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A lifting of the Goulden–Jackson cluster
method to the Malvenuto–Reutenauer

algebra

Yan Zhuang

Abstract The Goulden–Jackson cluster method is a powerful tool for counting words by occur-
rences of prescribed subwords, and was adapted by Elizalde and Noy for counting permutations
by occurrences of prescribed consecutive patterns. In this paper, we lift the cluster method for
permutations to the Malvenuto–Reutenauer algebra. Upon applying standard homomorphisms,
our result specializes to both the cluster method for permutations as well as a q-analogue which
keeps track of the inversion number statistic. We construct additional homomorphisms using
the theory of shuffle-compatibility, leading to further specializations which keep track of various
“inverse statistics”, including the inverse descent number, inverse peak number, and inverse
left peak number. This approach is then used to derive formulas for counting permutations by
occurrences of two families of consecutive patterns—monotone patterns and transpositional
patterns—refined by these statistics.

1. Introduction
Let Sn denote the symmetric group of permutations on the set [n] := {1, 2, . . . , n}
(where S0 consists of the empty permutation), and let S :=

⊔∞
n=0 Sn. We write

permutations in one-line notation—that is, π = π1π2 · · · πn—and the πi are called
letters of π. The length of π is the number of letters in π, so that π has length n
whenever π ∈ Sn.

For a sequence of distinct integers w, the standardization of w—denoted std(w)—is
defined to be the permutation in S obtained by replacing the smallest letter of w with
1, the second smallest with 2, and so on. As an example, we have std(73184) = 42153.
Given permutations π ∈ Sn and σ ∈ Sm, we say that π contains σ (as a consecutive
pattern) if std(πiπi+1 · · · πi+m−1) = σ for some i ∈ [n − m + 1], and in this case we call
πiπi+1 · · · πi+m−1 an occurrence of σ (as a consecutive pattern) in π. For instance, the
permutation 315497628 has three occurrences of the consecutive pattern 213, namely
315, 549, and 628. On the other hand, 137258469 has no occurrences of 213.

Let occσ(π) denote the number of occurrences of σ in π. If occσ(π) = 0, then we
say that π avoids σ (as a consecutive pattern). If Γ ⊆ S, then we let Sn(Γ) denote the
subset of permutations in Sn avoiding every permutation in Γ as a consecutive pattern.
When Γ consists of a single permutation σ, we shall simply write Sn(σ) as opposed
to Sn({σ}). (We use the same convention for other notations involving a set Γ of
permutations when Γ is a singleton.) As observed earlier, we have 137258469 ∈ S9(213).
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For the rest of this paper, the notions of occurrence and avoidance of patterns in
permutations always refer to consecutive patterns unless otherwise stated.

The study of consecutive patterns in permutations, initiated by Elizalde and Noy
[9] in 2003, extends the study of classical patterns in permutations originating in
the work of Simion and Schmidt [29]. Consecutive patterns in permutations are
analogous to consecutive subwords in words, where repetition of letters is allowed.
In the latter realm, the cluster method of Goulden and Jackson [19] provides a
very general formula expressing the generating function for words by occurrences of
prescribed subwords in terms of a “cluster generating function”, which is easier to
compute. By setting the variable keeping track of occurrences to zero, this yields
a powerful approach for counting words avoiding a prescribed set of subwords. In
2012, Elizalde and Noy [10] adapted the Goulden–Jackson cluster method to the
setting of permutations, which they used to obtain differential equations satisfied by
ωσ(s, x) = (

∑∞
n=0

∑
π∈Sn

soccσ(π)xn/n!)−1 for various families of consecutive patterns
σ, including “monotone patterns”, “chain patterns”, and “non-overlapping patterns”.
Solving these differential equations for ωσ(s, x) then allows one to count permutations
by the number of occurrences of σ.

Over the past decade, Elizalde and Noy’s adaptation of the cluster method for
permutations has become a standard tool in the study of consecutive patterns; see
[2, 3, 6, 7, 8, 22] for a selection of references. One recent development is a q-analogue
of the cluster method for permutations which also keeps track of the inversion number
statistic. This q-cluster method, due to Elizalde, was first mentioned in his survey [8]
on consecutive patterns, and was applied to monotone patterns and non-overlapping
patterns by Crane, DeSalvo, and Elizalde [3] in their study of the Mallows distribution.

To explain the philosophy which guides our work, let us briefly discuss a paper
by Josuat-Vergès, Novelli, and Thibon [21], in which the authors study alternating
permutations (and their analogues in other Coxeter groups) from the perspective of
combinatorial Hopf algebras. Their starting point is André’s [1] famous exponential
generating function sec x + tan x for the number of alternating permutations. The
authors note that André’s formula has a natural lifting in the Malvenuto–Reutenauer
algebra FQSym, a Hopf algebra whose basis elements correspond to permutations
and whose multiplication encodes “shifted concatenation” of permutations. They
then recover André’s formula by applying a certain homomorphism ϕ to its lifting in
FQSym, and in their words:

“Such a proof is not only illuminating, it says much more than the
original statement. For example, one can now replace ϕ by more
complicated morphisms, and obtain generating functions for various
statistics on alternating permutations.”

A similar approach to permutation enumeration was taken in a series of papers by
Gessel and the present author [14, 16, 35, 36], but instead utilizing homomorphisms
on noncommutative symmetric functions.

The main result of this present paper is an analogous lifting of the Goulden–Jackson
cluster method for permutations to the Malvenuto–Reutenauer algebra. Since the basis
elements of the Malvenuto–Reutenauer algebra correspond to permutations, our cluster
method in FQSym is in a sense the most general cluster method possible for permuta-
tions. By applying the same homomorphism ϕ used by Josuat-Vergès–Novelli–Thibon
to our generalized cluster method, we can recover Elizalde and Noy’s cluster method for
permutations, and we can use another homomorphism to recover Elizalde’s q-analogue.
We also construct other homomorphisms which lead to new specializations of our
cluster method that can be used to count permutations by occurrences of prescribed
patterns while keeping track of other permutation statistics.
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1.1. Permutation statistics. The permutation statistics that we shall consider
are the “inverses” of several classical permutation statistics related to descents and
peaks: the descent number des, the major index maj, the comajor index comaj, the
peak number pk, and the left peak number lpk. We define these statistics below.

• We call i ∈ [n − 1] a descent of π ∈ Sn if πi > πi+1. Then des(π) is defined to
be the number of descents of π, and maj(π) the sum of all descents of π. In
other words, if Des(π) := { i ∈ [n − 1] : i is a descent of π }—that is, Des(π)
is the descent set of π—then

des(π) := |Des(π)| and maj(π) :=
∑

i∈Des(π)

i.

The comajor index comaj is a variant of the major index maj, and is defined
by

comaj(π) :=
∑

i∈Des(π)

(n − i) = ndes(π) − maj(π). (1)

• We call i ∈ {2, 3, . . . , n − 1} a peak of π ∈ Sn if πi−1 < πi > πi+1. Then pk(π)
is defined to be the number of peaks of π.

• We call i ∈ [n − 1] a left peak of π ∈ Sn if i is a peak of π, or if i = 1 and i is
a descent of π. Then lpk(π) is defined to be the number of left peaks of π.(1)

For example, if π = 72163584, then we have Des(π) = {1, 2, 4, 7}, des(π) = 4, maj(π) =
14, comaj(π) = 18, pk(π) = 2, and lpk(π) = 3. We note that, in the language of
consecutive patterns, descents correspond to occurrences of 21 and peaks correspond
to occurrences of 132 and 231.

Given a permutation statistic st, we define its inverse statistic ist by ist(π) :=
st(π−1). Continuing with the example from above, the inverse of π is π−1 = 32586417,
so we have iDes(π) = {1, 4, 5, 6}, ides(π) = 4, imaj(π) = 16, icomaj(π) = 16, ipk(π) =
1, and ilpk(π) = 2. While st and ist are obviously equidistributed over Sn, it is worth
studying the joint distribution of ist and other permutation statistics over Sn, or
the distribution of ist over restricted sets of permutations (such as pattern avoidance
classes). For instance, Garsia and Gessel [11] studied the joint distribution of des, ides,
maj, and imaj over Sn.

Let Γ be a set of consecutive patterns and occΓ(π) the number of occurrences in π
of patterns in Γ. In this paper, we will consider the polynomials

A
(ides,imaj)
Γ,n (s, t, q) :=

∑
π∈Sn

soccΓ(π)tides(π)+1qimaj(π),

A
(ides,icomaj)
Γ,n (s, t, q) :=

∑
π∈Sn

soccΓ(π)tides(π)+1qicomaj(π),

Aides
Γ,n (s, t) :=

∑
π∈Sn

soccΓ(π)tides(π)+1,

P ipk
Γ,n(s, t) :=

∑
π∈Sn

soccΓ(π)tipk(π)+1, and

P ilpk
Γ,n (s, t) :=

∑
π∈Sn

soccΓ(π)tilpk(π)

where n ⩾ 1, and with each of these polynomials defined to be 1 when n = 0. These
polynomials give the joint distribution of the occurrence statistic occΓ along with each
of the statistics (ides, imaj), (ides, icomaj), ides, ipk, and ilpk. Setting s = 0 in any

(1)Equivalently, lpk(π) is the number of peaks of the permutation 0π obtained by prepending 0 to
π.
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of these polynomials then gives the distribution of the corresponding statistic over
the pattern avoidance class Sn(Γ). For convenience, let us define A

(ides,imaj)
Γ,n (t, q) :=

A
(ides,imaj)
Γ,n (0, t, q) and the polynomials A

(ides,icomaj)
Γ,n (t, q), Aides

Γ,n (t), P ipk
Γ,n(t), and P ilpk

Γ,n (t)
analogously.

The reason why we consider the statistics (ides, imaj), (ides, icomaj), ides, ipk, and
ilpk is because they are inverses of “shuffle-compatible” statistics. Roughly speaking,
a permutation statistic st is shuffle-compatible if the distribution of st over the set of
shuffles of two permutations π and σ depends only on st(π), st(σ), and the lengths
of π and σ. (See Section 2.3 for precise definitions.) If st is shuffle-compatible and is
a coarsening of the descent set, then st induces a quotient of the algebra QSym of
quasisymmetric functions, denoted Ast. By composing the quotient map from QSym to
Ast with the canonical surjection from FQSym to QSym, we obtain a homomorphism
on FQSym which can be used to count permutations by the corresponding inverse
statistic. Applying these homomorphisms to our generalized cluster method in FQSym
yields specializations that refine by the statistics (ides, icomaj), ides, ipk, and ilpk.(2)

1.2. Outline. The structure of this paper is as follows. Section 2 is devoted to
background material. We first give a brief expository account of the Goulden–Jackson
cluster method, both for words and for permutations. Then, we define quasisymmetric
functions and the Malvenuto–Reutenauer algebra, and review some basic symmetries
on permutations (reversal, complementation, and reverse-complementation) which will
play a role in our work.

The focus of Section 3 is on our main result, the cluster method in Mal-
venuto–Reutenauer. We prove our generalized cluster method and show how it
specializes to Elizalde and Noy’s cluster method for permutations as well as its
q-analogue. In this section, we also use the theory of shuffle-compatibility to construct
homomorphisms which we then use to obtain further specializations of our generalized
cluster method for the statistics (ides, icomaj), ides, ipk, and ilpk.

In Sections 4 and 5, we apply our general results from Section 3 to produce
formulas for the polynomials Aides

σ,n (s, t), P ipk
σ,n(s, t), and P ilpk

σ,n (s, t)—and their s = 0
evaluations—where σ is a specific type of consecutive pattern. Section 4 focuses on
monotone patterns, i.e. the patterns 12 · · · m and m · · · 21. Section 5 focuses on the
patterns 12 · · · (a − 1)(a + 1)a(a + 2)(a + 3) · · · m where m ⩾ 5 and 2 ⩽ a ⩽ m − 2;
these patterns were considered in [10] as a subfamily of “chain patterns”, and here
we call them transpositional patterns because 12 · · · (a − 1)(a + 1)a(a + 2)(a + 3) · · · m
is precisely the elementary transposition (a, a + 1). Most of our formulas involve
the Hadamard product operation on formal power series, although some “Hadamard
product-free” formulas are obtained for monotone patterns. In the case of monotone
patterns, we also give a formula for counting 12 · · · m-avoiding permutations by inverse
descent number and inverse major index.

