u, t) ∈ Std(π) × Std(λ) with u 6= t. Let i be
the restriction number of (u, t), and assume that i /∈ D(u)⊕D(t). Let (v, x) ∈ F (u, t).
Then either D(x) r D(v) = D(t) r D(u) and D(v) r D(x) = {i} ∪ (D(u) r D(t)), this
alternative occurring in the case that colu(i+ 1) < colt(i+ 1), or else D(x) r D(v) =
{i} ∪ (D(t) r D(u)) and D(v) r D(x) = D(u) r D(t), this occurring in the case that
colt(i+ 1) < colu(i+ 1).

Proof. The construction of (v, x) is given in the discussion above. Since (v, x) and (u, t)
are both i-restricted, D(v)∩[1, i−1] = D(x)∩[1, i−1] and D(u)∩[1, i−1] = D(t)∩[1, i−
1]. That is, (D(v) ⊕ D(x)) ∩ [1, i − 1] = (D(u) ⊕ D(t)) ∩ [1, i − 1] = ∅. Furthermore,
since v > i = u> i and x> i = t> i it follows that (D(v) r D(x)) ∩ [i + 1, n − 1] =
(D(u)rD(t))∩[i+1, n−1] and (D(x)rD(v))∩[i+1, n−1] = (D(t)rD(u))∩[i+1, n−1].
It remains to observe that if p = colv(i+ 1) 6 m = colv(i) = colx(i) < r = colx(i+ 1)
then i ∈ D(v) r D(x), while if r 6 m < p then i ∈ D(x) r D(v). �

Lemma 7.20. Let π, λ ∈ P (n) and let (u, t) ∈ Std(π) × Std(λ). Assume that the
restriction number of (u, t) lies in D(u)⊕D(t), and let (v, x) ∈ F (u, t). Then D(v) r
D(x) = D(u) r D(t) and D(x) r D(v) = D(t) r D(u).

Proof. The proof is the same as the proof of Lemma 7.19, except that it can be seen
now that i ∈ D(v)rD(x) if i ∈ D(u)rD(t) and i ∈ D(x)rD(v) if i ∈ D(t)rD(u). �

Lemma 7.21. Let π, λ ∈ P (n) and (u, t) ∈ Std(π) × Std(λ), and i the restriction
number of (u, t). Suppose that D(t) $ D(u) and i < j, where j = min(D(u) r D(t)).
Let (v, x) ∈ F (u, t). If colu(i+1) < colt(i+1) then D(v)rD(x) = {i}∪ (D(u)rD(t))
and D(x)rD(v) = ∅, while if colt(i+1) < colu(i+1) then D(v)rD(x) = D(u)rD(t)
and D(x)rD(v) = {i}. In the former case D(v)∩{i, j} = {i, j} and D(x)∩{i, j} = ∅,
while in the latter case D(v) ∩ {i, j} = {j} and D(x) ∩ {i, j} = {i}.
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Proof. Since D(t) $ D(u) we have D(u)⊕D(t) = D(u)rD(t) 6= ∅. So j = min(D(u)⊕
D(t)), and since j > i we have i /∈ D(u) ⊕ D(t). Hence (v, x) ∈ F (u, t) satisfies the
extra properties specified in Lemma 7.19.

If colu(i+1) < colt(i+1) then Lemma 7.19 gives D(v)rD(x) = {i}∪(D(u)rD(t))
and D(x) r D(v) = ∅, since D(t) r D(u) = ∅ by hypothesis. In particular, since
j ∈ D(u) r D(t), we see that D(v) r D(x) contains both i and j.

If colt(i+1) < colu(i+1) then Lemma 7.19 combined together with D(t)rD(u) = ∅
gives D(v)rD(x) = D(u)rD(t) and D(x)rD(v) = {i}. In particular it follows that
j ∈ D(v) r D(x) and i ∈ D(x) r D(v). �

Let Γ = Γ(C, µ, τ) be a Wn-molecular graph, and let Λ be the set of molecule
types for Γ. For each λ ∈ Λ let mλ be the number of molecules of type λ in Γ, and
Iλ some indexing set of cardinality mλ. As in Remark 6.50, the vertex set of Γ can
be expressed in the form

C =
⊔
λ∈Λ

⊔
α∈Iλ

Cα,λ,

where Cα,λ = {cα,t | t ∈ Std(λ)} for each α ∈ Iλ, and the simple edges of Γ are
the pairs {cβ,u, cα,t} such that α = β ∈ Iλ for some λ ∈ Λ and u, t ∈ Std(λ) are
related by a DKM. Furthermore, τ(cα,t) = { sj ∈ Sn | j ∈ D(t) }, whenever λ ∈ Λ
and (α, t) ∈ Iλ × Std(λ).

Now let λ, π ∈ Λ, and let (α, t) ∈ Iλ×Std(λ) and (β, u) ∈ Iπ×Std(π), so that cα,t
and cβ,u are vertices of Γ. Suppose that D(u) r D(t) 6= ∅, and let j ∈ D(u) r D(t).

Suppose that there exist i < j and (v, x) ∈ Std(π)×Std(λ) such that (u, t) and (v, x)
are related by a paired (6 i)-DKM. Then j ∈ D(u> i)rD(t> i), since j ∈ D(u)rD(t)
and j > i. Thus j ∈ D(v > i) r D(x> i), since (v, x) ≈i (u, t) gives v > i = u> i and
x> i = t> i. Hence j ∈ D(v) r D(x). Moreover, since (u, t) and (v, x) are related by a
paired (6 i)-DKM, there are k, l 6 i− 1 with |k − l| = 1 such that

D(x) ∩ {k, l, j} = {k}, D(v) ∩ {k, l, j} = {k, j},
D(t) ∩ {k, l, j} = {l}, D(u) ∩ {k, l, j} = {l, j},

and it follows from Proposition 5.13 that µ(cβ,v, cα,x) = µ(cβ,u, cα,t).
More generally, suppose that i < j and (v, x) ∈ Std(π) × Std(λ) satisfy (v, x) ≈i

(u, t), so that for some m ∈ N there exist (u0, t0), (u1, t1), . . . , (um, tm) in Std(π) ×
Std(λ), with (uh−1, th−1) and (uh, th) related by a paired (6 i)-DKM for each h ∈
[1,m], and (u0, t0) = (u, t) and (um, tm) = (v, x). Applying the argument in the
preceding paragraph and a trivial induction, we deduce that j ∈ D(uh) r D(th) and
µ(cβ,uh , cα,th) = µ(cβ,u, cα,t) for all h ∈ [0,m]. Thus we obtain the following result.

Lemma 7.22. Let Γ be a Wn-molecular graph. Using the notation as above, let λ, π ∈
Λ, and let (α, t) ∈ Iλ × Std(λ) and (β, u) ∈ Iπ × Std(π). Suppose that D(u) r D(t) 6=
∅, and let j ∈ D(u) r D(t). Then for all i < j and all (v, x) ∈ Ci(u, t) we have
j ∈ D(v) r D(x) and µ(cβ,v, cα,x) = µ(cβ,u, cα,t).

Corollary 7.23. Continuing with the same notation, let λ ∈ Λ and u, t ∈ Std(λ),
and suppose that u = sjt > t for some j ∈ [1, n − 1]. Then µ(cα,u, cα,t) = 1 for all
α ∈ Iλ.

Proof. Since t < sjt = u, it follows from Remark 6.28 that if D(t) * D(u) then there
is a DKM from t to u, and {cα,u, cα,t} is a simple edge. Thus µ(cα,u, cα,t) = 1 in this
case, and so we may assume that D(t) $ D(u).

Since u is obtained from t by interchanging j and j + 1, it is clear that j − 1 is the
restriction number of (u, t), and since D(u)rD(t) = {j}, by Lemma 6.20, we see that
the hypotheses of Lemma 7.21 are satisfied with i = j−1. Since colt(i+1) < colu(i+1),
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it follows that (u, t) ≈i (v, x), for some (v, x) ∈ F (u, t) satisfying D(v) ∩ {i, j} = {j}
and D(x) ∩ {i, j} = {i}. Since (u, t) ≈i (v, x) there exists w ∈ Wi with v = wu and
x = wt, and sjw = wsj sincej > i. Thus sjx = sjwt = wsjt = wu = v. Furthermore
sjx > x, since j /∈ D(x), and D(x) * D(v) since i ∈ D(x) r D(v). So there is a DKM
indexed by j from x to v, and so {cα,v, cα,x} is a simple edge. Thus µ(cα,v, cα,x) = 1,
and so µ(cα,u, cα,t) = 1 by Lemma 7.22. �

Lemma 7.24. Continue with the notation used in Lemma 7.22 above. Let π, λ ∈ Λ and
let (u, t) ∈ Std(π)×Std(λ). Suppose that D(u) = {n−1}∪D(t) and that µ(cβ,u, cα,t) 6=
0 for some β ∈ Iπ and α ∈ Iλ. Suppose also that the restriction number of (u, t)
is i < n − 2. Then colu(i + 1) < colt(i + 1), and (u, t) ≈i (v, x) for some (v, x) ∈
Std(π)×Std(λ) such that D(v) = D(x)∪{i, n−1} and µ(cβ,v, cα,x) = µ(cβ,u, cα,t) 6= 0.

Proof. Since u 6= t, the set F (u, t) is defined and nonempty. Let (v, x) ∈ F (u, t).
Then it follows by Lemmas 7.21 and 7.22 that (u, t) ≈i (v, x) and µ(cβ,v, cα,x) =
µ(cβ,u, cα,t) 6= 0. Moreover, if colu(i+ 1) < colt(i+ 1) then Lemma 7.21 gives D(v) =
D(x) ∪ {i, n − 1}. Thus it remains to show that colu(i + 1) < colt(i + 1). Suppose
otherwise. Then Lemma 7.21 shows that n − 1 ∈ D(v) r D(x) and i ∈ D(x) r D(v),
and now the Compatibility Rule says that i and n − 1 must be joined by a bond in
the Coxeter diagram of Wn. But this contradicts i < n− 2. �

Lemma 7.25. Suppose that u, t ∈ Std(n) are such that the restriction number of (u, t)
is n−1 and D(u) = {n−1}∪D(t). Then colu(n) < colt(n). Thus Shape(u) < Shape(t)
and u < t.

Proof. Clearly n > 2. Since u6 (n−1) = t6 (n−1) we have Shape(u<n) = Shape(t<n),
and since n− 1 ∈ D(u) r D(t) we have colu(n) 6 colu(n− 1) = colt(n− 1) < colt(n).
Hence Shape(u) < Shape(t) by Lemma 7.2, and u < t by Definition 7.1. �

Lemma 7.26. Continue with the notation used in Lemma 7.22 above. Let π, λ ∈ Λ,
let u ∈ Std(π), and let t ∈ Std(λ). Suppose that D(u) = {n − 1} ∪ D(t) and that
µ(cβ,u, cα,t) 6= 0 for some β ∈ Iπ and α ∈ Iλ, and suppose that the restriction
number of (u, t) is n − 2. Then (u, t) ≈n−2 (v, x) for some (v, x) ∈ Std(π) × Std(λ)
with µ(cβ,v, cα,x) = µ(cβ,u, cα,t), and either u < t and D(v) = {n − 2, n − 1} ∪ D(x)
(in the case colu(n− 1) < colt(n− 1)), or else (λ, α) = (π, β) and u = sn−1t > t, and
µ(cβ,u, cα,t) = 1 (in the case colt(n− 1) < colu(n− 1)).

Proof. Clearly n > 3. We have u6 (n−2) = t6 (n−2) and colu(n − 1) 6= colt(n − 1),
since (u, t) is (n − 2)-restricted. Let (v, x) ∈ F (u, t) be arbitrary, and note that the
hypotheses of Lemma 7.21 hold with i = n − 2 and j = n − 1. Moreover, since
(u, t) ≈n−2 (v, x), we may apply Lemma 7.22 with i = n − 2 and j = n − 1, and
deduce that µ(cβ,v, cα,x) = µ(cβ,u, cα,t) 6= 0.
Case 1.
Suppose that colu(n − 1) < colt(n − 1). Since Shape(u6 (n−2)) = Shape(t6 (n−2))
it follows from Lemma 7.2 that Shape(u6 (n−1)) < Shape(t6 (n−1)). Moreover, since
n − 1 ∈ D(u) r D(t), it follows that colu(n) 6 colu(n − 1) < colt(n − 1) < colt(n).
Hence π < λ by Lemma 7.2, and u < t by Definition 7.1. Moreover, since colu(n−1) <
colt(n − 1) and D(u) r D(t) = {n − 1}, it follows from Lemma 7.19 that D(v) =
D(x) ∪ {n− 2, n− 1}.
Case 2.
Suppose that colt(n − 1) < colu(n − 1). Lemma 7.19 gives D(x) ∩ {n − 2, n − 1} =
{n − 2} and D(v) ∩ {n − 2, n − 1} = {n − 1}, and since µ(cβ,v, cα,x) 6= 0 it follows
from Simplicity Rule that µ(cβ,v, cα,x) = 1. Hence µ(cβ,u, cα,t) = 1. Moreover, since
{cβ,v, cα,x} is a simple edge, it follows that from Theorem 6.49 and Remark 6.50 that
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λ = π and α = β. Hence u = sn−1t, since u6 (n−2) = t6 (n−2), and u > t since
colt(n− 1) < colu(n− 1). �

Remark 7.27. Continue with the notation used in Lemma 7.22 above. Let π, λ ∈ Λ,
let u ∈ Std(π), and let t ∈ Std(λ). Suppose that D(u) = {n − 1} ∪ D(t) and that
µ(cβ,u, cα,t) 6= 0 for some β ∈ Iπ and α ∈ Iλ. Let i be the restriction number of (u, t),
and note that i 6 n − 1. If i < n − 2 then colu(i + 1) < colt(i + 1) by Lemma 7.24,
and if i = n−1 then colu(n) < colt(n) by Lemma 7.25. In the remaining case, namely
i = n − 2, if colu(n − 1) > colt(n − 1) then u = sn−1t > t by Lemma 7.26. Thus
colu(i+ 1) < colt(i+ 1) unless i = n− 2 and u = sn−1t > t.

Remark 7.28. Continue with the notation used in Lemma 7.22 above. Suppose that
π, λ ∈ Λ, and let (β, u) ∈ Iπ×Std(π) and (α, t) ∈ Iλ×Std(λ) satisfy µ(cβ,u, cα,t) 6= 0
and D(t) $ D(u). Let j = min(D(u) r D(t)), and i the restriction number of (u, t).
Note that i 6 j.

Let K = {s1, s2, . . . , sj} ⊆ Sn, and ΓK theWK-restriction of Γ. As in Remark 6.52,
for each λ ∈ Λ and α ∈ Iλ we define ΛK,α,λ to be the set of all κ ∈ P (j+ 1) such that
the molecule of Γ with the vertex set Cα,λ contains a K-submolecule of type κ, and let
IK,α,λ,κ index these submolecules. Let ΛK =

⋃
α,λ ΛK,α,λ, the set of molecule types

for ΓK , and for each κ ∈ ΛK let IK,κ =
⊔
{(α,λ)|κ∈ΛK,α,λ} IK,α,λ,κ. For each β ∈ IK,κ

we write {c′β,u | u ∈ Std(κ)} for the vertex set of the corresponding K-submolecule
of Γ.

Let v = u6 (j+1) and x = t6 (j+1), and write σ = Shape(v) and θ = Shape(x).
Then by Remark 6.52, we can identify the vertex cβ,u of ΓK with c′δ,v for some
δ ∈ IK,β,u,σ, and the vertex cα,t of ΓK with c′γ,x for some γ ∈ IK,α,λ,θ. It is clear that
D(v) = D(x) ∪ {j}, and it follows that µ(c′δ,v, c′γ,x) = µK(cβ,u, cα,t) 6= 0. Moreover,
since i 6 j, the restriction number of (v, x) is also i. We can now apply Remark 7.27
with j + 1 in place of n and ΓK in place of Γ, and with (v, x) in place of the (u, t) of
Remark 7.27. The conclusion is that colv(i + 1) < colx(i + 1) unless v = sjx > x, in
which case j = i+ 1. So colu(i+ 1) < colt(i+ 1) unless u = si+1t > t.

