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Discrete cubical and path homologies of
graphs

Hélène Barcelo, Curtis Greene, Abdul Salam Jarrah
& Volkmar Welker

Abstract In this paper we study and compare two homology theories for (simple and undi-
rected) graphs. The first, which was developed by Barcelo, Capraro, and White, is based on
graph maps from hypercubes to the graph. The second theory was developed by Grigor’yan,
Lin, Muranov, and Yau, and is based on paths in the graph. Results in both settings imply
that the respective homology groups are isomorphic in homological dimension one. We show
that, for several infinite classes of graphs, the two theories lead to isomorphic homology groups
in all dimensions. However, we provide an example for which the homology groups of the two
theories are not isomorphic at least in dimensions two and three. We establish a natural map
from the cubical to the path homology groups which is an isomorphism in dimension one and
surjective in dimension two. Again our example shows that in general the map is not surjec-
tive in dimension three and not injective in dimension two. In the process we develop tools to
compute the homology groups for both theories in all dimensions.

1. Introduction
For a simple finite undirected graph G, we study a discrete cubical singular homology
theory HCube

• (G). This theory is a special case of the discrete cubical homology theory
DH•,r(X) that was defined by Barcelo, Capraro and White [2] for any metric space
X and any real number r > 0. Their work builds on a discrete homotopy theory for
undirected graphs introduced earlier by Barcelo, Kramer, Laubenbacher, and Weaver
in [3]. Later work by Babson, Barcelo, de Longueville, and Laubenbacher [1] connects
this theory to classical homotopy theory of cubical sets and asks for a corresponding
homology theory. The homology theory developed in [2] is an answer to that question.
A more general but closely related homotopy theory for directed graphs was developed
by Grigor’yan, Lin, Muranov, and Yau in [7], which also introduces a corresponding
homology theory based on directed paths. The homotopy theories in [1] and [7] are
identical when G is undirected and from [2] and [7] it follows that the homology
theories yield isomorphic homology groups in dimension 1. In this paper we explore
both the similarities and differences between the two homology theories, showing
that they agree in all dimensions for many infinite classes of undirected graphs but
disagree in general. Both theories differ markedly from classical singular/simplicial
homology of graphs seen as 1-dimensional complexes or their clique complexes. For
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example, whenG is a 4-cycle, both the cubical and path homologies are trivial in all
dimensions greater than zero.

In Section 2, following [2] and [7], we give precise de�nitions of both cubical and
path homology for undirected graphs, and discuss the di�erences between these theo-
ries and classical simplicial homology of a graph (as a1-dimensional simplicial complex
as well as of the clique complex of the graph). In Section 3 we give proofs that both cu-
bical and path homology are preserved under homotopy equivalence, along lines that
essentially appear in [2] and [7]. These results are used in Section 4 to compute ho-
mology for a large number of examples, showing in the process that cubical and path
homology agree in all of these cases. Section 5 constructs a natural homomorphism
from H Cube

� (G) to H Path
� (G). We show that the homomorphism is an isomorphism

in dimension 0 and 1 and surjective in dimension 2, hence fueling speculation that
this might explain the isomorphisms observed in Section 4. However, Section 6 gives
a counterexample: a graphG for which H Cube

� (G) 6�= H Path
� (G), and for this example

the map de�ned in Section 5 is neither injective nor surjective. Section 7 suggests
several natural questions for further study.

2. Background: discrete homology of graphs

Throughout the paper let R denote a commutative ring with unit which shall be the
ring of coe�cients. For any positive integer n, let [n] := f 1; : : : ; ng. For graph theory
de�nitions and terminology we refer the reader to [4].

2.1. Discrete cubical homology.

Definition 2.1. For n > 1, the discrete n-cube Qn is the graph whose vertex set
V (Qn ) is f 0; 1gn := f (a1; : : : ; an ) j ai 2 f 0; 1g for all i 2 [n]g, with an edge between
two vertices a and b if and only if their Hamming distance is exactly one, that is,
there exists i 2 [n] such that ai 6= bi and aj = bj for all j 6= i . For n = 0 , we de�ne
Q0 to be the1-vertex graph with no edges.

Definition 2.2. Let G and H be simple graphs, i.e. undirected graphs without loops
or multiple edges. A graph homomorphism� : G �! H is a map from V(G) to V (H )
such that, if f a; bg 2 E(G) then either � (a) = � (b) or f � (a); � (b)g 2 E(H ).

Definition 2.3. Let G be a simple graph, a graph homomorphism� : Qn �! G is
called a singular n-cube onG.