We conclude this paper in Section 6 with a brief discussion of ongoing work and
future directions of research. See [38] for an extended abstract summarizing the results
of this paper, as well as [34] for proofs of two observations (Claims 4.6 and 4.9) which
are left unproven here.

2. Preliminaries
2.1. The cluster method for words. We first introduce the Goulden–Jackson
cluster method for words, which we will use to prove our lifting of the cluster method

(2)We do not explicitly give a specialization for (ides, imaj), but one can be obtained using the
one for (ides, icomaj) and the formula imaj(π) = nides(π) − icomaj(π), which is equivalent to (1).
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for permutations to the Malvenuto–Reutenauer algebra. The exposition in this section
follows that in [37].

For a finite or countably infinite set A, let A∗ be the set of all finite sequences of
elements of A, including the empty sequence. We call A an alphabet, the elements of A
letters, and the elements of A∗ words. The length |w| of a word w ∈ A∗ is the number
of letters in w. For v, w ∈ A∗, we say that v is a subword of w if w = uvu′ for some
u, u′ ∈ A∗, and in this case we also say w contains v and that v is an occurrence of w.
The total algebra of A∗ over Q, denoted Q⟨⟨A∗⟩⟩, is the Q-algebra of formal sums of
words in A∗ where multiplication is the concatenation product.

Given a word w = w1w2 · · · wn ∈ A∗ and a set B ⊆ A∗, we say that (i, v) is a
marked occurrence of v ∈ B in w if

v = wiwi+1 · · · wi+|v|−1,

that is, v is a subword of w starting at position i. Moreover, we say that (w, T ) is
a marked word on w (with respect to B) if w ∈ A∗ and T is a set of some marked
occurrences in w of words in B.

To illustrate, suppose that A = {a, b, c} and B = {cab, bc}. Then

(cabcabbca, {(1, cab), (3, bc), (7, bc)}) (2)

is a marked word on w = cabcabbca with respect to B. Informally, we will display a
marked word (w, T ) as the word w with the marked occurrences in T circled, so that
(2) is displayed as

c a b c a b b c a .

We define the concatenation of two marked words in the obvious way. For example,
(2) can be obtained by concatenating (cabca, {(1, cab), (3, bc)}) and (bbca, {(2, bc)}),
i.e.

c a b c a and b b c a .

A marked word is called a cluster if it is not a concatenation of two nonempty
marked words. (In particular, we will call a cluster with respect to B a B-cluster.) So,
(2) is not a cluster, but

b c a b c a b

is a cluster.
For a word w ∈ A∗, let occB(w) be the number of occurrences in w of words in B

and let CB,w be the set of all B-clusters on w. If c is a B-cluster, then we let mkB(c)
be the number of marked occurrences in c. Define

FB(s) :=
∑

w∈A∗

wsoccB(w) and RB(s) :=
∑

w∈A∗

w
∑

c∈CB,w

smkB(c),

so that FB(s) is the generating function for words in A∗ by the number of occurrences
of words in B, and RB(s) is the generating function for B-clusters by the number of
marked occurrences. Both FB(s) and RB(s) are elements of the formal power series
algebra Q⟨⟨A∗⟩⟩[[s]], so the variable s commutes with letters in A (but the letters in
A do not commute with each other).

Theorem 2.1 (Cluster method for words). Let A be an alphabet and let B ⊆ A∗ be a
set of words, each of length at least 2. Then

FB(s) =
(

1 −
∑
a∈A

a − RB(s − 1)
)−1

.
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This is a noncommutative version of the original cluster method of Goulden and
Jackson, but the proofs are essentially the same; see, e.g. [37, Theorem 1] for details.

2.2. The cluster method for permutations. Next, we describe Elizalde and
Noy’s [10] adaptation of the cluster method for permutations, as well as its q-analogue
which refines by the inversion number. The terms marked occurrence, marked per-
mutation, concatenation, and cluster are defined for permutations in the analogous
way as for words, but with the notion of word containment replaced by permutation
containment (in the sense of consecutive patterns). It is worth pointing out that, unlike
concatenation of marked words, concatenation of marked permutations is not unique.
For instance, both

3 2 1 4 6 7 8 5 9 and 7 5 1 8 3 4 6 2 9

are concatenations of
3 2 1 4 and 2 3 4 1 5 .

However, this does not make a difference in defining clusters for permutations or in
adapting the cluster method to the setting of permutations.

Let Γ ⊆ S. Recall that occΓ(π) is the number of occurrences in π of patterns in
Γ, and let CΓ,π be the set of all Γ-clusters on π. If c is a Γ-cluster, let mkΓ(c) be the
number of marked occurrences in c. Define

FΓ(s, x) :=
∞∑

n=0

∑
π∈Sn

soccΓ(π) xn

n! and

RΓ(s, x) :=
∞∑

n=0

∑
π∈Sn

∑
c∈CΓ,π

smkΓ(c) xn

n! =
∞∑

n=0

∞∑
k=0

rΓ,n,ksk xn

n!

where rΓ,n,k is the number of Γ-clusters of length n with k marked occurrences.

Theorem 2.2 (Cluster method for permutations). Let Γ ⊆ S be a set of permutations,
each of length at least 2. Then

FΓ(s, x) = (1 − x − RΓ(s − 1, x))−1.

Elizalde and Noy give Theorem 2.2 in the special case where Γ consists of a single
pattern [10, Theorem 1.1], but in Section 3 we will recover this more general result
from our cluster method in the Malvenuto–Reutenauer algebra.

The nth q-factorial [n]q! is defined by

[n]q! := (1 + q)(1 + q + q2) · · · (1 + q + · · · + qn−1)

for n ⩾ 1 and [0]q! := 1. Later, we will also need the q-binomial coefficient defined by(
n

k

)
q

:= [n]q!
[k]q! [n − k]q!

for all n ⩾ 0 and 0 ⩽ k ⩽ n.
We say that (i, j) ∈ [n]2 is an inversion of π ∈ Sn if i < j and πi > πj . Let inv(π)

denote the number of inversions of π. Define

FΓ(s, q, x) :=
∞∑

n=0

∑
π∈Sn

soccΓ(π)qinv(π) xn

[n]q! and

RΓ(s, q, x) :=
∞∑

n=0

∑
π∈Sn

qinv(π)
∑

c∈CΓ,π

smkΓ(c) xn

[n]q! =
∞∑

n=0

∞∑
k=0

∞∑
j=0

rΓ,n,k,jqjsk xn

[n]q!
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where rΓ,n,k,j is the number of Γ-clusters of length n with k marked occurrences and
whose underlying permutation has j inversions. The next result is [3, Theorem 2.3],
but for a set Γ of patterns rather than a single pattern σ.
Theorem 2.3 (q-Cluster method for permutations). Let Γ ⊆ S be a set of permutations,
each of length at least 2. Then

FΓ(s, q, x) = (1 − x − RΓ(s − 1, q, x))−1.

See [27, Corollary 1] for a related result. Like with Theorem 2.2, we will later recover
Theorem 2.3 as a specialization of our generalized cluster method.

Let us give one more definition before continuing. Given σ ∈ Sm, let
Oσ := { i ∈ [m − 1] : std(σi+1σi+2 · · · σm) = std(σ1σ2 · · · σm−i) }

be the overlap set of σ. The notion of overlap set is useful for characterizing Γ-clusters
where Γ consists of a single pattern σ, and we will do this in Sections 4.1 and 5.1.

2.3. Quasisymmetric functions and shuffle-compatibility. A permutation in
Sn can be characterized as a word in [n]∗ of length n consisting of distinct letters. Let
P be the set of positive integers, and let Pn denote the set of words in P∗ of length
n consisting of distinct letters—not necessarily from 1 to n. Also, let P :=

⊔∞
n=0 Pn.

In this section only, we will use the term “permutation” to refer more generally to
elements of P. Observe that any statistic st defined on permutations in S can be
extended to P by letting st(π) := st(std(π)) for π ∈ P.

Every permutation in P can be uniquely decomposed into a sequence of maximal
increasing consecutive subsequences, which we call increasing runs. Equivalently, an
increasing run of π is a maximal consecutive subsequence containing no descents. The
descent composition of π, denoted Comp(π), is the composition whose parts are the
lengths of the increasing runs of π in the order that they appear. For instance, the
increasing runs of π = 85712643 are 8, 57, 126, 4, and 3, so the descent composition
of π is Comp(π) = (1, 2, 3, 1, 1). We use the notations L ⊨ n and |L| = n to indicate
that L is a composition of n, so that L ⊨ n and |L| = n whenever L is the descent
composition of a permutation in Pn. For a composition L = (L1, L2, . . . , Lk), let
Des(L) := {L1, L1 + L2, . . . , L1 + · · · + Lk−1}. It is easy to see that if L is the descent
composition of π, then Des(L) is the descent set of π.

If π ∈ Pm and σ ∈ Pn are disjoint—that is, if they have no letters in common—then
we call τ ∈ Pm+n a shuffle of π and σ if both π and σ are subsequences of τ . The set
of shuffles of π and σ is denoted S(π, σ). For example, we have

S(31, 25) = {3125, 3215, 3251, 2315, 2351, 2531}.

Let x1, x2, . . . be commuting variables. A formal power series f ∈ Q[[x1, x2, . . . ]]
of bounded degree is called a quasisymmetric function if for any positive integers
a1, a2, . . . , ak, if i1 < i2 < · · · < ik and j1 < j2 < · · · < jk then

[xa1
i1

xa2
i2

· · · xak
ik

] f = [xa1
j1

xa2
j2

· · · xak
jk

] f.

Let QSymn denote the set of quasisymmetric functions homogeneous of degree n.
As a vector space, QSymn has as a basis the fundamental quasisymmetric functions
{FL}L⊨n defined by

FL :=
∑

i1⩽i2⩽···⩽in

ij<ij+1 if j∈Des(L)

xi1xi2 · · · xin
.

If L ⊨ m and K ⊨ n, then

FLFK =
∑

τ∈S(π,σ)

FComp(τ) (3)

Algebraic Combinatorics, Vol. 5 #6 (2022) 1397
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where π and σ are any disjoint permutations satisfying Comp(π) = L and Comp(σ) =
K. Hence,

QSym :=
∞⊕

n=0
QSymn

is a graded subalgebra of Q[[x1, x2, . . . ]]; this is the algebra of quasisymmetric functions
(over Q).

Motivated by Stanley’s theory of P -partitions, quasisymmetric functions were first
defined and studied by Gessel [13] and are now ubiquitous in algebraic combinatorics.
References on quasisymmetric functions include [32, Section 7.19], [20, Section 5], and
[23].

Let us now return to the product formula (3) for fundamental quasisymmetric
functions. In order for (3) to make sense, the multiset { Comp(τ) : τ ∈ S(π, σ) } must
only depend on the descent compositions of π and σ, or equivalently, { Des(τ) : τ ∈
S(π, σ) } only depends on Des(π), Des(σ), and the lengths of π and σ. More generally,
a permutation statistic st is called shuffle-compatible if for any disjoint permutations
π and σ, the multiset { st(τ) : τ ∈ S(π, σ) } depends only on st(π), st(σ), and the
lengths of π and σ. Therefore, the descent set Des is a shuffle-compatible permutation
statistic.

In [17], Gessel and the present author develop a theory of shuffle-compatibility for
descent statistics: statistics st such that Comp(π) = Comp(σ) implies st(π) = st(σ).
The statistics des, maj, comaj, pk, and lpk are all examples of shuffle-compatible
descent statistics. If st is a descent statistic and if L is a composition, then we let
st(L) denote the value of st on any permutation with descent composition L. Two
compositions L and K are called st-equivalent if st(L) = st(K) and |L| = |K|. The
following is Theorem 4.3 of [17], and provides a necessary and sufficient condition for
a descent statistic to be shuffle-compatible.

Theorem 2.4. A descent statistic st is shuffle-compatible if and only if there exists a
Q-algebra homomorphism ϕst : QSym → Ast, where Ast is a Q-algebra with basis {uα}
indexed by st-equivalence classes α of compositions, such that ϕst(FL) = uα whenever
L is in the st-equivalence class α.

