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Automorphism groups of Steiner triple
systems

Jean Doyen & William M. Kantor

Abstract If G is a finite group then there is an integer MG such that, for u >MG and u ≡ 1
or 3 (mod 6), there is a Steiner triple system U on u points for which AutU ∼= G. If V is a
Steiner triple system then there is an integer NV such that, for u > NV and u ≡ 1 or 3 (mod 6),
there is a Steiner triple system U on u points having V as an AutU -invariant subsystem such
that AutU ∼= AutV and AutU induces AutV on V .

1. Introduction
Mendelsohn [5] proved that any finite group G is isomorphic to the automorphism
group of some Steiner triple system. In his proof he modified the Steiner triple system
of points and lines of a projective space PG(n, 2), producing a system having 2n+1−1
points for some n. This leads to the natural question: what restrictions are there on
the number of points of a Steiner triple system U such that AutU ∼= G? In order to
admit G as a group of automorphisms, U cannot be too small:

Theorem 1.1. If G is a finite group then there is an integerMG such that, for u >MG

and u ≡ 1 or 3 (mod 6), there is a Steiner triple system U on u points for which
AutU ∼= G.

As with most theorems of this sort, the proof does not distinguish between cyclic
groups and simple groups. It is known that MG = 15 when G = 1 [4]. Our arguments
cannot deal with such small Steiner triple systems.

The preceding theorem is an immediate consequence of [5] and the following more
general result, which is the main theorem of this paper:

Theorem 1.2. If V? is a Steiner triple system then there is an integer NV?
such that,

for u > NV?
and u ≡ 1 or 3 (mod 6), there is a Steiner triple system U on u

points having V? as an AutU -invariant subsystem such that AutU ∼= AutV? and AutU
induces AutV? on V?.
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Cameron [1] considered a similar question. He proved that, if V is a Steiner triple
system of order v (i.e. having v points), and if u > 6v2 with u ≡ 1 or 3 (mod 6), then
there is a Steiner triple system U of order u in which V can be embedded in such
a way that every automorphism of V can be extended to U . His proof and ours use
a familiar and wonderful construction of Moore [6] from the not-so-distant past that
combines three Steiner triple systems to produce a fourth.

The proof of Theorem 1.2 first enlarges V?, without changing its automorphism
group, as part of a process to obtain a Steiner triple system U having a rich geometry of
PG(m, 2) subsystems for variousm (cf. Remark 3.1). This process involves Lemma 2.3
and Proposition 2.5 (using [3]), and leads to our key tool: Proposition 3.8. The latter
makes it straightforward in Proposition 3.9 to determine the automorphism group of
the Steiner triple system U we construct.

The ugly bookkeeping parts of the proof (in Section 3.1.1 and especially in Sec-
tion 3.1.2) ensure that we obtain all large u. Remark 3.10 contains poor bounds for
MG and NV?

, while Remark 3.11 comments on a difference between the bookkeeping
approaches in [1] and here.

Results such as Theorem 1.1 are usually based on the action of G having many
regular point-orbits. This is very much not the situation for Theorem 1.2: for our U
the size of every point-orbit of AutU is 1 or the size of a point-orbit of AutV? on the
original Steiner triple system V?.

There is also a result in [1] concerning a partial Steiner triple system V (a set of
points, together with some triples of points, such that any two points are in at most
one triple), and a partial Steiner triple U having V as a subsystem (so the points of
V are among the points of U , and the triples of V are precisely those triples of U
that are contained in V ). It is shown in [1] that there is a function g such that, if V
is a partial Steiner triple system of order v, and if u > g(v) with u ≡ 1 or 3 (mod 6),
then there is a Steiner triple system U of order u of which V is a subsystem such that
every automorphism of V can be extended to U . In Section 4 we will use Theorem 1.2
to prove the following stronger result (along with variations):

Theorem 1.3. If V is a partial Steiner triple system then there is an integer N ′V such
that, for u > N ′V and u ≡ 1 or 3 (mod 6), there is a Steiner triple system U on u
points having V as an AutU -invariant subsystem such that AutU ∼= AutV and AutU
induces AutV on V .

2. Background
2.1. Moore’s XY V . We will use a 125 year old construction due to Moore [6,
p. 276].(1) (This construction is in many sources, such as [7, p. 235] and [1].)

Let X ⊂ Y and V be three STSs (i.e. Steiner triple systems), and label Y −X in
any way by the elements of a cyclic group A of order |Y | − |X|. (We always use |Y |
to denote the order of an STS Y .) Then U := X ∪ (V × A) is (the set of points of)
an STS, with triples
(M1) those of X,

(M2) (v, a1), (v, a2) and
{
x if a1, a2, x is a triple in Y , ai ∈ Y −X, x ∈ X
(v, a3) if a1, a2, a3 is a triple in Y , ai ∈ Y −X,

and
(M3) (v1, a1), (v2, a2), (v3, a3) if v1, v2, v3 is a triple in V and a1a2a3 = 1.

(1)Moore used it to produce two nonisomorphic STSs of any admissible order > 13. Unfortunately,
his method for proving nonisomorphism [6, pp. 279–281] has a significant gap.
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The fact that A is cyclic, not just abelian, is used in several places, most signifi-
cantly in Lemma 3.4 and Proposition 3.9.

Clearly |U | = |X|+ |V |(|Y | − |X|).

2.2. Enlarging Y . The STSs X and Y in the preceding section have unknown
structure. While this does not matter for X, we will use elementary constructions to
enlarge Y in order to give it significant geometric structure (Lemmas 2.2 and 2.3).

Given an STS Y0 there is a standard construction for an STS 2Y0 + 1 on 2|Y0|+ 1
points, labeled using Y0∪̇Y ′0 ∪̇∗0 for a “distinguished” new point ∗0 and a bijection
y 7→ y′ sending Y0 → Y ′0 , and triples of the form

abc in Y0 ∗0aa′ etc. a′b′c etc.
Here |2Y0 + 1| ≡ 3 (mod 4) and Y0 is a subsystem of 2Y0 + 1. If Y0 is a hyperplane of
a projective space P = PG(n, 2) then P ∼= 2Y0 + 1. Thus, if Y0 is a projective space
then so is 2Y0 + 1.

Definition 2.1. An STS is PG(2, 2)-pointed with respect to a point p if any two
triples containing p generate a PG(2, 2) subsystem.

An STS with more than seven points is PG(3, 2)-2-pointed with respect to two
points if any four points including these two generate a PG(k, 2) subsystem for k = 2
or 3.

An STS is PG(3, 2)-paired if any two points are in a PG(3, 2) subsystem. This is
the key geometric property needed in the proof of Proposition 3.8(i).