For each n > 0, let L Cube
n (G) be the free R-module generated by all singularn-

cubes onG. For n > 1 and eachi 2 [n], we de�ne two face mapsf +
i and f �

i from
L Cube

n (G) to L Cube
n � 1 (G) such that, for � 2 L Cube

n (G) and (a1; : : : ; an � 1) 2 Qn � 1:

f +
i � (a1; : : : ; an � 1) := � (a1; : : : ; ai � 1; 1; ai ; : : : ; an � 1);

f �
i � (a1; : : : ; an � 1) := � (a1; : : : ; ai � 1; 0; ai ; : : : ; an � 1):

For n > 1, a singular n-cube � is called degenerateif f +
i � = f �

i � , for some i 2 [n].
Otherwise, � is called non-degenerate. By de�nition every 0-cube is non-degenerate.

For each n > 0, let DCube
n (G) be the R-submodule of L Cube

n (G) that is gener-
ated by all degenerate singularn-cubes, and let CCube

n (G) be the free R-module
L Cube

n (G)=DCube
n (G), whose elements are calledn-chains. Clearly, the cosets of non-

degeneraten-cubes freely generateCCube
n (G).

Furthermore, for each n > 1, de�ne the boundary operator

@Cube
n : L Cube

n (G) �! L Cube
n � 1 (G)
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such that, for each singularn-cube � ,

@Cube
n (� ) =

nX

i =1

(� 1)i � f �
i � � f +

i �
�

and extend linearly to all chains in L Cube
n (G). When there is no danger of confusion,

we will abbreviate @Cube
n as @n . If one setsL Cube

� 1 (G) = DCube
� 1 (G) = (0) then one can

de�ne @Cube
0 as the trivial map from L Cube

0 (G) to L Cube
� 1 (G).

It is easy to check that, for n > 0, @n [DCube
n (G)] � D Cube

n � 1 (G) and @n @n +1 � = 0
(see [2]). Hence, using the same notation, we may de�ne a boundary operator@n :
CCube

n (G) �! C Cube
n � 1 (G), and CCube (G) = ( CCube

� ; @� ) is a chain complex of freeR-
modules.

Definition 2.4. For n > 0, denote byH Cube
n (G) the nth homology group of the chain

complexCCube (G). In other words, H Cube
n (G) := Ker @n =Im @n +1 .

We represent singularn-cubes� : Qn ! G by sequences of length2n , where the
i th term is the value of � on the i th vertex, and the vertices of Qn are indexed in
colexicographic order. For example, ifG is de�ned as in Figure 2, then the sequence
(1; 2; 2; 1; 2; 3; 3; 2) represents the singular3-cube with labels as illustrated in Figure 1.

000 100

010 110

001 101

011 111

1 2

2 1

2 3

3 2

Figure 1. Singular 3-cube represented by(1; 2; 2; 1; 2; 3; 3; 2).

We represent each coset inCCube
n (G) by the unique coset representative in which

all terms are non-degenerate.

Example 2.5. Let G be a 4-cycle, with vertices labeled cyclically, as illustrated in
Figure 2.

1 2

34

Figure 2. Graph G = 4-cycle.
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Then

CCube
0 =



(1); (2); (3); (4)

�

CCube
1 =



(1; 2); (2; 1); (2; 3); (3; 2); (3; 4); (4; 3); (4; 1); (1; 4)

�

CCube
2 =



(1; 1; 1; 2); (1; 1; 1; 4); � � � < 60 more > : : : ; (4; 4; 4; 1); (4; 4; 4; 3)

�
:

The matrix of @1 with respect to the above bases is the standard vertex-directed edge
incidence matrix of the corresponding directed graph in which each edge is replaced
by directed edges in both directions. An easy computation shows that@1 has rank
jV j� 1 = 4 � 1 = 3 and nullity 8� 3 = 5. Cycles inCCube

1 (G) correspond to circulations
in G, that is, weighted sums of edges in which the net �ow out of each vertex equals
zero. A basis ofCCube

1 (G) may be obtained from any directed cycle basis ofG, e.g.,
for the graph G de�ned in Figure 2 we may take (1; 2) + (2 ; 1); (2; 3) + (3 ; 2); (3; 4) +
(4; 3); (4; 1) + (1 ; 4), and (1; 2) + (2 ; 3) + (3 ; 4) + (4 ; 1). Each of these1-cycles is the
boundary of a 2-chain:

(1; 2) + (2 ; 1) = @2((2; 1; 2; 2))

(2; 3) + (3 ; 2) = @2((3; 2; 3; 3))

(3; 4) + (4 ; 3) = @2((4; 3; 4; 4))

