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Symmetric group characters
of almost square shape

Sho Matsumoto & Piotr Śniady

Abstract We give closed product formulas for the irreducible characters of the symmetric
groups related to rectangular ‘almost square’ Young diagrams p × (p + δ) for a fixed value of
an integer δ and an arbitrary integer p.

1. Introduction
1.1. The main result. Let π be a partition of an integer ` and let λ be a partition
of an integer n. Let Chπ(λ) denote the normalized character of the symmetric group
Sn defined by

(1) Chπ(λ) =

n↓` ·
χλ
π∪(1n−`)
χλ(1n)

, if n > `,

0 otherwise,

where χλµ = Tr ρλ(wµ) is the usual character of the irreducible representation ρλ of
the symmetric group Sn associated with λ, evaluated on an arbitrary permutation
wµ with the cycle decomposition given by µ. Here we use the falling factorial defined
by

a↓` = a(a− 1)(a− 2) · · · (a− `+ 1)︸ ︷︷ ︸
` factors

for a complex number a and a positive integer `, and by a↓0 := 1. This choice of the
normalization for the characters is quite natural, in particular in the context of the
asymptotic representation theory, see for example [3, 5].

In this note we will concentrate on the case when π = (`) consists of a single part,
i.e., on the characters evaluated on a single cycle (augmented by a necessary number
of fixed points). Also, we will concentrate on the special case when

λ = p× q = (q, . . . , q︸ ︷︷ ︸
p times

)

is a rectangular Young diagram, see Figure 1. We will give closed product formulas
for such characters in the almost square setting when q − p is a fixed integer and
p is arbitrary. The exact form of the formula depends on the parity of the length `
of the cycle, as well as on the parity of the difference q − p, so altogether there are
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q

p

Figure 1. The rectangular Young diagram p× q for p = 5 and q = 6.

four distinct formulas for such characters. As a teaser, we start with the case when
` = 2j − 1 is odd while q − p = 2d is even. Let us emphasize that by considering new
variables e, d such that p× q = (e− d)× (e+ d), we get interesting formulas.

Theorem 1.1. Let j be a positive integer. Then

(2) Ch2j−1
(
(e− d)× (e+ d)

)
= (−1)j−1 Cat(j − 1)

j∑
k=0

fk(j)
(
k−1∏
r=0

(d2 − r2)
)(

j−1∏
r=k

(e2 − r2)
)
,

where
Cat(j − 1) = (2j − 2)!

(j − 1)! j!
is the Catalan number; furthermore f0(j) = 1 and

(3) fk(j) = (−1)k j
↓k (2j − 1)↑↑k

k! (2k − 1)!!
for 1 6 k 6 j.

Above we used the double rising factorial a↑↑k (which is somewhat analogous to
the double factorial a!! in which the factors form an arithmetic progression with the
step 2) which is defined by

a↑↑k =
k−1∏
r=0

(a+ 2r) = 2k
(a

2

)↑k
for a complex number a and a positive integer k, and by a↑↑0 := 1. Thus, fk(j) ∈ Q[j]
is a polynomial in the variable j of degree 2k.

Remark 1.2. Note that in the above result there is no assumption that e − d and
e + d are non-negative integers; in fact e and d can be arbitrary complex numbers.
The reader may feel uneasy about the case when (e−d)× (e+d) does not make sense
as a Young diagram; later on in Corollary 2.1 we will explain why in this case the
left-hand side of (2) still makes sense.

1.2. Convention for products. In the following we will use the following non-
standard convention for products:

l∏
r=0

ar =


a0 · · · al if l > 0,
1 if l = −1,

1
al+1al+2···a−2a−1

if l 6 −2.
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This convention was chosen in such a way that the identity
l+1∏
r=0

ar =
[

l∏
r=0

ar

]
· al+1

holds for any (positive or negative) integer l.

1.3. The product formula. In the special case when d is an integer such that
its absolute value |d| is small, the formula (2) takes a simpler form because each
summand on the right-hand side which corresponds to k such that k > |d| is equal to
zero; in this way the sum can be taken over k ∈ {1, . . . ,min(j, |d|)}. This observation
is especially convenient in the aforementioned almost square setting when we consider
the character corresponding to a rectangular Young diagram λ = p × q in the setup
where q − p = 2d is a fixed even integer and p is arbitrary. In particular, we get the
following closed product form for the character.