We end this section with two technical lemmas that will be used throughout Sec-
tions 8 and 9. They will be useful when the Polygon Rule is to be applied.

Recall that if t ∈ Std(n) and i ∈ [1, n − 1] then sit ∈ Std(n) if and only if
i ∈ SA(t) ∪ SD(t).

Lemma 7.29. Let t ∈ Std(n) and let i ∈ A(t) and j ∈ SD(t). Put v = sjt.
(i) Suppose that i < j − 1. Then i /∈ D(v) and j /∈ D(v).

Additionally, if i ∈ SA(v) then i ∈ D(siv) and j /∈ D(siv).
(ii) Suppose that i = j − 1 and colt(j + 1) > colt(j − 1). Then j − 1 /∈ D(v) and

j /∈ D(v).
Additionally, if j − 1 ∈ SA(v) then j − 1 ∈ D(sj−1v) and j /∈ D(sj−1v).

(iii) Suppose that i = j − 1 and colt(j + 1) < colt(j − 1). Then j − 1 ∈ SD(v).
Writing w = sj−1v, we have j − 1 ∈ D(v) and j /∈ D(v), and j − 1 /∈ D(w)
and j /∈ D(w).
Additionally, if j ∈ SA(w), then j − 1 ∈ SA(sjw), and we have j ∈ D(sjw)
and j − 1 /∈ D(sjw), and j − 1 ∈ D(sj−1sjw) and j /∈ D(sj−1sjw).

Proof.
(i) Since v = sjt and j ∈ SD(t), it follows that j ∈ SA(v), whence j /∈ D(v). Since

v is obtained from t by switching the positions of j and j + 1, and since i+ 1 < j, it
follows that i and i + 1 have the same row and column index in v as they have in t.
Since i /∈ D(t), this shows that i /∈ D(v).
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If i ∈ SA(v) then siv is standard and i ∈ D(siv). Since siv is obtained from v by
switching i and i + 1, and since j > i + 1, it follows that j and j + 1 have the same
row and column index in siv as in v. Since j /∈ D(v) it follows that j /∈ D(siv).

(ii) Since v = sjt and j ∈ SD(t), it follows that j ∈ SA(v), whence j /∈ D(v). Now
since colv(j − 1) = colt(j − 1) and colv(j) = colt(j + 1), and colt(j − 1) < colt(j + 1)
by assumption, it follows that colv(j − 1) < colv(j). That is, j − 1 /∈ D(v).

If j − 1 ∈ SA(v) then sj−1v is standard and j − 1 ∈ D(sj−1v). Since j − 1 and j
are both ascents of v, we have colv(j − 1) < colv(j) < colv(j + 1), and since sj−1v
is obtained from v by switching j − 1 and j, we have colsj−1v(j) = colv(j − 1) and
colsj−1v(j + 1) = colv(j + 1), and it follows that colsj−1v(j) < colsj−1v(j + 1). Thus
j /∈ D(sj−1v).

(iii) As in (i) and (ii) we have j /∈ D(v). The assumption colt(j + 1) < colt(j − 1)
gives colv(j) < colv(j − 1), and so j − 1 ∈ SD(v). Hence w = sj−1v is standard, and
j − 1 ∈ SA(w). Since colw(j + 1) = colv(j + 1) = colt(j) and colw(j) = colv(j − 1) =
colt(j − 1), and since j − 1 ∈ A(t) by assumption, it follows that j ∈ A(w). Thus
j − 1 ∈ D(v) and j /∈ D(v), and j − 1 /∈ D(w) and j /∈ D(w), as required.

If j ∈ SA(w) then sjw ∈ Std(λ). Since j − 1 and j are both strong ascents of w,
we have roww(j − 1) > roww(j) > roww(j + 1), and since sjw is obtained from w by
switching j and j+1, we have rowsjw(j−1) = roww(j−1) and rowsjw(j) = roww(j+1),
and it follows that rowsjw(j − 1) > rowsjw(j). Thus j − 1 ∈ SA(sjw).

Now j − 1 ∈ SA(sjw) gives j − 1 /∈ D(sjw), and gives j − 1 ∈ D(sj−1sjw).
Similarly, j ∈ SA(w) gives j ∈ D(sjw). Finally, the assumption colt(j+1) < colt(j−1)
gives colsj−1sjw(j) = colsjw(j − 1) = colt(j + 1) < colt(j − 1) = colsjw(j + 1) =
colsj−1sjw(j + 1), and j /∈ D(sj−1sjw). �

Recall from Remark 6.15 that if λ ∈ P (n) and u, t ∈ Std(λ) then t >lex u if and
only if there exists l ∈ [1, n] such that colt(l) < colu(l) and t> l = u> l.
Lemma 7.30. Let λ ∈ P (n) and 0 6 i 6 n− 1. Let t, t′ ∈ Std(λ) satisfy t> i = (t′)> i.
Let j ∈ SD(t) and put v = sjt, and suppose that i ∈ A(t) and i < j. Then v <lex t

′,
and the following all hold.

(i) If i ∈ SA(v) then siv ∈ Std(λ) and siv <lex t
′.

(ii) If y ∈ Std(λ) and y < v then y <lex t
′.

(iii) Suppose that i = j − 1 and that colt(j + 1) < colt(j − 1), and let w = sj−1v.
Then w ∈ Std(λ) and w <lex t′. If j ∈ SA(w) then sj−1sjw ∈ Std(λ) and
sj−1sjw <lex t

′.
(iv) Suppose that i = j − 1 and that colt(j + 1) < colt(j − 1), and let w = sj−1v.

Let x ∈ Std(λ) be such that x < w and D(x) contains exactly one of j − 1 or
j, and let y be the (j−1)-neighbour of x (see Definition 6.48). Then y <lex t

′.
Proof. Since j ∈ SD(t) we have t > sjt = v, and hence t >lex v by Corollary 6.17.
Indeed, colt(j+1) < colt(j) = colv(j+1) and t> (j+1) = v > (j+1). Since t> i = (t′)> i
and j + 1 > i it follows that colt′(j + 1) < colv(j + 1) and (t′)> (j+1) = v > (j+1),
giving t′ >lex v.

(i) The assumption i ∈ SA(v) gives siv ∈ Std(λ), and since j + 1 > i + 1 it
follows that colt′(j + 1) < colv(j + 1) = colsiv(j + 1) and (t′)> (j+1) = (siv)> (j+1).
So t′ >lex siv.

(ii) If y < v then y <lex v, by Corollary 6.17, and since v <lex t′ this gives
y <lex t

′.
(iii) Since colv(j) = colt(j+1) < colt(j−1) = colv(j−1), we have j−1 ∈ SD(v),

and since this gives sj−1v ∈ Std(λ), an argument similar to that for (i) yields w <lex t
′.

If j ∈ SA(w) then sjw ∈ Std(λ). Since j − 1 ∈ SA(sjw) by Lemma 7.29 (iii), we
also see that sj−1sjw ∈ Std(λ). Since colt(j+1) < colt(j−1) = colsj−1sjw(j+1), and
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since j + 1 > i + 1, it follows that colt′(j + 1) < colsj−1sjw(j + 1) and (t′)> (j+1) =
(sj−1sjw)> (j+1). Hence t′ >lex sj−1sjw.

(iv) There are two cases to consider.
Case 1.
Suppose that D(x) ∩ {j − 1, j} = {j − 1} and D(y) ∩ {j − 1, j} = {j}. Then either
y = sjx > x or y = sj−1x < x.

Suppose first that y = sjx > x. Since x < w and w = sj−1v < v by the proof
of (iii), it follows that x < v. Since v < sjv = t and x < sjx = y, it follows
by Lemma 7.4 that y < t. Hence y <lex t by Corollary 6.17. That is, there exists
l ∈ [1, n] such that colt(l) < coly(l) and t> l = y > l. Suppose, for a contradiction,
that l 6 j − 1. Then t> (j−1) = y > (j−1), giving (sjt)> (j−1) = (sjy)> (j−1), that is,
v > (j−1) = x> (j−1). Therefore v >j = x>j , which gives w >j = (sj−1v)>j = v >j =
x>j . Now since colx(j) = colv(j) < colv(j − 1) = colw(j) (using again sj−1v < v),
it follows that w <lex x, contradicting the assumption that x < w. Thus l > j. Since
t> (j−1) = t′ > (j−1), it follows that colt′(l) = colt(l) < coly(l) and t′ > l = y > l, and
hence y <lex t

′, as required.
Suppose now that y = sj−1x < x. Since x < w, we have y < w, and by Corol-

lary 6.17 this gives y <lex w. But since w <lex t
′ by (iii), this yields y <lex t

′.
Case 2.
Suppose that D(x) ∩ {j − 1, j} = {j} and D(y) ∩ {j − 1, j} = {j − 1}. Then either
y = sjx < x or y = sj−1x > x.

Suppose first that y = sj−1x > x. Since x < sj−1x = y and w < sj−1w = v, the
assumption x < w gives y < v by Lemma 7.4. Thus y <lex t

′ by (ii).
Suppose now that y = sjx < x. Since x < w, we have y < w, and by Corollary 6.17

this gives y <lex w. But since w <lex t
′ by (iii), this yields y <lex t

′. �

8. Ordered admissible W -graphs in type A

Let Γ = Γ(C, µ, τ) be an admissibleWn-graph, and let Λ ⊆ P (n) be the set of molecule
types for Γ. As in Remark 6.50 we write

C =
⊔
λ∈Λ

⊔
α∈Iλ

Cα,λ,

where for each λ ∈ Λ the set Iλ indexes the molecules of Γ of type λ, and for each
λ ∈ Λ and α ∈ Iλ the set Cα,λ = {cα,t | t ∈ Std(λ)} is the vertex set of a molecule of
type λ.

Recall that, by Theorem 5.8, Γ satisfies the Compatibility Rule, the Simplicity
Rule, the Bonding Rule and the Polygon Rule. In particular, in view of Definition 5.4,
it follows that whenever vertices cα,t and cβ,u belong to different molecules and
µ(cβ,u, cα,t) 6= 0, we must have D(t) $ D(u) and µ(cα,t, cβ,u) = 0.

We make the following definition.

Definition 8.1. Let Γ = Γ(C, µ, τ) be an admissible Wn-graph, and let

C =
⊔
λ∈Λ

⊔
α∈Iλ

Cα,λ,

as above. Then Γ is said to be ordered if for all vertices cα,t and cβ,u with
µ(cβ,u, cα,t) 6= 0, either u < t (in the extended Bruhat order) or else α = β
and u = st > t for some s ∈ Sn.

Note that µ(cβ,u, cα,t) 6= 0 implies that D(u) * D(t). In particular, since S1 = ∅,
the condition µ(cβ,u, cα,t) 6= 0 can never be satisfied in the case n = 1. Thus it is
vacuously true that every W1-graph is ordered.
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Our main objective in this section is to prove the next theorem, which is one of
the main results of this paper.

Theorem 8.2. All admissible Wn-graphs are ordered.

The proof of Theorem 8.2 will proceed by induction on n. Accordingly, we assume
now that n is a positive integer and that all admissible Wm-graphs are ordered for
1 6 m < n. We let Γ = Γ(C, µ, τ) be an admissible Wn-graph, and use the notation
introduced in the preamble to this section: Λ is the set of molecule types of Γ, and
for each λ ∈ Λ the set Iλ indexes the molecules of type λ. We fix K = Sn r {sn−1}
and L = Snr {s1}, and we let ΓK and ΓL be the WK-graph and WL-graph obtained
by restricting Γ to WK and WL. Since |K| = |L| = n − 1, the inductive hypothesis
tells us that ΓK and ΓL are ordered.

For λ ∈ Λ and α ∈ Iλ let Θα,λ be the molecule of Γ with vertex set Cα,λ, and
consider the WK-restriction of Θα,λ, as in Remark 6.52. Write ΛK,α,λ for the set of
all κ ∈ P (n − 1) such that Θα,λ contains a K-submolecule of type κ, and for each
κ ∈ ΛK,α,λ let IK,α,λ,κ be a set that indexes the K-submolecules of Θα,λ of type κ.
For each γ ∈ IK,α,λ,κ let { c′γ,x | x ∈ Std(κ) } be the vertex set of the corresponding
K-submolecule of Θα,λ. Now ΛK =

⋃
α,λ ΛK,α,λ is the set of molecule types for ΓK ,

for each κ ∈ ΛK the set IK,κ =
⊔
{α,λ|κ∈ΛK,α,λ} IK,α,λ,κ indexes the K-submolecules

of Γ of type κ, and since the vertex set of ΓK is C we deduce that

(9) C =
⊔

κ∈ΛK

{c′γ,x | (γ, x) ∈ IK,κ × Std(κ)}.

Similarly, by Remark 6.52, the set of molecule types for ΓL is ΛL =
⋃
α,λ ΛL,α,λ,

where ΛL,α,λ is the set of all θ ∈ P (n − 1) such that Θα,λ has an L-submolecule
of type θ, and for each θ ∈ ΛL the L-submolecules of Γ of type θ are indexed by
IL,θ =

⊔
{α,λ|θ∈ΛL,α,λ} IL,α,λ,θ, where IL,α,λ,θ indexes the L-submolecules of type θ

in Θα,λ. The vertex set of ΓL is

(10) C =
⊔
θ∈ΛL

{c′′ε,y | (ε, y) ∈ IL,θ × Std(θ)}.

Lemma 8.3. Let π, λ ∈ Λ with π 6 λ, and let (β, u) ∈ Iπ × Std(π) and (α, t) ∈ Iλ ×
Std(λ) satisfy the condition µ(cβ,u, cα,t) 6= 0 and D(t) $ D(u). Let j = min(D(u) r
D(t)) and assume that j < n− 1. Then u < t unless α = β and u = sjt > t.

Proof. Since j is at least 1, the requirement that n − 1 > j implies that n > 3. Let
v = u6 (n−1) and x = t6 (n−1), and write σ = Shape(v) and θ = Shape(x). By Eq. (9)
we can identify cβ,u ∈ C with c′δ,v for some δ ∈ IK,β,π,σ, and cα,t ∈ C with c′γ,x for
some γ ∈ IK,α,λ,θ.

Since D(v)rD(x) = D(u)∩[1, n−2])r(D(t)∩[1, n−2]), and since we are given that
j ∈ D(u)rD(t) and j < n− 1, it follows that µ(c′δ,v, c′γ,x) = µK(cβ,u, cα,t) 6= 0. Since
ΓK is ordered, we have either v < x or γ = δ and v = six > x for some i ∈ [1, n− 2].
In the former case, since Shape(u) = π 6 λ = Shape(t) by hypothesis, and since
u6 (n−1) = v < x = t6 (n−1), we have u < t by the remark following Definition 7.1
In the latter case, the fact that γ = δ implies that IK,α,λ,θ = IK,β,π,σ and hence that
α = β. Moreover, since v = six > x it follows from Lemma 6.20 that i is the unique
element of D(v) r D(x). So i = j, and u = sjt > t. �

Proposition 8.4. Let π, λ ∈ Λ with π 6 λ, and suppose that (β, u) ∈ Iπ×Std(π) and
(α, t) ∈ Iλ×Std(λ) satisfy µ(cβ,u, cα,t) 6= 0. Then u < t unless α = β and u = sit > t
for some i ∈ [1, n− 1].
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Proof. Since µ(cβ,u, cα,t) 6= 0, it follows that D(u) * D(t). If D(t) * D(u) also holds
then the Simplicity Rule shows that {cβ,u, cα,t} is a simple edge, so that α = β
and u = sit for some i ∈ [1, n − 1]. Thus we may assume that D(t) $ D(u). If
min(D(u) r D(t)) < n− 1 then the result is given by Lemma 8.3.