(4; 1) + (1 ; 4) = @2((1; 4; 1; 1))

(1; 2) + (2 ; 3) + (3 ; 4) + (4 ; 1) = @2((1; 2; 4; 3) + (3 ; 4; 3; 3) + (1 ; 4; 1; 1)):

Hence H Cube
0 (G) = R and H Cube

1 (G) = (0) . By somewhat tedious computations
one can also show thatH Cube

2 (G) = (0) . Here we haverank(CCube
2 (G)) = 64 and

rank(CCube
3 (G)) = 2432, and for higher dimensions the problem of computing

H Cube
n (G) becomes increasingly more di�cult. Fortunately, we are able to prove more

general results (in Section 4) implying that H Cube
n (G) = (0) for all n > 0, for the

graph G de�ned above in Figure 2.

2.2. Discrete path homology. In a series of papers [6, 7, 8] a (co)homology and a
homotopy theory for directed graphs are developed. In these theories, an undirected
graph is interpreted as the directed graph, with each undirected edge replaced by two
oppositely directed edges between its endpoints. It is shown in [7, Theorem 4.22] that
the �rst homology group of a directed graph is the abelianization of its fundamental
group, where both homology and homotopy groups are taken in the sense of [6, 7].

We now recall the homology theory from [6], con�ning ourselves to the setting of
simple (undirected) graphs.

Let V be a �nite set. For n > 0 we denote by L Path
n (V ) the R-module freely

generated by the set of all(n + 1) � tuples (v0; : : : ; vn ) of elements inV . For each n,
let DPath

n (V ) denote the submodule generated by thedegeneraten-tuples (v0; : : : ; vn )
wherevi = vi +1 for somei . For n > 1, let @Path

n : L Path
n (V ) ! L Path

n � 1 (V ) be de�ned by

(v0; : : : ; vn ) 7�!
nX

i =0

(� 1)i (v0; : : : ; bvi ; : : : ; vn ):

If we set L Path
� 1 (V ) = DPath

� 1 (V ) = (0) we can also de�ne@Path
0 as the trivial map from

L Path
0 (V ) to L Path

� 1 (V ). Again, we will write @Path
n = @n when there is no ambiguity.

For n > 0, it is easy to verify that @n @n +1 = 0 and @n [DPath
n (V )] � D Path

n � 1 (V ). Hence
if we de�ne a sequence of quotients

CPath
n (V ) =

L Path
n (V )

DPath
n (V )

; n = � 1; 0; 1; : : : ;
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Discrete cubical and path homologies of graphs

then CPath (V ) = ( CPath
� (V ); @Path

� ) forms a chain complex, again using the same no-
tation for @n .

Now let G = ( V; E) be a simple graph. De�ne L Path
n (G) � L Path

n (V ) to be the
submodule of L Path

n (V ) spanned by all (v0; : : : ; vn ) such that f vi ; vi +1 g 2 E(G) for
all i < n . Thus, L Path

n (G) � C Path
n (V ) when G is the complete graph on vertex setV .

For all n > 0, de�ne eCPath
n (G) � C Path

n (V ) to be the submodule ofCPath
n (V ) generated

by cosets of the form
(v0; : : : ; vn ) + DPath

n (V );

where(v0; : : : ; vn ) 2 L Path
n (G), and set eCPath

� 1 (G) = (0) . The sequencef eCPath
n (G)gn > � 1

is not always a chain complex, since boundaries of paths(v0; : : : ; vn ) 2 L Path
n (G) may

contain terms that are not paths in G. However, if we de�ne, for n > 0,

CPath
n (G) = f v 2 eCPath

n (G) j @n v 2 eCPath
n � 1 (G)g

and CPath
� 1 (G) = (0) , then @n @n +1 = 0 immediately implies that @n [CPath

n (G)] �
CPath

n � 1 (G), and CPath (G) = ( CPath
� ; @� ) is a chain complex.

Definition 2.6. For n > 0, denote byH Path
n (G) the nth homology group of the chain

complexCPath (G). In other words, H Path
n (G) := Ker @n =Im @n +1 .