Gessel and the present author call Ast the shuffle algebra of st, because the basis
elements uα can be viewed as encoding the distribution of st over shuffles of permuta-
tions. Theorem 2.4 implies that Ast is isomorphic to a quotient of QSym whenever
st is a shuffle-compatible descent statistic. We will not be working with the algebras
Ast themselves, but rather with the homomorphisms ϕst. Note that in the special case
of the descent set, ϕDes is an isomorphism and the basis {uα} of ADes corresponds
directly to the fundamental basis of QSym.

2.4. The Malvenuto–Reutenauer algebra. Let Q[S] denote the Q-vector space
with basis elements the permutations in S. The Malvenuto–Reutenauer algebra, first
defined in [24], is the Q-algebra on Q[S] with the product

π · σ =
∑

τ∈C(π,σ)

τ

where C(π, σ) is the set of shifted concatenations of π and σ. That is, if π ∈ Sm and
σ ∈ Sn then

C(π, σ) := { τ ∈ Sm+n : std(τ1 · · · τm) = π and std(τm+1 · · · τm+n) = σ }.

Note that the Malvenuto–Reutenauer algebra is graded by the length of the permuta-
tion, and that its identity element is the empty permutation.
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Rather than using the original construction of the Malvenuto–Reutenauer algebra
as given above, we will follow the approach of Duchamp, Hivert, and Thibon [5],
who gave another realization of the Malvenuto–Reutenauer algebra as a subalgebra
of Q⟨⟨A∗⟩⟩ where A consists of the noncommuting variables X1, X2, . . . . In order to
describe their construction, we must revisit the standardization map std. We extend
the map std to all words on the alphabet P of positive integers using the following rule:
if a letter repeats, then they are viewed as increasing from left to right. For example,
std(145411) = 146523. We will later use the following fact, which is Proposition 5.3.2
of [20].

Proposition 2.5. Let w = w1w2 · · · wn be a word in P∗ of length n, and let τ =
τ1τ2 · · · τn = std(w). Then τ is the unique permutation in Sn such that, whenever
1 ⩽ i < j ⩽ n, we have τi < τj if and only if wi ⩽ wj.

For the remainder of this section, let A = {X1, X2, . . . } where the Xi are non-
commuting variables. Given a monomial X = Xi1Xi2 · · · Xin

, define std(X) :=
std(i1i2 · · · in). Then we associate to each permutation π ∈ S an element Gπ ∈ Q⟨⟨A∗⟩⟩
defined by

Gπ :=
∑

X∈A∗

std(X)=π

X.

It can be shown that the Gπ are linearly independent and multiply by the rule

GπGσ =
∑

τ∈C(π,σ)

Gτ ,

so {Gπ}π∈S spans a Q-subalgebra of Q⟨⟨A∗⟩⟩, called the algebra of free quasisym-
metric functions and denoted FQSym. Since π 7→ Gπ is clearly a Q-algebra iso-
morphism between Q[S] and FQSym, we will henceforth refer to FQSym as the
Malvenuto–Reutenauer algebra. We use FQSym instead of Q[S] because, by identi-
fying permutations with elements of Q⟨⟨A∗⟩⟩, we can prove our generalized cluster
method for permutations using the cluster method for words.(3)

The Malvenuto–Reutenauer algebra FQSym contains an important subalgebra
related to descent sets. Given a composition L, let rL be the sum of all Gπ for which
π has descent composition L; that is, let

rL :=
∑

Comp(π)=L

Gπ.

The {rL}L⊨n, n⩾0 is a linearly independent set and spans a Q-subalgebra of FQSym
called the algebra of noncommutative symmetric functions, denoted Sym. Noncommu-
tative symmetric functions were introduced in the seminal paper [12] of Gelfand et al.,
but implicitly appeared earlier in Gessel’s Ph.D. thesis [18].

Let ι : Sym → FQSym denote the canonical inclusion map from Sym to FQSym.
There is also a natural surjection ρ : FQSym → QSym given by

ρ(Gπ) := FComp(π−1). (4)
The map ρ explains the name “free quasisymmetric functions”, as the elements of
FQSym lift quasisymmetric functions to a noncommutative setting. We will need ρ
to define the homomorphisms on FQSym that we will use to study inverse statistics.

It is worth mentioning that QSym, FQSym, and Sym are prototypical examples of
combinatorial Hopf algebras, but we only need the algebra structure in our work. See

(3)It is possible to prove our generalized cluster method in Q[S], and we do this in the extended
abstract [38]. While that approach is more direct, our approach here gives a unified treatment of the
cluster method for words and the cluster method for permutations.
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[20] for a survey on Hopf algebras in combinatorics, including more on the relationship
between QSym, FQSym, and Sym.

2.5. Symmetries on permutations. Given π ∈ Sn, we define its reverse πr and its
complement πc by

πr := πnπn−1 · · · π1 and πc := (n + 1 − π1)(n + 1 − π2) · · · (n + 1 − πn),

respectively, and its reverse-complement πrc by πrc := (πr)c = (πc)r.
It is clear that—along with permutation inversion (π 7→ π−1)—reversion, comple-

mentation, and reverse-complementation are all involutions on Sn, and they can be
identified with rigid motions in the dihedral group of the square acting on permutation
matrices. As such, it is easy to see that (π−1)r = (πc)−1 and (π−1)c = (πr)−1—and
hence (π−1)rc = (πrc)−1—for all π ∈ S.

Proposition 2.6. For any π ∈ Sn with n ⩾ 1, we have

(a) imaj(πr) =
(

n
2
)

− imaj(π),
(b) imaj(πrc) = icomaj(π),
(c) ides(πr) = ides(πc) = n − 1 − ides(π),
(d) ides(πrc) = ides(π), and
(e) ipk(πc) = ipk(π).

Proof. Since maj(πc) =
(

n
2
)

− maj(π) for all π ∈ Sn [4, Lemma 2.5], we have

imaj(πr) = maj((πr)−1) = maj((π−1)c) =
(

n

2

)
− maj(π−1) =

(
n

2

)
− imaj(π),

which proves (a). The proofs of (b)–(e) are similar, using the identities maj(πrc) =
comaj(π), des(πr) = des(πc) = n − 1 − des(π), des(πrc) = des(π), and pk(πr) =
pk(π). □

Let us define Γr := { πr : π ∈ Γ } for a set Γ ⊆ S of permutations, and we define Γc

and Γrc in the analogous way. The next proposition tells us that if two sets of patterns
Γ and ∆ are related by one of these symmetries, then we may be able to compute
A

(ides,imaj)
Γ,n (s, t, q), Aides

Γ,n (s, t), or P ipk
Γ,n(s, t) using the corresponding polynomials for

∆. For example, once we obtain a generating function formula for the polynomials
A

(ides,imaj)
12···m,n (t, q) in Section 4.2, we can use this formula along with Proposition 2.7 (a)

to compute the polynomials A
(ides,imaj)
m···21,n (t, q).

Proposition 2.7. For any π ∈ Sn with n ⩾ 1, we have

(a) A
(ides,imaj)
Γr,n (s, t, q) = tn+1q(n

2)A
(ides,imaj)
Γ,n (s, t−1, q−1),

(b) A
(ides,imaj)
Γrc,n (s, t, q) = A

(ides,icomaj)
Γ,n (s, t, q),

(c) Aides
Γrc,n(s, t) = Aides

Γ,n (s, t),
(d) Aides

Γr,n(s, t) = Aides
Γc,n(s, t) = tn+1Aides

Γ,n (s, t−1), and
(e) P ipk

Γc,n(s, t) = P ipk
Γ,n(s, t).

Proof. Each of these identities follows from algebraic manipulations, Proposition 2.6,
and the fact that an occurrence of a pattern σ in π directly corresponds to an occurrence
of σr (respectively, σc and σrc) in πr (respectively, πc and πrc). We demonstrate the
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proof for (a) and leave the rest to the reader:

tn+1q(n
2)A

(ides,imaj)
Γ,n (s, t−1, q−1) = tn+1q(n

2) ∑
π∈Sn

soccΓ(π)(t−1)ides(π)+1(q−1)imaj(π)

=
∑

π∈Sn

soccΓ(π)tn+1−(n−1−ides(πr))−1q(n
2)−imaj(π)

=
∑

π∈Sn

soccΓr (πr)tides(πr)+1qimaj(πr)

=
∑

π∈Sn

soccΓr (π)tides(π)+1qimaj(π)

= A
(ides,imaj)
Γr,n (s, t, q). □

3. The cluster method in Malvenuto–Reutenauer
3.1. Main result. Given a set of permutations Γ ⊆ S, define

F̄Γ(s) :=
∑
π∈S

GπsoccΓ(π) and R̄Γ(s) :=
∑
π∈S

Gπ

∑
c∈CΓ,π

smkΓ(c),

which are liftings of the exponential generating functions FΓ(s, x) and RΓ(s, x) from
Section 2.2.

Theorem 3.1 (Cluster method in FQSym). Let Γ ⊆ S be a set of permutations, each
of length at least 2. Then

F̄Γ(s) =
(

1 − G1 − R̄Γ(s − 1)
)−1

. (5)

We will prove Theorem 3.1 using Theorem 2.1, the noncommutative version of the
original Goulden–Jackson cluster method for words. Our proof will rely on several
preliminary lemmas, which we establish below.

Lemma 3.2. Let u = u1u2 · · · un and v = v1v2 · · · vn be two words in P∗. If std(u) =
std(v), then for any 0 ⩽ m ⩽ n−1 and 1 ⩽ k ⩽ n−m, we have std(ukuk+1 · · · uk+m) =
std(vkvk+1 · · · vk+m).

Proof. Recall from Proposition 2.5 that if τ = std(u), then whenever 1 ⩽ i < j ⩽ n,
we have ui ⩽ uj if and only if τi < τj . Since we are given that std(u) = std(v), we
have ui ⩽ uj if and only if vi ⩽ vj for all 1 ⩽ i < j ⩽ n. In particular, we have
ui ⩽ uj if and only if vi ⩽ vj for all k ⩽ i < j ⩽ k + m; thus std(ukuk+1 · · · uk+m) =
std(vkvk+1 · · · vk+m). □

For the remainder of this section, let A be the set of noncommuting variables
{X1, X2, . . . }, let M(π) be the set of monomials in these variables whose standardiza-
tion is π, and let B =

⊔
σ∈Γ M(σ).

Lemma 3.3. If X ∈ M(π), then occB(X) = occΓ(π).

Proof. Write π = π1π2 · · · πn and X = Xi1Xi2 · · · Xin
. Since X ∈ M(π), we have that

std(i1i2 · · · in) = π. Suppose that Xik
Xik+1 · · · Xik+m

is an occurrence of a word from
B, so Xik

Xik+1 · · · Xik+m
∈ M(σ) for some σ ∈ Γ and thus

std(ikik+1 · · · ik+m) = std(Xik
Xik+1 · · · Xik+m

) = σ.

Since std(i1i2 · · · in) = π and std(ikik+1 · · · ik+m) = σ, it follows from Lemma 3.2 that
std(πkπk+1 · · · πk+m) = σ. In other words, πkπk+1 · · · πk+m is an occurrence of σ in
π. We can go backward to see that there is a bijection between occurrences of words
from B in X and patterns from Γ in π, which shows occB(X) = occΓ(π). □
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Lemma 3.4. If X ∈ M(π), then
∑

c∈CB,X
smkB(c) =

∑
c∈CΓ,π

smkΓ(c).