It remains to consider the case D(u) = D(t) ∪ {n − 1}. Let i be the restriction
number of the pair (u, t) and note that i < n by Remark 7.14. If i = n−1 or i = n−2
then the results are given by Lemma 7.25 and Lemma 7.26, respectively. So we may
assume that i < n − 2, and it follows by Lemma 7.24 that (u, t) ≈i (v, x) for some
(v, x) ∈ Std(π)× Std(λ) satisfying the condition µ(cβ,u, cα,t) = µ(cβ,v, cα,x) 6= 0 and
D(x) $ D(v) = D(x) ∪ {i, n − 1}. We can now apply Lemma 8.3 with cβ,v and cα,x
in place of cβ,u and cα,t. Since D(v) = D(x) ∪ {i, n − 1} it follows from Lemma 6.20
that v 6= six, and so we must have v < x. So u < t, by Proposition 7.9. �

Notation 8.5. Given λ ∈ Λ, let C ′λ = C r
(⊔

α∈Iλ Cα,λ
)
, the set of vertices of Γ

belonging to molecules of type different from λ. We define Iniλ(Γ) to be the set of
(α, t) ∈ Iλ×Std(λ) such that there exists an arc from cα,t to some vertex in C ′λ. That
is,

Iniλ(Γ) =

(α,t)∈Iλ×Std(λ)
∣∣ µ(cβ,u, cα,t) 6= 0 for some (β, u)∈

⊔
π∈Λr{λ}

(Iπ×Std(π))

.
For each α ∈ Iλ we define IniΓ(α, λ) = { t ∈ Std(λ) | (α, t) ∈ Iniλ(Γ) }, and we
also define IniΓ(λ) =

⋃
α∈Iλ IniΓ(α, λ). If Iniλ(Γ) 6= ∅, so that IniΓ(λ) is a nonempty

subset of Std(λ), we define tλ to be the element of IniΓ(λ) that is minimal in the
lexicographic order on Std(λ).

It is clear that whenever λ ∈ Λ and Iniλ(Γ) 6= ∅ there must be at least one α ∈ Iλ
having the property that tλ ∈ IniΓ(α, λ), but for an arbitrary α ∈ Iλ it may or may
not be the case that tλ ∈ IniΓ(α, λ).

The following definitions will be used in results dealing with tλ.

Definition 8.6. Let π, λ ∈ P (n). Let (u, t) ∈ Std(π) × Std(λ), and let k be the
restriction number of (u, t). The pair (u, t) is said to be k-minimal, and t is said to
be k-minimal with respect to u, if D(t) $ D(u) and t> k is k-critical, and t<k is the
minimal tableau of its shape.

Example. Consider the following three pairs (ui, ti):

(u1, t1) =

 1 2 3

4

5
,

1 2 3

4 5

 ,

(u2, t2) =

 1 2 5

3

4
,

1 2 3

4 5

 ,

(u3, t3) =

 1 2 5

3

4
,

1 2 5

3 4

 .

The pair (u1, t1) is 4-restricted, (t1)< 4 = (u1)< 4 is the minimal tableau of
shape (1, 1, 1), and from Definition 6.22 it is readily checked that (t1) > 4 is the
4-critical tableau of shape (2, 2, 1)/(1, 1, 1). Since D(t1) = {3} $ {3, 4} = D(u1), it
follows that (u1, t1) is 4-minimal.
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The pair (u2, t2) is 2-restricted, (t2)< 2 is minimal, and D(t2) = {3} $ {2, 3} =
D(u2). But (t2) > 2 is not 2-critical, since 2 is not in its first nonempty column. So
(u2, t2) is not 2-minimal.

The pair (u3, t3) is 3-restricted, (t3)< 3 is minimal, (t3) > 3 is the 3-critical tableau
of shape (2, 2, 1)/(1, 1, 1), and D(t3) = {2} $ {2, 3} = D(u3). So (u3, t3) is 3-minimal.

Let π, λ ∈ P (n), and let (u, t) ∈ Std(π)× Std(λ). Let k be the restriction number
of (u, t), and assume that k ∈ [1, n− 1] (or, equivalently, u 6= t). Recall that

F (u, t) = {(v, x) ∈ Ck(u, t) | v−1(k) = x−1(k) lies between u−1(k+1) and t−1(k+1)}.

Definition 8.7. Let π, λ ∈ P (n) and (u, t) ∈ Std(π) × Std(λ) with u 6= t, and let k
be the restriction number of (u, t). We define A(u, t) = {(v, x) ∈ F (u, t) | colx(k) =
colt(k + 1)− 1} and call any element of A(u, t) an approximate of (u, t).

Since every pair (v, x) ∈ F (u, t) must satisfy either colu(k+1) 6 colx(k) < colt(k+
1) or colt(k+1) 6 colx(k) < colu(k+1), it is clear that A(u, t) 6= ∅ only if colu(k+1) <
colt(k + 1). Conversely, suppose that colu(k + 1) < colt(k + 1). Let r = colt(k + 1)
and ξ = Shape(t6 k), and note that ξr−1 > ξr, since t−1(k + 1) is ξ-addable and in
column r. Hence (ξr−1, r−1) is ξ-removable, and we can choose a tableau w′ ∈ Std(ξ)
with w′(ξr−1, r − 1) = k. The unique pair (v, x) ∈ Ck(u, t) with v 6 k = x6 k = w′ is
then an element of A(u, t), and so A(u, t) 6= ∅.

Example 8.8. Let

(u, t) =


1 2 3

4

5

6

7

,
1 2 3 6

4 7

5

 .

We see that (u, t) is 5-restricted and colu(6) = 1 < 4 = colt(6). By Definition 8.7, the
set A(u, t) consists of all (v, x) ∈ F (u, t) with colx(5) = colt(6) − 1 = 3. So as well
as being 5-restricted and satisfying the conditions v > 5 = u> 5 and x> 5 = t> 5, each
(v, x) ∈ F (u, t) satisfies v−1(5) = x−1(5) = (1, 3). The tableau v 6 4 = x6 4 can be
any element of Std(3, 1). So

A(u, t) =




1 4 5

2

3

6

7

,
1 4 5 6

2 7

3

,


1 3 5

2

4

6

7

,
1 3 5 6

2 7

4

,


1 2 5

3

4

6

7

,
1 2 5 6

3 7

4


.

Remark 8.9. Let u, t be as in Definition 8.7, and assume that A(u, t) 6= ∅. It is
immediate from the definition that every approximate (v, x) of (u, t) is k-restricted
and satisfies (v, x) ≈k (u, t). Furthermore, if r = colt(k + 1) then v−1(k) = x−1(k) =
(d,m), where m = r − 1 and d is the (r − 1)-th part of ξ = Shape(t6 k). So A(u, t)
is a nonempty (k − 1)-subclass of Ck(u, t). Furthermore, if we define κ ∈ P (k − 1)
by [κ] = [ξ] r {(d,m)}, then there is a bijection from Std(κ) to A(u, t) such that
w 7→ (v, x) if and only if v 6 (k−1) = x6 (k−1) = w. We use this bijection to transfer
the partial order 6 from Std(κ) to A(u, t), and observe that A(u, t) has a unique
minimal element, given by w = τκ, and a unique maximal element, given by w = τκ.
We call these elements of A(u, t) the minimal approximate of (u, t) and the maximal
approximate of (u, t), respectively.

In Example 8.8, the first and the last are the minimal and maximal approximates
of (u, t).
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Remark 8.10. Let π, λ ∈ Λ, and let (β, u) ∈ Iπ×Std(π) and (α, t) ∈ Iλ×Std(λ) sat-
isfy the condition µ(cβ,u, cα,t) 6= 0 and D(t) $ D(u). Let k ∈ [1, n−1] be the restriction
number of the pair (u, t). Let l = min(D(u) r D(t)), and let H = {s1, . . . , sl}. Re-
mark 7.28 applied to ΓH , theWH -restriction of Γ, shows that colu(k+1) < colt(k+1)
unless u = sk+1t > t. It follows that A(u, t) 6= ∅ unless u = sk+1t > t.

Since u = sk+1t forces π = λ, Proposition 8.4 shows that µ(cβ,u, cα,t) 6= 0 and
u = sk+1t > t occurs only if α = β. Moreover, if α 6= β then cβ,u and cα,t are in
different molecules, and µ(cβ,u, cα,t) 6= 0 implies that D(t) $ D(u). So when α 6= β
the condition µ(cβ,u, cα,t) 6= 0 suffices to ensure that A(u, t) 6= ∅.

Lemma 8.11. Let π, λ ∈ P (n) and (u, t) ∈ Std(π)×Std(λ) with u 6= t, and let k be the
restriction number of (u, t). Assume that A(u, t) 6= ∅, and let (v, x) ∈ A(u, t). Then
(v, x) is k-restricted and satisfies (v, x) ≈k (u, t). Moreover, if D(t) $ D(u) then we
have D(x) $ D(v) and k = min(D(v) r D(x)).

Proof. It follows from Remark 8.9 that (v, x) is k-restricted and satisfies (v, x) ≈k
(u, t). So it remains to show that if D(t) $ D(u) then D(x) $ D(v) and k = min(D(v)r
D(x)). So assume that D(t) $ D(u).

Since colu(k + 1) < colt(k + 1) (since A(u, t) 6= ∅), Lemma 7.19 and Lemma 7.20
show that D(x) r D(v) = D(t) r D(u) and D(v) r D(x) ⊇ D(u) r D(t), and since
D(t) $ D(u) it follows that D(x) $ D(v). Since (v, x) is favourable, we have k =
min(D(v)⊕D(x) by Remark 7.18, and it follows that k = min(D(v) r D(x)). �

Lemma 8.12. Let π, λ ∈ Λ with π 6= λ, and let (β, u) ∈ Iπ × Std(π) and (α, t) ∈
Iλ × Std(λ) satisfy µ(cβ,u, cα,t) 6= 0. Let k be the restriction number of (u, t). Then
A(u, t) 6= ∅, and for all (v, x) ∈ A(u, t) the following three conditions hold:

(i) (v, x) ≈ (u, t),
(ii) D(x) $ D(v) and k = min(D(v) r D(x)),
(iii) µ(cβ,v, cα,x) = µ(cβ,u, cα,t).

Proof. Remark 8.10 gives A(u, t) 6= ∅. Let (v, x) ∈ A(u, t) be arbitrary. By
Lemma 8.11, we have (u, t) ≈k (v, x), whence (u, t) ≈ (v, x). Since cβ,u and cα,t are
in distinct molecules (since π 6= λ), and since µ(cβ,u, cα,t) 6= 0, we have D(t) $ D(u),
and it follows by Lemma 8.11 that D(x) $ D(v) and k = min(D(v) r D(x)). It
remains to show that µ(cβ,v, cα,x) = µ(cβ,u, cα,t). Let l = min(D(u)rD(t)), and note
that k 6 l since (u, t) is k-restricted.

Suppose first that k < l. Since (u, t) ≈k (v, x) and k < l ∈ D(u) r D(t), the result
follows from Lemma 7.22.

Suppose now that k = l = min(D(u) r D(t)). In particular, this means that k ∈
D(u) r D(t). Let w = t6 k = u6 k and ξ = Shape(w), and let (h, r) = t−1(k + 1) and
(g, p) = t−1(k), the boxes of t that contain k + 1 and k. Note that ξr−1 > ξr, since
(h, r) is ξ-addable. Since k /∈ D(t), it follows that g > h and p < r. If p = r − 1 then
(u, t) ∈ A(u, t), and then (v, x) ∈ Ck−1(u, t), since Remark 8.9 tells us that A(u, t)
is a single (k − 1)-subclass. The desired conclusion µ(cβ,v, cα,x) = µ(cβ,u, cα,t) then
follows from Lemma 7.22, since k − 1 < k ∈ D(u) r D(t). Thus we can assume that
p < r − 1.

Let (d,m) = (ξr−1, r − 1), noting that (g, p) and (d,m) are distinct ξ-removable
boxes. Let ρ = Shape(w <k) ∈ P (k − 1), so that [ρ] = [ξ] r {(g, p)}, and let ρ′ ∈
P (k − 2) satisfy [ρ′] = [ξ] r {(g, p), (d,m)}. Let (i, j) be a ρ′-removable box that lies
between (g, p) and (d,m) (in the sense that g > i > d and p 6 j < m), and observe
that we can choose w′ ∈ Std(ρ) satisfying w′(i, j) = k − 2 and w′(d,m) = k − 1.
Since Shape(w) = Shape(t<k) = Shape(u<k), we can define (u1, t1) ∈ Ck−1(u, t)
by the conditions that (u1)<k = w′ and (u1) > k = u> k, and (t1)<k = w′ and
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(t1) > k = t> k. Since (u1, t1) ∈ Ck−1(u, t) and k − 1 < k ∈ D(u) r D(t), it follows
from Lemma 7.22 that µ(cβ,u1 , cα,t1) = µ(cβ,u, cα,t) and k ∈ D(u1) r D(t1).

Note that u−1
1 (k) = t−1

1 (k) = (g, p) and u−1
1 (k − 1) = t−1

1 (k − 1) = (d,m). Since
p < m we have that k − 1 ∈ SD(u1) ∩ SD(t1), and therefore we can define (u2, t2) ∈
Std(π) × Std(λ) by (u2, t2) = (sk−1u1, sk−1t1). Since (u1) 6 k = (t1) 6 k, clearly also
(u2) 6 k = (t2) 6 k. Furthermore, (u2)>k = (u1)>k = u>k and (t2)>k = (t1)>k =
t>k. Thus it follows that (u2, t2) ∈ Ck(u, t). We check that in fact (u2, t2) ∈ A(u, t).
One of the requirements is that colt2(k) = colt(k + 1)− 1, which is satisfied since

t−1
2 (k) = t−1

1 (k − 1) = (w′)−1(k − 1) = (d,m) = (ξr−1, r − 1),
while t−1(k+1) = (h, r). The other requirement is that t−1

2 (k) lies between u−1(k+1)
and t−1(k + 1), and this holds since

colt(k + 1) = r > colt2(k) = r − 1 > p = colt(k) = colu(k) > colu(k + 1),
the last inequality because k ∈ D(u). Since we also have (v, x) ∈ A(u, t), it follows
from Remark 8.9 that (u2, t2) ∈ Ck−1(v, x), and since k − 1 < k ∈ D(v) r D(x) it
follows from Lemma 7.22 that µ(cβ,u2 , cα,t2) = µ(cβ,v, cα,x) and k ∈ D(u2) r D(t2).

Our task is now reduced to proving that µ(cβ,u1 , cα,t1) = µ(cβ,u2 , cα,t2), and for
this we apply Proposition 5.13 with {cβ,u1 , cβ,u2} in place of {v, v′} and {cα,t1 , cα,t2}
in place of {u, u′}, and with {sk−2, sk−1} in place of {s, t} and sk in place of r.

We must first check that {cβ,u1 , cβ,u2} and {cα,t1 , cα,t2} are simple edges of Γ.
For this it suffices to show that there are DKMs taking u2 to u1 and taking t2 to t1.
Observe first that colu1(k−2) = colt1(k−2) = j, which gives colu1(k) 6 colu1(k−2) <
colu1(k − 1) and colt1(k) 6 colt1(k − 2) < colt1(k − 1), since p 6 j < m. Applying
sk−1 interchanges k − 1 and k, and so colu2(k − 1) 6 colu2(k − 2) < colu1(k) and
colt2(k − 1) 6 colt2(k − 2) < colt2(k). Now since colu2(k − 1) 6 colu2(k − 2) and
colu2(k − 1) < colu2(k), it follows from Definition 6.18 that k − 2 ∈ D(u2) and
k−1 /∈ D(u2). So D(u2)∩{k−2, k−1} = {k−2}. In a similar way, D(u1)∩{k−2, k−1} =
{k − 1}. Hence, since u1 = sk−1u2, it follows from the definition that u2 → u1 is a
DKM (of the first kind) of index k − 1. Completely analogous reasoning shows that
t2 → t1 is also a DKM (of the first kind) of index k − 1. Hence {cβ,u1 , cβ,u2} and
{cα,t1 , cα,t2} are simple edges, as required.