We again identify cosets inCPath
n (G) with their unique representatives whose terms

are all non-degenerate. Using this notation, ifG is the 4-cycle graph in Figure 2, then

CPath
0 =



(1); (2); (3); (4)

�

CPath
1 =



(1; 2); (2; 1); (2; 3); (3; 2); (3; 4); (4; 3); (4; 1); (1; 4)

�

CPath
2 =



(1; 2; 1); (2; 1; 2); (2; 3; 2); (3; 2; 3); (3; 4; 3); (4; 3; 4); (4; 1; 4); (1; 4; 1);

(1; 2; 3) � (1; 4; 3); (2; 3; 4) � (2; 1; 4); (3; 4; 1) � (3; 2; 1); (4; 1; 2) � (4; 3; 2)
�
:

Represented in this notation, the chain groupsCPath
0 (G) and CPath

1 (G) are identical
to CCube

0 (G) and CCube
1 (G). The boundary map @1 again has rank5 and its kernel is

spanned by(1; 2)+(2 ; 1); (2; 3)+(3 ; 2); (3; 4)+(4 ; 3); (4; 1)+(1 ; 4), and (1; 2)+(2 ; 3)+
(3; 4) + (4 ; 1). As before, each of these1-cycles is the boundary of a2-chain:

(1; 2) + (2 ; 1) = @2((1; 2; 1))

(2; 3) + (3 ; 2) = @2((2; 3; 2))

(3; 4) + (4 ; 3) = @2((3; 4; 3))

(4; 1) + (1 ; 4) = @2((1; 4; 1))

(1; 2) + (2 ; 3) + (3 ; 4) + (4 ; 1) = @2(((1 ; 2; 3) � (1; 4; 3)) + (3 ; 4; 3) + (1 ; 4; 1)):

It follows that H Path
0 (G) = R and H Path

1 (G) = (0) . Again it is possible to prove
directly that H Path

2 (G) = (0) , but more general results in Section 4 will show that,
for this example, H Path

n (G) = (0) for all n > 0.

2.3. Classical homology of a graph and its clique complex. We mention
two other homology theories of graphs that have a substantial presence in the litera-
ture.

Given any undirected graph G, we may regard G as a 1-dimensional simplicial
complex and compute its singular (or equivalently, simplicial) homology H Sing

� (G).
It is elementary and classical (e.g., [11, Chapter 8]) that if G is connected, then
H Sing

0 (G) �= R, H Sing
1 (G) �= RjE (G) j�j V (G) j+1 , and H Sing

n (G) �= (0) for n > 1.
Given G, we may also construct the clique complexK G of G (also called the

�ag complex of G; see [14]), whose faces are the subsets ofV (G) forming cliques,
and compute the simplicial (or equivalently, singular) homology H Clique

� (G) of K G . If
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N = ! (G) is the size of the largest clique inG, then H Clique
n (G) �= (0) for n > N ,

but H Clique
n (G) can be nonzero for anyn 6 N . If G is a 4-cycle as in Figure 2, then

H Sing
n (G) and H Clique

n (G) are isomorphic for all n, but this is not true in general (for
example, whenG is a 3-cycle). We note that a theory analogous toH Cube

� (G) can be
de�ned by considering chain groups spanned in dimensionn by graph maps from the
complete graph onn + 1 vertices to G and di�erential given by the alternating sum
over the restrictions to complete subgraphs onn � 1 vertices. This theory can be seen
to be equivalent to H Clique

� (G) (see [12, p. 76]).

2.4. Relationships. This paper will explore connections between the two homology
theoriesH Cube

� (G) and H Path
� (G) de�ned above. For many classes of graphsG we have,

H Cube
� (G) �= H Path

� (G), and we will give several more examples of this phenomenon
(see especially Section 4). In Section 5 we de�ne a homomorphism fromCCube (G) to
CPath (G) that may explain some of these connections. However,H Cube

� and H Path
� are

not isomorphic in general, and we give an example illustrating this in Section 6.
Connections with H Sing

� and H Clique
� seem to be less close; for example, whenG is

a 4-cycle, the discrete cubical and path homologies are trivial in dimension1, but the
singular and clique homologies are nontrivial. A combination of results in [1] and [2]
proves that for any graph G, H Cube

1 (G) �= H Sing
1 (K ), where K is the CW-complex

obtained from G by ��lling in� all of its triangles and quadrilaterals with 2-cells. A
similar construction in higher dimensions is conjectured in [1] to give the correct higher
homotopy groups. For homology groups, it is known thatH Cube

n (G) �= H Sing
n (K � ) for

all n, where K � is the geometric realization of the cubical setfCCube
n (G)g, see [5,

Theorem 3.9.12].

3. Homotopy equivalence preserves homology

This section describes the connection between the graph homotopy theory introduced
in [1] and [7] and the cubical and path homologies introduced in [2] and [7]. First we
recall several basic de�nitions.

Definition 3.1. (See [9]) If G and H are graphs, the Cartesian (or box) product
G � H is the graph whose vertex set is the Cartesian product setV (G) � V (H ), and
whose edges are pairsf (g1; h1); (g2; h2)g such that eitherg1 = g2 and f h1; h2g 2 E(H )
or h1 = h2 and f g1; g2g 2 E(G).