Lemma 2.2. If Y0 is an STS with more than one point, then
(i) 2Y0 + 1 is PG(2, 2)-pointed with respect to the distinguished point ∗0,
(ii) Y1 := 2(2Y0 + 1) + 1 is PG(3, 2)-2-pointed (with respect to some pair of its

points), and
(iii) Y1 is PG(3, 2)-paired of order 4|Y0|+ 3 ≡ 7 (mod 8).

Proof. (i) Two triples ∗0aa′, ∗0bb′ of 2Y0 + 1 containing ∗0 generate a PG(2, 2) sub-
system with triples

abc ∗0aa′, ∗0bb′, ∗0cc′ a′b′c, a′bc′, ab′c′.
(ii) The pair {∗0, ∗1} has the required property, where ∗1 is the new point used

to produce Y1 = 2(2Y0 + 1) + 1 from 2Y0 + 1. For, if ∗0, ∗1, a, b are four points of Y1
then ∗1, a and ∗1, b are in triples meeting 2Y0 +1 at points ā and b̄, respectively. Then
∗0, ā, b̄ are in a PG(2, 2) subsystem Z of 2Y0 + 1, and 2Z + 1 is a PG(3, 2) subsystem
of Y1 containing ∗0, ∗1, a, b.

(iii) This is immediate by (ii). �

Admissible integers are those ≡ 1 or 3 (mod 6); these are precisely the possible
orders of STSs.

We use the standard direct product A×B of STSs A and B: the STS for which
A×B is the set of points and whose triples have the form {(a, b1), (a, b2), (a, b3)},
{(a1, b), (a2, b), (a3, b)} or {(a1, b1), (a2, b2), (a3, b3)} for a ∈ A, b ∈ B, and ordered
triples (a1, a2, a3) from A and (b1, b2, b3) from B. Clearly, if a ∈ A and b ∈ B then
a×B and A×b are subsystems of A×B.

Lemma 2.3.
(i) If A and B are PG(3, 2)-paired STSs then so is A×B.
(ii) An integer is the order of a PG(3, 2)-paired STS if it is admissible, at least

15 and ≡ 7 (mod 8), or if it is a product of integers each of which behaves
that way.
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Proof. (i) Given two points (a1, b1) and (a2, b2) of A×B there are PG(3, 2) subsystems
A0 of A containing a1, a2 and B0 of B containing b1, b2.

If a1 6= a2 and b1 6= b2 there is an isomorphism φ :A0 → B0 sending ai 7→ bi
for i = 1, 2. Then {(a, aφ) | a ∈ A0} ⊂ A0×B0 is a PG(3, 2) subsystem of A×B
containing the given points.

If a1 = a2 then a1×B0 is a PG(3, 2) subsystem containing (a1, b1) and (a2, b2). If
b1 = b2 then A0×b1 is a PG(3, 2) subsystem containing (a1, b1) and (a2, b2).

(ii) Any admissible integer 8n + 7 > 15 can be written 2(2(2n + 1) + 1) + 1 with
2n+ 1 > 1 and admissible. By Lemma 2.2(iii) there is a PG(3, 2)-paired STS of order
8n+ 7. Now use (i). �

2.3. Enlarging V?. The STS V? in Theorem 1.2 has unknown structure. As we
did with Y0 in Section 2.2, we will enlarge V? to STSs having significant geometric
structure (Corollary 2.6). Since our arguments are based on finite geometry, we briefly
describe how “close” each STS in [3] is to a projective space.

Let V be a vector space over F = F16 with basis v1, . . . , vn. This produces a vector
space and a projective space over F2. Let F ∗ = 〈θ〉. Suitably modify the PG(3, 2)
subspaces determined by the F2-spaces Fvi and F (vi + θvj) for all i, j, in order to
obtain an STSD. Only a tiny portion of the underlying PG(4n− 1, 2) is altered: every
subspace of that projective space meeting U :=

⋃
i,j

(
Fvi ∪F (vi + θvj)

)
at most once

is a subsystem of D. As in [3, Theorem 1.1 and Sec. 7(1c)], this provides the flexibility
needed for the following

Remark 2.4. If n > 6 then there is an STS D such that
(i) AutD = 1,
(ii) D has 16n − 1 points, and
(iii) given points a, b of D there is a point c such that each pair {a, c} and {b, c}

is in some PG(n− 1, 2) subsystem of D.

See [3] for the modifications of the above PG(3, 2) subsystems needed to obtain (i).
The subsystems in (iii) are crucial for our proof of Theorem 1.2; we will obtain them
less tediously than similar ones in [3]. Let c /∈

⋃
u∈U (〈a, u〉F2 ∪ 〈b, u〉F2) and consider

the pair {a, c}. For 2 6 j < n inductively increase a j-dimensional F2-subspace
J ⊃ {a, c} of V with J ∩ U ⊆ 〈a〉F2 to a j + 1-dimensional F2-subspace J ′ ⊃ J with
J ′ ∩ U = J ∩ U , noting that |

⋃
u∈U 〈J, u〉F2 | < 2j+1(n+ n(n− 1))16 < |V |.

Choose n > 6 so that 2n − 1 > |V?| > 2n−6. Then the image of any map from
PG(n − 1, 2) into V? sending every collinear triple to a triple or a point must have
size 1. (Otherwise, since the map cannot be 1-1, restrict to a plane mapping onto
a triple in order to obtain a contradiction: the preimages of the points of the triple
would have to be pairwise disjoint, cover the plane, and be such that the line through
two points of a preimage is contained in the preimage.)

Proposition 2.5. Let D be as in the preceding Remark, and let d ∈ D.
(i) Every point of V?×D is in a PG(n− 1, 2) subsystem of V?×D,
(ii) V?×d is isomorphic to V?,
(iii) V?×d is an Aut(V?×D)-invariant subsystem of V?×D on which Aut(V?×D)

induces Aut(V?×d), and Aut(V?×D) ∼= Aut(V?×d) ∼= AutV?, and
(iv) |V?×D| ≡ ±3 (mod 12) and 165 < |V?×D| < 224|V?|5.

Proof. For (i), if v ∈ V? then v×D is isomorphic to D, so use Remark 2.4(iii). State-
ment (ii) is obvious. For (iii) we need to determine Aut(V?×D).

Every PG(n− 1, 2) subsystem in V?×D is a set of ordered pairs that projects onto
subsystems of V? and D, and hence induces a map from PG(n − 1, 2) to V? sending
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every collinear triple to a point or triple. As noted above, since 2n − 1 > |V?| the
image of that map is a point of V?. Thus, every PG(n− 1, 2) subsystem in V?×D lies
in some subsystem v×D, v ∈ V?.