Proof. Similar reasoning as above can be used to show that there is a bijection between
B-clusters on X and Γ-clusters on π which preserves the number (and positions) of
marked occurrences; we omit the details. □

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. As a consequence of Lemma 3.3, we have that∑
π∈S

GπsoccΓ(π) =
∑
π∈S

GπsoccB(π)

where occB(π) := occB(X) for any X ∈ M(π). Hence

F̄Γ(s) =
∑
π∈S

GπsoccΓ(π)

=
∑
π∈S

GπsoccB(π)

=
∑

X∈A∗

XsoccB(X)

= FB(s). (6)

Similarly, Lemma 3.4 implies∑
π∈S

Gπ

∑
c∈CΓ,π

smkΓ(c) =
∑
π∈S

Gπ

∑
c∈CB,π

smkB(c)

where CB,π := CB,X for any X ∈ M(π). Thus

R̄Γ(s) =
∑
π∈S

Gπ

∑
c∈CΓ,π

smkΓ(c)

=
∑
π∈S

Gπ

∑
c∈CB,π

smkB(c)

=
∑

X∈A∗

X
∑

c∈CB,X

smkB(c)

= RB(s). (7)

Finally, we use Theorem 2.1 along with Equations (6) and (7) to conclude

F̄Γ(s) = FB(s)

=
(

1 − G1 − RB(s − 1)
)−1

=
(

1 − G1 − R̄Γ(s − 1)
)−1

. □

3.2. Two basic homomorphisms. We now demonstrate how Elizalde and Noy’s
cluster method for permutations, as well as Elizalde’s q-analogue, can be recovered
from the cluster method in FQSym.

Given π ∈ Sn, define the maps Ψ: FQSym → Q[[x]] and Ψq : FQSym → Q[[q, x]]
by

Ψ(Gπ) := xn

n! and Ψq(Gπ) := qinv(π) xn

[n]q!
and extending linearly.

Proposition 3.5. The maps Ψ and Ψq are Q-algebra homomorphisms.
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Proof. Let π ∈ Sm and σ ∈ Sn. Using the multiplication rule for the Gπ, the definition
of the map Ψq, and the identity∑

τ∈C(π,σ)

qinv(τ) = qinv(π)+inv(σ)
(

m + n

n

)
q

(see [3, Lemma 2.1]), we obtain

Ψq(GπGσ) =
∑

τ∈C(π,σ)

Ψq(Gτ )

=
∑

τ∈C(π,σ)

qinv(τ) xm+n

[m + n]q!

= qinv(π)+inv(σ)
(

m + n

n

)
q

xm+n

[m + n]q!

= qinv(π) xm

[m]q!q
inv(σ) xn

[n]q!
= Ψq(Gπ)Ψq(Gσ);

hence, Ψq is a homomorphism. Setting q = 1 above yields

Ψ(GπGσ) =
∑

τ∈C(π,σ)

xm+n

(m + n)! = xm

m!
xn

n! = Ψ(Gπ)Ψ(Gσ),

which shows that Ψ is a homomorphism as well. □

The homomorphism Ψ is precisely the homomorphism ϕ of Josuat-Vergès, Novelli,
and Thibon mentioned in the introduction of this paper. It is easy to see that upon
applying Ψ to our cluster method in FQSym (Theorem 3.1), we recover Elizalde and
Noy’s cluster method for permutations (Theorem 2.2). Applying Ψq instead yields a
proof of Elizalde’s q-cluster method (Theorem 2.3).

We also note that Ψ and Ψq are closely related to two homomorphisms, denoted
Φ and Φq, which appear in [36]. (The map Φ also appears in [14, 16, 35].) These
two homomorphisms are defined on the algebra Sym of noncommutative symmetric
functions by the formulas

Φ(hn) := xn

n! and Φq(hn) := xn

[n]q! ,

where hn :=
∑

i1⩽···⩽in
Xi1Xi2 · · · Xin

= G12···n. In fact, Φ and Φq are related to our
homomorphisms Ψ and Ψq by

Φ = Ψ ◦ ι and Φq = Ψq ◦ ι

where ι is the canonical inclusion from Sym to FQSym.

3.3. A note on the Hadamard product. Our next goal is to define a family of
homomorphisms on FQSym that can be used to produce other specializations of
our generalized cluster method. Our starting point is Theorem 2.4, which states that
every shuffle-compatible descent statistic st gives rise to a homomorphism ϕst from the
algebra QSym of quasisymmetric functions to the shuffle algebra Ast of st. Many of
these algebras Ast can be characterized as subalgebras of various formal power series
algebras in which the multiplication is the “Hadamard product” in a variable t, which
we define below.

The operation of Hadamard product ∗ on formal power series in t is defined by
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( ∞∑
n=0

antn
)

∗
( ∞∑

n=0
bntn

)
:=

∞∑
n=0

anbntn.

In our notation for formal power series algebras, we write t∗ to indicate that multipli-
cation is the Hadamard product in t. For example, Q[[t∗, x]] is the Q-algebra of formal
power series in the variables t and x, where multiplication is ordinary multiplication
in x but is the Hadamard product in t. Thus we have( ∞∑

n=0

∞∑
k=0

an,kxktn
)

∗
( ∞∑

n=0

∞∑
k=0

bn,kxktn
)

=
∞∑

n=0

( ∞∑
k=0

an,kxk
)( ∞∑

k=0
bn,kxk

)
tn

=
∞∑

n=0

∞∑
k=0

k∑
j=0

an,jbn,k−jxktn

in Q[[t∗, x]]. Note that the identity of Q[[t∗, x]] is 1/(1 − t).
We write f∗⟨n⟩ to mean the n-fold Hadamard product of f , and f∗⟨−1⟩ the inverse

of f with respect to Hadamard product. For example, we have

(3t + t2)∗⟨n⟩ = (3t + t2) ∗ (3t + t2) ∗ · · · ∗ (3t + t2)︸ ︷︷ ︸
n times

= 3nt + t2

and ( 1
1 − t

− 2xt
)∗⟨−1⟩

=
∞∑

n=0
(2xt)∗⟨n⟩ = 1

1 − t
+ 2xt + 4x2t + 8x3t + · · · .

We will always use the notations ∗, ∗ ⟨n⟩, or ∗ ⟨−1⟩ for any expression involving the
Hadamard product; all other expressions should be interpreted as using ordinary
multiplication.

3.4. Homomorphisms arising from shuffle-compatibility. Given π ∈ Sn, let
us define

Ψ(ides,icomaj) : FQSym → A(des,comaj) ⊆ Q[[t∗, q, x]],
Ψipk : FQSym → Apk ⊆ Q[[t∗, x]], and
Ψilpk : FQSym → Alpk ⊆ Q[[t∗, x]]

by

Ψ(ides,icomaj)(Gπ) :=


tides(π)+1qicomaj(π)∏n

i=0(1 − tqi)
xn, if n ⩾ 1,

1/(1 − t), if n = 0,

Ψipk(Gπ) :=


22 ipk(π)+1tipk(π)+1(1 + t)n−2 ipk(π)−1

(1 − t)n+1 xn, if n ⩾ 1,

1/(1 − t), if n = 0, and

Ψilpk(Gπ) := 22 ilpk(π)tilpk(π)(1 + t)n−2 ilpk(π)

(1 − t)n+1 xn

and extending linearly.

Theorem 3.6. The maps Ψ(ides,icomaj), Ψipk, and Ψilpk are Q-algebra homomorphisms.
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Proof. By Theorems 4.5, 4.8, and 4.10 of [17], the descent statistics (des, comaj), pk,
and lpk are all shuffle-compatible and their homomorphisms

ϕ(des,comaj) : QSym → A(comaj,des) ⊆ Q[[t∗, q, x]],
ϕpk : QSym → Apk ⊆ Q[[t∗, x]], and
ϕlpk : QSym → Alpk ⊆ Q[[t∗, x]]

(see Theorem 2.4) are defined by

ϕ(des,comaj)(FL) :=


tdes(L)+1qcomaj(L)∏n

i=0(1 − tqi)
xn, if n ⩾ 1,

1/(1 − t), if n = 0,

ϕpk(FL) :=


22 pk(L)+1tpk(L)+1(1 + t)n−2 pk(L)−1

(1 − t)n+1 xn, if n ⩾ 1,

1/(1 − t), if n = 0, and

ϕlpk(FL) := 22 lpk(L)tlpk(L)(1 + t)n−2 lpk(L)

(1 − t)n+1 xn,

where L ⊨ n. The maps Ψ(ides,icomaj), Ψipk, and Ψilpk are simply the result of composing
these homomorphisms ϕ(des,comaj), ϕpk, and ϕlpk with the canonical surjection ρ from
FQSym to QSym—see Equation (4). Since compositions of homomorphisms are
homomorphisms, the result follows. □

3.5. Further specializations of the generalized cluster method. We now
use the homomorphisms defined in the previous section to produce further specializa-
tions of our generalized cluster method which can be used to relate the polynomials
A

(ides,icomaj)
Γ,n (s, t, q), Aides

Γ,n (s, t), P ipk
Γ,n(s, t), and P ilpk

Γ,n (s, t)—defined in Section 1.1—to
“refined cluster polynomials”. These specializations are similar in spirit to Elizalde’s
q-cluster method in that they count permutations by occurrences of prescribed patterns
but also keep track of additional statistics.

We begin with (ides, icomaj). Given a set Γ ⊆ S, let

R
(ides,icomaj)
Γ,k (s, t, q) :=

∑
π∈Sk

tides(π)+1qicomaj(π)
∑

c∈CΓ,π

smkΓ(c),

which counts Γ-clusters of length k by the number of marked occurrences as well as
the inverse descent number and inverse comajor index of the underlying permutation.

Theorem 3.7. Let Γ ⊆ S be a set of permutations, each of length at least 2. Then

∞∑
n=0

A
(ides,icomaj)
Γ,n (s, t, q)∏n

i=0(1 − tqi)
xn

=
∞∑

n=0

(
tx

(1 − t)(1 − tq) +
∞∑

k=2
R

(ides,icomaj)
Γ,k (s − 1, t, q) xk∏k

i=0(1 − tqi)

)∗⟨n⟩

.

We note that this formula lives inside the formal power series algebra Q[[s, t∗, q, x]],
although the Hadamard product is only present on the right-hand side.

Proof. Take Equation (5) from Theorem 3.1, and then apply the homomorphism
Ψ(ides,icomaj) to both sides. Observe that

Ψ(ides,icomaj)(F̄Γ(s)) =
∑

π∈Sn

Ψ(ides,icomaj)(Gπ)soccΓ(π)
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= 1
1 − t

+
∞∑

n=1

∑
π∈Sn

soccΓ(π)tides(π)+1qicomaj(π)∏n
i=0(1 − tqi)

xn

=
∞∑

n=0

∑
π∈Sn

A
(ides,icomaj)
Γ,n (s, t, q)∏n

i=0(1 − tqi)
xn

and
Ψ(ides,icomaj)(R̄Γ(s − 1)) =

∑
π∈S

Ψ(ides,icomaj)(Gπ)
∑

c∈CΓ,π

(s − 1)mkΓ(c)

=
∞∑

k=2

∑
π∈Sk

tides(π)+1qicomaj(π)xk∏k
i=0(1 − tqi)

∑
c∈CΓ,π

(s − 1)mkΓ(c)

=
∞∑

k=2
R

(ides,icomaj)
Γ,k (s − 1, t, q) xk∏k

i=0(1 − tqi)
,

and also Ψ(ides,icomaj)(1) = 1/(1− t) and Ψ(ides,icomaj)(G1) = tx/((1− t)(1− tq)). Thus,
we have

∞∑
n=0

∑
π∈Sn

A
(ides,icomaj)
Γ,n (s, t, q)∏n

i=0(1 − tqi)
xn

=
(

1
1 − t

− tx

(1 − t)(1 − tq) −
∞∑

k=2
R

(ides,icomaj)
Γ,k (s − 1, t, q) xk∏k

i=0(1 − tqi)

)∗⟨−1⟩

=
∞∑

n=0

(
tx

(1 − t)(1 − tq) +
∞∑

k=2
R

(ides,icomaj)
Γ,k (s − 1, t, q) xk∏k

i=0(1 − tqi)

)∗⟨n⟩

. □

Let us give two remarks before proceeding. First, recall the identity
comaj(π) = n des(π) − maj(π),

which is equivalent to
imaj(π) = nides(π) − icomaj(π).

It follows that
A

(ides,imaj)
Γ,n (s, t, q) = q−nA

(ides,icomaj)
Γ,n (s, tqn, q−1),

so we can compute the polynomials A
(ides,imaj)
Γ,n (s, t, q) from the A

(ides,icomaj)
Γ,n (s, t, q). In

other words, having a formula for the polynomials A
(ides,icomaj)
Γ,n (s, t, q) is equivalent to

having one for the A
(ides,imaj)
Γ,n (s, t, q).