Definition 3.2. Suppose thatG and H are graphs, andf and g are graph homomor-
phisms from G to H . Then f and g are homotopic if there exists a graph homomor-
phism � from G � I m to H such that �( � ; 0) = f and �( � ; m) = g, where I m denotes
the m-path with vertex setf 0; 1; : : : ; mg and edge setff i; i + 1g j 1 6 i < m g.

Definition 3.3. Two simple undirected graphsG and H are homotopy equivalent
if there exist graph homomorphisms� : G ! H and � : H ! G such that �� is
homotopic to idG and �� is homotopic to idH . Here idG and idH denote the identity
maps onG and H , respectively.

The connection between the discrete homotopy theory in [1] and [7] and the ho-
mology theories introduced in [2] and [7] is expressed by the following theorem, which
also provides a key computational tool.

Theorem 3.4. Let G and H be simple, undirected graphs. IfG and H are homotopi-
cally equivalent, then, for all n > 0,

(i) H Cube
n (G) �= H Cube

n (H ), and
(ii) H Path

n (G) �= H Path
n (H ).
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For both parts of Theorem 3.4 it su�ces to prove that if � and � are homotopically
equivalent maps fromG to H , then � and � induce identical maps on homology. For
cubical homology, this result is contained in Theorem 3.8(1) of [2], where it is proved
for any discrete metric space. For path homology, Theorem 3.4(ii) is stated and proved
explicitly in [7] (Proposition 6.8). For completeness, we will sketch both proofs, which
are structurally similar and employ a chain homotopy construction that is standard
in contexts similar to this (see e.g. [11, Chapter 7]).

Proof of Theorem 3.4(i). Suppose that � and � are homomorphisms fromG to H ,
and � is a homotopy from � to � with �( x; 0) = � (x) and �( x; m) = � (x) for all
x 2 V (G), as in De�nition 3.2. If � 2 CCube

n (G), let �( �; j ) denote the map de�ned by
�( �; j )(q) = �( � (q); j ) for all q 2 Qn , and de�ne ~� n ; ~� n : CCube

n (G) ! C Cube
n (H ) by

~� n (� ) = �( �; 0); ~� n (� ) = �( �; m ):

It is straightforward to show that ~� and ~� are chain maps, i.e.,~� n � 1@n = @n ~� n and
similarly for ~� . We will construct a sequence of mapshn : CCube

n (G) ! C Cube
n +1 (H ) such

that

(1) ~� n � ~� n = @n +1 hn + hn � 1@n ;

for all n. In other words, the sequencef hn g de�nes a chain homotopy betweenf ~� n g
and f ~� n g. It follows that if z 2 CCube

n (G) is a cycle, then

~� n (z) � ~� n (z) = @n +1 hn (z):

In particular, ~� n (z) � ~� n (z) 2 Im @n +1 and hence ~� n (z) and ~� n (z) lie in the same
homology class for allz, implying that � and � induce the same maps on homology.

Given a singular n-cube � 2 CCube
n (G), the map hn (� ) 2 CCube

n +1 (H ) is constructed

as follows. Forj = 1 ; : : : ; m, let h( j )
n (� ) 2 CCube

n +1 (H ) be the unique labeled(n+1) -cube
such that

f +
1 h( j )

n (� )(q) = �( � (q); j )

f �
1 h( j )

n (� )(q) = �( � (q); j � 1);

for all q 2 Qn . Finally, de�ne

hn (� ) = h(1)
n (� ) + � � � + h(m )

n (� ):

It is immediate from the de�nition of h( j )
n that

f +
1 h(m )

n (� )(q) = � (� (q))

f �
1 h(1)

n (� )(q) = � (� (q)) ;

for all q 2 Qn . A few moments of re�ection show that for i = 2 ; : : : ; n, we have

(2) f �
i (h( j )

n (� )) = h( j )
n � 1(f �

i � 1� )

for j 2 [m] and � 2 f� ; + g. Computing the right hand side of (1), we get

h( j )
n � 1(@n (� )) = h( j )

n � 1

� nX

i =1

(� 1)i (f �
i � � f +

i � )
�

=
nX

i =1

(� 1)i � h( j )
n � 1(f �

i � ) � h( j )
n � 1(f +

i � )
�

(3)

and

(4) @n +1 (h( j )
n (� )) =

n +1X

i =1

(� 1)i � f �
i (h( j )

n (� )) � f +
i (h( j )

n (� ))
�
:
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It follows from (2) that terms i = 1 ; : : : ; n in (3) are identical to terms i = 2 ; : : : ; n +1
in (4), but have opposite signs. Hence they cancel, leaving only the �rst term in (4),
and we obtain