Corollary 1.3. Let j, p, q be positive integers; we denote by n = pq = |p × q| the
number of the boxes of the corresponding Young diagram p× q. Suppose that q − p is
an even integer which we denote by 2d := q − p. Then

(4) Ch2j−1
(
p× q

)
= (−1)j−1 Cat(j − 1) Gd(j, n)

j−|d|−1∏
r=0

(
n− r(r + 2|d|)

)
,

where

Gd(j, n) =
|d|∑
k=0

fk(j)
(
k−1∏
r=0

(d2 − r2)
)|d|−1∏

r=k
(n+ d2 − r2)


with fk(j) given, as before, by (3).

Corollary 1.3 remains valid in the case when j 6 |d|, however in this case the
product on the right hand side of (4) should be understood using the convention from
Section 1.2.

Proof of Corollary 1.3. This is obtained by a simple formula transformation from
Theorem 1.1. Indeed, recall that

d = q − p
2 , e = q + p

2 , and n = e2 − d2,

where d is the integer in our assumption. Then each factor
∏k−1
r=0(d2 − r2) in (2)

vanishes if k > |d|. Thus, Theorem 1.1 implies that

Ch2j−1
(
p× q

)
= (−1)j−1 Cat(j − 1)

|d|∑
k=0

fk(j)
(
k−1∏
r=0

(d2 − r2)
)(

j−1∏
r=k

(e2 − r2)
)
.

Here we split the last product in the above equation as follows. See also the convention
in Section 1.2.

j−1∏
r=k

(e2 − r2) =
j−1∏
r=k

(n+ d2 − r2)

=

|d|−1∏
r=k

(n+ d2 − r2)

 j−1∏
r=|d|

(n+ d2 − r2)


=

|d|−1∏
r=k

(n+ d2 − r2)

j−|d|−1∏
s=0

(
n− s(s+ 2|d|)

) .
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In the last equality above, we changed the variable by setting r = s + |d|. Thus, we
obtain the expression in Corollary 1.3. �

We can see that, with d fixed, Gd(j, n) ∈ Q[j, n] is a polynomial in the variables
j, n of the total degree 2 |d| if we declare that the degrees of the variables j and n
are given by deg j = 1 and degn = 2. In fact, Gd(j, n) ∈ Z[j, n] is a polynomial with
integer coefficients, see Proposition 5.1.

Example 1.4.
G0(j, n) = 1,
G1(j, n) = n+ 1− j(2j − 1),
G2(j, n) = (n+ 4)(n+ 3)− 4j(2j − 1)(n+ 3) + 2j(j − 1)(2j − 1)(2j + 1).

For an arbitrary integer d, we have
Gd(j, n) = G−d(j, n)

which is related to the fact that
Ch2j−1

(
p× q

)
= Ch2j−1

(
q × p

)
;

in this way the values of G−1(j, n) and G−2(j, n) follow immediately.

1.4. Collection of results. Below we present a collection of the results which
cover the remaining choices for the parity for the length of the cycle and the difference
q − p between the rectangle sides.

1.4.1. The length of the cycle is odd, the difference of the rectangle sides is odd. The
following result is a counterpart of Theorem 1.1 which is particularly useful for a
rectangular Young diagram λ = p× q for which q − p is an odd integer.

Theorem 1.5. Let j be a positive integer. Then

Ch2j−1
(
(e− d)× (e+ d)

)
= (−1)j−1 Cat(j − 1)

j∑
k=0

fk(j)
[
k−1∏
r=0

(
d2 − (r + 1

2 )2)] [j−1∏
r=k

(
e2 − (r + 1

2 )2)] .
Corollary 1.6. Let j, p, q be positive integers and set n = pq. Suppose that q − p is
an odd integer 2d := q − p, where d ∈

{
± 1

2 ,±
3
2 , . . .