Consider the graph whose vertices are the PG(n− 1, 2) subsystems of V?×D, with
two such subsystems joined if and only if they meet. We have just seen that every
such subsystem is contained in some subsystem v×D, v ∈ V . Since no two subsystems
v×D meet, every connected component C of our graph lies in some subsystem v×D;
by Remark 2.4(iii), C is the set of PG(n − 1, 2) subsystems of v×D and generates
v×D. Since Aut(V?×D) permutes the connected components of our graph it also
permutes the subsystems v×D.

Let h ∈ Aut(V?×D). If v ∈ V? then (v×D)h = vh
′×D for some vh′ ∈ V?, where

h′ : V? → V? is bijective. We claim that the map h′ : V? → V? is in AutV?. For, if
v1, v2, v3 is a triple of V? and d ∈ D then (v1, d), (v2, d), (v3, d) is a triple of V?×D.
Then so is (v1, d)h, (v2, d)h, (v3, d)h; this is (vh′

1 , d1), (vh′

2 , d2), (vh′

3 , d3) with di ∈ D, so
vh

′

1 , v
h′

2 , v
h′

3 is a triple of V?, as claimed.
Now h′ ∈ AutV? induces h• ∈ Aut(V?×d) sending (v, d) 7→ (vh′

, d) for v ∈ V?,
d ∈ D. We thus have two automorphisms h and h• of V?×d sending each v×D to
vh

′×D. Then h•h−1 sends each subsystem v×D to itself, induces an automorphism
of each such subsystem, and hence is 1 by (ii) and Remark 2.4(i). Thus, h = h•

sends each subsystem V?×d to itself, and hence so does Aut(V?×D). This proves that
Aut(V?×D) = (AutV?)× 1D.

(iv) |V?×D| = (16n − 1)|V?| ≡ (16 − 1)|V?| ≡ 3|V?| ≡ ±3 (mod 12) and 165 <
(16n − 1)|V?| < (2n)4|V?| 6 (26|V?|)4|V?| since |V?| > 2n−6. �

Corollary 2.6. For sufficiently large integers n and m there are STSs V?×D and
V?×D×D′ such that one of them, V, has the following properties:

(i) |V | ≡ 3 (mod 12), |V | > 165, and either |V | = |V?||D| = |V?|(16n − 1) or
|V | = |V?||D||D′| = |V?|(16n − 1)(16m − 1),

(ii) Every point of V is in a PG(3, 2) subsystem of V, and
(iii) V has an AutV -invariant subsystem V?

′ ∼= V? on which AutV induces AutV?
′,

and AutV ∼= AutV?
′ ∼= AutV?.

Proof. Apply the proposition to V?×D in place of V?, using in place of D an STS D′
of order 16m − 1 where 2m − 1 > |V?×D| > 2m−6. Since 3|V?| ≡ ±3 (mod 12) either
|V?|(16n − 1) ≡ 3 (mod 12) or |V?|(16n − 1)(16m − 1) ≡ 3 (mod 12). �

3. Proof of Theorem 1.2
The proof proceeds in three stages: construction of an STS U (Section 3.1.1), deter-
mining that we have obtained all sufficiently large admissible integers as the order of
some such U (Section 3.1.2), and using geometry to determine AutU (Sections 3.3
and 3.4).

3.1. Preliminaries and notation. We will describe STSs X, Y and V that will
be used to construct our STS U via Section 2.1.

3.1.1. Properties of X, Y and V . We begin with notation and properties of these
STSs. We note that properties (P1)(b) and (P3)(d) will be essential (in Proposi-
tion 3.8) for studying subsystems of U isomorphic to V or Y .

Let V∗ be as in Theorem 1.2. Property (P1) concerns an STS V that will replace
V∗ in our arguments and has a rich geometric structure.

(P1) V and v.
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(a) Use Corollary 2.6 to obtain an STS V on v points, where
v ≡ 3 (mod 12) and v > 165,

having (a copy of) V? as an AutV -invariant subsystem on which AutV
induces AutV? and such that AutV ∼= AutV?. (Here V is not uniquely
determined: it depends on choices for D, n and possibly D′ and m that
are made just once in the proof of Corollary 2.6.)

(b) Every point of V is in a PG(3, 2) subsystem of V (Corollary 2.6(ii)).
In (P2) and (P4) we will introduce further admissible integers y1, y2, y, x and
u; Lemma 3.3 concerns the existence of integers satisfying the conditions stated
in (P1), (P2) and (P4).

(P2) δ, x, y1, y2 and y.
(a) Let δ = ±1. (The admissible integer u in Theorem 1.2 will later be

related to δ via the requirement u ≡ δ (mod 4).)
We will use an admissible integer y ≡ δ (mod 4):
let y1 ≡ 15 (mod 24), which is admissible and ≡ 7 (mod 8);
if δ = −1 let y := y1; and
if δ = 1 let y := y1y2 where y2 ≡ 15 (mod 24).

(b) Let x be admissible.
(c) Assume that y1 >

√
y > 8x+ 7.

(d) Assume that y > x+ 6v.
In (P3) and (P4) we provide a recipe that uses the integers in (P2) to obtain auxiliary
STSs together with an STS U that behaves as required in Theorem 1.2.

(P3) X, Y1, Y2 and Y .
(a) Write y1 = 4y0 + 3, so that y0 is admissible and y0 > 2x+ 1 (by (P2)(a)

and (P2)(c)). Then [2] provides an STS Y0 of order y0 containing a
subsystem X of order x.

(b) Let Y1 := 2(2Y0 + 1) + 1, so |Y1| = 2(2|Y0|+ 1) + 1 = y1 (by (P3)(a)) and
Y1 is PG(3, 2)-paired (by Lemma 2.2(iii)).
If δ = 1 let Y2 be a PG(3, 2)-paired STS of order y2 (Lemma 2.3(ii)).

(c) If δ = −1 let Y := Y1, of order y.
If δ = 1 let Y := Y1×Y2, of order y.

(d) Any two points of Y are in a PG(3, 2) subsystem of Y (Lemma 2.3).
(P4) U, A and u.

Let A := Y − X be as in Section 2.1, so the STS U := X ∪ (V × A) has
order u := x + v(y − x). In Lemma 3.3 we will see that all sufficiently large
admissible integers arise here as u for the choice of v in (P1) and for suitable
x, y, δ in (P2).

As noted in [1, p. 469], each g ∈ AutV acts as an automorphism of U via
g = 1 on X and (p, q)g = (pg, q) for p ∈ V, q ∈ Y −X.

This produces a subgroup of AutU isomorphic to AutV and inducing Aut(V ×
1) on the subsystem V × 1 of U .

(P5) The cyclic group A has even order; let −1 denote its involution. For a ∈ A
let −a := (−1)a.

