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(GLk × Symn)-modules and Nabla of
hook-indexed Schur functions

François Bergeron

Abstract The aim of this paper is to describe structural properties of spaces of diagonal rect-
angular harmonic polynomials in several sets (say k) of n variables, both as GLk-modules and
Symn-modules. We construct explicit such modules associated to any hook shape partitions.
For the two sets of variables case, we conjecture that the associated graded Frobenius char-
acteristic corresponds to the effect of the operator Nabla on the corresponding hook-indexed
Schur function, up to a usual renormalization. We prove identities that give indirect support
to this conjecture, and show that its restriction to one set of variables holds. We further give
indications on how the several sets context gives a better understanding of questions regarding
the structures of these modules and the links between them.

1. Introduction
Our aim in this paper is to describe, for all hook-shape partitions ρ, new (GLk ×Sn)-
modules of k-variate diagonal harmonic polynomials, here denoted by S〈k〉ρ , whose
Nk-graded Frobenius characteristic specializes to ∇(ŝρ) when one sets k = 2. Here ŝρ
stands for the normalized Schur function(1)

(1) ŝρ :=
(−1
qt

)ιρ
sρ, with ιρ :=

∑
ρi>i

ρi − i.

We also recall that ∇ is the operator (introduced in [7]) on symmetric polynomials
(with coefficients in Q(q, t)) for which the “combinatorial Macdonald polynomials”
H̃λ(q, t; z) are joint eigenfunctions, with eigenvalue Tλ = Tλ(q, t) :=

∏
(i,j) q

itj . Here
the product is over the cells (i, j) of λ. For more background on these notions, see [8,
20].

For hook-shape partitions (a+ 1, 1b), of n = a+ b+ 1, we will use the Frobenius
notation (a | b) (see Figure 1). For example, we have

(4 | 0) = 5, (3 | 1) = 41, (2 | 2) = 311, (1 | 3) = 2111, (0 | 4) = 11111.

Observe that, for ρ = (a | b), the value of ι(ρ) is simply equal to a.
Our graded modules S〈k〉ρ are associated to modules M〈k〉ρ . These occur in a bi-

filtration of GLk ×Sn-modules (over the field Q), with rows indexed by hooks going
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(1)We essentially use Macdonald’s notations (see [21]), but with French conventions.
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Figure 1. The hook shape (a | b).

from (n− 1 | 0) to (0 |n− 1), hence in increasing number of 1’s; columns correspond
to integers k ∈ N+ (as numbers of “sets” of variables)

M〈1〉(n−1 | 0)� _

��

� � //M〈2〉(n−1 | 0)� _

��

� � // � � //M〈k〉(n−1 | 0)� _

��

� � k→∞ //M(n−1 | 0)� _

��

M〈1〉(n−2 | 1)� _

��

� � //M〈2〉(n−2 | 1)� _

��

� � // � � //M〈k〉(n−2 | 1)� _

��

� � k→∞ //M(n−2 | 1)� _

��

� _

��

� _

��

� _

��

� _

��

M〈1〉(1 |n−2)� _

��

� � //M〈2〉(1 |n−2)� _

��

� � // � � //M〈k〉(1 |n−2)� _

��

� � k→∞ //M(1 |n−2)� _

��

M〈1〉(0 |n−1)
� � //M〈2〉(0 |n−1)

� � // � � //M〈k〉(0 |n−1)
� � k→∞ //M(0 |n−1)

Each row stabilizes when k becomes large enough; and we have the inductive limits

M(a | b) := lim
k→∞

M〈k〉(a | b),

which are GL∞×Sn-modules. It is convenient to setM(n | −1) := 0, and then consider
the quotient modules

S(a | b) =M(a | b)/M(a+1 | b−1),

for all hooks (a | b). ExplicitlyM(a | b) is the smallest module which is:
• closed for “polarization” (see Equation 5 below),
• closed for derivation with respect to all variables except the θi’s, and
• contains the determinant:

(2) D(a | b)(x) := det


θ1 1 x1 · · · x̂a1 · · · x

n−1
1

θi 1 x2 · · · x̂a2 · · · x
n−1
2

...
...

...
. . .

...
. . .

...
θn 1 xn · · · x̂an · · · xn−1

n

 ,

where (̂−) indicates that entries of that column are removed. Only the first col-
umn involves the variables θi, which are said to be inert and considered to be of
0-degree. Observe that, if we remove the first column (the θ-column) and keep all
others, the result is the classical Vandermonde determinant. The inclusions occurring
in the columns are easily obtained if one observes that

n∑
i=1

∂xiD(a | b) =
{

(a+ 1)D(a+1 | b−1), if 0 6 a < n− 1,

0, otherwise.
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By construction, Mρ is a (multi-)homogeneous sub-module of the N∞-graded ring
R := Q[X] of polynomials in the set of variables X, consisting of a denumerable
number of sets of n-variables.(2) The variables X are conveniently presented as an
∞× n matrix

(3) X =

x1 x2 . . . xn
y1 y2 . . . yn
...