@n +1 h( j )
n (� ) + h( j )

n � 1@n (� ) = f +
1 (h( j )

n (� )) � f �
1 (h( j )

n (� ))

= �( �; j ) � �( �; j � 1):(5)

Summing (5) over j gives

@n +1 hn (� ) + hn � 1@n (� ) =
mX

j =1

�( �; j ) � �( �; j � 1)

= �( �; m ) � �( �; 0)

= ~� (� ) � ~� (� )(6)

as desired, and (1) is proved. �

Proof of Theorem 3.4(ii). The proof in [7] has essentially the same structure as the
proof of part (i) given above. We will sketch the argument, using similar notation but
focusing on the important di�erences. Again assume that �; � : G ! H are graph
homomorphisms, with a homotopy � such that �( x; 0) = � (x) and �( x; m) = � (x)
for all x 2 V (G). It is shown in [7, Theorem 2.10] that � and � induce chain maps
~� n and ~� n from CPath

n (G) to CPath
n (H ). As before, the key step in the present proof is

to construct a chain homotopy between the sequencesf ~� n g and f ~� n g.
For � = ( v0; v1; : : : ; vn ) 2 CPath

n (G) and j 2 [m], de�ne h( j )
n (� ) 2 CPath

n +1 (H ) as
follows:

h( j )
n (� ) =

nX

k=0

(� 1)k (�( v0; j � 1); : : : ; �( vk ; j � 1); �( vk ; j ); : : : ; �( vn ; j )) ;

and de�ne
hn (� ) = h(1)

n (� ) + � � � + h(m )
n (� ):

At this point it is essential to check that h( j )
n (� ) 2 CPath

n +1 (H ) for all j , since not every
linear combination of elements of ~CPath

n +1 (H ) is an element ofCPath
n +1 (H ). An argument

proving this fact can be found in [7, Proposition 2.12], and is omitted here.
The proof is completed by showing that identity (5) holds for the maps hn just

de�ned, exactly as it did in part (i). This argument is technical but straightforward,
and is omitted here. With (5) in hand, (6) follows, and we are done. �

4. Computations of homology groups

With Theorem 3.4, we have tools that will allow us to compute H Cube
� (G) and

H Path
� (G) for large classes of graphs. We give many examples in this section. Most in-

volve deformation retraction , a special kind of homotopy equivalence that is frequently
easy to recognize.

Definition 4.1. Let G be a graph, and letH be an induced subgraph ofG. That is,
V (H ) � V (G) and E(H ) consists of all edges inE(G) for which both endpoints belong
to V (H ):

(i) A retraction of G onto H is a graph homomorphismr : G ! H such that
r (y) = y for all y 2 V (H ).

(ii) A deformation retraction of G onto H is a retraction r : G ! H such that ir
is homotopic to idG , where i denotes the inclusion map fromH to G.
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(iii) A one-step deformation retraction from G to H is a deformation retraction
r for which m = 1 in the homotopy betweenir and idG : Equivalently, r is a
retraction such that f x; r (x)g is an edge orx = r (x) for all x 2 V (G).

If r is a deformation retraction from G to H , then, since ri = idH , the following
lemma is an immediate consequence of Theorem 3.4.

Lemma 4.2. If r is a deformation retraction from G onto a subgraphH , and i denotes
the inclusion map from H to G, then r and i de�ne a homotopy equivalence between
G and H . Consequently,H Cube

n (G) �= H Cube
n (H ) and H Path

n (G) �= H Path
n (H ), for all

n > 0.

This result immediately gives several in�nite classes of graphs for which the cubical
and path (reduced) homology is trivial in all dimensions.

Corollary 4.3. If G is a tree, or a complete graph, or a hypercube, thenH Cube
n (G) �=

H Path
n (G) �= (0) for all n > 0.

Proof. If G is a tree andx 2 V(G) is a leaf connected to a unique vertexy, then the
map r : V (G) ! V (G)nf xg de�ned by

(7) r (v) =

(
v v 6= x;
y v = x;

is a one-step deformation retraction fromG onto the subgraphGnx. If G is a complete
graph, x 2 V (G) and y 6= x is any other vertex, then (7) again de�nes a one-step
deformation retraction from G to Gnx. If G is a hypercube of dimensionn, then the
map r de�ned by collapsing any facet onto its opposite facet is a one-step deformation
retraction onto a hypercube of dimensionn � 1. In all three cases, the process can be
repeated, eventually showing that the homology (both cubical and path) is the same
as that of a graph with a single vertex. �

For path homology, results implying Lemma 4.2 and the �rst two parts of Corol-
lary 4.3 appear in [7] (Proposition 6.8 and Example 6.10). The arguments used to
prove Corollary 4.3 can be extended to a larger class of examples:

Theorem 4.4. Let G be a graph, andK 1 and K 2 are induced nonempty subgraphs
of G such that V (G) = V(K 1) [ V (K 2) and V(K 1) \ V (K 2) = ? . Suppose there
exist vertices a 2 V(K 1) and b 2 V(K 2) such that f a; bg 2 E(G), every vertex in
K 1 is connected tob, and every vertex in K 2 is connected toa. Then H Path

n (G) �=
H Cube

n (G) �= (0) for n > 0.

Proof. Let H be the subgraph ofG with vertices a and b and the single edgef a; bg.
De�ne r : V (G) ! V (H ) by

r (x) =

8
><

>:

a if x 2 K 2 � f bg;
b if x 2 K 1 � f ag;
x if x 2 H .

An easy argument shows thatr is a one-step deformation retraction ofG onto H , and
since H has trivial reduced homology in both the cubical and path case, the result
follows from Lemma 4.2. �

Corollary 4.5. For all s; t > 0, let K s;t denote a complete bipartite graph withs + t
vertices. Then H Path

n (K s;t ) �= H Cube
n (K s;t ) �= (0) for n > 0.
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Corollary 4.6. Let K 1 and K 2 be graphs with disjoint vertex sets. Consider the join
graph G = K 1 � K 2; where V (G) = V(K 1) [ V (K 2) and E(G) consists of E(K 1)
and E(K 2) together with all edgesf p; qg connecting a vertexp 2 V(K 1) with a vertex
q 2 V(K 2). Then H Path

n (K 1 � K 2) �= H Cube
n (K 1 � K 2) �= (0) for n > 0.

The last corollary includes two elementary but important examples, theconeG�f pg
of G over p, and the suspensionG � f p; qg of G over a pair of non-adjacent vertices
p and q. Corollary 4.6 shows that the reduced cubical and path homologies in both
cases are trivial.

Definition 4.7. The disjoint sum K 1 � K 2 of graphs K 1 and K 2 is the graph with
vertex setV (K 1 � K 2) = V (K 1) [ V (K 2) and edge setE(K 1 � K 2) = E(K 1) [ E (K 2).

Theorem 4.8. For any graphs K 1 and K 2, H Cube
n (K 1 � K 2) �= H Cube

n (K 1) �
H Cube

n (K 2) and H Path
n (K 1 � K 2) �= H Path

n (K 1) � H Path
n (K 2) for all n > 0.

Proof. The proof is elementary in both cases. �

Definition 4.9. A graph G is chordal if every cycle of length greater than three
contains a chord. Equivalently (see, e.g.,[13]), G is chordal if and only if there exists
an ordering of its vertices v1; : : : ; vm such that for eachj > 1, the set of verticesvk

adjacent to vj with k < j form a clique (possibly empty).

Theorem 4.10. If G is a chordal graph, thenH Path
n (G) �= H Cube

n (G) �= (0) for n > 0.

Proof. Suppose that n > 0 and v1; : : : ; vm is an ordering of V (G) satisfying the
condition of De�nition 4.9. For j 2 [m], let G( j ) denote the induced subgraph ofG
whose vertex set isf v1; : : : ; vj g. Proceeding by induction, suppose thatH Path

n (G( j ) ) �=
H Cube

n (G( j ) ) �= (0). If vj +1 has no neighbors inG( j ) , it follows from Theorem 4.8 that
H Path

n (G( j +1) ) �= H Cube
n (G( j +1) ) �= (0). Otherwise, suppose thatvj +1 has neighbors

in G( j ) and let vk with k < j + 1 be one of them. It is easy to check that the map
from G( j +1) to G( j ) de�ned by sending vj +1 to vk and �xing the remaining elements
of G( j ) is a 1-step deformation retraction. Hence G( j +1) has trivial homology, by
Theorem 3.4. �

The next theorem shows how the homology theoriesH Cube
� and H Path

� behave with
respect to three well-known types of graph products. One of these, thebox product
G � H has already been de�ned in De�nition 3.1. The next de�nition introduces two
more. For a more complete treatment of these constructions, see [9].