}
. Then

Ch2j−1
(
p× q

)
= (−1)j−1 Cat(j − 1) Hd(j, n)

j−|d|− 1
2∏

r=0

(
n− r(r + 2|d|)

)
,

where

Hd(j, n) =
|d|− 1

2∑
k=0

(−1)k j
↓k (2j − 1)↑↑k

k! (2k − 1)!!

k−1∏
r=0

(
d2 − (r + 1

2 )2) |d|− 3
2∏

r=k

(
n+ d2 − (r + 1

2 )2).
Example 1.7.

H 1
2

(j, n) = 1,

H 3
2

(j, n) = n+ 2− 2j(2j − 1),

H 5
2

(j, n) = (n+ 6)(n+ 4)− 6j(2j − 1)(n+ 4) + 4j(j − 1)(2j − 1)(2j + 1).

Similarly as in Example 1.4 we have
Hd(j, n) = H−d(j, n)
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thus the values of H
− 1

2
(j, n), H

− 3
2

(j, n), H
− 5

2
(j, n) follow immediately.

1.4.2. The length of the cycle is even, the difference of the rectangle sides is even.
The following result is a direct counterpart of Theorem 1.1 for the even cycle.

Theorem 1.8. Let j be a positive integer. Then

Ch2j
(
(e− d)× (e+ d)

)
= (−1)j−1

(
2j − 1
j

) j∑
k=0

gk(j)2d
(

k∏
r=1

(d2 − r2)
)(

j∏
r=k+1

(e2 − r2)
)
,

where g0(j) = 1 and

gk(j) = (−1)k j
↓k (2j + 1)↑↑k

k! (2k + 1)!!
for 1 6 k 6 j.

Corollary 1.9. Let j, p, q be positive integers and set n = pq. Suppose that q − p is
an even integer 2d = q − p, where d ∈ {0,±1,±2, . . . }. Then

Ch2j
(
p× q

)
= (−1)j−1

(
2j
j

)
Id(j, n)

j−|d|∏
r=0

(
n− r(r + 2|d|)

)
,

where I0(j, n) = 0 and, for d ∈ {±1,±2, . . . }

Id(j, n) = d

|d|−1∑
k=0

(−1)k j
↓k (2j + 1)↑↑k

k! (2k + 1)!!

(
k∏
r=1

(d2 − r2)
) |d|−1∏

r=k+1
(n+ d2 − r2)

 .

With d fixed, Id(j, n) ∈ Q[j, n] is a polynomial in the variables j, n of the total
degree 2|d| − 1 if we give deg j = 1 and degn = 2.

Example 1.10.

I0(j, n) = 0,
I1(j, n) = 1,
I2(j, n) = 2(n+ 3)− 2j(2j + 1) = 2

(
n− (j − 1)(2j + 3)

)
,

I3(j, n) = 3(n+ 8)(n+ 5)− 8j(2j + 1)(n+ 5) + 4j(j − 1)(2j + 1)(2j + 3).

For negative integers d, we have Id(j, n) = −I−d(j, n).

1.4.3. The length of the cycle is even, the difference of the rectangle sides is odd. The
following result is a direct counterpart of Theorem 1.5 for an even cycle.

Theorem 1.11. Let j be a positive integer. Then

Ch2j
(
(e− d)× (e+ d)

)
= (−1)j−1

(
2j − 1
j

) j∑
k=0

gk(j)2d
(

k∏
r=1

(
d2 − (r − 1

2 )2))( j∏
r=k+1

(
e2 − (r − 1

2 )2)) .
Corollary 1.12. Let j, p, q be positive integers and set n = pq. Suppose that q− p is
an odd integer 2d := q − p, where d ∈ {± 1

2 ,±
3
2 , . . . }. Then

Ch2j
(
p× q

)
= (−1)j−1

(
2j − 1
j

)
Jd(j, n)

j−|d|− 1
2∏

r=0

(
n− r(r + 2|d|)

)
,
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where

Jd(j, n) = 2d

|d|− 1
2∑

k=0

(−1)k j↓k (2j + 1)↑↑k

k! (2k + 1)!!

(
k∏

r=1

(
d2 − (r − 1

2 )2))

×

 |d|−
1
2∏

r=k+1

(
n + d2 − (r − 1

2 )2) .