Furthermore, in using Theorem 3.7 to compute the polynomial A
(ides,icomaj)
Γ,j (s, t, q),

one only needs to sum from n = 0 to n = j on the right-hand side. This is because, by
the definition of Hadamard product in t, the coefficient of xj in(

tx

(1 − t)(1 − tq) +
∞∑

k=2
R

(ides,icomaj)
Γ,k (s − 1, t, q) xk∏k

i=0(1 − tqi)

)∗⟨n⟩

is zero unless n ⩽ j. The same is true for the other formulas in this section.
We now specialize Theorem 3.7 to an analogous result solely for the inverse descent

number. Let
Rides

Γ,k (s, t) :=
∑

π∈Sk

tides(π)+1
∑

c∈CΓ,π

smkΓ(c)

be the refined cluster polynomial for ides.
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Theorem 3.8. Let Γ ⊆ S be a set of permutations, each of length at least 2. Then

∞∑
n=0

Aides
Γ,n (s, t)

(1 − t)n+1 xn =
∞∑

n=0

(
tx

(1 − t)2 + 1
1 − t

∞∑
k=2

Rides
Γ,k (s − 1, t)zk

)∗⟨n⟩

where z = x/(1 − t).

Proof. This follows immediately from setting q = 1 in Theorem 3.7 and simplifying. □

For the inverse peak statistics ipk and ilpk, let us define

Ripk
Γ,k(s, t) :=

∑
π∈Sk

tipk(π)+1
∑

c∈CΓ,π

smkΓ(c) and Rilpk
Γ,k (s, t) :=

∑
π∈Sk

tilpk(π)
∑

c∈CΓ,π

smkΓ(c).

Then the following two theorems can be proven in the same way as Theorem 3.7, but
using the homomorphisms Ψipk and Ψilpk. We outline the steps for Theorem 3.9 but
omit the proof of Theorem 3.10.

Theorem 3.9. Let Γ ⊆ S be a set of permutations, each of length at least 2. Then

1
1 − t

+ 1 + t

2(1 − t)

∞∑
n=1

P ipk
Γ,n(s, u)zn

=
∞∑

n=0

(
2tx

(1 − t)2 + 1 + t

2(1 − t)

∞∑
k=2

Ripk
Γ,k(s − 1, u)zk

)∗⟨n⟩

where u = 4t/(1 + t)2 and z = (1 + t)x/(1 − t).

Proof. We shall apply Ψipk to both sides of (5). Observe that

Ψipk(F̄Γ(s)) = 1
1 − t

+
∞∑

n=1

∑
π∈Sn

22 ipk(π)+1tipk(π)+1(1 + t)n−2 ipk(π)−1soccΓ(π)

(1 − t)n+1 xn

= 1
1 − t

+ 1
2

∞∑
n=1

(
1 + t

1 − t

)n+1
P ipk

Γ,n

(
s,

4t

(1 + t)2

)
xn

= 1
1 − t

+ 1 + t

2(1 − t)

∞∑
n=1

P ipk
Γ,n(s, u)zn

and

Ψipk(R̄Γ(s − 1))

=
∞∑

k=2

∑
π∈Sk

22 ipk(π)+1tipk(π)+1(1 + t)k−2 ipk(π)−1xk

(1 − t)k+1

∑
c∈CΓ,π

(s − 1)mkΓ(c)

=
∞∑

k=2
Ripk

Γ,k

(
s − 1,

4t

(1 + t)2

)
(1 + t)k+1xk

2(1 − t)k+1

= 1 + t

2(1 − t)

∞∑
k=2

Ripk
Γ,k(s − 1, u)zk.

Algebraic Combinatorics, Vol. 5 #6 (2022) 1407



Y. Zhuang

Also, we have Ψipk(1) = 1/(1 − t) and Ψipk(G1) = 2tx/(1 − t)2. Hence, we obtain

1
1 − t

+ 1 + t

2(1 − t)

∞∑
n=1

P ipk
Γ,n(s, u)zn

=
(

1
1 − t

− 2tx

(1 − t)2 − 1 + t

2(1 − t)

∞∑
k=2

Ripk
Γ,k(s − 1, u)zk

)∗⟨−1⟩

=
∞∑

n=0

(
2tx

(1 − t)2 + 1 + t

2(1 − t)

∞∑
k=2

Ripk
Γ,k(s − 1, u)zk

)∗⟨n⟩

. □

Theorem 3.10. Let Γ ⊆ S be a set of permutations, each of length at least 2. Then

1
1 − t

∞∑
n=0

P ilpk
Γ,n (s, u)zn =

∞∑
n=0

(
z

1 − t
+ 1

1 − t

∞∑
k=2

Rilpk
Γ,k (s − 1, u)zk

)∗⟨n⟩

where u = 4t/(1 + t)2 and z = (1 + t)x/(1 − t).

4. Monotone patterns 12 · · · m and m · · · 21
4.1. Cluster generating functions for monotone patterns. In this sec-
tion, we will study the polynomials A

(ides,imaj)
σ,n (t, q), Aides

σ,n (s, t, q), Aides
σ,n (t, q), P ipk

σ,n(s, t),
P ipk

σ,n(t), P ilpk
σ,n (s, t), and P ilpk

σ,n (t) for σ = 12 · · · m and σ = m · · · 21. Our formulas will
mostly be for the pattern σ = 12 · · · m, but we can use these formulas along with
Proposition 2.7 to compute most of these polynomials for σ = m · · · 21 as well.

We begin with a lemma establishing closed-form generating functions for refined
12 · · · m-cluster polynomials, which we need in order to apply our results from Section
3.5. Note that, in general, there is no straightforward way to count clusters by inverse
statistics. As a matter of fact, the simpler problem of counting clusters (without
keeping track of any statistic) is equivalent to counting linear extensions of a certain
poset [10], which is itself difficult in general. Yet, counting σ-clusters by our inverse
statistics is essentially trivial when σ is a monotone pattern.

Lemma 4.1. For all m ⩾ 2, we have
∞∑

k=2
R

(ides,icomaj)
12···m,k (s, t, q)xk =

∞∑
k=2

Rides
12···m,k(s, t)xk =

∞∑
k=2

Ripk
12···m,k(s, t)xk

= stxm

1 − s
∑m−1

l=1 xl

and
∞∑

k=2
Rilpk

12···m,k(s, t)xk = sxm

1 − s
∑m−1

l=1 xl
.

Proof. It is easy to see that there exists a 12 · · · m-cluster on π if and only if π is
itself of the form 12 · · · n where n ⩾ m, and that the overlap set of 12 · · · m is given
by O12···m = {1, 2, . . . , m − 1}. Hence, we can uniquely generate 12 · · · m-clusters
by first taking the permutation 12 · · · m, and then repeatedly appending the next l
largest integers (for any 1 ⩽ l ⩽ m − 1) in increasing order—each iteration creates
an additional marked occurrence of 12 · · · m. Figure 1 provides an illustration for the

Algebraic Combinatorics, Vol. 5 #6 (2022) 1408



A lifting of the G.–J. cluster method to the M.–R. algebra

1 2 3 4 7→ 1 2 3 4 5 6 7 7→ 1 2 3 4 5 6 7 8 9 10 7→ · · ·

7→ 1 2 3 4 5 6 7 8 9 7→ · · ·

7→ 1 2 3 4 5 6 7 8 7→ · · ·

7→ 1 2 3 4 5 6 7→ 1 2 3 4 5 6 7 8 9 7→ · · ·

7→ 1 2 3 4 5 6 7 8 7→ · · ·

7→ 1 2 3 4 5 6 7 7→ · · ·

7→ 1 2 3 4 5 7→ 1 2 3 4 5 6 7 8 7→ · · ·

7→ 1 2 3 4 5 6 7 7→ · · ·

7→ 1 2 3 4 5 6 7→ · · ·

Figure 1. 1234-clusters

case m = 4. Thus, we have the formula
∞∑

k=2

∑
π∈Sk

∑
c∈C12···m,π

smk12···m(c)xk = sxm

1 − s(x + x2 + · · · + xm−1)

= sxm

1 − s
∑m−1

l=1 xl
(8)

(see also [10, p. 356]).
Moreover, since 12 · · · m-clusters are themselves monotone increasing, their inverses

are also monotone increasing and therefore have no descents, peaks, or left peaks.
Using (8), it follows that

∞∑
k=2

R
(ides,icomaj)
12···m,k (s, t, q)xk =

∞∑
k=2

∑
π∈Sk

tides(π)+1qicomaj(π)
∑

c∈C12···m,π

smk12···m(c)xk

= t

∞∑
k=2

∑
π∈Sk

∑
c∈C12···m,π

smk12···m(c)xk

= stxm

1 − s
∑m−1

l=1 xl
;

our formulas for
∑∞

k=2 Ripk
12···m,k(s, t)xk and

∑∞
k=2 Rilpk

12···m,k(s, t)xk are obtained in the
same way. Lastly, since our formula for

∑∞
k=2 R

(ides,icomaj)
12···m,k (s, t, q)xk does not depend

on q, we have the same formula for
∑∞

k=2 Rides
12···m,k(s, t)xk. □

4.2. Monotone patterns, inverse descent number, and inverse major index.
We will now derive generating function formulas for A

(ides,imaj)
12···m,n (t, q), Aides

12···m,n(s, t),
and Aides

12···m,n(t).
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Theorem 4.2. Let m ⩾ 2. We have

(a)
∞∑

n=0

A
(ides,imaj)
12···m,n (t, q)∏n

i=0(1 − tqi)
xn

=
∞∑

n=0

 tx

(1 − t)(1 − tq) −
∞∑

j=1

(
txjm∏jm

i=0(1 − tqi)
− txjm+1∏jm+1

i=0 (1 − tqi)

)∗⟨n⟩

and

(b)
∞∑

n=0

A
(ides,imaj)
12···m,n (t, q)∏n

i=0(1 − tqi)
xn

= 1 +
∞∑

k=1

 ∞∑
j=0

((
k + jm − 1

k − 1

)
q

xjm −
(

k + jm

k − 1

)
q

xjm+1

)−1

tk.

Proof. In light of Proposition 2.7 (b) and the fact that 12 · · · m is invariant under
reverse-complementation, it suffices to prove these formulas with the polynomial
A

(ides,imaj)
12···m,n (t, q) replaced by A

(ides,icomaj)
12···m,n (t, q).

We first apply Theorem 3.7 to Γ = {12 · · · m} and set s = 0 to obtain

∞∑
n=0

A
(ides,icomaj)
12···m,n (t, q)∏n

i=0(1 − tqi)
xn

=
∞∑

n=0

(
tx

(1 − t)(1 − tq) +
∞∑

k=2
R

(ides,icomaj)
12···m,k (−1, t, q) xk∏k

i=0(1 − tqi)

)∗⟨n⟩

. (9)

By Lemma 4.1, we have
∞∑

k=2
R

(ides,icomaj)
12···m,k (−1, t, q)xk = −txm

1 + x + x2 + · · · + xm−1

= − txm(1 − x)
1 − xm

= −
∞∑

j=1
(txjm − txjm+1)

and thus
∞∑

k=2
R

(ides,icomaj)
12···m,k (−1, t, q) xk∏k

i=0(1 − tqi)

= −
∞∑

j=1

(
txjm∏jm

i=0(1 − tqi)
− txjm+1∏jm+1

i=0 (1 − tqi)

)
. (10)

Combining (9) with (10) yields part (a).
Now we prove part (b). Here we begin with (10), and use the identity

1∏n
i=0(1 − tqi)

=
∞∑

k=0

(
n + k

k

)
q

tk
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[31, p. 68] to arrive at
∞∑

n=0

A
(ides,icomaj)
12···m,n (t, q)∏n

i=0(1 − tqi)
xn =

∞∑
n=0

 ∞∑
k=0

(k + 1
k

)
q

x −
∞∑

j=1

(
k + jm

k

)
q

xjm +
∞∑

j=1

(
k + jm + 1

k

)
q

xjm+1

 tk+1

∗⟨n⟩

.