To show that the hypotheses of Proposition 5.13 are satisfied, it remains to check
that

D(t1) ∩ {k − 2, k − 1, k} = {k − 1}, D(u1) ∩ {k − 2, k − 1, k} = {k − 1, k},
D(t2) ∩ {k − 2, k − 1, k} = {k − 2}, D(u2) ∩ {k − 2, k − 1, k} = {k − 2, k}.

But these are just the DKM conditions established in the previous paragraph together
with k ∈ D(u1) r D(t1) and k ∈ D(u2) r D(t2), both of which have been estab-
lished above. Hence Proposition 5.13 applies, and µ(cβ,u2 , cα,t2) = µ(cβ,u1 , cα,t1), as
required. �

Proposition 8.13. Let λ, π ∈ Λ with Iniλ(Γ) 6= ∅ and π ∈ Λ r {λ}, and let α ∈ Iλ
and (β, u′) ∈ Iπ × Std(π) satisfy µ(cβ,u′ , cα,tλ) 6= 0. Let k be the restriction number
of (u′, tλ), and let (u, t) ∈ A(u′, tλ). Then t> k is k-critical. In particular, if (u, t) is
the minimal approximate of (u′, tλ) then t is k-minimal with respect to u.

Proof. Lemma 8.12 tells us that (u, t) ≈ (u′, tλ), that D(t) $ D(u) and k =
min(D(u)rD(t)), and that µ(cβ,u, cα,t) = µ(cβ,u′ , cα,tλ) 6= 0. Note that colt(k+ 1) =
colt(k) + 1, since (u, t) is an approximate of (u′, tλ) (see Definition 8.7). Thus, by
Lemma 6.23, to show that t> k is k-critical it will suffice to show that every j ∈ D(t)
with j > k + 1 is in WD(t), and that either colt(k + 2) = colt(k) or k + 1 /∈ SD(t).
We do both parts of this by contradiction.
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For the first part, suppose that j > k + 1 and j ∈ SD(t). Let v = sjt, which is
standard since j ∈ SD(t). Observe that the conditions of Lemma 7.30 are satisfied
with k in place of i and tλ in place of t′. Since k+ 1 < j, the conditions 0 6 k 6 n− 1
and k < j are certainly satisfied, and we also have j ∈ SD(t) and v = sjt. The
condition t>k = (tλ)>k holds since (u, t) ≈k (u′, tλ) (see Remark 7.8), and k ∈ A(t)
holds since k ∈ D(u) r D(t) (and A(t) is the complement of D(t)). So Lemma 7.30
applies, and in particular shows that v <lex tλ.

Note that (cα,t, cβ,u) is an arc in Γ, since µ(cβ,u, cα,t) 6= 0, and note that (cα,v, cα,t)
is also an arc, since µ(cα,t, cα,v) = 1 by Corollary 7.23. We claim that the directed
path (cα,v, cα,t, cβ,u) is of alternating type (sj , sk). That is, we claim that k, j /∈ D(v),
that j ∈ D(t) and k /∈ D(t), and that k, j ∈ D(u). The first of these follows from
Lemma 7.29 (i), since v = sjt and k < j − 1, and we have k ∈ A(t) and j ∈ SD(t).
The others follow from facts established above, namely that k ∈ D(u) r D(t) and
j ∈ SD(t) ⊆ D(t) $ D(u).

To simplify the notation slightly, if c, d∈C we writeNh
j,k(c, d) forNh

sj ,sk
(Γ; c, d) (de-

fined in Eq. (2) in Section 5 above). Since Γ is admissible the quantity N2
j,k(cα,v, cβ,u)

is a sum of positive terms, and there is at least one term since (cα,v, cα,t, cβ,u) is an
alternating path of type (j, k). Hence N2

j,k(cα,v, cβ,u) 6= 0, and since Γ satisfies the
Polygon Rule it follows from Definition 5.7 that N2

k,j(cα,v, cβ,u) 6= 0. So there must
exist at least one ν ∈ Λ and one (γ, y) ∈ Iν × Std(ν) such that (cα,v, cγ,y, cβ,u) is an
alternating directed path of type (k, j). If ν 6= λ this implies that (α, v) ∈ Iniλ(Γ),
and v ∈ IniΓ(α, λ) ⊆ IniΓ(λ). But this is impossible since tλ is lexicographically
minimal in IniΓ(λ), and we have shown above that v <lex tλ. So ν = λ. Hence, by
Proposition 8.4, we must have either y < v, or γ = α and y = skv > v.

If y = skv > v then Lemma 7.30 (i) applies (since the condition k ∈ SA(v) is equiv-
alent to v < skv ∈ Std(λ)), giving y = skv <lex tλ. On the other hand, if y < v then
Lemma 7.30 (ii) applies, again giving y <lex tλ. But since (cγ,y, cβ,u) is an arc from
a molecule of type ν = λ to a molecule of type π 6= λ it follows that y ∈ IniΓ(λ), and
y <lex tλ contradicts the minimality of tλ. This completes the proof of the first part.

For the second part, suppose that k + 1 ∈ SD(t) and colt(k + 2) 6= colt(k).
Since (u, t) ∈ A(u′, tλ), it follows from Definition 8.7 that colt(k) = coltλ(k+1)−1,

and therefore colt(k) = colt(k+1)−1, since t>k = (tλ)>k. But colt(k+1) > colt(k+2)
since k + 1 ∈ SD(t), and so colt(k) > colt(k + 2). Thus the assumption colt(k + 2) 6=
colt(k) in fact means that colt(k + 2) < colt(k).

Let v = sk+1t, noting that v ∈ Std(λ) since k + 1 ∈ SD(t). We now apply
Lemma 7.29 (iii) with k and k+ 1 in place of i and j. The hypotheses of Lemma 7.29
are that k ∈ A(t), which holds since k ∈ D(u) r D(t), and k + 1 ∈ SD(t), which is
given here, and the additional hypothesis for 7.29 (iii) is colt(k + 2) < colt(k), which
is also given. The conclusions are that k ∈ SD(v) and k + 1 /∈ D(v), and also that
k /∈ D(w) and k + 1 /∈ D(w), where w = skv.

We can now check that (cα,w, cα,v, cα,t, cβ,u) is an alternating directed path of type
(k, k+1). It is certainly a path, since µ(cα,v, cα,w) = µ(cα,t, cα,v) = 1 by Corollary 7.23,
and we have already seen that µ(cβ,u, cα,t) 6= 0. To show that the path is alternating
of type (k, k+1) we must show that k, k+1 /∈ D(w), that k ∈ D(v) and k+1 /∈ D(v),
that k /∈ D(t) and k+1 ∈ D(t), and that k, k+1 ∈ D(u). These all appear explicitly in
the last paragraph above (given that SD(t) ⊆ D(t) and SD(v) ⊆ D(v)), apart from the
statement that k+ 1 ∈ D(u). But this also holds, since k+ 1 ∈ D(t) and D(t) $ D(u).

Admissibility of Γ tells us that all arc weights are positive, and so it follows that
N3
k,k+1(cα,w, cβ,u) > 0. By the Polygon Rule, N3

k+1,k(cα,w, cβ,u) is also nonzero. So
there must exist ξ ∈ Λ and (δ, x) ∈ Iξ × Std(ξ), and ν ∈ Λ and (γ, y) ∈ Iν × Std(ν),
such that (cα,w, cδ,x, cγ,y, cβ,u) is an alternating directed path of type (k + 1, k).
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Lemma 7.30 applies, as in the first part above, with k in place of i and tλ in
place of t′, but now with j = k + 1. The conditions 0 6 k 6 n − 1 and k < j are
still satisfied, and we have j ∈ SD(t) and v = sjt. The conditions t>k = (tλ)>k
and k ∈ A(t) still hold, as before, and the extra condition needed for 7.30 (iii) is
colt(k + 2) < colt(k), which we also have. Hence w <lex tλ. Now by the definition of
tλ it follows that w /∈ IniΓ(λ), and since (cα,w, cδ,x) is an arc we conclude that the
molecules containing cα,w and cδ,x are of the same type. Thus ξ = λ, and x ∈ Std(λ).
Furthermore, by Proposition 8.4, either x < w or else δ = α and x = slw > w for
some l ∈ [1, n − 1]. In the latter case Lemma 6.20 tells us that D(x) r D(w) = {l},
but the fact that (cα,w, cδ,x, cγ,y, cβ,u) is alternating of type (k + 1, k) means that
k+1 ∈ D(x)rD(w), and it follows that l = k+1. So either x < w or x = sk+1w > w.

Since D(x)∩{k, k+1} = {k+1} and D(y)∩{k, k+1} = {k}, and since µ(cγ,y, cδ,x) 6=
0, it follows that {cδ,x, cγ,y} is a simple edge of Γ, by the Simplicity Rule. Thus ν = λ
and γ = δ, and y and x are related by a dual Knuth move. Note that y = k -neb(x)
(see Definition 6.48). Note also that y ∈ IniΓ(λ), since (cγ,y, cβ,u) is an arc whose head
cγ,y is in a molecule of type ν = λ and whose tail cβ,u is in a molecule of type π 6= λ.

If x < w then it follows from Lemma 7.30 (iv) that y <lex tλ, contradict-
ing the fact that tλ is lexicographically minimal in IniΓ(λ). So we must have
x = sk+1w > w. Since this says that k + 1 ∈ SA(w), it follows from Lemma 7.29 (iii)
that sksk+1w = k -neb(sk+1w). That is, skx = y. But it follows from Lemma 7.30 (iii)
that sksk+1w <lex tλ. So y <lex tλ, contradicting the minimality of tλ, and completing
the proof that t> k is k-critical.

The minimal approximate of (u′, tλ) is by definition the element (u, t) ∈ A(u′, tλ)
such that u<k = t<k = τκ, where κ = Shape(u<k). By the proof above, it must
also have the property that D(t) $ D(u) and t> k is k-critical, and by Definition 8.6
this means t is k-minimal with respect to u. �

Corollary 8.14. Let λ, π ∈ Λ with Iniλ(Γ) 6= ∅ and π ∈ Λ r {λ}, and let α ∈ Iλ
and (β, u′) ∈ Iπ × Std(π) satisfy µ(cβ,u′ , cα,tλ) 6= 0. Let k be the restriction number
of (u′, tλ). Then (tλ)> (k+1) is minimal, and if k + 1 ∈ SD(tλ) then coltλ(k + 1) =
1 + coltλ(k + 2).

Proof. Let (u, t) ∈ A(u′, tλ). Then t> k is k-critical, by Proposition 8.13. So t> (k+1)
is minimal, and if k+1 ∈ SD(t) then colt(k+1) = 1+colt(k+2). Since (tλ)>k = t>k,
the result follows. �

Lemma 8.15. Let n > 2, and let π, λ ∈ P (n). Let t ∈ Std(λ) and u ∈ Std(π) and
suppose that t is 1-minimal with respect to u. Then π < λ.

Proof. By Definition 8.6 the tableau t is 1-critical and the pair (u, t) is not 2-
restrictable. It follows that t(1, 1) = u(1, 1) = 1 and t(1, 2) = u(2, 1) = 2. Thus
1 ∈ D(u) r D(t). Furthermore, if n = 2 then π = (2) and λ = (1, 1), giving π < λ by
Definitions 6.6 and 6.9.

We proceed inductively on n > 3. If λ = (1, 1, . . . , 1) then it follows readily from
Definitions 6.6 and 6.9 that ν < λ holds for all ν ∈ P (n) r {λ}, and so π < λ. So
we may assume that λ1 > 2, and since t is 1-critical we have t(i, 1) = i + 1 for all
i ∈ [2, λ1]. In particular, colt(3) = 1 < 2 = colt(2), and colt(i + 1) = colt(i) = 1 for
all i ∈ [3, λ1]. It follows that i ∈ D(t) for all i ∈ [2, λ1]. But Definition 8.6 requires
that D(t) $ D(u), and so for all i ∈ [2, λ1] we must have colu(i+ 1) 6 colu(i). So all
the numbers from 1 to λ1 + 1 are in the first column of u, and so π1 > λ1 + 1. In
particular, π 6= λ.

Put (u′, t′) = (u6 (n−1, t6 (n−1)), and let σ = Shape(u′) and θ = Shape(t′). Since
1 is the restriction number of (u, t) it is clear that 1 is also the restriction number
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of (u′, t′), and since t is 1-critical and n > 3 it is clear that t′ is 1-critical. Since D(t)
is a subset of D(u), and since D(u′) = D(u) r {n− 1} and D(t′) = D(t) r {n− 1}, it
follows that D(t′) is a subset of D(u′). Hence D(t′) $ D(u′), since 1 ∈ D(u′) r D(t′).
So t′ is 1-minimal with respect to u′, whence σ < θ by the inductive hypothesis. In
view of Lemma 7.2 it now suffices to show that colu(n) 6 colt(n). Since this obviously
holds if colu(n) = 1, we may assume that colu(n) > 1.

Let r = max{ i | θi > 0 }, the number of parts of θ, and note that
∑r
i=1 θi = n− 1.

Since σ < θ it follows that
∑r
i=1 σi > n − 1, and since σ is a partition of n − 1

this means that σ has at most r nonzero parts. In other words, all the numbers from
1 to n−1 are in the first r columns of u. Thus colu(n) 6 r+1. We may now assume that
colt(n) 6 r, since otherwise the desired conclusion colu(n) 6 colt(n) obviously holds.

Since t and t′ are 1-critical, t> 2 and (t′)> 2 are minimal of their respective shapes,
by Definition 6.22. Thus colt(n − 1) 6 colt(n), and n − 1 is in the last column of
(t′)> 2. Note that unless (t′)> 2 has only one column, it has the same number of
columns as t′, namely r columns.

Consider first the case that (t′)> 2 has r columns. Then r = colt(n−1) 6 colt(n) 6
r, so that colt(n) = colt(n−1) = r, and n−1 is a (weak) descent of t. Since D(t) $ D(u)
it follows that n− 1 ∈ D(u), and so colu(n) 6 colu(n− 1) 6 r = colt(n), as desired.

It remains to consider the case that (t′)> 2 has only one column. Then θ = (n−2, 1),
and n − 1 = θ1 + 1 6 λ1 + 1 6 π1. Thus π = (n − 1, 1), since we have assumed that
colu(n) 6= 1. So colu(n− 1) = 1 and colu(n) = 2, which means that n− 1 /∈ D(u). So
n− 1 /∈ D(t), and so colt(n) > colt(n− 1) + 1 = 2 = colu(n), as desired. �

Lemma 8.16. Let λ, π ∈ Λ with Iniλ(Γ) 6= ∅ and π ∈ Λ r {λ}, and suppose that
α ∈ Iλ and (β, u′) ∈ Iπ × Std(π) satisfy µ(cβ,u′ , cα,tλ) 6= 0. Let k be the restriction
number of (u′, tλ), and assume that k > 3 and (2, k − 1) /∈ [π]. Then there is no
(u, t) ∈ A(u′, tλ) having the properties that u(1, k) = n and colt(n) = k − 1, and
satisfying

t6 k = u6 k = 1 2 · · · k − 2 k − 1
k

.

Proof. Assume to the contrary that (u, t) ∈ A(u′, tλ) has the stated properties. By
Remark 8.9 the pair (u, t) has the same restriction number as (u′, tλ), namely k, and
A(u′, tλ) = Ck−1(u, t) is in bijective correspondence with the set of standard tableaux
of the same shape as t<k. Since there is only one standard tableau of shape (1k−1),
it follows that A(u′, tλ) = {(u, t)}.