Example 1.13.

J 1
2

(j, n) = 1,

J 3
2

(j, n) = 3(n+ 2)− 2j(2j + 1) = 3n− 2(j − 1)(2j + 3),

J 5
2

(j, n) = 5(n+ 6)(n+ 4)− 10j(2j + 1)(n+ 4) + 4j(j − 1)(2j + 1)(2j + 3).

For negative half integers d, we have Jd(j, n) = −J−d(j, n).

1.5. Vanishing of some special characters. The special case of Corollary 1.6
for d = 3

2 and p = 2j − 2, q = 2j + 1 gives rise to the following somewhat surprising
corollary for which we failed to find an alternative simple proof.

Corollary 1.14. For each integer j > 2 the irreducible character related to the rect-
angular diagram (2j − 2)× (2j + 1) vanishes on the cycle of length 2j − 1, i.e.,

χ
(2j−2)×(2j+1)
2j−1, 1(4j2−4j−1) = 0.

1.6. The link with spin characters related to the staircase strict parti-
tion. One of the motivations for the current paper was the recent progress related to
the spin characters of the symmetric groups [9]. On one hand, De Stavola [4, Propo-
sition 4.18, page 91] gave an explicit formula for the spin character related to the
staircase strict partition

∆p = (p, p− 1, p− 2, . . . , 2, 1)

which has the property that its double

D(∆p) = (p+ 1, p+ 1, . . . , p+ 1︸ ︷︷ ︸
p times

) = p× (p+ 1)

is a rectangular Young diagram which is almost square. On the other hand, in our
recent paper [6] we found an identity which gives a link between the spin characters
and their usual (linear) counterparts

2 Chspin
2j−1(ξ) = Ch2j−1(D(ξ))

which holds true for any strict partition ξ.
By combining these two results one gets a closed product formula for the linear

character Ch2j−1
(
p× (p+ 1)

)
corresponding to a rectangular Young diagram which

is almost square; this closed formula coincides with the special case of Corollary 1.6
for d = 1

2 (in fact the formula in the original paper of De Stavola has an incorrect
sign). In his proof, De Stavola employed some computations in Maple; by turning
the argument around our Corollary 1.6 gives a purely algebraic proof of his product
formula for Chspin

2j−1(∆p).
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1.7. Sketch of the proof. We will start in Section 2 by collecting some formulas
for the irreducible characters related to rectangular shapes. Our strategy towards the
proof of Theorem 1.1 is threefold.

• Firstly, we will fix the value of an integer j > 1 and we shall investigate the
function

(d, e) 7→ Ch2j−1
(
(e− d)× (e+ d)

)
.

We will show that it is a polynomial in the variables d, e of the total degree 2j.
• Secondly, we will show that this polynomial is of the form

Ch2j−1
(
(e− d)× (e+ d)

)
=

j∑
k=0

ck(j)
(
k−1∏
r=0

(d2 − r2)
)(

j−1∏
r=k

(e2 − r2)
)

with certain coefficients ck(j) independent of d, e.
• Thirdly, by finding explicitly the value of

Ch2j−1
(
(−1)× (2k − 1)

)
we will determine the coefficients ck(j).

The proofs of Theorems 1.5, 1.8, and 1.11 are fully analogous to the proof of
Theorem 1.1 and we skip them, see Section 4 for some additional comments.

2. Characters on rectangular diagrams
For any partition π of k, Stanley’s character formula for rectangular shapes [10] is
given by

(5) Chπ(p× q) = (−1)k
∑

σ1,σ2∈Sk
σ1σ2=wπ

(−q)κ(σ1)pκ(σ2),

where κ(σ) is the number of cycles in σ and wπ ∈ Sk is a fixed permutation of the
cycle type π.

Corollary 2.1. For each partition π the corresponding character
Chπ(p× q) ∈ Z[p, q]

can be identified with a polynomial in the variables p and q. This polynomial is of
degree |π|+ `(π) and fulfills the equality

(6) Chπ(p× q) = (−1)|π|−`(π) Chπ(q × p).