Let A6 := {a ∈ A | a6 = 1}.
(P6) Labeling Y − X. We assume that Y − X behaves as in Lemma 3.4 below

(which depends only on Section 2.1 and the fact that |Y −X| is not tiny).
Remark 3.1. Section 1 mentions “. . . a Steiner triple system U having a rich geometry
of PG(m, 2) subsystems. . . ”. This refers to the geometry inherited by U from (P1)(b)
and (P3)(d), which involves far more structure than the fact that U is generated by
its PG(3, 2) subsystems.
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3.1.2. Existence of y and x. We first rephrase and slightly strengthen the numerical
requirements in (P1), (P2) and (P4):

Lemma 3.2. Assume that u, v, δ, y1, y2 and y are integers that behave as follows:
(i) u is admissible with u ≡ δ (mod 4) for δ = ±1, and v ≡ 3 (mod 12),
(ii) u > 8002v7 and v > 165,
(iii) v − 1 is a factor of u− y,
(iv) y = y1y2 ≡ δ (mod 4) with y1 ≡ 15 (mod 24), where

if δ = −1 then y2 = 1, while
if δ = 1 then y2 ≡ 15 (mod 24) and y1 > y2 (so y1 >

√
y ), and

(v) u/v < y < u/v + 1
8{(v − 1)/v}

√
u/v − 1 < u.

Then u, v, δ, y1, y2, y and x := (vy− u)/(v− 1) = y− (u− y)/(v− 1) are integers that
satisfy all of the conditions in (P1), (P2) and (P4).

Remark. We have y1 ≡ 7 (mod 8), and y2 ≡ 7 (mod 8) if y2 6= 1. However, we do not
need information about either u or v (mod 8). What we need are u and y (mod 4) in
(i) and (iv) in order to have u − y ≡ 0 (mod 4); this and v − 1 ≡ 2 (mod 4) imply
that x = y − (u− y)/(v − 1) ≡ y − 0 ≡ 1 (mod 2).

Proof. Note that u, v, y1, y2 and y are admissible. By (v), vy − u > 0 and u− y > 0,
so 0 < x < y.

(P1): See (i) and (ii).
(P2)(a): This is in (iv).
(P2)(b): Since v ≡ 0 (mod 3) we have x ≡ (0 − u)/(0 − 1) = u ≡ 0 or 1 (mod 3).

We have already noted that x is odd, so it is admissible.
(P2)(c) and (P2)(d): By (v), (vy−u)/v < 1

8{(v−1)/v}
√
u/v − 7

8{(v−1)/v}. Then

x = (vy − u)/(v − 1) < 1
8
√
y − 7

8 (which proves (P2)(c) using (iv))
< y/2 < y − 6v

since y > u/v > 12v by (v) and (ii); and this proves (P2)(d).
(P4): The relation u = x+ v(y − x) is just the present definition of x. �

Remark. Condition (v) places y in an interval of length roughly 1
8
√
u/v, which is

fairly large by (ii). We still need to verify the relatively obvious fact that this is large
enough to make it possible to satisfy the remaining inequalities and congruences in
the lemma.

Lemma 3.3. Given admissible integers v and u such that v ≡ 3 (mod 12), v > 165

and u > 8002v7, there are integers x, y1, y2 and y behaving as stated in (P1), (P2)
and (P4).

Proof. We will use (i)–(v) in the preceding lemma. Let u ≡ δ (mod 4) with δ = ±1;
the remaining requirements in (i) and (ii) are among the present hypotheses.

Since v ≡ 3 (mod 12) we can write v = 3 + 12e+ 24m with e ∈ {0, 1}.
When δ = −1 let y2 := 1. When δ = 1 let y2 := v + (6 − e)(v − 1), so y2 ≡

1 (mod v − 1) and y2 ≡ 15 (mod 24). Clearly y2 < 7v.
We next define y1. Let 0 < u′ < v − 1 with u′ ≡ u (mod v − 1), so u′ is odd.
Let y1 := u′ +

(
24du/{24v(v − 1)y2}

⌉
+ 1

2
(
(15− 6e) + (23− 6e)u′

))
(v − 1). Since

(15− 6e) + (23− 6e)u′ is even we have y1 ≡ u′ ≡ u (mod v− 1) and y1 ≡ u′ +
(
(15−

6e) + (23− 6e)u′
)
(1 + 6e) ≡ 15 (mod 24).

We claim that y1, y2 and y := y1y2 behave as required in Lemma 3.2(iii)–(v).
(iii): y = y1y2 ≡ u · 1 (mod v − 1).
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(iv): Most of this is in our definitions of y1 and y2, while u > 24v(v − 1)7v >
24v(v − 1)y2 implies that y1 > 24(v − 1) > 7v > y2.

(v): For the first part of (v), y = y1y2 >
(
24u/{24v(v − 1)y2}

)
(v − 1)y2 = u/v.

Next, u′ < v − 1, y2 < 7v and 8002v6 < u/v imply that
y = y1y2 < u′y2 +

(
u/v + 24 · 1 · (v − 1)y2

)
+ 1

2 (15 + 23v)(v − 1)y2

< (v − 1)7v +
(
u/v + 24(v − 1)7v

)
+ 1

2 (15 + 23v)(v − 1)7v
< u/v + 100v2(v − 1)− 1 < u/v + 1

8{(v − 1)/v}
√
u/v − 1

< u/v + u/v < u;
the ends of the last two lines take care of the remaining parts of (v). Now Lemma 3.2
provides us with the required integer x. �

3.1.3. Labeling. The structure of Y −X as both a cyclic group and a partial STS have
nothing to do with one another, as observed by Moore [6, p. 279]. This independence
is seen in (M2) and (M3). This allows us to label the points of Y −X in any way by
the elements of A using an arbitrary bijection π :Y −X → A; an element y of Y −X
is labeled by a := yπ, which we abbreviate by writing y = a.

Lemma 3.4. The elements of Y −X can be labeled by the elements of A in such a way
that, if k ∈ A6, α ∈ AutA and the permutation y 7→ kyα of A is an automorphism of
the partial Steiner triple system Y −X, then k = 1 and α = 1.

Proof. By (P1)(a) and (P2)(d), |Y − X| > 6 · 165. Then there are distinct points
y1, . . . , y9 of Y −X, and x0 ∈ X, such that the following are triples of Y :

y1, y2, y3 y3, y4, y5 x0, y6, y7 x0, y8, y9.

Let c be a generator of A. Label the yi using A6 ∪ {c,−c, c2}:
y1 = 1 y2 = −1 y3 = c y4 = −c y5 = c2; and also
y6 = ω y7 = −ω y8 = ω2 y9 = −ω2 if some ω ∈ A has order 3.

(The remaining points of Y − X are labeled by the remaining elements of A in an
arbitrary manner. Note that the points y6, y7, y8 and y9 are needed only if |A| is a
multiple of 3.) Thus, we have the following triples in Y :

1,−1, c c,−c, c2 x0, ω,−ω x0, ω
2,−ω2

(where the last two are omitted if |A| is not a multiple of 3).
Now consider an automorphism y 7→ kyα of Y −X, where k ∈ A6, α ∈ AutA. This

sends the triple 1,−1, c to k,−k, kcα. If k ∈ A6−{±1} then this triple is ωi,−ωi, kcα
for i = 1 or 2; but the triple in Y containing ωi and −ωi is not contained in Y −X.