It follows from Lemma 8.12 that D(t) $ D(u) and k = min(D(u)rD(t)), and also
that µ(cβ,u, cα,t) = µ(cβ,u′ , cα,tλ) 6= 0. Furthermore, t> k is k-critical, by Lemma 8.13.
Hence colt(k + 1) = colt(k) + 1, and so t(2, 2) = k + 1. Since k ∈ D(u) we have
colu(k+ 1) 6 colu(k). Hence colu(k+ 1) = 1, and it follows that u(3, 1) = k+ 1. Thus
k + 1 6= n, since it is given that u(1, k) = n.
Case 1.
Suppose that (u, t) = (u′, tλ).

Since k > 3, we have colu(k) = 1 < k−1 = colu(k−1), and so k−1 ∈ SD(u) ⊆ D(u).
Let v = sk−1u. Since k−1 ∈ SD(u), it follows that v ∈ Std(π) and k−1 /∈ D(v). Since
colu(k−2) = k−2 < k−1 = colu(k−1), it follows that k−2 /∈ D(u). Moreover, since
v is obtained from u by switching the positions of k − 1 and k, and since k > 3, we
have colv(k−1) = colu(k) = 1 6 k−2 = colu(k−2) = colv(k−2), and so k−2 ∈ D(v).
So v → u is a DKM (of the first kind) of index k − 1, and so {cβ,u, cβ,v} is a simple
edge in Γ.

Since k > 3, we have 1 6 k−2 = colt(k−2) < k−1 = colt(k−1), and it follows that
k−2 /∈ D(t). Since k ∈ D(u)rD(t), we also have k /∈ D(t). Similarly, since u6 k = t6 k,
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we have k−2 /∈ D(u), but since k ∈ D(u)rD(t), we have k ∈ D(u). We showed above
that k−2 ∈ D(v). Since colv(k+1) = colu(k+1) = 1 < k−1 = colu(k−1) = colv(k),
as v is obtained from u by switching the positions of k−1 and k, we also have k ∈ D(v).
Moreover, since µ(cβ,u, cα,t) 6= 0 and µ(cβ,v, cβ,u) = 1 (as {cβ,u, cβ,v} is a simple edge),
it follows that (cα,t, cβ,u, cβ,v) is an alternating directed path of type (k, k − 2). So
N2
k,k−2(cα,t, cβ,v) > 0.
Since Γ satisfies the Polygon Rule, N2

k−2,k(cα,t, cβ,v) = N2
k,k−2(cα,t, cβ,v) 6= 0, and

it follows that there are ξ ∈ Λ and (γ, x) ∈ Iξ × Std(ξ) such that (cα,t, cγ,x, cβ,v) is
an alternating directed path of type (k − 2, k).

Suppose that k − 1 /∈ D(x). Since colt(k − 1) = k − 1 > 1 = colt(k) we see that
k−1 ∈ D(t), and so D(t) * D(x). Since µ(cγ,x, cα,t) 6= 0, it follows from the Simplicity
Rule that {cα,t, cγ,x} is a simple edge. So ξ = λ and γ = α, and x and t are related
by a DKM. By Lemma 6.20 the index of this DKM is either the unique element
of D(x) r D(t) or the unique element of D(t) r D(x). Now k − 2 ∈ D(x) r D(t),
since (cα,t, cγ,x, cβ,v) is alternating of type (k − 2, k), but it is not the case that
x = sk−2t since sk−2t is not standard. So the index of the DKM is the unique element
of D(t) r D(x), which must be k − 1 since k − 1 ∈ D(t) r D(x). So x = sk−1t, and
colx(k + 1) = colt(k + 1) = 2 6 k − 1 = colt(k − 1) = colx(k). But this means that
k ∈ D(x), which is not allowed since (cα,t, cγ,x, cβ,v) is alternating of type (k − 2, k).
So we must have k − 1 ∈ D(x).

Since µ(cβ,v, cγ,x) 6= 0, and since D(x)∩{k−1, k} = {k−1} and D(v)∩{k−1, k} =
{k}, it follows from the Simplicity Rule that {cβ,v, cγ,x} is a simple edge. Thus ξ = π
and γ = β, and x and v are related by a DKM. Furthermore, x = (k − 1) -neb(v)
(see Definition 6.48). But since by definition v = sk−1u, and colu(k + 1) = colu(k) =
1 < k − 1 = colu(k − 1), we see that colv(k + 1) = colv(k − 1) < colv(k), and so
(k − 1) -neb(v) = skv. Therefore, x = skv.

Since t = tλ we have µ(cβ,x, cα,tλ) 6= 0, and we can apply Corollary 8.14 with
x in place of u′. Since x = sksk−1u and (u, t) is k-restricted, we see that (x, t) is
(k − 2)-restricted, and so k − 2 will replace the k of 8.14. Since k − 1 ∈ SD(t), it
follows from Corollary 8.14 that colt(k− 1) = colt(k) + 1. But colt(k− 1) = k− 1 and
colt(k) = 1; hence k = 3. We were given that colt(n) = k − 1; so colt(n) = 2. Recall
also that t(2, 1) = k = 3 and t(2, 2) = k+1 = 4. Since Corollary 8.14 also tells us that
t> 2 is the minimal tableau of its shape, it follows that (3, 1) /∈ [λ] (since otherwise
minimality of t> 2 would require that t(3, 1) = t(2, 1) + 1 = 4). So λ1 = 2, and so
λ2 6 2. Hence (2, 2) = t−1(4) is the last box in the second column of [λ], and since
colt(n) = 2 this forces n = 4. This contradicts n > k + 1, which was proved above.
Case 2.
Suppose that (u, t) 6= (u′, tλ).

Since (u, t) ≈k (u′, tλ) by Lemma 8.11, it follows that (tλ) 6 k = (u′) 6 k is a stan-
dard tableau of the same shape as t6 k = u6 k. Hence there is an i ∈ [1, k − 2] such
that u′ and tλ satisfy

w′ = (tλ) 6 k = (u′) 6 k = 1 · · · i i + 2 · · · k

i + 1
.

Furthermore, (tλ)>k = t>k and (u′)>k = u>k must also hold.
Recall that t(2, 2) = k+ 1 and u(3, 1) = k+ 1 have been proved above. Recall also

that (2, k − 1) /∈ [π] is given, as are u(1, k) = n and colt(n) = k − 1.
Suppose first that k = 3. Since u−1(n) is necessarily the last box in its row and the

last box in its column, and u−1(n) = (1, k) = (1, 3), it follows that π3 = 1 and that π
has only three parts. And π2 = 1, since (2, 2) = (2, k − 1) /∈ [π]. So π = (n− 2, 1, 1),
the first row of u is 1 2 n , and u(j, 1) = j + 1 for all j ∈ [2, n− 2]. Observe that
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n − 1 /∈ D(u), since colu(n − 1) = 1 < 3 = colu(n), and since D(t) $ D(u) it follows
that n − 1 /∈ D(t). That is, colt(n − 1) < colt(n) = k − 1 = 2. Since t> 4 is minimal
of its shape, by Corollary 8.14,

1 6 colt(5) 6 colt(6) 6 · · · 6 colt(n− 1) < colt(n) = 2,

and so colt(j) = 1 for all j ∈ [5, n− 1] and colt(n) = 2. Since we also have t(2, 2) = 4,
it follows that λ = (n−3, 3), the first three rows of t are 1 2 , 3 4 and 5 n ,
and t(j, 1) = j+2 for j ∈ [4, n−3]. Now since there are only two standard tableaux of
shape (2, 1) we see that Ck(u, t) = {(u, t), (s2u, s2t)}, and hence (u′, tλ) = (s2u, s2t).
But it is easily checked that D(s2u) = D(s2t) = {1} ∪ [3, n − 2], and it follows that
µ(cβ,s2u, cα,s2t) = 0. Since this contradicts the hypothesis that µ(cβ,u′ , cα,tλ) 6= 0, it
follows that k > 4.

Since (tλ) 6 k = (u′) 6 k, we have D(tλ)∩[1, k−1] = D(u′)∩[1, k−1]. Since k > 4 and
(tλ)>k = t>k, we have coltλ(k+1) = colt(k+1) = 2 < k−1 = colt(k−1) = coltλ(k),
and similarly we have colu′(k+ 1) = colu(k+ 1) = 1 < k− 1 = colu(k− 1) = colu′(k).
Thus k ∈ D(tλ) ∩ D(u′), and so D(tλ) ∩ [1, k] = D(u′) ∩ [1, k]. So every element
l ∈ D(u′) r D(tλ) satisfies l > k. But D(tλ) $ D(u′), since µ(cβ,u′ , cα,tλ) 6= 0 and
α 6= β, and so it follows that D((tλ)>k) $ D((u′)>k).

Suppose that i > 1. Then colw′(i+1) = 1 6 i−1 = colw′(i−1) < colw′(i−1)+1 =
colw′(i), and so i ∈ SD(w′) ⊆ D(w′) and i− 1 /∈ D(w′). Thus D(w′)∩ {i− 1, i} = {i}.
It follows from i ∈ SD(w′), or by inspection, that siw′ is standard and i /∈ D(siw′).
Furthermore, since colsiw′(i − 1) = colw′(i) > colw′(i + 1) = colsiw′(i), it follows
that i − 1 ∈ D(siw′), and hence D(siw′) ∩ {i − 1, i} = {i − 1}. Thus siw′ →∗1
w′, a DKM of index i 6 k − 1. Since the same DKM takes (siu′, sitλ) to (u′, tλ),
we have (siu′, sitλ) ≈k (u′, tλ). It follows by Lemma 7.22 that µ(cβ,siu′ , cα,sitλ) =
µ(cβ,u′ , cα,tλ) 6= 0. Since π 6= λ the vertices cα,sitλ and cβ,siu′ lie in molecules of
different types, and so it follows that (α, sitλ) ∈ Iniλ(Γ), and sitλ ∈ IniΓ(λ). But it
follows from Remark 6.19 that sitλ < tλ, and hence sitλ <lex tλ by Corollary 6.17.
Since this contradicts the minimality of tλ, we conclude that i = 1.

We make use of ΓL, the WL-restriction of Γ, using the notation of Remark 6.52
and Eq. (10). Let v = jdt((u′)> 1) and x = jdt((tλ)> 1), and write ρ = Shape(v) and
ξ = Shape(x).

By Remark 6.52, we can identify the vertex cβ,u′ of ΓL with c′′δ,v for some δ ∈
IL,β,π,ρ, and the vertex cα,tλ of ΓL with c′′γ,x for some γ ∈ IL,α,λ,ξ. Note that IL,β,π,ξ∩
IL,α,λ,ρ = ∅, since π 6= λ, and so it follows that δ 6= γ. Now D(v) * D(x), since
D((u′)> 1) * D((tλ)> 1), and so it follows that µL(c′′δ,v, c′′γ,x) = µ(cβ,u′ , cα,tλ) 6= 0.
Since ΓL is ordered, and since δ 6= γ, we deduce that v < x. Thus ρ 6 ξ.

Observe that coltλ(j) = colw′(j) 6 k − 1 for all j ∈ [1, k]. Since (tλ)>k = t>k,
we have coltλ(k+ 1) = 2 and coltλ(n) = k− 1. Furthermore, tλ > (k+1) is the minimal
tableau of its shape, by Corollary 8.14, and so coltλ(k + 2) 6 coltλ(k + 3) 6 · · · 6
coltλ(n). It follows that coltλ(j) 6 coltλ(n) = k − 1 for all j ∈ [1, n], showing that
the partition π has exactly k − 1 parts. Since u(1, k) = n the partition π has exactly
k parts, and since also (2, k − 1) /∈ π it follows that πk−1 = πk = 1. Now let (g, p)
and (h, r) be the boxes vacated in jdt((u′)> 1) and jdt((tλ)> 1) respectively. Recalling
that u′(2, 1) = tλ(2, 1) = 2, since i = 1, we see that the box (2, 1) is in both slide
paths, and so g > 2 and h > 2. In particular, (g, p) 6= (1, k), and so ρk = πk = 1.
On the other hand, ξ has only k − 1 parts, since λ has only k − 1 parts. Hence we
find that

∑k−1
m=1 ξm = n− 1 =

∑k
m=1 ρm = 1 +

∑k−1
m=1 ρm >

∑k−1
m=1 ρm, contradicting

ρ 6 ξ. �
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Lemma 8.17. Let λ, π ∈ Λ with Iniλ(Γ) 6= ∅ and π ∈ Λ r {λ}, and suppose that
α ∈ Iλ and (β, u′) ∈ Iπ × Std(π) satisfy µ(cβ,u′ , cα,tλ) 6= 0. Then π < λ.

Proof. Clearly n is at least 2. Since the vertices cβ,u′ and cα,tλ belong to differ-
ent molecules we must have D(tλ) $ D(u′) and µ(cα,tλ , cβ,u′) = 0. Let k be the
restriction number of (u′, tλ), noting that 1 6 k 6 n − 1 since π 6= λ. We write
ν = Shape((u′) 6 k) = Shape((tλ) 6 k), and let (u, t) be an arbitrary element of
A(u′, tλ) (which is nonempty, by Lemma 8.12).

Lemma 8.11 shows that (u, t) is k-restricted and (u, t) ≈k (u′, tλ), and Propo-
sition 8.13 shows that t> k is k-critical. Furthermore, we have D(t) $ D(u) and
k = min(D(u) r D(t)), and µ(cβ,u, cα,t) = µ(cβ,u′ , cα,tλ) 6= 0, by Lemma 8.12. Since
t> k is k-critical, it follows from Definition 6.22 that the following all hold:

colt(k) = min{colt(i) | i ∈ [k, n] },(11)
colt(k + 1) = colt(k) + 1,(12)

colt(k + 2) 6 colt(k + 3) 6 · · · 6 colt(n− 1) 6 colt(n).(13)

Note that colt(i) = coltλ(i) for all i ∈ [k+1, n], since t>k = (tλ)>k. Let l = colt(n) =
coltλ(n).

If k = 1 then since t is 1-minimal with respect to u, it follows by Lemma 8.15 that
π < λ, while if k = n−1 then we must have D(u) = {n−1}∪D(t), and π < λ follows
by Lemma 7.25. So may assume that 1 < k < n− 1.

We make use of ΓK and ΓL, the restrictions of Γ toWK andWL, using the notation
from Remark 6.52 and Eqs (9) and (10) above. Looking at ΓK first, let v = u6 (n−1)
and x = t6 (n−1), and let σ = Shape(v) and θ = Shape(x). Note that Shape(v >k) =
Shape((u6n−1)>k) = σ/ν, and similarly Shape(x>k) = θ/ν. So σ/ν ` (n − 1 − k)
and θ/ν ` (n− 1− k).

By Eq. (9) we have cβ,u = c′δ,v and cα,t = c′γ,x for some δ ∈ IK,σ and γ ∈ IK,θ.
Since cβ,u and cα,t lie in different molecules of Γ they lie in different K-submolecules;
that is, δ 6= γ. By the definition of the WK-restriction of Γ we have D(v) r D(x) =
(D(u)rD(t))∩ [1, n− 2], and so we see that k ∈ D(v)rD(x). Hence µK(c′δ,v, c′γ,x) =
µ(cβ,u, cα,t) 6= 0. Since ΓK is ordered and γ 6= δ it follows that v < x, and hence
σ 6 θ, by Definition 7.1.

If colu(n) 6 colt(n) then, since σ 6 θ, Lemma 7.2 yields π 6 λ. Since π 6= λ,
the desired conclusion π < λ holds in this case. So we may assume henceforth that
colu(n) > colt(n) = l.