Proof. It is easy to show that if two polynomial functions from Q[p, q] take equal
values on each lattice point (p, q) with p, q ∈ N then they are equal as polynomials
(see [1, Lemma 2.1] for a stronger result); it follows that the polynomial given by the
right-hand side of (5) is unique.

We define the length ‖σ‖ of a permutation σ ∈ Sk as the minimal number of
factors necessary to write it as a product of transpositions. It is a classical result (see,
e.g., [5]) that

‖σ‖ = k − κ(σ).
In this way the exponent on the right-hand side of (5) is bounded from above by
κ(σ1) + κ(σ2) = 2k − ‖σ1‖ − ‖σ2‖ 6 2k − ‖σ1σ2‖ = k + (k − ‖σ1σ2‖) = |π|+ `(π),

as required.
Equation (6) is a consequence of the general formula for the character which cor-

responds to the transposed Young diagram
Chπ(λT ) = (−1)|π|−`(π) Chπ(λ). �
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We will need the following classical fact (see for instance [11, Proposition 1.3.7]).

Lemma 2.2. For each integer k > 1∑
σ∈Sk

pκ(σ) = p(p+ 1) · · · (p+ k − 1).

Corollary 2.3. For each integer k > 1

Chk
(
(−1)× q

)
= (−1) q(q + 1) · · · (q + k − 1),

Chk
(
p× (−1)

)
= (−1)k p(p+ 1) · · · (p+ k − 1).

Proof. From the Stanley formula (5) and Lemma 2.2 it follows that

Chk
(
p× (−1)

)
= (−1)k

∑
σ∈Sk

pκ(σ) = (−1)kp(p+ 1) · · · (p+ k − 1),

as required.
The other identity follows first one and (6). �

3. Proof of Theorem 1.1
We fix a positive integer j; note that the following notation depends on j implicitly.
We denote by

P(d) = Ch2j−1
(
(e− d)× (e+ d)

)
the left-hand side of (2) viewed as a polynomial in the variable d with the coefficients
in the polynomial ring Q[e]. From the Stanley character formula (5) and Corollary 2.1
it follows that the degree of P(d) is at most 2j.

Equation (6) implies that

Ch2j−1
(
(e− d)× (e+ d)

)
= Ch2j−1

(
(e+ d)× (e− d)

)
;

in other words the polynomial P(d) is even.
The linear space of even polynomials in the variable d has a linear basis

1, d2, d2(d2 − 12), d2(d2 − 12)(d2 − 22), . . . .

It follows that there exist polynomials P0, . . . , Pj ∈ Q[e] with the property that

(7) Ch2j−1
(
(e− d)× (e+ d)

)
= P0(e) + P1(e) d2 + P2(e) d2(d2 − 12) + · · · =

j∑
k=0

Pk(e)
k−1∏
r=0

(d2 − r2).

Additionally, from Corollary 2.1 it follows that the degree of the polynomial Pk(e) is
at most 2(j − k).

The parity of the total degree of each monomial on the right-hand side of the
Stanley formula (5) is the same as the parity of |π| − `(π). In our case π = (2j − 1),
so this parity is even. It follows that

Ch2j−1
(
(e− d)× (e+ d)

)
= Ch2j−1

(
(−e+ d)× (−e− d)

)
= Ch2j−1

(
(−e− d)× (−e+ d)

)
,

where the second equality is the consequence of the above observation that the poly-
nomial P(d) is even. This shows that P(d) is invariant under the involutive auto-
morphism of the polynomial ring Q[e] which is given by the substitution e 7→ −e. It
follows that each coefficient Pk(e) is an even polynomial in the variable e.
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Lemma 3.1. For each k ∈ {0, . . . , j} there exists some constant ck with the property
that

(8) Pk(e) = ck

j−1∏
r=k

(e2 − r2).

Proof. We will use induction over the variable k. For the induction step let k0 ∈
{0, . . . , j}; we assume that (8) holds true for each integer k ∈ {0, . . . , k0 − 1}.