Thus, k = ±1, and 1,−1, c is sent to 1,−1, kcα, so kcα = c.
If k = −1 then cα = −c. The triple c,−c, c2 is sent to −cα,−(−c)α,−(c2)α, which

is c,−c,−(cα)2. Since −(cα)2 = −(−c)2 6= c2, this is impossible.
Then k = 1, so α = 1 since c = cα generates A. �

3.2. Location of PG(2, 2) subsystems. We need structural properties of the STS
U defined in (P4). In this section we will not need any of the assumptions in Sec-
tion 3.1: only the definitions in (P4) and the notation in (P5) are involved.

For v ∈ V let
Yv := X ∪ (v ×A).

By (M2) this is a subsystem of U isomorphic to Y (via the isomorphism x 7→ x,
y 7→ (v, y) for x ∈ X, y ∈ A = Y −X).

There are PG(2, 2) subsystems contained in V × 1, and ones contained in Yv ∼= Y
for v ∈ V . Another possible type of PG(2, 2) subsystem uses a triple v1, v2, v3 in V ,
x ∈ X, and elements ai ∈ A:
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(1)

points: x, (vi, ai), (vi,−ai) for i = 1, 2, 3,
for x ∈ X, ai ∈ A, a1a2a3 = 1 and triples ai,−ai, x in Y

triples: (vi, ai), (vi,−ai), x for i = 1, 2, 3, and
(v1, ε1a1), (v2, ε2a2), (v3, ε3a3) whenever εi = ±1 and ε1ε2ε3 = 1.

Remark 3.5. Two points (v1, a1), (v2, a2) with v1 6= v2 lie in at most one subsystem
(1). For, these points determine the triple v1, v2, v3 and then all (vi,±ai).

Definition 3.6. Let S be a subsystem of V and f :S → A6 (cf. (P5)) a function such
that f(v1)f(v2)f(v3) = 1 whenever v1, v2, v3 is a triple in S. Then

VS,f := {(s, f(s)) | s ∈ S}

is a subsystem of U , and VS,1 = S× 1 ∼= VS,f via (s, 1) 7→ (s, f(s)), using (M3): these
subsystems are just variations on the subsystem V × 1.

The subsystems Yv and VS,f are basic tools in our proof of Theorem 1.2, and

(2) |Yv ∩ VS,f | 6 1 for all v, S and f .

Lemma 3.7. Every PG(2, 2) subsystem of U either is of type (1), lies in some Yv, or
has the form VS,f for a PG(2, 2) subsystem S of V .

Proof. If a PG(2, 2) subsystem Z has the form {(vi, yi) | 1 6 i 6 7} with distinct vi,
then the vi form an STS S by (M3); we may assume that the triples in Z are

(v1, a1), (v2, a2), (v3, a3) so a1a2a3 = 1
(v1, a1), (v4, a4), (v5, a5) so a1a4a5 = 1
(v1, a1), (v6, a6), (v7, a7) so a1a6a7 = 1
(v3, a3), (v5, a5), (v7, a7) so a3a5a7 = 1
(v3, a3), (v4, a4), (v6, a6) so a3a4a6 = 1
(v2, a2), (v4, a4), (v7, a7) so a2a4a7 = 1
(v2, a2), (v5, a5), (v6, a6) so a2a5a6 = 1

with ai ∈ A. Multiplying these equations, and also just the first three of them, we
find that (

∏
i ai)3 = 1 and a3

1a2a3a4a5a6a7 = 1. It follows that
∏
i ai = ω with ω3 = 1

and a2
1 = ω2, so every a6

i = 1. Then Z = VS,f with f(vi) := ai ∈ A6.
If Z contains a triple (v, a1), (v, a2), (v, a3) but does not lie in Yv, then it also

contains a point (v2, b2) with v2 6= v. By (M3), if v, v2, v3 is a triple of V then there are
triples (v2, b2), (v, a1), (v3, b3) and (v2, b2), (v, a2), (v3, c3) and (v2, b2), (v, a3), (v3, d3),
and hence another triple (v, a1), (v3, c3), (v3, d3), which contradicts (M2).

Assume that Z is not in any Yv. If Z has a triple T ⊆ X, then some point (v, a)
is in Z, the triples joining (v, a) to the points of T all lie in both Z and Yv by (M2),
and then Z ⊆ Yv. The only other possibility is that Z is determined by three triples
through some x ∈ X, and hence contains triples

(v1, a1), (v2, a2), (v3, a3) so a1a2a3 = 1
x, (v1, a1), (v1, b1) so a1, b1, x is a triple in Y
x, (v2, a2), (v2, b2) so a2, b2, x is a triple in Y
x, (v3, a3), (v3, b3) so a3, b3, x is a triple in Y
(v1, a1), (v2, b2), (v3, b3) so a1b2b3 = 1
(v1, b1), (v2, b2), (v3, a3) so b1b2a3 = 1
(v1, b1), (v2, a2), (v3, b3) so b1a2b3 = 1.

The last three equations imply that a1a2a3b
2
1b

2
2b

2
3 = 1, so 1 = (b1b2b3)2 = (bia−1

i )2

and hence bi = ±ai for each i (cf. (P5)). Since x, (vi, ai), (vi, bi) is a triple we have
bi = −ai for each i, so we are in (1). �
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For Moore [6, Sec. 10], the types of PG(2, 2) subsystems of U were isomorphism
invariants of his STS construction.(2) He did not go into the detail involved in (1) or
a function f :S → A6.

3.3. Finding critical subsystems. The following key result is based on (P1)(b)
and (P3)(d) together with (2).

Proposition 3.8. Let W be a subsystem of U .
(i) If W ∼= Y then W has the form Yv for some v ∈ V .
(ii) If W ∼= V, if W meets every subsystem in (i) in at most one point, and if W

is disjoint from the intersection of the subsystems in (i), then W has the form
VV,f for some f :V → A6.

Proof. (i) Clearly |W | = |Y | > |X|. Let (v1, a1) ∈W −X. We claim that W ⊆ Yv1 .
Assume that W 6⊆ Yv1 . Let (v2, a2) ∈ W with v1 6= v2. Since W ∼= Y , by (P3)(d)

there is a PG(3, 2) subsystem containing (v1, a1) and (v2, a2). That subsystem has
three PG(2, 2) subsystems containing (v1, a1) and (v2, a2), each of type VS,f or as
in (1), by Lemma 3.7; and at least one has type VS,f by Remark 3.5. In particular,
a1 ∈ A6. Thus, W ⊆ X ∪ (V ×A6). Then |Y | = |W | 6 |X| + 6|V |, which contra-
dicts (P2)(d).