...
. . .

...


in which the first row is the “set” x: of variables xi, for 1 6 i 6 n. The grading of
a polynomial F in R is the sequence of degrees deg(F ) = (degx(F ),degy(F ), . . .),
respective to each of the rows of X. The natural commuting actions of GL∞ and Sn,
on polynomials F (X) in R, are jointly described by setting
(4) F (X) 7→ F (gXσ) for g ∈ GL∞ and σ ∈ Sn,

where elements of the symmetric group Sn are here considered as n× n permutation
matrices. For each pair u = (ui)i and v = (vi)i of rows of X, and integer r > 1, the
(higher) polarization operator E(r)

uv is:

(5) E(r)
uv :=

n∑
i=1

vi
∂r

∂uri
.

We often drop the super index “(r)” when r = 1. We may formulate the definition of
M(a | b) as

M(a | b) := Q({∂xi}xi∈x; {E(r)
uv}r,u,v)D(a | b)(x).

The N∞-graded Frobenius characteristic of such a moduleMρ, for a hook ρ = (a | b),
is the generating function of the characters of its graded components, defined as:

Mρ(q; z) :=
∑

d∈N∞
qd
∑
µ`n

χρ
d(µ)pµ(z)

zµ

=
∑
µ`n

( ∑
f∈Bµρ

qdeg(f)
)
sµ(z),(6)

where qd := qd1
1 qd2

2 · · · , for d = (d1, d2, . . .), and χρd is the character of the d-
homogeneous component ofMρ. We recall that, with respect to the Frobenius map,
irreducible Sn-representations are precisely encoded by Schur functions sµ(z), with
z = (zi)i a set of formal variables. The expansion on the right-hand side of Equation 6
corresponds to the decomposition of Mρ into Sn-isotypic components Mµ

ρ , one for
each partition µ of n. Indeed, these Mµ

ρ ’s are clearly graded, and they afford bases
of homogeneous polynomials Bµρ . Hence, considering q as a formal diagonal matrix in
GL∞, we may express this homogeneity of F ∈ Bµρ as

F (qX) = qdeg(F )F (X).
The coefficients of each sµ(z) in Equation 6 may thus be considered, either as the
Hilbert series of the corresponding Sn-isotypic components, or as GL∞-characters
of (polynomial) representations. Recall that the characters of polynomial irreducible
GL∞-representations are also Schur functions (here in the variables q). It follows that
we have
(7) Mρ(q; z) =

∑
µ`n

∑
λ

aρλµsλ(q)sµ(z),

(2)The modulesM〈k〉
ρ are likewise defined with variables restricted to the first k rows of X.
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where each integer aρλµ gives the number of copies of the GL∞-irreducible having
character sλ(q) in the Sn-isotypic componentMµ

ρ .
In light of the discussion above, for ρ = (a | b), we have

Sρ(q; z) :=M(a | b)(q; z)−M(a+1 | b−1)(q; z)

=
∑
µ`n

∑
λ

cρλµsλ(q)sµ(z),(8)

with the multiplicities cρλµ ∈ N equal to a
(a | b)
λµ − a

(a+1 | b−1)
λµ . It is convenient to

express this in a “tensor” variable-free format

(9) S⊗ρ =
∑
µ`n

∑
λ

cρλµsλ ⊗ sµ,

with the tensor product keeping track of the distinction between GL∞-characters
(left-hand side) and Frobenius of Sn-irreducibles (right-hand side). The multiplicities
cρλµ are only non-vanishing when the partition λ has at most n − 1 parts, with size
bounded by

(
n
2
)

+ b (for ρ = (a | b)). We denote by cρµ the coefficient of sµ in S⊗ρ ,
and also write Aρ for cρ,1n . In formulas:

(10) cρµ =
∑
λ

cρλµsλ, and Aρ =
∑
λ

cρλ,1nsλ.

We also consider the “scalar product” such that 〈f ⊗ sν , sµ〉 = f if ν = µ and 0
otherwise, so that cρµ = 〈S⊗ρ , sµ〉. The length restriction operator L6k effect on
S⊗ρ is set to be:

(11) L6k(S⊗ρ ) :=
∑
µ`n

∑
`(λ)6k

cρλµsλ ⊗ sµ.

1.1. Effect of ∇ on Schur functions indexed by hooks. To better express
our main conjecture, we consider the following “variable free” sλ ⊗ sµ-expansion of
∇(ŝρ) (with ρ a hook as above):

∇(ŝρ)⊗ :=
∑
µ`n

∑
λ

bρλµsλ ⊗ sµ(12)

as an equivalent encoding of

∇(ŝρ)(q, t; z) =
∑
µ`n

∑
λ

bρλµsλ(q, t)sµ(z).