A sequence of algebraic manipulations yields
∞∑

n=0

A
(ides,icomaj)
12···m,n (t, q)∏n

i=0(1 − tqi)
xn = 1

1 − t

+
∞∑

k=0

∞∑
n=1

(k + 1
k

)
q

x −
∞∑

j=1

(
k + jm

k

)
q

xjm +
∞∑

j=1

(
k + jm + 1

k

)
q

xjm+1

n

tk+1

= 1 +
∞∑

k=0

∞∑
n=0

(k + 1
k

)
q

x −
∞∑

j=1

(
k + jm

k

)
q

xjm +
∞∑

j=1

(
k + jm + 1

k

)
q

xjm+1

n

tk+1

= 1 +
∞∑

k=0

1 −
(

k + 1
k

)
q

x +
∞∑

j=1

(
k + jm

k

)
q

xjm −
∞∑

j=1

(
k + jm + 1

k

)
q

xjm+1

−1

tk+1

= 1 +
∞∑

k=0

 ∞∑
j=0

(
k + jm

k

)
q

xjm −
∞∑

j=0

(
k + jm + 1

k

)
q

xjm+1

−1

tk+1

= 1 +
∞∑

k=1

 ∞∑
j=0

((
k + jm − 1

k − 1

)
q

xjm −
(

k + jm

k − 1

)
q

xjm+1

)−1

tk,

thus completing the proof. □

Let An(t, q) :=
∑

π∈Sn
tdes(π)+1qmaj(π) for n ⩾ 1 and A0(t, q) := 1; these are called

q-Eulerian polynomials and encode the joint distribution of des and maj over Sn.
Observe that

lim
m→∞

A
(ides,imaj)
12···m,n (t, q) =

∑
π∈Sn

tides(π)+1qimaj(π) =
∑

π∈Sn

tdes(π)+1qmaj(π) = An(t, q);

we can exploit this limit to recover from Theorem 4.2 a classical identity involving
q-Eulerian polynomials. By taking the limit as m → ∞ of both sides of Theorem 4.2
(b), we obtain

∞∑
n=0

An(t, q)∏n
i=0(1 − tqi)

xn = 1 +
∞∑

k=1
(1 − [k]qx)−1tk

= 1 +
∞∑

k=1

∞∑
n=0

[k]nq xntk

= 1 +
∞∑

n=0

∞∑
k=1

[k]nq tkxn,
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and extracting coefficients of xn yields the famous Carlitz identity [26, Corollary 6.1]

An(t, q)∏n
i=0(1 − tqi)

=
∞∑

k=1
[k]nq tk.

Next, we have the following formulas for the polynomials Aides
12···m,n(s, t) and

Aides
12···m,n(t).

Theorem 4.3. Let m ⩾ 2. Then
∞∑

n=0

Aides
12···m,n(s, t)
(1 − t)n+1 xn =

∞∑
n=0

(
tx

(1 − t)2 + (s − 1)tzm

(1 − t)(1 − (s − 1)
∑m−1

l=1 zl)

)∗⟨n⟩

,(a)

∞∑
n=0

Aides
12···m,n(t)

(1 − t)n+1 xn =
∞∑

n=0

(
tz(1 − zm−1)

(1 − t)(1 − zm)

)∗⟨n⟩

,(b)

and

(c)
∞∑

n=0

Aides
12···m,n(t)

(1 − t)n+1 xn =

1 +
∞∑

k=1

 ∞∑
j=0

((
k + jm − 1

k − 1

)
xjm −

(
k + jm

k − 1

)
xjm+1

)−1

tk,

where z = x/(1 − t).

Proof. Part (a) follows immediately from Theorem 3.8 and Lemma 4.1, and part (c)
is obtained from substituting q = 1 into Theorem 4.2 (b). Then taking s = 0 in part
(a), we have

∞∑
n=0

Aides
12···m,n(t)

(1 − t)n+1 xn =
∞∑

n=0

(
tx

(1 − t)2 − tzm

(1 − t)(1 + z + z2 + · · · + zm−1)

)∗⟨n⟩

=
∞∑

n=0

(
tz

1 − t
− tzm(1 − z)

(1 − t)(1 − zm)

)∗⟨n⟩

=
∞∑

n=0

(
tz(1 − zm−1)

(1 − t)(1 − zm)

)∗⟨n⟩

which proves part (b). □

We use Theorem 4.3 to compute the first ten polynomials Aides
12···m,n(t) for m = 3 and

m = 4, which are displayed in Tables 1–2. (By Proposition 2.7 (d), the polynomials
Aides

m···21,n(t) are the same as the Aides
12···m,n(t) but with the order of their coefficients

reversed.)
Curiously, beginning with n = 3, the quadratic coefficient of Aides

123,n(t) alternates
between 4 and 5. We state this observation in the following proposition.

Proposition 4.4. Let n ⩾ 3. The number of permutations π in Sn(123) with ides(π) =
1 is 4 if n is odd, and is 5 if n is even.

Proposition 4.4 can be proven using Theorem 4.3, but we shall instead sketch a
combinatorial proof, which is more enlightening. Our proof relies on the notion of
reading sequences of permutations. Given a permutation π ∈ Sn, we read the letters
1, 2, . . . , n in π from left-to-right in order, going back to the beginning of π when
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n Aides
123,n(t)

0 1
1 t

2 t + t2

3 4t2 + t3

4 5t2 + 11t3 + t4

5 4t2 + 39t3 + 26t4 + t5

6 5t2 + 91t3 + 195t4 + 57t5 + t6

7 4t2 + 193t3 + 904t4 + 795t5 + 120t6 + t7

8 5t2 + 396t3 + 3420t4 + 6400t5 + 2889t6 + 247t7 + t8

9 4t2 + 761t3 + 11610t4 + 39275t5 + 37450t6 + 9774t7 + 502t8 + t9

Table 1. Distribution of ides over Sn(123)

n Aides
1234,n(t)

0 1
1 t

2 t + t2

3 t + 4t2 + t3

4 11t2 + 11t3 + t4

5 18t2 + 66t3 + 26t4 + t5

6 28t2 + 254t3 + 302t4 + 57t5 + t6

7 40t2 + 814t3 + 2160t4 + 1191t5 + 120t6 + t7

8 64t2 + 2358t3 + 12030t4 + 14340t5 + 4293t6 + 247t7 + t8

9 96t2 + 6538t3 + 57804t4 + 127250t5 + 82102t6 + 14608t7 + 502t8 + t9

Table 2. Distribution of ides over Sn(1234)

necessary; this process realizes π as a shuffle of reading sequences [31, p. 37]. For
example, take π = 748361259; then the reading sequences of π are 12, 3, 45, 6, and 789.
It is easy to see that the lengths of reading sequences of π are precisely the lengths of
the increasing runs of π−1. Thus, the inverse of a permutation π avoids 12 · · · m if and
only if every reading sequence of π has length less than m.

Proof. The number of permutations π in Sn(123) with ides(π) = 1 is equal to the
number of permutations π with des(π) = 1 whose inverse π−1 is in Sn(123), so it
suffices to prove the result for the latter family of permutations. More specifically, we
claim that if n is odd, then the permutations π in Sn with des(π) = 1 whose inverse
π−1 is in Sn(123) are

• 13 · · · n24 · · · (n − 1),
• 24 · · · (n − 1)13 · · · n,
• 24 · · · (n − 1)n13 · · · (n − 2), and
• 35 · · · n124 · · · (n − 1).

Moreover, if n is even, then the permutations π in Sn with des(π) = 1 whose inverse
π−1 is in Sn(123) are

• 13 · · · (n − 1)24 · · · n
• 13 · · · (n − 1)n24 · · · (n − 2),
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• 24 · · · n13 · · · (n − 1),
• 35 · · · (n − 1)124 · · · n, and
• 35 · · · (n − 1)n124 · · · (n − 2).

Clearly, all of these permutations have exactly one descent and the lengths of their
reading sequences are all less than 3. A careful case analysis shows that these are the
only permutations in Sn with these properties; we omit the details. □

4.3. Monotone patterns and inverse peak number. Next, we proceed to
the polynomials P ipk

12···m,n(s, t) and P ipk
12···m,n(t), which are equal to the polynomials

P ipk
m···21,n(s, t) and P ipk

m···21,n(t) by Proposition 2.7 (e).

Theorem 4.5. Let m ⩾ 2. We have

(a) 1
1 − t

+ 1 + t

2(1 − t)

∞∑
n=1

P ipk
12···m,n(s, u)zn

=
∞∑

n=0

(
2tx

(1 − t)2 + 2t(s − 1)zm

(1 − t2)(1 − (s − 1)
∑m−1

l=1 zl)

)∗⟨n⟩

,

1
1 − t

+ 1 + t

2(1 − t)

∞∑
n=1

P ipk
12···m,n(u)zn =

∞∑
n=0

(
2tz(1 − zm−1)

(1 − t2)(1 − zm)

)∗⟨n⟩

,(b)

and

(c) 1
1 − t

+ 1 + t

2(1 − t)

∞∑
n=1

P ipk
12···m,n(u)zn

= 1 +
∞∑

k=1

1 − 2kx +
∞∑

j=1
(cm,j,kxjm − c′

m,j,kxjm+1)

−1

tk,

where u = 4t/(1 + t)2, z = (1 + t)x/(1 − t), and

cm,j,k = 2
k∑

l=1

(
l + jm − 1

l − 1

)(
jm − 1
k − l

)
and c′

m,j,k = 2
k∑

l=1

(
l + jm

l − 1

)(
jm

k − l

)
.

Proof. Part (a) follows immediately from Theorem 3.9 and Lemma 4.1. Setting s = 0
in part (a), we obtain

1
1 − t

+ 1 + t

2(1 − t)

∞∑
n=1

P ipk
12···m,n(u)zn

=
∞∑

n=0

(
2tx

(1 − t)2 − 2tzm

(1 − t2)(1 + z + z2 + · · · + zm−1)

)∗⟨n⟩

=
∞∑

n=0

(
2tz

1 − t2 − 2tzm(1 − z)
(1 − t2)(1 − zm)

)∗⟨n⟩

(11)

=
∞∑

n=0

(
2tz(1 − zm−1)

(1 − t2)(1 − zm)

)∗⟨n⟩

,

thus proving part (b). For part (c), we shall use the well-known identities

1
(1 − t)n+1 =

∞∑
k=0

(
n + k

k

)
tk and (1 + t)n =

n∑
k=0

(
n

k

)
tk,
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which imply

2t(1 + t)jm−1

(1 − t)jm+1 =
∞∑

k=1
cm,j,ktk and 2t(1 + t)jm

(1 − t)jm+2 =
∞∑

k=1
c′

m,j,ktk.