Observe that colt(k) 6 l = colt(n), by Eq. (11). Suppose first that colt(k) = l.
Then it follows from Eqs (11) and (13) that l 6 colt(k + 2) 6 colt(k + 3) 6 · · · 6
colt(n − 1) 6 l, and so colt(i) = l for all i ∈ [k + 2, n]. Hence i ∈ WD(t) for all
i ∈ [k + 2, n − 1], and k + 1 ∈ SD(t) since colt(k + 1) = l + 1 by Eq. (12). Since
D(t) $ D(u) and also k ∈ D(u) r D(t), it follows that i ∈ D(u) for all i ∈ [k, n − 1].
Thus colu(n) 6 colu(n− 1) 6 · · · 6 colu(k). But since (u, t) is k-restricted, colu(k) =
colt(k) = l, and we deduce that colu(n) 6 l = colt(n). Since we have already shown
that this gives π < λ, for the rest of the proof we may (and do) assume that

(14) colt(k) < colt(n) = l < colu(n).

In fact we shall show that Eq. (14) leads to a contradiction, by showing that (u, t)
satisfies the conditions of Lemma 8.16.

Since σ 6 θ (equivalent to σ D θ by Definition 6.9) we have

(15)
l∑

m=1
θm 6

l∑
m=1

σm.
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It follows from Eqs (12) and (14) that colt(k+1) 6 l, and by Eq. (13) we deduce that
(16) [k + 1, n− 1] ⊆ { i | colt(i) 6 l }.
So all elements of [k+1, n−1] appear in the first l columns of the tableau (t6n−1)>k =
x>k, and since x>k ∈ Stdk(θ/ν) it follows that

∑l
i=1(θm−νm) = n−1−k. So Eq. (15)

can be expressed in the form

n− 1− k +
l∑

m=1
νm 6

l∑
m=1

(σm − νm) +
l∑

m=1
νm.

Thus
∑l
m=1(σm − νm) > n − 1 − k. Now since σ/ν ` (n − 1 − k) it follows that

σm − νm = 0 for all m > l and
∑l
m=1(σm − νm) = n − 1 − k. Since (u6n−1)>k ∈

Stdk(σ/ν) it follows that
(17) [k + 1, n− 1] ⊆ { i | colu(i) 6 l }.
Eq. (16) and colt(n) = l combined give [k + 1, n] ⊆ { i | colt(i) 6 l }, and we see that
column l is the last nonempty column of t>k. Since Shape(t>k) = λ/ν ` (n− k), it
follows that

∑l
m=1(λm−νm) = n−k. Now Shape(u>k) = π/ν ` (n−k), but although

the first l columns of (u6n−1)>k include all elements of [k + 1, n− 1] (by Eq. (17))
they do not include all elements of [k + 1, n], since colu(n) > l (by Eq. (14)). Thus
[π/ν] is the disjoint union of [σ/ν] and {u−1(n)}, and

∑l
m=1(πm − νm) = n− k − 1.

We deduce that

(18)
l∑

m=1
πm = n− k − 1 +

l∑
m=1

νm =
(

l∑
m=1

λm

)
− 1.

Looking now at ΓL, we put w = jdt(u> 1) and y = jdt(t> 1), and define ρ =
Shape(w) and ξ = Shape(y). By Eq. (10) we have cβ,u = c′′ζ,w and cα,t = c′′ε,y for
some ζ ∈ IL,ρ and ε ∈ IL,ξ. Since cβ,u and cα,t lie in different molecules of Γ they
must also lie in different L-submolecules; that is, ζ 6= ε. By Proposition 6.47 and the
definition of the WL-restriction of Γ we have D(w) r D(y) = D(u> 1) r D(t> 1) =
(D(u))rD(t))∩[2, n−1], and so it follows that k ∈ D(w)rD(y). Hence µL(c′′ζ,w, c′′ε,y) =
µ(cβ,u, cα,t) 6= 0. Since ΓL is ordered and ζ 6= ε it follows that w < y, and hence ρ 6 ξ,
by Definition 7.1.

Let (g, p) and (h, r) be the boxes vacated by jdt((1, 1), u> 1) and jdt((1, 1), t> 1).
Note that ρp = πp−1 and ρm = πm for all m 6= p. Similarly, ξr = λr−1 and ξm = λm
for all m 6= r. We claim that
(19) r 6 l < p.

If p 6 l then
∑l
m=1 ρm =

(∑l
m=1 πm

)
− 1 <

∑l
m=1 πm, and since

(∑l
m=1 λm

)
− 1 6∑l

m=1 ξm, it follows by Eq. (18) that
∑l
m=1 ρm <

∑l
m=1 ξm, which contradicts ρ 6 ξ.

Similarly, if l < r then
∑l
m=1 ξm =

∑l
m=1 λm, and since

∑l
m=1 πm >

∑l
m=1 ρm, it

again follows by Eq.(18) that
∑l
m=1 ξm >

∑l
m=1 ρm, contradicting ρ 6 ξ. Hence

r 6 l < p, as claimed.
We shall now show that u(g, p) = n. If k+1 6 u(g, p) < n then p = colu(u(g, p)) 6 l

by Eq. (17), contradicting Eq. (19). Now suppose that u(g, p) 6 k. Then clearly
u(b) 6 k for all boxes b in the slide path of jdt((1, 1), u> 1) and hence the slide path
of jdt((1, 1), u> 1) coincides with the slide path of jdt((1, 1), (u6 k)> 1). Furthermore,
since u6 k = t6 k, and the slide path of jdt((1, 1), t> 1) extends (or equals) that of
jdt((1, 1), (t6 k)> 1), it follows that (g, p) is in the slide path of jdt((1, 1), t> 1). By
Lemma 6.43 it follows that h > g and r > p. Since the latter inequality contradicts
Eq.( 19) we conclude that u(g, p) < n is impossible, and so u(g, p) = n, as claimed.
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We claim that

(20) [k + 1, n− 1] ⊆ { i | colu(i) < p− 1 }.

By Eqs (17) and (14) we see that colu(n−1) < colu(n). Thus n−1 ∈ A(u), and hence
n− 1 ∈ A(t), since D(t) $ D(u). So colt(n− 1) < colt(n) = l. Note that, by Eq. (16),
we have colt(k + 1) 6 l.

Suppose first that colt(k + 1) = l. Then colt(n− 1) < colt(k + 1) = colt(k) + 1, by
Eq. (12), and since Eq. (11) gives colt(k) 6 colt(n − 1) it follows that colt(n − 1) =
colt(k). By Eqs (11) and (13) we deduce that colt(k) = colt(k + 2) = colt(k + 3) =
· · · = colt(n − 1). Thus [k + 2, n − 2] ⊆ WD(t). Moreover, k + 1 ∈ SD(t), since
colt(k + 1) > colt(k) = colt(k + 2). Hence [k + 1, n − 2] ⊆ D(t). Since D(t) $ D(u),
and we also have k = min(D(u) r D(t)), it follows that [k, n − 2] ⊆ D(u). Thus
colu(n−1) 6 colu(n−2) 6 · · · 6 colu(k+ 1) 6 colu(k). But colu(k) = colt(k) = l−1,
since (u, t) is k-restricted and l = colt(k + 1) = colt(k) + 1. So colu(k) < p − 1 by
Eq. (19), and so Eq. (20) holds in this case.

Suppose now that colt(k+ 1) < l. Since we have shown above that colt(n− 1) < l,
and since we also have colt(k + 2) 6 colt(k + 3) 6 · · · 6 colt(n − 1) by Eq. (13), it
follows that [k + 1, n − 1] ⊆ { i | colt(i) 6 l − 1 } (a strengthening of Eq. (16)). So
all elements of [k+ 1, n− 1] appear in the first l− 1 columns of (t6 (n−1))>k, and so∑l−1
m=1(θm− νm) = n−k− 1. Since σ 6 θ, we have

∑l−1
m=1 θm 6

∑l−1
m=1 σm, which can

be written as

n− 1− k +
l−1∑
m=1

νm 6
l−1∑
m=1

(σm − νm) +
l−1∑
m=1

νm,

giving n−1−k 6
∑l−1
m=1(σm−νm). Since σ/ν ` (n−1−k) it follows that σm−νm = 0

for all m > l − 1 and
∑l−1
m=1(σm − νm) = n− 1− k. Since (u6 (n−1))>k ∈ Stdk(σ/ν)

it follows that [k + 1, n − 1] ⊆ { i | colu(i) 6 l − 1 }, and since l < p by Eq. (19) it
follows that Eq. (20) also holds in this case. This completes the proof of our claim.

Recall that (g, p) is vacated by jdt((1, 1), u> 1) and that u(g, p) = n. Let b be
the box that n slides into, so that either b = (g − 1, p) or b = (g, p − 1). Obviously
u(b) /∈ { i | colu(i) < p − 1}, and so Eq. (20) shows that u(b) /∈ [k + 1, n]. So b is in
the diagram of Shape(u6 k), and must be the box vacated by jdt((1, 1), (u6 k)> 1).
The slide path of jdt((1, 1), u> 1) is the slide path of jdt((1, 1), (u6 k)> 1) extended
by the additional box (g, p). Since u6 k = t6 k, the slide path of jdt((1, 1), t> 1)
also extends the slide path of jdt((1, 1), (u6 k)> 1), and, in particular, includes b. If
b = (g − 1, p) then Lemma 6.43 gives p 6 r, contradicting Eq. (19). So b = (g, p− 1),
and Lemma 6.43 gives p− 1 6 r. But since r 6 l < p by Eq. (19), this shows that

(21) p− 1 = r = l = colt(n).

Recall that (u, t) was chosen as an arbitrary element of A(u′, tλ), and so all that
we have proved thus far applies for all elements of A(u′, tλ). However, since n > k and
u>k = (u′)>k for all (u, t) ∈ A(u′, tλ), it follows that (g, p) = u−1(n) = (u′)−1(n) is
independent of the choice of (u, t). So (g, p− 1) in independent of the choice of (u, t).
Since we have just shown that (g, p − 1) is the box vacated by jdt((1, 1), (u6 k)> 1),
this must be true for all choices of (u, t). Furthermore, (g, p − 1) 6= u−1(k), by Eqs
(21) and (14), and so (g, p − 1) is in the diagram of Shape(u<k), and is the box
vacated by jdt((1, 1), (u<k)> 1), for all choices of (u, t).

Recall from Remark 8.9 that there exists κ ∈ P (k− 1) and a bijection A(u′, tλ)→
Std(κ) given by (u, t) 7→ w = u<k = t<k. So the previous paragraph tells us that for
every w ∈ Std(κ) the jeu-de-taquin slide jdt((1, 1), w > 1) vacates the box (g, p − 1).
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Considering in particular the cases w = τκ and w = τκ and applying Lemma 6.44, we
deduce that κ has exactly p− 1 parts, all equal to g.

Observe that since κ = (gp−1) there are only two κ-addable boxes, namely (g+1, 1)
and (1, p). But since [Shape(t6 k)] = {t−1(k)} ∪ [Shape(t<k)] = {t−1(k)} ∪ [κ], it is
clear that t−1(k) is κ-addable. And t−1(k) 6= (1, p), by Eq. (14) and the fact that
colu(n) = p. So t−1(k) = (g + 1, 1), and since (u, t) is k-restricted it follows that
u−1(k) = (g + 1, 1) also.

Since Shape(u<k) = (gp−1) it follows that colu(i) < p for all i ∈ [1, k − 1]. But
we have just shown that colu(k) = 1, and Eq. (20) gives colu(i) < p − 1 for all
i ∈ [k+ 1, n− 1]. So n is the only number in column p of u, and so clearly it must be
in the first row. That is, g = 1.

Since κ = Shape(t<k) is a partition of k − 1, and since κ = (1p−1), it follows that
k = p. It follows from Eq. (14) that 1 = colt(k) < colt(n) < colu(n) = k, and so
k > 3. Moreover, since rowu(i) = 1 for i ∈ [1, k − 1] ∪ {n}, while colu(k) = 1 and
colu(i) < k − 1 for i ∈ [k + 1, n − 1] (by Eq. (20)), we see that (2, k − 1) /∈ [π]. We
have now shown that (u, t) satisfies all the conditions in Lemma 8.16, contradicting
(u, t) /∈ A(u′, t′), and completing our proof. �

Lemma 8.18. Suppose that Γ is strongly connected. Then Λ has only one element.

Proof. Assume to the contrary that Λ has more than one element, and choose λ ∈ Λ
to be minimal, in the sense that there is no π ∈ Λ r {λ} such that π < λ. Note
that Iniλ(Γ) 6= ∅, since Γ is strongly connected and Λ r {λ} 6= ∅. Hence there exists
π ∈ Λ r {λ} such that µ(cβ,u, cα,tλ) 6= 0, for some (β, u) ∈ Iπ × Std(π) and α ∈ Iλ.
But now Lemma 8.17 gives π < λ, contradicting the choice of λ. �

Lemma 8.18 says that if Γ is an admissible Wn-cell then all molecules of Γ have
the same type λ, for some λ ∈ P (n). In general whenever Λ = {λ} we may call λ the
type of Γ.

Lemma 8.19. Suppose that n > 2. Let D and D′ be cells of Γ, of types λ and π
respectively. Let 6Γ be the partial order on the set of cells of Γ (as defined in Section 4
above). Then D′ 6Γ D implies π 6 λ. In particular, π 6 λ holds if there exist vertices
c ∈ D and c′ ∈ D′ such that µ(c′, c) 6= 0.

Proof. We can assume that π 6= λ, since the result is trivial otherwise. Write C for
the set of cells of Γ, and observe that |C| > 2, since π 6= λ implies that D 6= D′.

Suppose first that C = {D,D′}. Since D′ 6Γ D it is immediate from the definition
of the partial order 6Γ that there exist c ∈ D and c′ ∈ D′ with µ(c′, c) 6= 0, and since
π 6= λ it follows that IniΓ(λ) 6= ∅. So tλ exists, and by the definition of IniΓ(λ) there
exist α ∈ Iλ and (β, u) ∈ Iπ × Std(π) with µ(cβ,u, cα,tλ) 6= 0. So Lemma 8.17 gives
π < λ, as required.

Proceeding inductively, suppose now that |C| > 2 and that the result holds for
all admissible Wn-graphs with fewer than |C| cells. Let C0, C1 ∈ C be such that C0
is minimal and C1 is maximal in the partial order 6Γ. Then C0 and C r C1 are
subsets of C that are closed in the sense defined in Section 4. Writing Γ0 and Γ1 for
the full subgraphs of Γ spanned by C r C0 and C r C1, we see that Γ0 and Γ1 are
admissibleWn-graphs, with arc weights and vertex colours inherited from Γ, and with
cells that are cells of Γ. It follows that if C0 and C1 can be chosen so that D and D′
are both contained in C r C0 or both contained in C r C1 then the result follows
from the inductive hypothesis. Since D′ 6Γ D by assumption, it remains to consider
the possibility that C0 = D′ is the unique minimal cell and C1 = D is the unique
maximal cell.
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Since |C| > 2 we can choose C ′ ∈ C r {C0, C1}. By Lemma 8.18 the cell C ′ has
type {ν} for some ν ∈ Λ. Moreover, C0 6Γ C ′ since C0 is the unique minimal cell,
and C ′ 6Γ C1 since C1 is the unique maximal cell. Since D′ and C ′ are cells of Γ1,
we have π 6 ν by the inductive hypothesis, and since C ′ and D are cells of Γ0, we
have ν 6 λ by the inductive hypothesis. So it follows that π 6 λ, as required.

Recall that if µ(c′, c) 6= 0 then it follows as a consequence that τ(c′) * τ(c) (since Γ
is reduced, in the terminology of Section 4). So, by the definition of 6Γ, if µ(c′, c) 6= 0
then c′ 6Γ c, and so the last assertion of the lemma follows from the rest. �

We are now able to complete the proof of Theorem 8.2.