To illustrate,
∇(ŝ111)⊗ = 1⊗ s3 + (s1 + s2)⊗ s21 + (s11 + s3)⊗ s111,

encodes
∇(ŝ111)(q, t; z) = s3(z) + (q+ t+ q2 + qt+ t2)s21(z) + (qt+ q3 + q2t+ qt2 + t3)s21(z).
Now, let
(13) δ(n) := (n− 1, n− 2, · · · , 2, 1, 0)
be the n-staircase partition (see Figure 2). A Dyck path γ may be identified to a
partition contained in δ(n) (equivalently it lies below the diagonal going from (0, n) to
(n, 0)), as is illustrated in Figure 2. For each row γi of γ ⊆ δ(n), one considers the row
area ai = δ

(n)
i −γi. In other words, ai is the number of cells lying on the row i between

the Dyck path and the diagonal, and γ = δ(n)−α(γ), with α(γ) := (a1, a2, . . . , an). It
follows from results of [17], together with the compositional shuffle theorems of [12, 22],
that we have the following combinatorial formula.
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γ

(0, 9)

(9, 0)

a9 = 0

a8 = 1

a7 = 2

a6 = 2

a5 = 2

a4 = 0

a3 = 1

a2 = 1

a1 = 1

Row areas

1
3
7

5
1

2
3

4
3

γ

(γ + 1n)/γ

Figure 2. Dyck path γ = 765521000, and one of its associated skew-
shaped SSYT’s.

Proposition 1.1 (Shuffle formula).

(14) ∇(ŝ(a | b))(q, t; z) =
∑
γ⊆Γa

tarea(γ)−a Lγ(q; z),

where γ runs over the set of Dyck paths contained in

(15) Γa := δ(n) − (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
a copies

, 0);

and Lγ is the associated LLT-polynomial.

We recall that the LLT-polynomial Lγ(q; z), of a Dyck path γ, is an instance of
vertical-strip LLT-polynomial (see [2], which includes a short survey of generalized
LLT-polynomials). It is obtained as a weighted sum over the set SSYT((γ + 1n)/γ)
of semi-standard Young tableaux(3) of skew shape (γ + 1n)/γ:

(16) Lγ(q; z) :=
∑

τ∈SSYT(γ+1n)

tdinv(τ)zτ ,

with zτ equal to the product of zi over entries i of τ . For details of the dinv-statistic
for skew shape semi-standard Young tableaux, see [15]. It has been shown (see [16])
that Lγ is Schur-positive.

Until now, the combinatorial description Equation 14 of ∇(ŝ(a | b)) lacked a repre-
sentation theory counterpart, i.e. a module for which it is the graded Frobenius. We
now propose the following.

Conjecture 1.2 (Modules). For all hook-indexed shape ρ = (a | b), S⊗ρ is such that

(17) L62(S⊗ρ ) = ∇(ŝρ)⊗.

In other words, cρλµ = bρλµ for all ρ, µ, and partitions λ having length at most two.

For sure, to calculate L62(S⊗ρ ), we need only use two sets of variables (the first
two rows of X). Hence, Conjecture 1.2 gives but a partial picture of S⊗ρ . As we will
see below, the information contained in the “other” terms of S⊗ρ plays an important
role in understanding the global picture.

(3)Whose shape is the set of cells sitting immediately to the right a vertical step of the Dyck path
γ. See Fig. 2.
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For example, consider the hook (a | b) = (2 | 0), so that S(2 | 0) =M(2 | 0). Then,

D(2 | 0)(x) = det

θ1 1 x1
θ2 1 x2
θ3 1 x3


= θ1(x3 − x2)− θ2(x3 − x1) + θ3(x2 − x1).

One readily checks that the module S(2 | 0) is spanned by the set of polynomials θ1(u3−
u2)− θ2(u3 − u1) + θ3(u2 − u1), one for each row (u1, u2, u3) of X, together with the
polynomials θ1−θ2 and θ1−θ3. Thus, its N∞-graded Frobenius characteristic is equal
to S(2 | 0)(q; z) = s21(z) + (q1 + q2 + · · · ) s3(z); and we have the equality

(18) S⊗(2 | 0) = ∇(ŝ3)⊗ = 1⊗ s21 + s1 ⊗ s3.

The following table gives explicit calculated values, which complete the picture(4) for
all cases with n 6 4. It confirms that Conjecture 1.2 holds in these instances; and, we
see that the smallest case for which S⊗ρ is “larger” than ∇(ŝρ)⊗ is for ρ = 1111.