Then, continuing from (11), we have

1
1 − t

+ 1 + t

2(1 − t)

∞∑
n=1

P ipk
12···m,n(u)zn

=
∞∑

n=0

(
2tx

(1 − t)2 − 2tzm(1 − z)
(1 − t2)(1 − zm)

)∗⟨n⟩

=
∞∑

n=0

 2tx

(1 − t)2 − 2t

1 − t2

∞∑
j=1

(zjm − zjm+1)

∗⟨n⟩

=
∞∑

n=0

 2tx

(1 − t)2 −
∞∑

j=1

(
2t(1 + t)jm−1xjm

(1 − t)jm+1 − 2t(1 + t)jmxjm+1

(1 − t)jm+2

)∗⟨n⟩

=
∞∑

n=0

 ∞∑
k=1

2kxtk −
∞∑

j=1

∞∑
k=1

(cm,j,kxjm − c′
m,j,kxjm+1)tk

∗⟨n⟩

=
∞∑

n=0

 ∞∑
k=1

2kx −
∞∑

j=1
(cm,j,kxjm − c′

m,j,kxjm+1)

 tk

∗⟨n⟩

= 1
1 − t

+
∞∑

k=1

∞∑
n=1

2kx −
∞∑

j=1
(cm,j,kxjm − c′

m,j,kxjm+1)

n

tk

= 1 +
∞∑

k=1

∞∑
n=0

2kx −
∞∑

j=1
(cm,j,kxjm − c′

m,j,kxjm+1)

n

tk

= 1 +
∞∑

k=1

1 − 2kx +
∞∑

j=1
(cm,j,kxjm − c′

m,j,kxjm+1)

−1

tk;

this completes the proof. □

In order to use Theorem 4.5 to compute the polynomials P ipk
12···m,n(s, t) and

P ipk
12···m,n(t), one must “invert” the expression u = 4t/(1 + t)2. Let us first replace the

variable t with v, and u with t, to obtain t = 4v/(1+v)2. Then, solving t = 4v/(1+v)2

for v yields v = 2t−1(1 −
√

1 − t) − 1. Thus, Theorem 4.5 (b) is equivalent to

1
1 − v

+ 1 + v

2(1 − v)

∞∑
n=1

P ipk
12···m,n(t)zn =

∞∑
n=0

(
2tz(1 − zm−1)

(1 − t2)(1 − zm)

)∗⟨n⟩
∣∣∣∣∣
t 7→v

where z = (1 + t)x/(1 − t) and v = 2t−1(1 −
√

1 − t) − 1. (Note that substitution does
not commute with Hadamard product, so we cannot simply replace t with v inside
the Hadamard product.) With some additional algebraic manipulations, we get the
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n P ipk
123,n(t) n P ipk

123,n(t)
0 1 5 8t + 52t2 + 10t3

1 t 6 13t + 200t2 + 136t3

2 2t 7 21t + 714t2 + 1170t3 + 112t4

3 3t + 2t2 8 34t + 2468t2 + 8180t3 + 2676t4

4 5t + 12t2 9 55t + 8348t2 + 50786t3 + 37978t4 + 2210t5

Table 3. Distribution of ipk over Sn(123)

n P ipk
1234,n(t) n P ipk

1234,n(t)
0 1 5 13t + 82t2 + 16t3

1 t 6 24t + 364t2 + 254t3

2 2t 7 44t + 1502t2 + 2553t3 + 248t4

3 4t + 2t2 8 81t + 5976t2 + 20436t3 + 6840t4

4 7t + 16t2 9 149t + 23286t2 + 146636t3 + 112192t4 + 6638t5

Table 4. Distribution of ipk over Sn(1234)

formula
∞∑

n=1
P ipk

12···m,n(t)xn = 2(1 − v)
1 + v

∞∑
n=0

(
2tz(1 − zm−1)

(1 − t2)(1 − zm)

)∗⟨n⟩
∣∣∣∣∣
x 7→(1−t)x/(1+t), t 7→v

− 2
1 + v

where z and v are the same as above; this formula can be used to compute the
polynomials P ipk

12···m,n(t). We can carry out a similar process with Theorem 4.5 (a) and
(c), as well as with Theorems 4.7, 4.8, 5.3, and 5.4 appearing later in this paper.

Tables 3–4 list the first ten polynomials P ipk
12···m,n(t) for m = 3 and m = 4.

The linear coefficients of P ipk
123,n(t) are Fibonacci numbers [30, A000045], and those

of P ipk
1234,n(t) are tribonacci numbers [30, A000073].(4) In fact, we can make a more

general statement relating the linear coefficients of P ipk
123,n(t) to “higher-order” Fibonacci

numbers. The Fibonacci sequence of order k (also called the k-generalized Fibonacci
sequence) {f

(k)
n }n⩾0 is defined by the recursion

f (k)
n := f

(k)
n−1 + f

(k)
n−2 + · · · + f

(k)
n−k

with f
(k)
0 := 1 (and where we treat f

(k)
n as 0 for n < 0). Hence, the Fibonacci sequence

of order two is the usual Fibonacci sequence, and the Fibonacci sequence of order
three is the tribonacci sequence. We give three proofs of the following claim in [34].

Claim 4.6. Let n ⩾ 1 and m ⩾ 3. The number of permutations π in Sn(12 · · · m) with
ipk(π) = 0 is equal to the (m − 1)th order Fibonacci number f

(m−1)
n .

4.4. Monotone patterns and inverse left peak number. Finally, we produce
analogous formulas for the inverse left peak polynomials P ilpk

12···m,n(s, t) and P ilpk
12···m,n(t).

We omit the proofs of these formulas, as they follow essentially the same steps as the
proof of Theorem 4.5.

(4)Note that [30] uses a different indexing for these sequences.
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n P ilpk
123,n(t) n P ilpk

123,n(t)
0 1 5 27t + 43t2

1 1 6 63t + 248t2 + 38t3

2 1 + t 7 144t + 1225t2 + 648t3

3 5t 8 333t + 5591t2 + 6882t3 + 552t4

4 12t + 5t2 9 765t + 24304t2 + 58552t3 + 15756t4

Table 5. Distribution of ilpk over Sn(123)

n P ilpk
1234,n(t) n P ilpk

1234,n(t)
0 1 5 50t + 61t2

1 1 6 138t + 443t2 + 61t3

2 1 + t 7 378t + 2659t2 + 1289t3

3 1 + 5t 8 1042t + 14501t2 + 16524t3 + 1266t4

4 18t + 5t2 9 2866t + 74941t2 + 167780t3 + 43314t4

Table 6. Distribution of ilpk over Sn(1234)

Theorem 4.7. Let m ⩾ 2. We have

1
1 − t

∞∑
n=0

P ilpk
12···m,n(s, u)zn =

∞∑
n=0

(
z

1 − t
+ (s − 1)zm

(1 − t)(1 − (s − 1)
∑m−1

l=1 zl)

)∗⟨n⟩

,(a)

1
1 − t

∞∑
n=0

P ilpk
12···m,n(u)zn =

∞∑
n=0

(
z(1 − zm−1)

(1 − t)(1 − zm)

)∗⟨n⟩

,(b)

and

1
1 − t

∞∑
n=0

P ilpk
12···m,n(u)zn =

∞∑
k=0

 ∞∑
j=0

(dm,j,kxjm − d′
m,j,kxjm+1)

−1

tk,(c)

where u = 4t/(1 + t)2, z = (1 + t)x/(1 − t), and

dm,j,k =
k∑

l=0

(
l + jm

l

)(
jm

k − l

)
and d′

m,j,k =
k∑

l=0

(
l + jm + 1

l

)(
jm + 1
k − l

)
.

In Tables 5–6, we display the first ten polynomials P ilpk
12···m,n(t) for m = 3 and m = 4.

Unfortunately, we cannot use symmetries to translate Theorem 4.7 into a result
about the pattern m · · · 21. However, we can obtain an analogous result for the
polynomials P ilpk

m···21,n(s, t) and P ilpk
m···21,n(t) separately; this is given below. The proof is

omitted but follows the same general line of reasoning as in the previous few theorems.
We only note that the underlying permutation of any m · · · 21-cluster has exactly one
left peak (rather than having no left peaks as for 12 · · · m-clusters), which results in
the generating function

∞∑
k=2

Rilpk
m···21,k(s, t)xk = stxm

1 − s
∑m−1

l=1 xl

for the refined cluster polynomials Rilpk
m···21,n(s, t).
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n P ilpk
321,n(t) n P ilpk

321,n(t)
0 1 5 1 + 37t + 32t2

1 1 6 1 + 101t + 222t2 + 25t3

2 1 + t 7 1 + 269t + 1251t2 + 496t3

3 1 + 4t 8 1 + 710t + 6349t2 + 5899t3 + 399t4

4 1 + 13t + 3t2 9 1 + 1865t + 30186t2 + 54825t3 + 12500t4

Table 7. Distribution of ilpk over Sn(321)

n P ilpk
4321,n(t) n P ilpk

4321,n(t)
0 1 5 1 + 53t + 57t2

1 1 6 1 + 158t + 428t2 + 55t3

2 1 + t 7 1 + 462t + 2668t2 + 1195t3

3 1 + 5t 8 1 + 1342t + 15074t2 + 15765t3 + 1151t4

4 1 + 17t + 5t2 9 1 + 3886t + 80338t2 + 164337t3 + 40339t4

Table 8. Distribution of ilpk over Sn(4321)

Theorem 4.8. Let m ⩾ 2. We have

(a) 1
1 − t

∞∑
n=0

P ilpk
m···21,n(s, u)zn

=
∞∑

n=0

(
z

1 − t
+ 4t(s − 1)zm

(1 − t2)(1 + t)(1 − (s − 1)
∑m−1

l=1 zl)

)∗⟨n⟩

,

1
1 − t

∞∑
n=0

P ilpk
m···21,n(u)zn =

∞∑
n=0

(
(1 + t)2z − 4tzm − (1 − t)2zm+1

(1 − t2)(1 + t)(1 − zm)

)∗⟨n⟩

,(b)

and

(c) 1
1 − t

∞∑
n=0

P ilpk
m···21,n(u)zn

= 1
1 − x

+
∞∑

k=1

1 − (2k + 1)x +
∞∑

j=1
(em,j,kxjm − e′

m,j,kxjm+1)

−1

tk,

where u = 4t/(1 + t)2, z = (1 + t)x/(1 − t), and

em,j,k = 4
k∑

l=1

(
l + jm − 1

l − 1

)(
jm − 2
k − l

)
and e′

m,j,k = 4
k∑

l=1

(
l + jm

l − 1

)(
jm − 1
k − l

)
.

The first ten polynomials P ilpk
m···21,n(t) for m = 3 and m = 4 are given in Tables 7–8.

The linear coefficients of the P ilpk
321,n(t) match OEIS sequence A080145 [30, A080145],

which involves the Fibonacci numbers fn := f
(2)
n . We give two proofs of this claim in

[34].

Algebraic Combinatorics, Vol. 5 #6 (2022) 1418



A lifting of the G.–J. cluster method to the M.–R. algebra

1 2 4 3 5 7→ 1 2 4 3 5 6 8 7 9 7→ 1 2 4 3 5 6 8 7 9 10 12 11 13 7→ · · ·

7→ 1 2 4 3 5 6 8 7 9 11 10 12 7→ · · ·

7→ 1 2 4 3 5 7 6 8 7→ 1 2 4 3 5 7 6 8 9 11 10 12 7→ · · ·

7→ 1 2 4 3 5 7 6 8 10 9 11 7→ · · ·

Figure 2. 12435-clusters

Claim 4.9. Let n ⩾ 1. The number of permutations π in Sn(321) with ilpk(π) = 1 is
equal to

n−1∑
i=1

i∑
j=1

fj−1fj = fn−1fn −
⌊

n + 1
2

⌋
.

5. Transpositional patterns 12 · · · (a − 1)(a + 1)a(a + 2)(a + 3) · · · m

5.1. Cluster generating functions for transpositional patterns. In this
section, we turn our attention to patterns of the form σ = 12 · · · (a − 1)(a + 1)a(a +
2)(a + 3) · · · m where m ⩾ 5 and 2 ⩽ a ⩽ m − 2. These are precisely the elementary
transpositions (a, a+1) of Sm—aside from the transpositions (1, 2) and (m−1, m)—and
form another family of patterns for which it is straightforward to obtain closed-form
generating functions for our refined cluster polynomials.

Lemma 5.1. Let σ = 12 · · · (a − 1)(a + 1)a(a + 2)(a + 3) · · · m where m ⩾ 5 and
2 ⩽ a ⩽ m − 2. Let i = min(a, m − a). Then

∞∑
k=2

Rides
σ,k (s, t)xk =

∞∑
k=2

Ripk
σ,k(s, t)xk = st2xm

1 − st
∑i

l=1 xm−l

and
∞∑

k=2
Rilpk

σ,k (s, t)xk = stxm

1 − st
∑i

l=1 xm−l
.