(ii) The stated intersection is X, so W ⊆ V × A. For v ∈ V , |W ∩ Yv| 6 1
implies that v occurs in at most one pair (v, a) ∈W . Since |W | = |V |, it follows that
W = {(v, f(v)) | v ∈ V } for some f :V → A.

Since W ∼= V , by (P1)(b) every point of W is in a PG(2, 2) subsystem, which by
Lemma 3.7 has the form VS,f ′ with |S| = 7 and f ′ : S → A6 (since |W ∩ Yv| 6 1
for each v). Then W ⊆ V × A6, f maps to A6, and by (M3) f must behave as in
Definition 3.6. �

3.4. AutU and AutA. Theorem 1.2 concerns AutU :

Proposition 3.9. AutU ∼= AutV, and AutU leaves V ×1 invariant, inducing Aut(V ×
1) ∼= AutU on this subsystem of U .

Proof. Let h ∈ AutU . We must show that h is induced by some element of
Aut(V × 1) 6 AutU (cf. (P4)).

Proposition 3.8(i) states that the subsystems Yv are uniquely determined for U .
Then Proposition 3.8(ii) states that the subsystems VV,f are also uniquely determined
for U . It follows that h sends V × 1 = VV,1 to VV,f ⊆ V × A6 for some f : V → A6,
and h permutes the subsystems Yv.

Since h sends X =
⋂
v∈V Yv to itself it also sends U − X = V × A to itself. In

view of (M3), restricting h to the first component in V × A induces an isomorphism
h̄ :V → V ; by (P4), h̄ is also induced by some g ∈ Aut(V ×1) 6 AutU . Then h̄ḡ−1 = 1
on V . We will prove that h = g. Replace h by hg−1, so h̄ = 1 on V . The remainder
of the proof consists of showing that h = 1.

Since (v ×A)h = vh̄ ×A = v ×A and (V × 1)h = VV,f we have (v, 1)h = (v, f(v))
for all v ∈ V .

Since h permutes the subsystems Yv, from (v, 1), (v, 1)h = (v, f(v)) ∈ Yv it follows
that h leaves invariant every Yv. Let (v, a)h = (v, fv(a)) where a, fv(a) ∈ A. Then
(v, fv(1)) = (v, 1)h = (v, f(v)). Let bv := fv(1) = f(v) ∈ A6.

We will show that h acts on V ×A by
(3) (v, a)h = (v, bvaα) for all v ∈ V, a ∈ A, and some α ∈ AutA.

(2)See Footnote 1.
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Let v1, v2, v3 be a triple of V . Whenever a1a2a3 = 1, ai ∈ A, by (M3) we obtain a triple
(v1, a1), (v2, a2), (v3, a3) and hence also its image under h: the triple (v1, fv1(a1)),
(v2, fv2(a2)), (v3, fv3(a3)), so fv1(a1)fv2(a2)fv3(a3) = 1. Then

fv1(a1)fv2(a2)fv3(a−1
1 a−1

2 ) = 1 for all a1, a2 ∈ A.

Let a1 = 1 and deduce that fv2(a2) = b−1
v1
fv3(a−1

2 )−1; while a2 = 1 yields fv1(a1) =
b−1
v2
fv3(a−1

1 )−1. Then bv1bv2bv3 = fv1(1)fv2(1)fv3(1) = 1 and (after replacing a−1
i by

ai)
bv3fv3(a1a2) = fv3(a1)fv3(a2).

Now b−1
v3
fv3(a1a2) = b−1

v3
fv3(a1)b−1

v3
fv3(a2), so that fv3(a1) = bv3a

α
1 for some α ∈

AutA and all a1 ∈ A. Moreover, fv2(a2) = b−1
v1
fv3(a−1

2 )−1 = bv2a
α
2 : we have the same

automorphism α for all v ∈ V . This proves (3).
By (3) and (M2), if v ∈ V then a 7→ bva

α is an automorphism of the partial Steiner
triple system Y − X. By (P6), α = 1 and bv = 1 for all v. Then h = 1 on V × A.
Since every point of X is in a triple containing two points of Y −X, it follows that
h = 1, as claimed. �

3.5. Completion of proof. In (P1)–(P4) we provided the ingredients for the con-
struction of an STS U using Section 2.1. Proposition 3.9 determined AutU .

Moreover, by (P1)(a) and Proposition 3.9, U has AutU -invariant subsystems V ×
1 ⊃ V?×1 such that AutU ∼= Aut(V ×1) ∼= Aut(V?×1) and AutU induces Aut(V ×1)
and Aut(V? × 1) on the respective subsystems.

Lemma 3.3 states that we have dealt with all admissible u > 8002v7. �

Remark 3.10. Bounding NV?
. In Lemma 3.2 we had u > 8002v7, but the integer

v = |V | obtained in Corollary 2.6 is much larger than |V?|. By Proposition 2.5(iv),
|V?×D| is O(|V?|5), so v is O(|V?|5·5). Thus, NV? is O(|V?|25·7).

Bounding MG. In [5] and [3] an STS V? is constructed for which G ∼= AutV? and
|V?| is 2O(|G|). By the preceding paragraph the same is true for MG.

This bound for MG is ridiculously weak. It seems likely that MG is polynomial in
|G|, but entirely new methods would be needed to prove that.

Remark 3.11. The argument in [1] depended on using pairs X ⊂ Y provided by
[2], essentially for all possible x = |X| and y = |Y | for which y > 2x + 1. The
argument used here only had access to a more limited choice (P2)(a) of orders y
(cf. Lemma 2.3(ii)). In [1] first y − x was dealt with, at which point x and y were
uniquely determined for given v and u. This approach can be used in our situation
when u ≡ −1 (mod 4) but not when u ≡ 1 (mod 4). Therefore we have started
with a restricted choice of y, and then x is uniquely determined for given v and u
(Lemmas 3.2 and 3.3). Our problem was to have a suitably geometric Y of order y
with a subsystem of the required order x 6 (y0 − 1)/2 < (y − 1)/2.