S⊗1 = ∇(ŝ1)⊗ = 1⊗ s1;

S⊗2 = ∇(ŝ2)⊗ = 1⊗ s11,

S⊗11 = ∇(ŝ11)⊗ = 1⊗ s2 + s1 ⊗ s11;

S⊗21 = ∇(ŝ21)⊗ = s1 ⊗ s21 + s2 ⊗ s111,

S⊗111 = ∇(ŝ111)⊗ = 1⊗ s3 + (s1 + s2)⊗ s21 + (s11 + s3)⊗ s111;

S⊗4 = ∇(ŝ4)⊗ = 1⊗ s31 + s1 ⊗ s22 + (s1 + s2)⊗ s211 + (s11 + s3)⊗ s1111,

S⊗31 = ∇(ŝ31)⊗ = s1⊗s31 +s2⊗s22 +(s11 +s2 +s3)⊗s211 +(s21 +s4)⊗s1111,

S⊗211 = ∇(ŝ211)⊗ = s2⊗ s31 + (s11 + s3)⊗ s22 + (s21 + s3 + s4)⊗ s211 + (s31 +
s5)⊗ s1111

S⊗1111 = 1⊗ s4 + (s1 + s2 + s3)⊗ s31 + (s2 + s21 + s4)⊗ s22

+ (s11 + s21 + s31 + s3 + s4 + s5)⊗ s211

+ (s111 + s31 + s41 + s6)⊗ s1111 = ∇(ŝ1111)⊗ + s111 ⊗ s1111.

We observe, for values in this table, that we have

Conjecture 1.3 (Skew). For all n,

(Id⊗ e⊥1 )S⊗(n) =
n−2∑
a=0
S⊗(a |n−a−2),(19)

(e⊥1 ⊗ Id)S⊗1n =
n−1∑
a=1
S⊗(a |n−a−1).(20)

These identities have been checked to hold for all n 6 6. In particular, using Equations
(1.7) and (1.10) of [18] and assuming a conjecture of [5] recalled further below as ??,
we get that

Theorem 1.4. The length 2 restriction of Equation 19 holds, and Conjecture 1.2
implies that the length 2 restriction of Equation 20 is also true.

Proof. To show the first equality, we observe that

L62((Id⊗ e⊥1 )S⊗(n)) = (Id⊗ e⊥1 )L62(S⊗(n)),

(4)More values may be found in the appendix.
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since length restriction on the left-hand side of a tensor sλ⊗sµ is clearly independent
from operators acting on the right-hand side. Moreover, from the point of view of rep-
resentation theory, the operator (Id⊗ e⊥1 ) corresponds to restriction of the Sn-action to
the subgroup Sn−1, of permutations that fix n. As discussed in [6], (Id⊗ e⊥1 )L62(S⊗(n))
may be identified with the derivation-polarization span of the determinant

(21) D−(x) := det


θ1 x1 · · · xn−2

1
θi x2 · · · xn−2

2
...

...
. . .

...
θn−1 xn−1 · · · xn−2

n−1

 ,

since we can get a basis without involving the variable xn. This is made clear in the
discussion preceding (I.4) in [6]. In other terms, (Id⊗ e⊥1 )L62(S⊗(n)) is isomorphic to
M〈2〉(1 |n−2). Thus, we get

(Id⊗ e⊥1 )L62(S⊗(n)) =
n−2∑
a=0

L62(S⊗(a |n−a−2)),

simply unfolding the definition S(a | b) := M(a | b)/M(a+1 | b−1). Next, assuming Con-
jecture 1.2, Equation 20 corresponds to

(22) e⊥1 ∇(ŝn)⊗ =
n−2∑
a=0
∇(ŝ(a |n−a−2))⊗.

This is shown to hold as follows. Using Formulas (I.12) from [8, page 368], we get the
operator identity e⊥1 ∇ = ∇ (e⊥1 ∆e1−∆e1e

⊥
1 ), with some rewriting. Hence Equation 22

is equivalent to

(e⊥1 ∆e1 −∆e1e
⊥
1 ) ŝn =

n−2∑
a=0

ŝ(a |n−a−2).

But this follows easily from

∆e1 ŝn =
n−1∑
a=0

ŝ(a |n−a−1),

which, up to a multiplicative factor, is Prop. 6.5 of [9].
Now, the length-2 restriction of the second identity corresponds, modulo Conjec-

ture 1.2, to the equality:

L62((e⊥1 ⊗ Id)S⊗1n) =
n−1∑
a=1
∇(ŝ(a | b))⊗,

but ?? states that ∆′en−2
en = L62((e⊥1 ⊗ Id)S⊗1n). Hence the second statement also

holds. �

1.2. Links between the Mρ’s. We first recall that the Garsia-Haiman module
Gµ gives a representation theoretical interpretation for the combinatorial Macdonald
polynomials H̃µ. For any diagram (a finite subset d of N×N), one may consider the
determinant

Dd(x,y) := det(xki y`i ),
with 1 6 i 6 n = cardd, and (k, `) ∈ d. To make the sign of Dd unambiguous, cells
of d are ordered so that (k′, `′) ≺ (k, `), if `′ > `, or if `′ = ` and k′ < k. For any d
we then consider the derivation closure

Gd = Q(∂x1, . . . , ∂xn; ∂y1, . . . , ∂yn)Dd(x,y),
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where d is the Ferrers diagram (with “French” convention) of a partition µ. We recall
that the following holds.