Our strategy is to evaluate (7) for d = k0 and e ∈ {k0−1, . . . , j−1}. Each summand
on the right-hand side which corresponds to k > k0 vanishes as it contains the factor
(d2 − r2) for r = k0. On the other hand, each summand on the right-hand side which
corresponds to k < k0 vanishes because either (a) k0 = 0 and there are no such
summands, or (b) by the inductive hypothesis Pk(e) contains the factor (e2 − r2) for
r = e. We proved in this way that for e ∈ {k0 − 1, . . . , j − 1}

(9) Ch2j−1
(
(e− k0)× (e+ k0)

)
= Pk0(e)

k0−1∏
r=0

(k2
0 − r2).

In fact, in the special case when k0 = 0 the above reasoning shows more, namely that
the above equality holds true for an arbitrary choice of e ∈ C and

(10) Ch2j−1
(
e× e

)
= P0(e).

In the special case when e ∈ {k0, . . . , j−1} the rectangular Young diagram (e−k0)×
(e+k0) is well-defined and the defining formula (1) can be used. Furthermore, the total
number of rows and columns of this Young diagram is at most (e−k0)+(e+k0) = 2e <
2j−1 hence it does not contain any rim hooks of length 2j−1. From the Murnaghan–
Nakayama rule (see, e.g., [8, Corollary 4.10.6]) it follows that the left-hand side of (9)
is equal to zero; as a consequence Pk0(e) = 0.

We proved in this way that Pk0 is an even polynomial which has roots in k0, k0 +
1, . . . , j − 1; it follows that the polynomial Pk0(e) is divisible by the product

j−1∏
r=k0

(e2 − r2).

Since the degree of Pk0 is at most 2(j−k0), this determines the polynomial Pk0 up to
a scalar multiple and shows that (8) holds true for k := k0. This completes the proof
of the inductive step of Lemma 3.1. �

As an extra bonus, for k0 > 1 the special case of (9) and (8) for e = k0 − 1 gives
(in order to keep the notation lightweight we write k = k0)

Ch2j−1
(
(−1)× (2k − 1)

)
= ck

j−1∏
r=k

(
(k − 1)2 − r2) k−1∏

r=0
(k2 − r2).

The left-hand side can be evaluated thanks to Corollary 2.3 which gives an explicit
product formula for the constant ck for k > 1. Note that this argument cannot be
applied in the special case when k = 0 and j > 2 because the right-hand side contains
the factor

(
(k−1)2−r2) which vanishes for r = 1; for this reason in order to evaluate

c0 we will need a different method.
A combination of (8) and (10) gives

Ch2j−1
(
e× e

)
= c0

j−1∏
r=0

(e2 − r2).

Algebraic Combinatorics, Vol. 5 #4 (2022) 779



S. Matsumoto & P. Śniady

In order to evaluate the constant c0 we need some additional piece of information
about the polynomial on the left-hand side. One possible approach is to evaluate its
value for e := j; in this special case the Murnaghan–Nakayama rule has only one
summand therefore value of the normalized character is given by a product formula
based on the hook-length formula. An alternative approach is based on calculating
the leading coefficient [e2j ] Ch2j−1

(
e × e

)
, which stands for the coefficient of e2j

in Ch2j−1
(
e × e

)
, based on the ideas of the asymptotic representation theory, see

Remark 3.3.
Thanks to these explicit values of the constants ck, Theorem 1.1 follows by a

straightforward algebra and its proof is now complete.
Theorem 1.1 gives a new proof of the following result.

Corollary 3.2. For each integer j > 1[
e2j]Ch2j−1

(
e× e

)
= (−1)j−1 Cat(j − 1).

Remark 3.3. Corollary 3.2 is not new; in the following we only give a rough sketch
of an alternative proof based on existing results. The work of Biane ([2, Theorem 1.3]
or [3]) implies that

lim
e→∞

1
e2j Ch2j−1

(
e× e

)
= R2j(�),

where R2j(�) denotes the free cumulant of the one-box Young diagram � = (1). More
specifically, R2j(�) is the free cumulant of the Kerov transition measure of � which
is equal to the Bernoulli measure

1
2 (δ−1 + δ1) .

Standard combinatorial tools of free probability [7] give a closed formula for such a
free cumulant in terms of Catalan numbers.