4. Partial Steiner triple systems
4.1. Theorem 1.3. We first note how our approach differs from that of Cameron
[1]. He observes: “In the construction used to prove Theorem 1, if the subsystem
contains no triples, its automorphism group is the symmetric group Su, while that of
the embedding system is the general linear group GL(u − 1, 2).” In other words, the
PSTS (partial Steiner triple system) might have too few triples. The first part of our
proof eliminates this possibility (cf. Lemma 4.3(v)).
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Definition 4.1. Let the PSTS Qk(x), k > 2, have the following triples (using two
“paths” of k triples in the first two rows and an additional point 2k + 1):

x, 1, 2 2, 3, 4 4, 5, 6 . . . 2k − 2, 2k − 1, 2k
x′, 1′, 2′ 2′, 3′, 4′ 4′, 5′, 6′ . . . (2k − 2)′, (2k − 1)′, (2k)′
2k + 1, x, x′ 2k + 1, i, i′ for 1 6 i 6 2k
x, 3, (2k)′ x, 3′, 2k

Remark 4.2. The following properties of Qk(x) are straightforward:
(1) Qk(x) has 4k + 3 points,
(2) every point is in at least two triples,
(3) the point 2k + 1 is in 2k + 1 > 5 triples, x is in four triples and every other

point is in at most three triples,
(4) every point is in the union of the triples containing 2k + 1, and
(5) AutQk(x) = 1.

(For (5), every automorphism must fix x and 2k + 1, then also x′, 1′, 1, 2, . . . .)

Let V be an n-point PSTS as in Theorem 1.3. We may assume that n > 2.

Lemma 4.3. There is a PSTS V ′ such that
(i) V is an AutV ′-invariant subsystem of V ′,
(ii) AutV ′ induces AutV on V,
(iii) AutV ′ ∼= AutV,
(iv) n′ := |V ′| > 22, and
(v) every point of V ′ is in at least two triples of V ′.

Proof. For every point x of V , attach Qn(x) to V so that V ∩ Qn(x) = x and the
n PSTSs Qn(x) are pairwise disjoint. The union of V and these PSTSs (also using
the union of their sets of triples) is a new PSTS V ′ having n′ points, where n′ =
n|Qn(x)| = n(4n+ 3) > 22, which proves (iv).

Condition (i) is clear, (v) holds in V ′ by Remark 4.2(2), and (ii) follows from the
fact that all Qn(x) are isomorphic and are pairwise disjoint.

It remains to prove (iii). By Remark 4.2(3), any subsystem Q of V ′ isomorphic
to Qn(x) has a point z in 2n + 1 triples of Q. Since V ′ =

⋃
x∈V Qn(x), again by

Remark 4.2(3) each point of V ′ is either in 2n + 1 triples of V ′, at most 3 triples,
or (for points of V ) between 4 and 4 + (n − 1)/2 < 2n + 1 triples. Then z /∈ V and
z ∈ Qn(x) for a unique x. By Remark 4.2(4), the union of the triples of V ′ containing
z is both Q and Qn(x), so Q = Qn(x).

Thus, V ′ determines the points of V , any element of AutV ′ induces an element of
AutV, and this yields a homomorphism from AutV ′ onto AutV. Its kernel fixes every
point x of V , and hence is 1 by Remark 4.2(5). �

In the rest of the proof we ignore V and work only with V ′. By Theorem 1.2, it
suffices to construct one STS U having V ′ as an AutU -invariant subsystem such that
AutU ∼= AutV ′ and AutU induces AutV ′ on V ′.

As in [1], we use the projective space P = PG(n′ − 1, 2) whose points are the
2n′ − 1 nonempty subsets of (the set of points of) V ′, the lines of P being all triples
of subsets of V ′ whose symmetric difference is empty. Any permutation of the points
of V ′ extends uniquely to an automorphism of P. Every point w of P has size |w| as
a subset of V ′.

Again as in [1], we construct from the STS P and the PSTS V ′ an STS U whose
points are those of P , as follows: for every triple a, b, c of V ′, replace the triples

(4) ab, ac, bc a, b, ab a, c, ac b, c, bc
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of P by the new triples

(5) a, b, c a, ab, ac b, ab, bc c, ac, bc

(by abuse of notation, we write a and ab for {a} and {a, b}, respectively). This pro-
duces a new STS U , because the new triples cover exactly the same pairs of points
as the old ones.

Note that

(6) Every point ab is in at most two triples of U that are not lines of P,

and that AutV ′ induces a subgroup of AutU (as in [1, p. 468]). Moreover,

(7) A line of P is also a triple of U if it contains a point w with |w| > 2.

Lemma 4.4. The lines of P can be determined using the triples in U .

Proof. We will recover the line 〈x, y〉 of P determined by any given distinct points
x, y of U . For every point p of U not in the triple of U determined by x and y there
are distinct triples

p, x, x1 p, y, y1 x1, y1, z p, z, q

of U , producing a 7-set U(p, x, y) := {p, x, y, x1, y1, z, q} of points of U .
There are at least (2n′−2 − 1) − n′ −

(
n′

2
)
planes of P containing x and y but

containing no point w of P with |w| 6 2. Every point w /∈ 〈x, y〉 in such a plane has
|w| > 2; by (7), every such plane has the form U(p, x, y) for any of its four points
p /∈ 〈x, y〉. Thus, by Lemma 4.3(iv), if p is one of at least 4(2n′−2−1−n′−

(
n′

2
)
) > 3

4 |U |
points in the union S of these planes but not in 〈x, y〉, then

(i) every set U(p, x, y) occurs for at most four points p, and
(ii) distinct sets U(p, x, y) have the same intersection of size 3.

(The intersection in (ii) is the line 〈x, y〉 = {x, y, z}.)
If S′ is another set of more that 3

4 |U | points satisfying (i)-(ii), then |S ∩ S′| >
3
4 |U |+

3
4 |U | − |U | =

1
2 |U | =

1
2 (2n′ − 1) > 1

2 (222 − 1), and hence by (i) S ∩ S′ contains
distinct sets U(p, x, y). Those sets produce the same set of size 3 in (ii). Thus, we
have obtained the line 〈x, y〉 of P using the triples of U . �

Note that we have not yet used Lemma 4.3(v).

Proposition 4.5. AutU ∼= AutV ′ ∼= AutV.

Proof. We now have the triples in U and the triples in P . Let T denote the set of
triples of U that are not triples in P (these are the triples in (5), and hence consist
of points such as a ∈ V ′ or ab). Let x ∈ U .

(1) If x is in at least four triples in T, then x ∈ V ′ by (6).
(2) Every point of V ′ is in at least four triples in T, by Lemma 4.3(v) and (5).

Thus U uniquely determines V ′, so AutU induces a subgroup of AutV ′. Since AutV ′
induces a subgroup of AutU, by Lemma 4.3(iii) we have AutU ∼= AutV ′ ∼= AutV, and
we are done. �

Proof of Theorem 1.3. We have embedded the original PSTS V into an STS U such
that AutU leaves V invariant, induces AutV on V , and is isomorphic to AutV . Now
apply Theorem 1.2 to U (in place of V ) in order to obtain STSs behaving as in
Theorem 1.3. �

Algebraic Combinatorics, Vol. 5 #4 (2022) 605



Jean Doyen & William M. Kantor

4.2. Corollaries. We note some consequences of Theorem 1.3. We will use a natural
graph on the points of a PSTSW , with two points joined if they are in a triple. If this
graph is not connected we can embed W in an arbitrarily large STS, which is clearly
connected (preservation of the automorphism group is even possible by Theorem 1.3,
but this will not be needed).