Theorem 1.5 (n!-Theorem, Haiman [19]). The combinatorial Macdonald polynomial
H̃µ(q, t; z) is the bigraded Frobenius characteristic of the module Gµ.

Beside this case of Ferrers diagrams, modules associated to Ferrers diagrams “miss-
ing” one cell are (conjecturally) described in [6]. Observe that the determinant in
Equation 2 is obtained by replacing in Dd the variables y by the inert variables θ,
for the diagram(5)

d = d(a, b) := {(i, 0) | 0 6 i 6 a+ b, and i 6= a} ∪ {(0, 1)},

which is illustrated in Figure 3. Thus, the module M〈1〉(a | b) corresponds to the top
y-degree of Gd(a,b); and this top degree is equal to 1. Its (simply)-graded(6) Frobenius
characteristics is thus

M(a | b)(q; z) = Gd(a,b)(q, t; z)
∣∣
coeff t.

In particular, the diagram d(n − 1, 0) happens to be the hook-shape (n − 2 | 1). In

0 a a+ b

N

N

Figure 3. The diagram d(a, b).

view of the n!-Theorem above we get
M(n−1 | 0)(q; z) = H̃(n−2 | 1)(q, t; z)

∣∣
coeff t

= H(n−2 | 1)(q; z),(23)

where
∣∣
coeff t means that we take the coefficient of t, with the right-hand side of

the above identity being an instance, with µ = (n− 2 | 1), of symmetric polynomials
that we denote by Hµ(q; z). These are directly related to the dual Hall-Littlewood
symmetric functions Q′µ (following Macdonald’s [21, Exer.7, page 234] notation; see
also [18]), which are such that

Q′µ(q; z) =
∑
λ

Kλµ(q) sλ(z),

where the Kλµ(q) ∈ N[q] are the Kostka-Foulkes polynomials. More precisely, we have
Hµ = ωQ′µ′ , so that

(24) Hµ(q; z) =
∑
λ

Kλ′µ′(q) sλ(z).

Now, letting π stand for the operator π :=
∑n
i=1 ∂xi, it is clear that πD(a | b)(x) =

D(a+1 | b−1)(x). It follows that we have the following projection, and associated degree
1 reducing isomorphism:

M〈1〉(a | b)
π // //M〈1〉(a+1 | b−1) , and S〈1〉(a | b)

∼ // S〈1〉(a+1 | b−1) .

(5)Careful, this is not the Ferrers diagram of the hook (a | b).
(6)Obtained by setting q1 = q, and all other qi equal to 0.
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This last isomorphism translates into the equality S(a | b)(q; z) = q S(a+1 | b−1)(q; z),
and we conclude by Equation 23 that
(25) M(a | b)(q; z) = (1 + q + · · ·+ qb)H(n−2 | 1)(q; z),
where a + b = n − 1. It is interesting to notice that, together with Conjecture 1.2, a
particular case of Identity 1.7 of [18] also gives
(26) M(1 |n−2)(q; z) = ∆′en−2

(q, 0; z).

Moreover, using Equation 14, we have the LLT-polynomial expression
∇(ŝ(a | b))(q, 0; z) = LΓa(q; z)(27)

since Γa is the only Dyck path for which area(γ) − a = 0. From all this, we get the
following.

Proposition 1.6. Conjecture 1.2 holds when t = 0.

1.3. Link to intersection of Garsia-Haiman modules. The main objective
of paper [7] is to describe the decomposition of families of Garsia-Haiman modules
indexed by partitions of n (covered by a given partition µ of n + 1), with respect
to their relative intersections. In the particular case when µ = (n − 1 | 1), one may
thus consider the two hook partitions (n− 1, 1) = (n− 2 | 1) and (n) = (n− 1 | 0). A
special case of the conjectures stated therein, asserts that the bi-graded Frobenius of
the intersection In := Gd(n−2,1) ∩ Gd(n−1,0) is given by the formula

(28) In(q, t; z) =
qn−1H̃(n−1,1) − tH̃(n)

qn−1 − t
.

Moreover, still assuming conjectures of [7], the module Gd(n−2,1) decomposes as
Gd(n−2,1) = In ⊕ I⊥n , with

I⊥n = {f(∂x)Dd(n−2,1)(x) | f(∂x) ∈ In}.

It may be shown that both In and I⊥n are of dimension n!/2. It follows that

I⊥n (q, t; z) = H̃(n−1,1)(q, t; z)−
qn−1H̃(n−1,1)(q, t; z)− tH̃(n)(q, t; z)

qn−1 − t

= t

qn−1 − t
(H̃(n−1,1)(q, t; z)− H̃(n)(q, t; z))

= tH(n−1,1)(q; z).