4. Comments about the proof of Theorems 1.5, 1.8, and 1.11
As we already mentioned, the proofs of Theorems 1.5, 1.8, and 1.11 are analogous
to the proof of Theorem 1.1. Below we revisit only some key places which require an
adjustment.

For example, in order to prove Theorem 1.5 we need to write

Ch2j−1
(
(e− d)× (e+ d)

)
=

j∑
k=0

P ′k(e)
k−1∏
r=0

(
d2 −

(
r + 1

2
)2
)
.

and then to show the following analogue of Lemma 3.1: for each k ∈ {0, . . . , j} there
exists some constant c′k with the property that

P ′k(e) = c′k

j−1∏
r=k

(
e2 −

(
r + 1

2
)2
)
.

In order to achieve this goal, the strategy of the induction step is to fix d = k0 + 1
2

and to consider e ∈ {k0 − 1
2 , . . . , j −

1
2}.

The calculation of the constants c′k is particularly easy now because both c′k as
well as the constants ck from Equations (8) and (7) coincide with the coefficient of a
specific monomial in the Stanley polynomial

c′k =
[
d2ke2(j−k)

]
Ch2j−1

(
(e− d)× (e+ d)

)
= ck

hence they are equal.
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Theorems 1.8 and 1.11 concern the character Ch2j on an even cycle. In this case
the corresponding polynomial

P(d) = Ch2j
(
(e− d)× (e+ d)

)
is odd and its degree is at most 2j + 1, therefore we may write

Ch2j
(
(e− d)× (e+ d)

)
=

j∑
k=0

P ′′k (e) d
k∏
r=1

(d2 − r2)

=
j∑

k=0
P ′′′k (e) d

k∏
r=1

(
d2 −

(
r − 1

2
)2
)

for some even polynomials P ′′k (e), P ′′′k (e) ∈ Q[e] which are of order at most 2(j − k),
where k ∈ {0, . . . , j}.

The proof of Theorem 1.8 involves analysis of the polynomials P ′′k which is analo-
gous to the one from the proof of Theorem 1.1; in particular an analogue of Lemma 3.1
says that

P ′′k (e) = c′′k

j∏
r=k+1

(
e2 − r2) .

The proof of its inductive step is based on fixing d = k0 + 1 and considering e ∈
{k0, . . . , j}. The values e ∈ {k0+1, . . . , j} are the positive roots of the even polynomial
P ′′k ; the polynomial is therefore determined up to a multiplicative constant. The special
case e = k0 allows to find explicitly the value of c′′k ; interestingly (opposite to the case
in the proof of Theorem 1.1) the case k = 0 does not require a separate proof.

5. Integrality of the coefficients
In the following we use the notation

[condition] =
{

1 if condition holds true,
0 otherwise.

Proposition 5.1. Let d be an integer. Each coefficient of the polynomial Gd(j, n)
(defined in Corollary 1.3) is an integer.

Proof. We will show a stronger result that for each integer k > 1

(11) 1
2k−1

∏k−1
r=0(d2 − r2)
k! (2k − 1)!! =

2d ·
∏k−1
r=−k+1(d+ r)

(2k)!
is an integer. We will do it by proving that for each prime number p the exponent by
which it contributes to the factorization of the numerator is at least its counterpart
for the denominator. In the case when p 6= 2 these exponents are equal, respectively,
to

(12)
∑
c>1

([
pc | d

]
+ #

{
i ∈ {d− k + 1, . . . , d+ k − 1} : pc | i

})
=
∑
c>1

([
pc | d

]
−
[
pc | d+ k

]
+ #

{
i ∈ {d− k + 1, . . . , d+ k} : pc | i

})
and
(13)

∑
c>1

#
{
i ∈ {1, . . . , 2k} : pc | i

}
.

We will show that for each c > 1 the corresponding summand on the right-hand side
of (12) is greater or equal to its counterpart in (13).
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We start with the observation that in any collection of pc consecutive integers there
is exactly one which is divisible by pc; it follows that a collection of 2k consecutive
integers contains at least

⌊
2k
pc

⌋
such numbers divisible by pc. As a consequence we get

the following lower bound for the summand on (12):

(14)
[
pc | d

]
+ #

{
i ∈ {d− k + 1, . . . , d+ k − 1} : pc | i

}
> [pc | d]−

[
pc | d+ k

]
+
⌊

2k
pc

⌋
.