Proof. Suppose that (α, t) ∈ Iλ × Std(λ) and (β, u) ∈ Iπ satisfy µ(cβ,u, cα,t) 6= 0. It
follows from Lemma 8.19 that π 6 λ. Now Proposition 8.4 says that u < t unless
α = β and u = sit > t for some i ∈ [1, n− 1]. That is, Γ is ordered. �

Remark 8.20. In particular, it follows from Theorem 8.2 that the Kazhdan–Lusztig
Wn-graph corresponding to the regular representation of H(Wn) is ordered in the
sense of Definition 8.1. In this case the vertex set of Γ = (C, µ, τ) is C = Wn, the
set of molecule types is Λ = P (n), for each λ ∈ P (n) the set of molecules of type
λ is indexed by Iλ = Std(λ), and for each λ ∈ Λ and x ∈ Iλ the set Cx,λ consists
of those w ∈ Wn such that Q(w) = x, where Q(w) is the recording tableau in the
Robinson–Schensted process.

Now let y, w ∈ Wn and put RS(w) = (t, x) ∈ Std(λ)2 and RS(y) = (u, v) ∈
Std(π)2, where λ, π ∈ P (n). The conclusion of Theorem 8.2, applied in this case, is
that if µ(y, w) 6= 0 and τ(y) * τ(w) then either u < t or else π = λ and (u, v) = (st, x)
for some s ∈ Sn.

If Γ is replaced by Γo = (C, µ, τo), then since RS(w−1) = (x, t) and RS(y−1) =
(v, u) by Theorem 6.25, the conclusion of Theorem 8.2 is that if µ(y, w) 6= 0 and
τo(y) * τo(w) then either v < x or else π = λ and (u, v) = (t, sx) for some s ∈ Sn.

Thus, in particular, if µ(y, w) 6= 0 and τ(y) * τ(w) or τo(y) * τo(w) then π 6 λ.
It follows from the definition of the preorder �LR (in Section 4 above) that if

y �LR w then there is a sequence of elements y = z0, z1, . . . , zm−1, zm = w such
that µ(zi−1, zi) 6= 0 and τ̄(zi−1) * τ̄(zi) for each i ∈ [1,m]. Since τ̄(zi−1) * τ̄(zi) is
equivalent to τ(zi−1) * τ(zi) or τo(zi−1) * τo(zi), it follows that π 6 λ whenever
y �LR w.

Remark 8.21. Let y, w ∈ Wn, and let RS(y) = (u, v) and RS(w) = (t, x). Re-
mark 8.20 says that if y �LR w then π 6 λ, where π = Shape(x) = Shape(u) and
λ = Shape(y) = Shape(v). This gives an alternative approach to the “only if” part of
the following well-known result. (See, for example, [7, Theorem 5.1].)
Theorem 8.22. Let y, w ∈ Wn and π, λ ∈ P (n), and suppose that RS(y) ∈ Std(π) ×
Std(π) and RS(w) ∈ Std(λ)×Std(λ). Then y �LR w if and only if π 6 λ. In particular,
the sets D(λ) = {w ∈ Wn | RS(w) ∈ Std(λ)2}, where λ ∈ P (n), are precisely the
Kazhdan–Lusztig two-sided cells.

Let λ ∈ P (n). Recall that for each t ∈ Std(λ) the set C(t) = {w ∈Wn | Q(w) = t}
is a left cell, and Γ(C(t)) is isomorphic to Γλ (defined in 6.38 above). Thus C(t) is of
type λ, by Remark 6.51, and the set D(λ) =

⊔
t∈Std(λ) C(t) is a union of |Std(λ)| left

cells of type λ.

9. W -graphs for admissible cells in type A

Definition 9.1. Let λ ∈ P (n). A pair of standard λ-tableaux (u, t) is said to be a
probable pair if u < t and D(t) $ D(u).
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It is readily checked that there are no probable pairs in P (n) unless n > 5. Note
that if (u, t) is a probable pair then u 6= t, and so the set F (u, t) is defined and
nonempty.

Recall Definition 7.16: if π, λ ∈ P (n) then a pair (u, t) ∈ Std(π) × Std(λ) is said
to be favourable if the restriction number of (u, t) lies in D(u)⊕D(t).

Lemma 9.2. Let λ ∈ P (n) and u, t ∈ Std(λ), and let i be the restriction number
of (u, t). Suppose that (u, t) is favourable and D(t) $ D(u). Then there exists j ∈ SD(t)
such that j > i.

Proof. Suppose that there is no such j, so that D(t> i) ∩ [i+ 1, n− 1] = WD(t> i) ∩
[i + 1, n − 1]. Thus t> i is the minimal tableau of its shape, by Remark 6.21, and so
colt(k) > colt(i + 1) for all k ∈ [i + 1, n]. Furthermore, D(u) ⊕ D(t) = D(u) r D(t),
since D(t) $ D(u), and so i ∈ D(u)rD(t), since (u, t) is favourable. Thus colt(i+1) >
colt(i), since i /∈ D(t), and so colt(k) > colt(i) for all k > i. In other words, for all
m ∈ [1, colt(i)], column m of t is entirely filled by numbers from the set [1, i]. But
now since u and t have the same shape and u6 i = t6 i, it follows that the same holds
for u: for all m ∈ [1, colu(i)], column m of u is entirely filled by numbers from the set
[1, i]. In particular, colu(i+ 1) > colu(i), contradicting i ∈ D(u). �

Lemma 9.3. Let λ ∈ P (n) and u, t ∈ Std(λ) with D(t) $ D(u), and suppose that
(u, t) is favourable. Let i be the restriction number of (u, t), and suppose that i+ 1 =
max(SD(t)). Then colt(i+ 2) 6= colt(i).

Proof. Suppose to the contrary that colt(i + 2) = colt(i). We have that u6 i = t6 i,
since (u, t) is i-restricted. Since i + 1 = max(SD(t)), it follows SD(t> (i+1)) = ∅,
and thus t> (i+1) is minimal, by Remark 6.21. Hence colt(i) = colt(i + 2) 6 colt(k)
for all k > i + 2. Furthermore, i ∈ D(u) r D(t), since (u, t) is favourable, and so
colt(i) < colt(i + 1). So colt(k) > colt(i) for all k > i. Now since u and t are of
the same shape and u6 i = t6 i, we deduce that colu(k) > colu(i) for all k > i. In
particular, colu(i+ 1) > colu(i). But colu(i+ 1) 6 colu(i), since i ∈ D(u) r D(t), and
so colu(i+ 1) = colu(i).

Let (g, p) = t−1(i) = u−1(i). Since i+ 1 is in the same column of u as i, it follows
that u(g + 1, p) = i+ 1. Since i+ 2 is in the same column of t as i, and i+ 1 is in a
different column, it follows that t(g+1, p) = i+2. Now let m be the maximal positive
integer such that colu(i + l) = p for all l ∈ [1,m], so that u(g + l, p) = i + l for all
l ∈ [1,m]. Since t and u have the same shape and t> (i+1) is minimal, we see that
t(g+ l, p) = i+ l+ 1 for all l ∈ [1,m]. If m > 1 then colt(i+m+ 1) = p = colt(i+m),
and it follows that i + m ∈ WD(t), while if m = 1 then i + m = i + 1 ∈ SD(t)
(since i+ 1 = max(SD(t)) is given). In either case it follows that i+m ∈ D(u), since
D(t) $ D(u). So colu(i+m+1) 6 colu(i+m) = p = colu(i), whence colu(i+m+1) = p,
since it was shown above that colu(k) > colu(i) for all k > i. But this contradicts the
choice of m. �

Suppose that Γ = Γ(C, µ, τ) is an admissible Wn-graph whose molecules are all
of type λ, for some λ ∈ P (n), and let I index the molecules. By Remark 6.50, the
vertex set of Γ can be written as C =

⊔
α∈I Cα, where for each α ∈ I the set

Cα = {cα,t | t ∈ Std(λ)} spans a molecule, τ(cα,t) = { sj | j ∈ D(t) } for all α ∈ I and
t ∈ Std(λ), and the simple edges of Γ are the pairs {cβ,u, cα,t} such that α = β and
u and t are related by a DKM.

Lemma 9.4. Let u, t ∈ Std(λ), and suppose that (u, t) is a probable pair. Let (v, x) be
an arbitrary element of the set F (u, t). Then (v, x) is a probable pair, max(SD(x)) =
max(SD(t)), and µ(cβ,v, cα,x) = µ(cβ,u, cα,t).
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Proof. Note that t is not minimal, since u < t. Hence SD(t) 6= ∅. Let i be the
restriction number of (u, t). Recall that, by the way F (u, t) is defined, (v, x) is
i-restricted and favourable.

Suppose first that (u, t) is favourable. Then i < max(SD(t)), by Lemma 9.2,
and so max(SD(t)) = max(SD(t> i)). But max(SD(t> i)) = max(SD(x> i)),
since t> i = x> i, and so max(SD(t)) = max(SD(x)). Moreover, colu(i + 1) 6
colu(i) = colt(i) < colt(i + 1), since i ∈ D(u) ⊕ D(t) = D(u) r D(t), and
hence colv(i + 1) 6 colv(i) = colx(i) < colx(i + 1). Thus i ∈ D(v) r D(x).
Clearly D(v) ∩ [1, i − 1] = D(x) ∩ [1, i − 1], since v 6 i = x6 i, and since
D(v)∩ [i+1, n−1] = D(u)∩ [i+1, n−1] and D(x)∩ [i+1, n−1] = D(t)∩ [i+1, n−1],
it follows from D(t) $ D(u) that D(x) $ D(v). Since u < t, Proposition 7.9 gives
v < x, and it follows that (v, x) is a probable pair. Finally, by Lemma 7.22 applied
with j = max(SD(t)), we see that µ(cβ,v, cα,x) = µ(cβ,u, cα,t), as required.

Now suppose that (u, t) is not favourable. Again it follows from Proposition 7.9
that v < x. Moreover, u < t gives u6 (i+1) 6 t6 (i+1), so that u6 (i+1) < t6 (i+1)
(since u6 (i+1) 6= t6 (i+1)). It follows by Remark 6.13 that colu(i + 1) < colt(i + 1).
Since D(u) ⊕ D(t) = D(u) r D(t), we have i < min(D(u) r D(t)) by Remark 7.18.
Thus (u, t) satisfies the hypothesis of Lemma 7.21, and the conclusion is that
D(v) r D(x) = {i} ∪ (D(u) r D(t)) and D(x) r D(v) = ∅. Since D(x) r D(v) = ∅
while D(v) r D(x) 6= ∅, we have D(x) $ D(v). Hence (v, x) is probable.

Let j = max(SD(x)), and note that j > i by Lemma 9.2, Thus j = max(SD(x> i)),
and since t> i = x> i, it follows that j = max(SD(t> i)) = max(SD(t)). Finally,
since it was shown above that i < min(D(u) r D(t)), Lemma 7.22 again gives
µ(cβ,v, cα,x) = µ(cβ,u, cα,t). �

Proposition 9.5. Monomolecular admissible cells of type An−1 are Kazhdan–Lusztig.

Proof. Suppose that Γ = Γ(C, µ, τ) is a monomolecular admissible Wn -cell. Then
there is a partition λ of n such that C = {ct | t ∈ Std(λ)}, and {cu, ct} is a simple
edge of Γ if and only if u, t ∈ Std(λ) are related by a DKM. In view of Corollary 6.37,
our task is to show that Γ ∼= Γλ = Γ(Std(λ), µ(λ), τ (λ)). Recall that Γλ is an admissible
Wn-graph consisting of a single molecule of type λ (by Remark 6.51). Clearly t 7→ ct
is a bijection from the vertex set of Γλ to the vertex set of Γ. Since it follows from
Remark 6.50 that τ(ct) = { sj | j ∈ D(t) } = τ (λ)(t) for all t ∈ Std(λ), it remains to
show that µ(cu, ct) = µ(λ)(u, t) for all u, t ∈ Std(λ). Note that, by Theorem 5.8, both
Γ and Γλ satisfy the Compatibility Rule, the Simplicity Rule, the Bonding Rule and
the Polygon Rule.

We have shown in Theorem 8.2 that Γ and Γλ are both ordered. Thus if u, t ∈
Std(λ) then µ(cu, ct) = µ(λ)(u, t) = 0 unless u < t or u = sit > t for some i ∈ [1, n−1].
If u = sit > t for some i ∈ [1, n − 1] then we have µ(cu, ct) = µ(λ)(u, t) = 1 by
Corollary 7.23. Now suppose that u < t and D(t) * D(u). If one or other of µ(cu, ct)
and µ(λ)(u, t) is nonzero then, by the Simplicity Rule, one or other of {cu, ct} and {u, t}
is a simple edge, whence u and t are related by a DKM (by Remark 6.50), and both
{cu, ct} and {u, t} are simple edges. So µ(cu, ct) = µ(λ)(u, t) = 1 in this case. Obviously
there is nothing to show if µ(cu, ct) are µ(λ)(u, t) both zero, and so all that remains is
to show that µ(cu, ct) = µ(λ)(u, t) whenever u < t and D(t) $ D(u). That is, it remains
to show that µ(cu, ct) = µ(λ)(u, t) for all probable pairs of standard λ-tableaux. In
other words we must show that for all t ∈ Std(λ) we have µ(cu, ct) = µ(λ)(u, t)
whenever u ∈ Std(λ) and (u, t) is a probable pair.

If t = τλ then there is nothing to prove. Proceeding inductively on the lexicographic
order, let t′ ∈ Std(λ) r {τλ}, and assume that the result holds for all t ∈ Std(λ) such
that t <lex t

′.
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Suppose that (u′, t′) is a probable pair. Let i be the restriction number of (u′, t′),
and let j = max(SD(t′)). Let (u, t) ∈ F (u′, t′), and note that (u, t) is i-restricted
and favourable, and satisfies t> i = t′ > i and u> i = u′ > i. Moreover, Lemma 9.4
shows that (u, t) is probable, µ(cu, ct) = µ(cu′ , ct′) and µ(λ)(u, t) = µ(λ)(u′, t′), and
max(SD(t)) = max(SD(t′)) = j. Thus the conclusion µ(cu′ , ct′) = µ(λ)(u′, t′) will
follow if we can show that µ(cu, ct) = µ(λ)(u, t).

Note that i ∈ A(t) and i < j, by Lemma 9.2. Let v = sjt. Then v ∈ Std(λ) and v <
t, since j ∈ SD(t), and v <lex t

′ by Lemma 7.30. Since (u, t) is favourable, and since
D(t) $ D(u) (since (u, t) is probable), we have i ∈ D(u) r D(t) and j ∈ D(u) ∩D(t).
That is, i /∈ D(t) and j ∈ D(t), and i, j ∈ D(u). Since i < j we have either j − i > 1
or j − i = 1.
Case 1.
Suppose that j− i > 1, so that m(si, sj) = 2. Lemma 7.29 (i) tells us that i, j /∈ D(v).
We set X = {x ∈ Std(λ) | i ∈ D(x) and j /∈ D(x) } and Y = { y ∈ Std(λ) | j ∈
D(y) and i /∈ D(y) }.

If (cv, cy1 , cu) is any alternating directed path of type (j, i), then, since Γ is ordered,
it follows that either y1 = sjv = t > v or y1 < v. Similarly, if (cv, cx1 , cu) is any
alternating directed path of type (i, j), then it follows that either x1 = siv > v or
x1 < v. Note that if x1 = siv > v, then since x1 ∈ Std(λ), it follows that i ∈ SA(v).
Thus, if x1 = siv > v, then i ∈ D(siv) and j /∈ D(siv) by Lemma 7.29 (i). That is,
siv ∈ X. Now since Γ satisfies the Polygon Rule, we have N2

j,i(cv, cu) = N2
i,j(cv, cu),

and it follows that

(22) µ(cu, ct)µ(ct, cv) +
∑

y1∈Y, y1<v

µ(cu, cy1)µ(cy1 , cv)

= µ(cu, csiv)µ(csiv, cv) +
∑

x1∈X, x1<v

µ(cu, cx1)µ(cx1 , cv),

where the term µ(cu, csiv)µ(csiv, cv) on the right hand side of Eq. (22) should be
omitted if i /∈ SA(v). Note that if i ∈ SA(v) then (cv, csiv, cu) is not necessar-
ily a directed path, since there need not be an arc from siv to u, but in this case
µ(cu, csiv)µ(csiv, cv) = 0 since µ(cu, csiv) = 0. Similarly, (cv, ct, cu) is not necessarily
a directed path, since there need not be an arc from t to u, but µ(cu, ct)µ(ct, cv) = 0
in this case. So Eq. (22) still holds in these cases.