Moreover, In(q, t; z) = q(
n−1

2 )ωH(n−1,1)(1/q; z), so that we get

(29) H̃(n−1,1)(q, t; z) = q(
n−1

2 )ωH(n−1,1)(1/q; z) + tH(n−1,1)(q; z).
For example, with n = 5, we get

H̃41(q, t; z) =(q6s2111 + (q4 + q5)s221 + (q3 + q4 + q5)s311 + (q2 + q3 + q4)s32

+ (q + q2 + q3)s41 + s5)
+ t (s41 + (q2 + q)s32 + (q3 + q2 + q)s311 + (q4 + q3 + q2)s221

+ (q5 + q4 + q3)s2111 + q6s11111),

where each term qasν in the top portion corresponds to a term tq6−asν′ in the bottom
portion. All Schur functions are in the variables z. Setting q = 1, we may check that
Equation 29 specializes to

H̃(n−1,1)(1, t; z) = h21n−2(z) + t e21n−2(z).
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We may use these observations to explicitly construct a basis of S〈1〉(a | b) in the following
manner. Let Bn be a basis of In, then

Lemma 1.7. For each a > 1, with b = n − a − 1 and d := d(a, b), the set
{ϕ(∂x)Dd(x) | ϕ(x) ∈ Bn} forms a basis of S〈1〉(a | b).

Proof. We only check that the proposed set is linearly independent. By hypothesis,
we already know that any ϕ(x) in the span of Bn is of the form ϕ(x) = ψ(∂x)Dd(x),
for some polynomial ψ(x). We may verify that ϕ(∂x)Dd(x) 6= 0, as follows. By
commutation,

ψ(∂x) (ϕ(∂x)Dd(x)) = ϕ(∂x) (ψ(∂x)Dd(x)) = ϕ(∂x)ϕ(x).
This last expression does not vanish, since its constant term is the sum of the square
of coefficients of ϕ(x), hence is not equal to 0. It follows that the map sending ϕ(x)
to ϕ(∂x)Dd(x) is injective, and we get the expected linear independence. �

Recall that M〈1〉(n), which is the classical module of Sn-harmonic polynomials, is
known to decompose into irreducibles given by (homogeneous) higher Specht modules
(see [3]). One may readily exploit this to construct a basis Bn which reflects the fact
that In is a graded sub-module ofM〈1〉(n).

1.4. Hook components conjecture. Our second conjecture describes a link be-
tween the alternant isotypic component of Sρ and the isotypic components corre-
sponding to hooks (a | b). We have:

Conjecture 1.8 (Hook Components). For all ρ, and all 0 6 a 6 n − 1, the hook-
component coefficients are obtained as
(30) cρ,(a | b) = e⊥a Aρ.

Now, observe that the equality A(n+1) = A1n follows readily from the definition of
the module Sρ. Thus we may deduce, using Equation 30, that for all a
(31) c(n | 0),(a | b+1) = c(0 |n−1),(a | b).

1.5. Length conjecture. One of the interesting implications of this theorem, to-
gether with Conjecture 1.9 below, is that we can reconstruct Aρ from (very) partial
knowledge of the values of the 〈S⊗ρ , sµ〉. To see how this goes, let us first state the
following conjecture, defining the length `(f) of a symmetric function f , to be the
maximum number of parts `(λ) in a partition λ that index a Schur function sλ occur-
ring with non-zero coefficients aλ in its Schur expansion f =

∑
λ aλfλ. In formula:

`(f) = max
aλ 6=0

`(λ).

The following conjecture extends to all hooks ρ, a similar conjecture (see [5, Conj. 3])
for the S⊗1n = En.

Conjecture 1.9 (Coefficients-Length). If ρ = (a | b) with a > 1, then we have
(32) `(cρµ) 6 n− µ1,

for all partitions µ of n.

In particular, when µ = (n − 2 | 1), the length of 〈S⊗ρ , sµ〉 is conjectured to be
bounded by 1. As it happens, we have

〈S⊗(a | b), s(n−1 | 1)〉 = 〈∇(ŝ(a | b))⊗, s(n−1 | 1)〉 = 0, and(33)
〈S⊗(a | b), s(n−2 | 1)〉 = 〈∇(ŝ(a | b))⊗, s(n−2 | 1)〉 = sb.(34)
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Indeed (see [5]), we already know that

〈S⊗1n , s(n−1 | 0)〉 = 〈∇(en)⊗, s(n−1 | 0)〉 = 1, and(35)
〈S⊗1n , s(n−2 | 1)〉 = 〈∇(en)⊗, s(n−2 | 1)〉 = s1 + s2 + · · ·+ sn−1.(36)

Thus we obtain formulas in Equation 33 and Equation 34 (together with the above), by
respectively taking coefficients of s(n−1 | 0) and s(n−2 | 1) on both sides of Equation 20.