Since (12) can be alternatively written as

(15)
∑
c>1

([
pc | d

]
+ #

{
i ∈ {d− k + 1, . . . , d+ k − 1} : pc | i

})
=
∑
c>1

([
pc | d

]
−
[
pc | d− k

]
+ #

{
i ∈ {d− k, . . . , d+ k − 1} : pc | i

})
,

an analogous reasoning to the one above gives the following alternative lower bound
for the summand on the left-hand side of (12):

(16)
[
pc | d

]
+ #

{
i ∈ {d− k + 1, . . . , d+ k − 1} : pc | i

}
> [pc | d]−

[
pc | d− k

]
+
⌊

2k
pc

⌋
.

On the other hand, for the corresponding summand in (13) we get the following
exact expression

(17) #
{
i ∈ {1, . . . , 2k} : pc | i

}
=
⌊

2k
pc

⌋
.

If one of the following two conditions holds true: (a) the right-hand side of (14) is
greater or equal to the right-hand side of (17), or (b) the right-hand side of (16) is
greater or equal to the right-hand side of (17), then the desired inequality holds true.
The opposite case, i.e., when both d − k and d + k are divisible by pc and d is not
divisible by pc, is clearly not possible since (d+ k) + (d− k) = 2d.

For the case when p = 2 let us consider half of the expression (11); then (12) and
(13) still provide the exponents in the numerator and the denominator. The proof
proceeds without any modifications until after Equation (17). It might happen that
none of the conditions (a) and (b) holds true; if this is indeed the case then both d−k
and d+k are divisible by 2c (hence d is divisible by 2c−1) and d is not divisible by 2c.
There exists at most one index c with this property. It follows that the sum (12) is
at least (13) less one. Since we considered half of the expression (11), this completes
the proof. �

Proposition 5.2. Let d ∈ {± 1
2 ,±

3
2 , . . . }. Each coefficient of the polynomial Hd(j, n)

(defined in Corollary 1.6) is an integer.

Proof. By the symmetry Hd(j, n) = H−d(j, n), we may suppose that d is positive and
we write it as d = d′ + 1

2 , where d
′ is a non-negative integer. For each integerk ∈

{0, 1, 2, . . . , d′},∏k−1
r=0

(
d2 − (r + 1

2 )2)
k! (2k − 1)!! =

2k
∏k
r=−k+1(d′ + r)

(2k)! = 2k
(
d′ + k

2k

)
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is clearly an integer. Thus, we see that

H
d′+ 1

2
(j, n) =

d′∑
k=0

(−1)k2k
(
d′ + k

2k

)
j↓k(2j − 1)↑↑k

d′−1∏
r=k

(n+ d′(d′ + 1)− r(r + 1))

has integer coefficient, as required. �

Proposition 5.3. Let d be an integer. Each coefficient of the polynomial Id(j, n)
(defined in Corollary 1.9) is an integer.

Proof. By the symmetry Id(j, n) = −I−d(j, n), we may suppose that d is a positive
integer. For each integer k ∈ {1, 2, . . . , d− 1},

d
∏k
r=1(d2 − r2)

k! (2k + 1)!! =
2k
∏k
r=−k(d+ r)

(2k + 1)! = 2k
(
d+ k

2k + 1

)
is clearly an integer which completes the proof. �

Proposition 5.4. Let d be a half integer. Each coefficient of the polynomial Jd(j, n)
(defined in Corollary 1.12) is an integer.

Proof. We may write d = d′− 1
2 , where d

′ is an integer. We will show a stronger result
that for each integer k > 1

1
2k

2d
∏k
r=1

(
d2 − (r − 1

2 )2)
k! (2k + 1)!! =

(2d′ − 1)
∏k−1
r=−k(d′ + r)

(2k + 1)!

is an integer. The proof is analogous to the proof of Proposition 5.1. �
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