Since Corollary 7.23 gives µ(ct, cv) = 1, and µ(csiv, cv) = 1 if i ∈ SA(v), Eq. (22)
yields the following formula for µ(cu, ct):

µ(cu, ct) = µ(cu, csiv) +
∑

x1∈X, x1<v

µ(cu, cx1)µ(cx1 , cv) −
∑

y1∈Y, y1<v

µ(cu, cy1)µ(cy1 , cv),

where µ(cu, csiv) should be interpreted as 0 if siv /∈ Std(λ).
Working similarly on Γλ yields the following formula for µ(λ)(u, t):

µ(λ)(u, t) =µ(λ)(u, siv)+
∑

x1∈X, x1<v

µ(λ)(u, x1)µ(λ)(x1, v)−
∑

y1∈Y, y1<v

µ(λ)(u, y1)µ(λ)(y1, v).

Now v <lex t
′ by Lemma 7.30 and siv <lex t

′ (if i ∈ SA(v)) by Lemma 7.30 (i).
Moreover, all x1 and y1 appearing above satisfy x1 <lex t′ and y1 <lex t′, by
Lemma 7.30 (ii). Hence it follows by the inductive hypothesis that the corresponding
arc weights in the two formulae above are the same. Thus µ(cu, ct) = µ(λ)(u, t), and
µ(cu′ , ct′) = µ(λ)(u′, t′), as desired.
Case 2.
Suppose that i = j−1, so that m(si, sj) = 3. By Lemma 9.3, colt(j−1) 6= colt(j+1),
and so either colt(j − 1) < colt(j + 1) or colt(j − 1) > colt(j + 1).
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If colt(j−1) < colt(j+ 1), then the result follows by the same argument as used in
Case 1, with j − 1 replacing i and using Lemma 7.29 (ii) in place of Lemma 7.29 (i).

Suppose that colt(j−1) > colt(j+ 1). Since j−1 ∈ SD(v) by Lemma 7.29 (iii), we
have sj−1v ∈ Std(λ) and sj−1v < v. Let w = sj−1v. It follows by Lemma 7.29 (iii)
that j − 1, j /∈ D(w), whereas j − 1, j ∈ D(u) (as we have already seen).

We consider directed paths from cw to cu that have length three and are alternating
of type (j − 1, j) or type (j, j − 1). We have j ∈ D(t) and j − 1 /∈ D(t) (as we have
already seen), while j − 1 ∈ D(v) and j /∈ D(v) by Lemma 7.29 (iii).

If (cw, cx1 , cx2 , cu) is any alternating directed path of type (j − 1, j), then, since Γ
is ordered, it follows that either x1 = sj−1w = v > w, or else x1 < w. Moreover, since
Γ satisfies the Simply-Laced Bonding Rule, the fact that j−1 ∈ D(x1) and j /∈ D(x1)
shows that cx2 is the unique vertex adjacent to cx1 satisfying j − 1 /∈ D(x2) and
j ∈ D(x2). That is, x2 is the (j−1)-neighbour of x1. Thus it follows that either x1 = v
and x2 = sjv = t, or else x1 < w and either x2 = sjx1 > x1 or x2 = sj−1x1 < x1.

Similarly, if (cw, cy1 , cy2 , cu) is any alternating directed path of type (j, j−1), then
it follows that either y1 = sjw > w or y1 < w, and y2 is the (j − 1)-neighbour of y1.
Note that if y1 = sjw > w, then since y1 ∈ Std(λ), it follows that j ∈ SA(w). Thus, if
y1 = sjw > w then Lemma 7.29 (iii) tells us that y2 = sj−1y1 = sj−1sjw > sjw = y1,
and also that j ∈ D(sjw) and j − 1 /∈ D(sjw), and that j − 1 ∈ D(sj−1sjw) and
j /∈ D(sj−1sjw). On the other hand if y1 < w then either y2 = sj−1y1 > y1 or
y2 = sjy1 < y1.

Now since Γ satisfies the Polygon Rule, we have N3
j−1,j(cw, cu) = N3

j,j−1(cw, cu),
and it follows that

(23) µ(cu, ct)µ(ct, cv)µ(cv, cw) +
∑

x1∈X, x1<w
x2=(j−1) -neb(x1)

µ(cu, cx2)µ(cx2 , cx1)µ(cx1 , cw)

= µ(cu, csj−1sjw)µ(csj−1sjw, csjw)µ(csjw, cw)

+
∑

y1∈Y, y1<w
y2=(j−1) -neb(y1)

µ(cu, cy2)µ(cy2 , cy1)µ(cy1 , cw),

where the term µ(cu, csj−1sjw)µ(csj−1sjw, csjw)µ(csjw, cw) on the right hand side
of Eq. (23) should be omitted if j /∈ SA(w). Note that if j ∈ SA(w) then
(cw, csjw, csj−1sjw, cu) is not necessarily a directed path, since there need not be an
arc from csj−1sjw to cu, but in this case µ(cu, csj−1sjw)µ(csj−1sjw, csjw)µ(csjw, cw) = 0
since µ(cu, csj−1sjw) = 0. Similarly, (cw, cv, ct, cu) is not necessarily a directed path,
since there need not be an arc from ct to cu, but µ(cu, ct)µ(ct, cv)µ(cv, cw) = 0 in this
case. So Eq. (23) still holds in these cases.

Since µ(cv, cw) = µ(csjw, cw) = 1 and µ(ct, cv) = µ(csj−1sjw, csjw) = 1, by Corol-
lary 7.23, and since µ(cx2 , cx1) = µ(cy2 , cy1) = 1, since {cx1 , cx2} and {cy1 , cy2} are
simple edges, Eq. (23) yields the following formula for µ(cu, ct):

µ(cu, ct) = µ(cu, csj−1sjw) +
∑

y1∈Y, y1<w
y2=(j−1) -neb(y1)

µ(cu, cy2)µ(cy1 , cw)

−
∑

x1∈X, x1<w
x2=(j−1) -neb(x1)

µ(cu, cx2)µ(cx1 , cw),

where µ(cu, csj−1sjw) should be interpreted as 0 if sjw /∈ Std(λ).
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Working similarly on Γλ yields the following formula for µ(λ)(u, t):

µ(λ)(u, t) = µ(λ)(u, sj−1sjw) +
∑

y1∈Y, y1<w
y2=(j−1) -neb(y1)

µ(λ)(u, y2)µ(λ)(y1, w)

−
∑

x1∈X, x1<w
x2=(j−1) -neb(x1)

µ(λ)(u, x2)µ(λ)(x1, w).

Now w <lex t′ and sj−1sjw <lex t′ (if j ∈ SA(w)) by Lemma 7.30 (iii). Moreover,
x2, y2 <lex t

′ by Lemma 7.30 (iv). Hence it follows by the inductive hypothesis that the
corresponding arc weights in the two formulae above are the same. Thus µ(cu′ , ct′) =
µ(λ)(u′, t′), as desired. �

Proposition 9.6. Let Γ = Γ(C, µ, τ) be an admissible Wn-graph whose molecules are
all of type λ, for some λ ∈ P (n). Then there are no arcs between distinct molecules,
and each of the molecules is isomorphic to Γλ.

Proof. Slightly modifying the notation used in Theorem 8.1, let I be a set that indexes
the molecules of Γ, and for each α ∈ I let Cα be the vertex set of the corresponding
molecule. We also write Cα = { cα,t | t ∈ Std(λ) }, and let Γα = Γ(Cα) denote the
molecule spanned by Cα. If Γ =

⊕
α∈I Γα, the direct sum of the Γα, then each Γα

is a monomolecular admissible Wn-cell of type λ, and hence isomorphic to Γλ, by
Proposition 9.5. Hence it will suffice to show that Γ =

⊕
α∈I Γα.

Suppose otherwise. Then there exists α ∈ I such that IniΓ(α) 6= ∅, where

IniΓ(α) = { t ∈ Std(λ) | µ(cβ,u, cα,t) 6= 0 for some (β, u) ∈ (I r {α})× Std(λ)}.

Fix such an α, and let t′ be the element of Iniα(Γ) that is minimal in the lexico-
graphic order on Std(λ). Choose (β, u′) ∈ (I r {α})× Std(λ) with µ(cβ,u′ , cα,t′) 6= 0.
Since Γ satisfies the Simplicity Rule (by Theorem 5.8), the assumption that α 6= β
and µ(cβ,u′ , cα,t′) 6= 0 implies that D(t′) $ D(u′). Moreover, since Γ is ordered (by
Theorem 8.2), α 6= β implies that u′ < t′. Hence (u′, t′) is a probable pair.

Let i be the restriction number of (u′, t′) and j = max(SD(t′)). Let (u, t) ∈ F (u′, t′),
so that (u, t) is i-restricted and favourable, and Lemma 9.4 shows that (u, t) is a
probable pair, max(SD(t)) = max(SD(t′)) = j, and µ(cβ,u, cα,t) = µ(cβ,u′ , cα,t′) 6= 0.
Since D(t) $ D(u) (since (u, t) is probable) and i ∈ D(u) ⊕ D(t) (since (u, t) is
favourable), i ∈ D(u) r D(t). Thus, since j ∈ D(t) $ D(u), it follows that j ∈ D(t)
and i /∈ D(t), and i, j ∈ D(u). Let v = sjt, and note that v ∈ Std(λ) and v < t, by
Remark 6.19. Lemma 9.2 yields that i < j.

Suppose first that i < j − 1. Then Lemma 7.29 (i) yields that i, j /∈ D(v). More-
over, since µ(cα,t, cα,v) = 1 by Corollary 7.23, and since µ(cβ,u, cα,t) 6= 0, it follows
that (cα,v, cα,t, cβ,u) is an alternating directed path of type (j, i). Thus since Γ is
admissible it follows that N2

j,i(cα,v, cβ,u) > 0, and so N2
i,j(cα,v, cβ,u) > 0, since Γ sat-

isfies the Polygon Rule. Thus there exists at least one (δ, x1) ∈ I × Std(λ) such that
(cα,v, cδ,x1 , cβ,u) is an alternating directed path of type (i, j). If δ 6= α then v ∈ IniΓ(α),
and since (t′)> i = t> i we have v <lex t

′, by Lemma 7.30, contradicting the definition
of t′. So we must have δ = α, whence x1 ∈ IniΓ(α). Now Theorem 8.2 shows that
either x1 = siv and i ∈ SA(v), or else x1 < v. But x1 <lex t

′ by Lemma 7.30 (i) in the
former case, and x1 <lex t

′ by Lemma 7.30 (ii) in the latter case. Both alternatives
contradict the definition of t′, and we conclude that i < j − 1 is impossible.

Thus i = j − 1, and it now follows from Lemma 9.3 that colt(j − 1) 6= colt(j + 1).
But if colt(j − 1) < colt(j + 1) then we obtain a contradiction by the same reasoning
as in the i < j − 1 case, using Lemma 7.29 (ii) in place of Lemma 7.29 (i). So
colt(j − 1) > colt(j + 1).
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Let w = sj−1v. Lemma 7.29 (iii) gives j − 1 ∈ SD(v), whence w ∈ Std(λ) and
w < v. Moreover, Lemma 7.29 (iii) also gives j − 1, j /∈ D(w), as well as j − 1 ∈ D(v)
and j /∈ D(v). Next, since µ(cα,v, cα,w) = µ(cα,t, cα,v) = 1 by Corollary 7.23 and since
µ(cβ,u, cα,t) 6= 0, it follows that (cα,w, cα,v, cα,t, cβ,u) is an alternating directed path
of type (j − 1, j). Thus N3

j−1,j(cα,w, cβ,u) > 0, and so N3
j,j−1(cα,w, cβ,u) > 0, by the

Polygon Rule.
It follows that there exists at least one (δ, x1) ∈ I × Std(λ) and one (γ, x2) ∈

I × Std(λ) such that (cα,w, cδ,x1 , cγ,x2 , cβ,u) is an alternating directed path of type
(j, j − 1). If δ 6= α then w ∈ Iniα(Γ), and since t> (j−1) = t′ > (j−1), we have w <lex t

′

by Lemma 7.30 (iii). But this contradicts the definition of t′, and so δ = α.
Since D(x1)∩{j−1, j} = {j} and D(x2)∩{j−1, j} = {j−1}, and µ(cγ,x2 , cδ,x1) 6= 0,

it follows from the Simplicity Rule that {cδ,x1 , cγ,x2} is a simple edge. Thus γ = δ,
and x1 and x2 are related by a DKM. Thus x2 is the (j − 1)-neighbour of x1, and
x2 ∈ Iniα(Γ). It will suffice to show that x2 <lex t

′, contradicting the definition of t′.
By Theorem 8.2 either x1 = sjw > w or x1 < w. If x1 < w then since t> (j−1) =

(t′)> (j−1), the conclusion x2 <lex t
′ follows from Lemma 7.30 (iv). We are left with

the case x1 = sjw > w. This gives j ∈ SA(w), and we see that the conditions
of Lemma 7.29 (iii) are satisfied: we have v = sjt with j ∈ SD(t) and colt(j +
1) < colt(j − 1), and w = sj−1v. Since j ∈ SA(w) it follows that j − 1 ∈ SA(x1),
and sj−1x1 is the (j − 1)-neighbour of x1. Thus x2 = sj−1x1 = sj−1sjw, and since
t> (j−1) = (t′)> (j−1), we have x2 <lex t

′ by Lemma 7.30 (iii). �

Remark 9.7. In the above proof, after noting that µ(cβ,u′ , cα,t′) 6= 0 and α 6= β,
Remark 8.10 can be used to deduce that A(u′, t′) 6= ∅, and then, choosing (u, t) ∈
A(u′, t′), a proof similar to that of Proposition 8.13 (with t′ replacing tλ) shows
that t> i is i-critical. But then Lemma 9.2 and Definition 6.22 combined show that
i+ 1 = max(SD(t)) and colt(i+ 2) = colt(i), and this contradicts Lemma 9.3.

We are now in a position to state and prove the main result of the paper.

Theorem 9.8. Admissible cells of type An−1 are Kazhdan–Lusztig.

Proof. Let Γ = Γ(C, µ, τ) be an admissible Wn-cell, and let Λ be the set of molecule
types for Γ. By Lemma 8.18, Λ = {λ} for some λ ∈ P (n). Let I index the molecules
of Γ, and for each γ ∈ I let Cγ = {cγ,w | w ∈ Std(λ)} be the vertex set of the
corresponding molecule. Then Proposition 9.6 says that Γ =

⊕
γ∈I Γ(Cγ), with each

Γ(Cγ) isomorphic to Γλ. But Γ must be connected, since it is a cell, and so I has
only one element. Thus Γ is isomorphic to Γλ. Since Γλ is isomorphic to Γ(C(τλ)), it
follows from Corollary 6.37 that Γ is isomorphic to a Kazhdan–Lusztig left cell. �

Remark 9.9. Let λ ∈ P (n) and let D(λ) =
⊔
t∈Std(λ) C(t), the Kazhdan–Lusztig

two-sided cell corresponding to λ. By Remark 8.21, the singleton set {λ} is the set of
molecule types of the admissible Wn-graph Γ(D(λ)). It follows from Proposition 9.6
that Γ(D(λ)) is a disjoint union of the Kazhdan–Lusztig left cells Γ(C(t)). This implies
the following well known result (see, for example, [8, Theorem 5.3]).
Theorem 9.10. Let λ ∈ P (n) and y, w ∈ D(λ). If y �L w then y, w ∈ C(t) for some
t ∈ Std(λ).
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