Corollary 4.6. Given partial Steiner triple systems V and W, there is an integer
NV,W such that, for each admissible u > NV,W , there is a Steiner triple system U on
u points having a subsystem W ′ ∼= W and an AutU -invariant subsystem V ′ ∼= V with
W ′ ∩ V ′ = ∅ such that AutU ∼= AutV ′ and AutU induces AutV ′ on V ′.

Proof. Here V and the desired U are as usual, the new aspect is to include W as
well; we have no control over the PSTS V ∪̇W . By the preceding remarks, we may
assume that W is an STS and hence is connected, and that W ∩V = ∅, n = |W | > 2
and n > |V |. Let x1, . . . , xn be the points of W . Then Definition 4.1 applies with
k = i + n > 3; attach pairwise disjoint PSTSs Qi+n(xi) to W in such a way that
Qi+n(xi)∩W = xi for every i. The union of W and all Qi+n(xi) is a connected PSTS
Ŵ .

Every Qi+n(xi) has a unique point in 2(i+ n) + 1 > 2n+ 3 > 1
2 (n− 1) + 4 triples

(by Remark 4.2(3)), and Ŵ has no other such points (xi is in at most 1
2 (n − 1) + 4

triples of Ŵ , again by Remark 4.2(3)). Then W can be recovered from Ŵ using
Remark 4.2(3)-(4). The PSTSs Qi+n(xi), 1 6 i 6 n, have different orders, so from
Remark 4.2(5) it follows that AutŴ = 1.

Since |Ŵ | > |V | and Ŵ is a connected component of the graph on the disjoint
union Ŵ ∪̇V ′ of Ŵ and V ′ ∼= V , Aut(Ŵ ∪̇V ′) leaves Ŵ invariant and hence acts on
V ′. Then Aut(Ŵ ∪̇V ′) ∼= AutV ′, so apply Theorem 1.3 to Ŵ ∪̇V ′. �

The first step in the above proof was to embed an arbitrary STS into one whose
automorphism group is trivial. This suggests a strengthening of Theorem 1.1:

Corollary 4.7. If V1, . . . , Vm are partial Steiner triple systems and G is a fi-
nite group, then there is an integer NV1,...,Vm,G such that, for each admissible
u > NV1,...,Vm,G, there is a Steiner triple system U on u points such that V1, . . . , Vm
are isomorphic to pairwise disjoint subsystems of U and AutU ∼= G.

Proof. Let V be an STS with AutV ∼= G [5]. Apply the preceding corollary to V and
W , where W is the disjoint union of (copies of) V1, . . . , Vm. �

Corollary 4.8. If G and H are finite groups then there is an integer NG,H such
that, for each admissible u > NG,H , there is a Steiner triple system U on u points
having a subsystem W such that AutU ∼= G and AutW ∼= H.

Proof. Let V and W be STSs such that AutV ∼= G and AutW ∼= H [5]. Apply
Corollary 4.6 to the pair V,W in order to obtain an STS U behaving as stated. �

This corollary can be iterated in two ways: one involves disjoint subsystems with ar-
bitrary given automorphism groups; another involves a nested sequence of subsystems
with arbitrary given automorphism groups.

Our final corollary concerns retaining a subgroup of the automorphism group of
an STS but not the full automorphism group. Notation: If G is a group acting on a
set X, and if Y ⊂ X, then the set-stabilizer GY is {g ∈ G | g sends Y to itself}. (In
the corollary V1 need not be AutV -invariant, and AutV1 need not be a subgroup of
AutV .)
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Corollary 4.9. If V1 is a subsystem of order > 1 of a partial Steiner triple system
V, then there is an integer N ′V,V1

such that, for each admissible u > N ′V,V1
, there is a

Steiner triple system U on u points having V and V1 as AutU -invariant subsystems
such that AutU ∼= (AutV )V1 and AutU acts on V as (AutV )V1 .

Proof. First we replace V by an STS: use Theorem 1.3 to find an STS V̂ containing
V such that AutV̂ leaves V invariant, induces AutV on V and is isomorphic to AutV .
Then (AutV̂ )V1

∼= (AutV )V1 .
Let z be a new point, and let x 7→ x′ be a bijection from V1 to a set V ′1 disjoint

from V̂ ∪{z}; this bijection turns V ′1 into a PSTS. Form a PSTS W, with V̂ ∪{z}∪V ′1
as its set of points, by using the triples in V̂ ∪ V ′1 and including a new triple x, z, x′

for every x ∈ V1. Every g in (AutV̂ )V1 acts as an automorphism of W via zg = z and
(x′)g = (xg)′ for x ∈ V1.

The set V1 is uniquely determined as the set of points of W lying in triples with
the maximal number of other points (namely, (|V̂ |−1)+2 points); V̂ −V1 is uniquely
determined as the set of points of W lying in triples with exactly |V̂ |−1 points. Then
AutW induces (AutV̂ )V1 on V̂ .

Let K denote the pointwise stabilizer of V̂ in AutW . For distinct x, y ∈ V1, the
triples x, z, x′ and y, z, y′ meet at z, so K fixes z and then also all points of V ′1 . Thus,
K = 1 and AutW = (AutV̂ )V1 . Now apply Theorem 1.3 to W . �

Remark 4.10. If G and H are finite groups with G > H, then there is an integer
N ′G,H such that, for each admissible u > NG,H , there a Steiner triple system U on u
points having a subsystem W such that AutU ∼= G and (AutU)W ∼= AutW ∼= H. The
proof involves a few straightforward changes in [3, Sec. 2], which we briefly outline.

1. Let Γ be an n-vertex connected graph having a connected induced subgraph
Γ′ such that AutΓ ∼= G, G acts semiregularly on the vertices of Γ, and (AutΓ)Γ′ ∼=
AutΓ′ ∼= H. (Use the standard colored Cayley graphs for G and H and replace colored
edges by suitable graphs.)

2. Consider the vector space V in Section 2.3. In order to conform to the notation
in [3, Sec. 2] let VF and V denote this as an F -space and as an F2-space, respectively.
Assume that G acts on the basis of VF as it does on the vertices of Γ. Let V ′F denote
the F -span of the vertices of Γ′, and let V ′ be V ′F viewed as an F2-space.

3. In [3, Sec. 2] there is a construction of an STS U with AutU ∼= G, using VF , V
and Γ, and two auxiliary STSs on 15 points. Restricting the construction to V ′F , V ′
and Γ′ produces a subsystem U ′ of U obtained using these ingredients in the same
manner that U was. In particular, (AutU)U ′ ∼= AutU ′ ∼= H, as required.
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