Proof. Let us first assume that m − a ⩽ a; then the overlap set of σ is given by
Oσ = {a, a + 1, . . . , m − 1}. In this case, we can uniquely generate σ-clusters by first
taking the permutation σ and then repeatedly appending the next l largest integers
(where a ⩽ l ⩽ m − 1) in the order compatible with the pattern σ—each iteration
creates an additional marked occurrence of σ. See Figure 2 for an illustration in the
case m = 5 and a = 3. Thus, we have the formula

∞∑
k=2

∑
π∈Sk

∑
c∈Cσ,π

smkσ(c)xk = sxm

1 − s(xa + xa+1 + · · · + xm−1)

when m − a ⩽ a (see also [10, p. 357]).
When a ⩽ m − a, we instead have Oσ = {m − a, m − a + 1, . . . , m − 1}, and we can

uniquely generate clusters in essentially the same way as above; the only differences
are that (1) m − a ⩽ l ⩽ m − 1, and (2) whenever we append l = m − a integers to
create a larger cluster, we increase the last entry of the existing cluster by 1 so that
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1 3 2 4 5 7→ 1 3 2 4 5 7 6 8 9 7→ 1 3 2 4 5 7 6 8 9 11 10 12 13 7→ · · ·

7→ 1 3 2 4 5 7 6 8 10 9 11 12 7→ · · ·

7→ 1 3 2 4 6 5 7 8 7→ 1 3 2 4 6 5 7 8 10 9 11 12 7→ · · ·

7→ 1 3 2 4 6 5 7 9 8 10 11 7→ · · ·

Figure 3. 13245-clusters

the new cluster contains an additional occurrence of σ. See Figure 3 for an illustration
in the case m = 5 and a = 2. Thus, we have the formula

∞∑
k=2

∑
π∈Sk

∑
c∈Cσ,π

smkσ(c)xk = sxm

1 − s(xm−a + xm−a+1 + · · · + xm−1)

when a ⩽ m − a. In either case, we have
∞∑

k=2

∑
π∈Sk

∑
c∈Cσ,π

smkσ(c)xk = sxm

1 − s(xm−i + xm−i+1 + · · · + xm−1) = sxm

1 − s
∑i

l=1 xm−l

where i = min(a, m − a).
It is clear that the underlying permutation of any σ-cluster is a product of disjoint

elementary transpositions, hence an involution. So, whenever π is the underlying
permutation of a σ-cluster, we have des(π) = ides(π), pk(π) = ipk(π), and lpk(π) =
ilpk(π). Each marked occurrence of a σ-cluster c contributes exactly one descent,
which is also a peak and a left peak. Hence, we have

∞∑
k=2

Rides
σ,k (s, t)xk =

∞∑
k=2

∑
π∈Sk

tides(π)+1
∑

c∈C12···m,π

smk12···m(c)xk

= t

∞∑
k=2

∑
π∈Sk

∑
c∈C12···m,π

(st)mk12···m(c)xk

= st2xm

1 − st
∑i

l=1 xm−l
.

Our formulas for
∑∞

k=2 Ripk
σ,k(s, t)xk and

∑∞
k=2 Rilpk

σ,k (s, t)xk are obtained in the same
way. □

5.2. Transpositional patterns and inverse descent number. We now apply
our results from Section 3.5 to the patterns σ = 12 · · · (a−1)(a+1)a(a+2)(a+3) · · · m
for arbitrary m ⩾ 5 and 2 ⩽ a ⩽ m − 2. All of these formulas follow immediately from
combining either Theorem 3.8, 3.9, or 3.10 with Lemma 5.1, and then setting s = 0.

Theorem 5.2. Let σ = 12 · · · (a − 1)(a + 1)a(a + 2)(a + 3) · · · m where m ⩾ 5 and
2 ⩽ a ⩽ m − 2. Let i = min(a, m − a). We have

∞∑
n=0

Aides
σ,n (s, t)

(1 − t)n+1 xn =
∞∑

n=0

(
tx

(1 − t)2 + (s − 1)t2zm

(1 − t)(1 − (s − 1)t
∑i

l=1 zm−l)

)∗⟨n⟩

(a)
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n Aides
13245,n(t)

0 1
1 t

2 t + t2

3 t + 4t2 + t3

4 t + 11t2 + 11t3 + t4

5 t + 25t2 + 66t3 + 26t4 + t5

6 t + 53t2 + 294t3 + 302t4 + 57t5 + t6

7 t + 108t2 + 1125t3 + 2368t4 + 1191t5 + 120t6 + t7

8 t + 215t2 + 3934t3 + 14923t4 + 15363t5 + 4293t6 + 247t7 + t8

9 t + 422t2 + 12985t3 + 82066t4 + 150240t5 + 86954t6 + 14608t7 + 502t8 + t9

Table 9. Distribution of ides over Sn(13245)

and

∞∑
n=0

Aides
σ,n (t)

(1 − t)n+1 xn =
∞∑

n=0

(
tx

(1 − t)2 − t2zm

(1 − t)(1 + t
∑i

l=1 zm−l)

)∗⟨n⟩

(b)

where z = x/(1 − t).

We use Theorem 5.2 to compute the first ten polynomials Aides
13245,n(t); see Table 9.

By the symmetry present in Theorem 5.2, the polynomials Aides
13245,n(t) displayed above

are the same as the polynomials Aides
12435,n(t) for corresponding n.

5.3. Transpositional patterns and inverse peak number.

Theorem 5.3. Let σ = 12 · · · (a − 1)(a + 1)a(a + 2)(a + 3) · · · m where m ⩾ 5 and
2 ⩽ a ⩽ m − 2. Let i = min(a, m − a). Then

(a) 1
1 − t

+ 1 + t

2(1 − t)

∞∑
n=1

P ipk
σ,n(s, u)zn

=
∞∑

n=0

(
2tx

(1 − t)2 + (1 + t)(s − 1)u2zm

2(1 − t)(1 − (s − 1)u
∑i

l=1 zm−l)

)∗⟨n⟩

and

(b) 1
1 − t

+ 1 + t

2(1 − t)

∞∑
n=1

P ipk
σ,n(u)zn

=
∞∑

n=0

(
2tx

(1 − t)2 − (1 + t)u2zm

2(1 − t)(1 + u
∑i

l=1 zm−l)

)∗⟨n⟩

where u = 4t/(1 + t)2 and z = (1 + t)x/(1 − t).

We give the first ten polynomials P ipk
13245,n(t)—which are also the first ten polynomials

P ipk
12435,n(t)—in Table 10.
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n P ipk
13245,n(t) n P ipk

13245,n(t)
0 1 5 16t + 87t2 + 16t3

1 t 6 32t + 408t2 + 268t3

2 2t 7 64t + 1776t2 + 2808t3 + 266t4

3 4t + 2t2 8 128t + 7424t2 + 23745t3 + 7680t4

4 8t + 16t2 9 256t + 30336t2 + 178029t3 + 131542t4 + 7616t5

Table 10. Distribution of ipk over Sn(13245)

5.4. Transpositional patterns and inverse left peak number.

Theorem 5.4. Let σ = 12 · · · (a − 1)(a + 1)a(a + 2)(a + 3) · · · m where m ⩾ 5 and
2 ⩽ a ⩽ m − 2. Let i = min(a, m − a). Then

1
1 − t

∞∑
n=0

P ilpk
σ,n (s, u)zn =

∞∑
n=0

(
z

1 − t
+ (s − 1)uzm

(1 − t)(1 − (s − 1)u
∑i

l=1 zm−l)

)∗⟨n⟩

(a)

and

1
1 − t

∞∑
n=0

P ilpk
σ,n (u)zn =

∞∑
n=0

(
z

1 − t
− uzm

(1 − t)(1 + u
∑i

l=1 zm−l)

)∗⟨n⟩

(b)

where u = 4t/(1 + t)2 and z = (1 + t)x/(1 − t).

Table 11 lists the first ten polynomials P ilpk
13245,n(t) = P ilpk

12435,n(t).

n P ilpk
13245,n(t) n P ilpk

13245,n(t)
0 1 5 1 + 57t + 61t2

1 1 6 1 + 173t + 473t2 + 61t3

2 1 + t 7 1 + 516t + 3030t2 + 1367t3

3 1 + 5t 8 1 + 1528t + 17551t2 + 18536t3 + 1361t4

4 1 + 18t + 5t2 9 1 + 4511t + 95867t2 + 198379t3 + 49021t4

Table 11. Distribution of ilpk over Sn(13245)

6. Conclusion
In summary, we have proven a lifting of Elizalde and Noy’s adaptation of the
Goulden–Jackson cluster method for permutations to the Malvenuto–Reutenauer
algebra FQSym. By applying two homomorphisms to the cluster method in FQSym,
we recover both Elizalde and Noy’s cluster method and Elizalde’s q-cluster method
as special cases. We have also defined several other homomorphisms, by way of the
theory of shuffle-compatibility, which lead to new specializations of our generalized
cluster method that keep track of various inverse statistics. Finally, we applied these
results to two families of patterns: the monotone patterns 12 · · · m and m · · · 21, and
the transpositional patterns 12 · · · (a − 1)(a + 1)a(a + 2)(a + 3) · · · m where m ⩾ 5 and
2 ⩽ a ⩽ m − 2.

We chose to study monotone patterns as well as the transpositional patterns of
the form above because, for these patterns, it is easy to count clusters by the inverse
statistics that we consider. In particular, these patterns have two nice properties:
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(1) These patterns are chain patterns. Elizalde and Noy [10] showed that counting
clusters is equivalent to counting linear extensions in a certain poset, and the
poset associated with a chain pattern is a chain. This means that if we fix the
length of a cluster as well as the positions of the marked occurrences within
the cluster, then there is at most one cluster of that length and with that set
of positions.

(2) Clusters formed from any one of these patterns are involutions, so counting
clusters by ist is the same as counting them by st.

In forthcoming work, joint with Sergi Elizalde and Justin Troyka, we study the
transpositional patterns 2134 · · · m and 12 · · · (m−2)m(m−1) for m ⩾ 3. Interestingly,
the enumeration of 2134 · · · m-clusters and 12 · · · (m − 2)m(m − 1)-clusters by ides,
ipk, and ilpk turns out to have connections to generalized Stirling permutations [15]
and 1/k-Eulerian polynomials [28]. Although these are not chain patterns and their
clusters are not involutions, they are examples of non-overlapping patterns: patterns
whose overlap set is equal to {m − 1}. Both the non-overlapping condition and the
condition of being a chain pattern greatly restrict how clusters can be formed, making
them easier to characterize and thus more amenable to study. As such, one direction
of future work is to apply our results to other families of non-overlapping patterns
and chain patterns.

We also present the following conjecture, which is suggested by computational
evidence.

Conjecture 6.1. Let σ be 12 · · · m or m · · · 21 where m ⩾ 3, or 12 · · · (a − 1)(a +
1)a(a + 2)(a + 3) · · · m where m ⩾ 5 and 2 ⩽ a ⩽ m − 2. Then the polynomials Aides

σ,n (t),
P ipk

σ,n(t), and P ilpk
σ,n (t) have only real roots for all n ⩾ 2.

In particular, Conjecture 6.1 would imply that—for all patterns σ considered in this
paper—the polynomials Aides

σ,n (t), P ipk
σ,n(t), and P ilpk

σ,n (t) are unimodal and log-concave,
and that the distributions of the statistics ides, ipk, and ilpk over Sn(σ) converge to
a normal distribution as n → ∞. It is worth noting that the Eulerian, peak, and left
peak polynomials

An(t) :=
∑

π∈Sn

tdes(π)+1 =
∑

π∈Sn

tides(π)+1,

P pk
n (t) :=

∑
π∈Sn

tpk(π)+1 =
∑

π∈Sn

tipk(π)+1, and

P lpk
n (t) :=

∑
π∈Sn

tlpk(π) =
∑

π∈Sn

tilpk(π)

are all real-rooted (see, e.g. [25, 26, 33]). In light of this fact, one might intuitively
expect the polynomials Aides

σ,n (t), P ipk
σ,n(t), and P ilpk

σ,n (t) to be real-rooted as well, since
avoiding a single consecutive pattern is not a very restrictive condition (especially
when compared to classical pattern avoidance) and therefore might be expected to
preserve unimodality or asymptotic normality.

One can use the theory of shuffle-compatibility from [17] to define other homo-
morphisms on FQSym which can be used to count permutations by inverses of
shuffle-compatible statistics other than the ones we consider here. For example, the
bistatistic (pk, des) is shuffle-compatible, so we can define a homomorphism Ψ(ipk,ides)
that can be used to produce yet another specialization of our generalized cluster
method that simultaneously refines by ipk and ides. Finally, in a different direction,
one may apply our homomorphisms to other formulas in FQSym which lift classical
formulas in permutation enumeration—such as the lifting of André’s exponential
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generating function considered in [21]—leading to new refinements of these classical
formulas by inverse statistics.
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