Definition 4.11. Suppose thatG and K are graphs. De�ne the strong product G �
K and the lexicographic product G[K ] as graphs whose vertex set is the Cartesian
product set V (G) � V (K ), and whose edges are pairsf (g1; k1); (g2; k2)g de�ned by the
following rules:

(i) (g1; k1) � � (g2; k2) i� ((g1 = g2) ^ (k1 � k2)) _ ((g1 � g2) ^ (k1 = k2)) _ ((g1 �
g2) ^ (k1 � k2))

(ii) (g1; k1) � lex (g2; k2) i� ((g1 � g2)) _ ((g1 = g2) ^ (k1 � k2)) .

Theorem 4.12. Suppose thatG and K are graphs. Suppose thatH is an induced
subgraph ofK , such that there exists a deformation retractionr : V (K ) ! V (H ) of
K onto H . Then for all n > 0,

(i) H Cube
n (G � K ) �= H Cube

n (G � H ) and H Path
n (G � K ) �= H Path

n (G � H ),
(ii) H Cube

n (G � K ) �= H Cube
n (G � H ) and H Path

n (G � K ) �= H Path
n (G � H ),

(iii) H Cube
n (G[K ]) �= H Cube

n (G[H ]) and H Path
n (G[K ]) �= H Path

n (G[H ]).
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Proof. It su�ces to prove that the map

(g; k) 7�! (g; r(k))

de�nes a deformation retraction from G � H to G � K , from G � H to G � K , and
from G[K ] to G[H ]. The arguments in each case are straightforward. �

5. A map between the chain complexes CCube(G) and CPath (G)

In this section we establish a map between the chain complexesCCube (G) and
CPath (G). Consider a singular n-cube � : Qn ! G, with n > 1. In order to de�ne
a map from CCube

n (G) to CPath
n (G), we �rst associate to any permutation � 2 Sn a

path p� from (0; : : : ; 0) 2 V (Qn ) to (1; : : : ; 1) 2 V (Qn ). The path p� is de�ned as
the path of length n which in its i th step �ips the � (i )th coordinate from 0 to 1. We
write p� (i ) for the i th vertex in the path p� , 0 6 i 6 n. If there is an 0 6 i 6 n � 1
such that � (p� (i )) = � (p� (i + 1)) , de�ne � � p� = 0 2 L Path

n (G) and otherwise de�ne
� � p� 2 L Path

n (G) to be the path whosei th vertex is � (p� (i )) .
To each singularn-cube � 2 L Cube

n (G) with n > 1, we assign the element

(8)  (� ) :=
X

� 2 Sn

sign(� ) � � p�

of L Path
n (G). It is easy to see that if � is degenerate, then (� ) = 0 , since every term

in (8) corresponds to a sequence with a repeated label. Hence (8) de�nes a map from
CCube

n (G) to L Path
n (G). By convention, if � 2 CCube

0 (G) is a singular 0-cube, i.e. a
constant map � � c 2 G, we de�ne  (� ) 2 L Path

0 (G) to be the constant path (c) of
length zero.

Lemma 5.1. Let � 2 CCube
n (G). Then

(i) @Path
n  (� ) 2 L Path

n � 1 (G); and hence (8) de�nes a map from CCube
n (G) to

CPath
n (G).

(ii) @Path
n  (� ) =  (@Cube

n (� )) :

Proof. If n = 0 or n = 1 , both parts of the lemma are trivial, and so in what follows
we assumen > 2. For part (i) we have

(9) @Path
n (� � p� ) =

nX

i =0

(� 1)i � (� (p� (0)) ; : : : ; \� (p� (i )) ; : : : ; � (p� (n))) :

Note that if � � p� contains repeated elements, so that� � p� = 0 in L Path
n (G), then (9)

remains formally valid. Let 1 6 ` 6 n � 1. If � 0 is constructed from � by interchanging
� (`) and � (` + 1) then p� (i ) = p� 0(i ) for i 6= `. In particular, the ` th summands of (9)
for p� and p� 0 coincide. In addition, we havesign(� ) = � sign(� 0). This shows that

@Path
n  (� ) =

X

� 2 Sn

sign(� ) @Path
n (� � p� )(10)

=
X

� 2 Sn

sign(� )
�

(� (p� (1)) ; : : : ; � (p� (n)))+

(� 1)n (� (p� (0)) ; : : : ; � (p� (n � 1)))
�

:

Since both (� (p� (1)) ; : : : ; � (p� (n))) and (� (p� (0)) ; : : : ; � (p� (n � 1))) are paths, it fol-
lows that @Path

n  (� ) 2 L Path
n � 1 (G), and we have proved (i).

For part (ii), suppose that � 2 Sn . De�ne

� � � 2 Sn � 1 to be the permutation where � � (j ) = � (j ) if � (j ) < � (n) and
� (j ) � 1 if � (j ) > � (n).
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