1.6. Reconstruction of Hilbert series of alternants. Let us illustrate, as-
suming the Hook Component Conjecture and the Coefficient-Length Conjectures
(Conjecture 1.8 and 1.9, respectively), how we may reconstruct(7) Aρ, when ρ = (a | b)
for a > 1. First, we have

(37) e⊥n−1Aρ = 0,

so that Aρ contains no terms(8) of length larger or equal to n− 1. Next, using Equa-
tion 34, we get that

(38) e⊥n−2Aρ = c(a | b),(n−2 | 1) = sb,

from which we infer that

(39) Aρ = s(b |n−3) + . . .︸ ︷︷ ︸
lower length terms

,

Likewise, all terms of length n− 3 of Aρ are imposed by the identity

(40) e⊥n−3Aρ = 〈S⊗ρ , s(n−3 | 2)〉 = 〈∇(ŝρ)⊗, s(n−3 | 2)〉,

since 〈S⊗ρ , s(n−3 | 2)〉 is of at most length 2, hence its value is entirely characterized by
that of ∇(ŝρ)⊗. For instance, for hooks of size 6, we may calculate explicitly that

〈∇(ŝ(6))⊗, s411〉 = s1 + s2 + s3 + s4,

〈∇(ŝ51)⊗, s411〉 = s11 + s21 + s31 + s2 + s3 + s4 + s5,

〈∇(ŝ411)⊗, s411〉 = s21 + s31 + s41 + s22 + s3 + s4 + s5 + s6,

〈∇(ŝ3111)⊗, s411〉 = s31 + s41 + s51 + s32 + s4 + s5 + s6 + s7,

〈∇(ŝ21111)⊗, s411〉 = s41 + s51 + s61 + s32 + s42 + s5 + s6 + s7 + s8;

from which we deduce all terms of Aρ of length larger or equal to 3. This gives

A(6) = s1111 + s311 + s411 + s511 + 〈∇(ŝ(6))⊗, e6〉,
A51 = s2111 + s321 + s421 + s411 + s511 + s611 + 〈∇(ŝ51)⊗, e6〉,
A411 = s3111 + s331 + s421 + s521 + s511 + s611 + s711 + 〈∇(ŝ411)⊗, e6〉,
A3111 = s4111 + s431 + s521 + s621 + s611 + s711 + s811 + 〈∇(ŝ3111)⊗, e6〉,
A21111 = s5111 + s431 + s531 + s621 + s721 + s711 + s811 + s911 + 〈∇(ŝ21111)⊗, e6〉

in which the first terms correspond to Equation 39. Observe that some of the terms
in 〈∇(ŝρ)⊗, s411〉 are already obtained by skewing by e3 the length-4 terms in the
Aρ’s. Hence, we only need to add the necessary length-3 terms to account for the
“missing” terms. We can then conclude the entire construct by adding 〈∇(ŝρ)⊗, e6〉,
since it contains precisely the terms of length less or equal to 2 that should appear
in Aρ.

(7)A similar reconstruction, for the case when ρ = 1n, is described in [5].
(8)Recall that the Schur expansion of Aρ only has positive integer coefficients.
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2. The e-positivity phenomenon
As discussed in [4], most of the symmetric functions constructed via the elliptic Hall
algebra approach exhibit a e-positivity when specialized at t = 1. We consider here
the case of Sρ, for which we get the specialization of any one of the (infinitely many)
parameters qi to the value 1. This is obtained via the plethystic evaluation at 1 +q of
the GL∞-coefficients cρµ of S⊗ρ . Noteworthy is the fact that this operation is invertible,
as long as there are infinitely many parameters.

It is worth underlining the difference between

pj [1 + q1 + q2 + · · ·+ qk + · · · ] = 1 + qj1 + qj2 + · · ·+ qjk + · · · , and

pj [q1 + q2 + · · ·+ qk + · · · ]
∣∣∣
q1→1+q1

= (1 + q1)j + qj2 + · · ·+ qjk + · · ·

We see here the difference between the two possible orders in which we may apply
the operators pj [−], and substitution of 1 + q1 for q1. The e-positivity phenomenon
considered below is for the first of these, in contrast with similar results that appeared
in [1, 2, 13, 14], in which the second order of application of the operators is considered.

For the sake of discussion, let us write

(41) Tρ := S⊗ρ [1 + q; z],

and write

Tρ =
∑
µ`n

cρµ[1 + q]⊗ sµ(z);

or equivalently in ⊗-format:

Tρ =
∑
ν`n

dρν ⊗ eν ,(42)

with dρν the coefficients of eν(z) in Tρ. Then, as far as we can check experimentally,
all of the dρν are Schur-positive. For instance, we have

T41 = (s211 + s32 + s41 + s51 + s7)⊗ e5

+ (s111 + s22 + s11 + s21 + s3 + 2s31 + s4 + s41 + s5 + s6)⊗ e41

+ (2s21 + s31 + s3 + s4 + s5)⊗ e32 + (s11 + s21 + s1 + 2s2 + s3 + s4)⊗ e311

+ (s11 + s1 + 2s2 + s3)⊗ e221 + (1 + s1)⊗ e2111.

By definition, the cρµ are related to the dρν by the identity

(43) cρµ[1 + q] =
∑
ν`n

Kµ′νdρν ,

where the Kµλ are the usual Kostka numbers.
There are close ties between this e-positivity phenomenon and our conjectures. To

see this, recall that the coefficient of en in the e-expansion of sµ vanishes for all µ
except hooks; and it is known to be equal to (−1)k when µ = (k | j), with n = k+j+1.
Since the forgotten symmetric functions fν are dual to the eν , we may write this as

〈sµ, fn〉 =
{

(−1)k, if µ = (k | j),
0 otherwise.
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We may then calculate, using Equation 30, that

dρ,(n) = 〈S⊗ρ [1 + q; z], fn〉 =
∑
µ`n

cρµ[1 + q] 〈sµ, fn〉

=
(
n−1∑
k=0

(−1)k cρ,(k | j)

)
[1 + q] =

∑
k>0

(−1)k e⊥k An

 [1 + q].

For any symmetric function F , one has
∑
k>0(−1)k e⊥k F (q) = F [q−1]. Thus, we find

that dρ,(n−1 | 0) = (Aρ[q − 1])[1 + q] = Aρ, and we conclude the following.

Proposition 2.1. The Hook Components Conjecture 1.8 implies that, for all ρ, the
coefficient dρ,(n) of en in Tρ is Schur positive.

To get more, let µ be any partition of n which is largest in dominance order among
those such that cρµ 6= 0. Then it is easy to see that

(44) dρµ′ = cρµ[1 + q].

We thus automatically have Schur-positivity of dρµ′ . Experiments suggest that, for
all hooks ρ = (a | b) and µ = (k | j), if m := min(j, k) then we have

(45) dρµ =
m∑
i=0

c(a | b−i),(k−i | j),

except when ρ = µ = 1n, in which case we simply have dρµ = 1.

2.1. Trivariate shuffle conjecture. The trivariate shuffle conjecture of [10],
corresponding below to ρ = (0 |n − 1), may at least be extended to other cases as
follows. Recall the definition of Γa in Equation 15.

Conjecture 2.2 (Trivariate shuffle). For hooks ρ = (a | b), with a equal to either 0,
1, or n− 1, we have

(46) Sρ(q, t, 1; z) =
∑

Γa6α6β
qd(α,β)Lβ(t; z),

where the Dyck path α lies below the Dyck path β in the Tamari poset, and d(α, β) is
the length of the longest strict chain going from α to β in this poset.

Again, we underline that the case a = 0 already appears in [10], and that the case
a = n− 1 is more or less implicit in [11]. We expect that some variant of this formula
should hold for other hooks, maybe with some tweak to the LLT-polynomial part. It
would also be nice to have similar expressions involving r, for Sρ(q, t, r; z), but this is
not known.

2.2. More observed properties. Recall that Identity 4.17 in Theorem 4.2 of [8]
states (in our notations) that for a+ b = n

〈∇(ŝn+1)⊗, s(a | b)〉 = 〈∇(en)⊗, s(a | b−1)〉.

This equality appears to lift to the following similar multivariate identity:

〈S⊗(n+1), s(a | b)〉 = 〈S⊗1n , s(a | b−1)〉, for all a+ b = n.(47)
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3. Appendix
3.1. The sλ ⊗ sµ-expansions of ∇(ŝρ)⊗ and S⊗ρ for hooks of size 5.

∇(ŝ5)⊗ = 1⊗ s41 + (s1 + s2)⊗ s32 + (s1 + s2 + s3)⊗ s311

+ (s11 + s21 + s2 + s3 + s4)⊗ s221

+ (s11 + s21 + s31 + s3 + s4 + s5)⊗ s2111 + (s31 + s41 + s6)⊗ s11111

∇(ŝ41)⊗ = s1 ⊗ s41 + (s11 + s2 + s3)⊗ s32 + (s11 + s21 + s2 + s3 + s4)⊗ s311

+ (2s21 + s31 + s3 + s4 + s5)⊗ s221

+ (s21 + s22 + 2s31 + s41 + s4 + s5 + s6)⊗ s2111

+ (s32 + s41 + s51 + s7)⊗ s11111

∇(ŝ311)⊗ = s2 ⊗ s41 + (s21 + s3 + s4)⊗ s32 + (s21 + s31 + s3 + s4 + s5)⊗ s311

+ (s22 + 2s31 + s41 + s4 + s5 + s6)⊗ s221

+ (s31 + s32 + 2s41 + s51 + s5 + s6 + s7)⊗ s2111

+ (s42 + s51 + s61 + s8)⊗ s11111

∇(ŝ2111)⊗ = s3 ⊗ s41 + (s21 + s31 + s4 + s5)⊗ s32

+ (s22 + s31 + s41 + s4 + s5 + s6)⊗ s311

+ (s32 + s31 + 2s41 + s51 + s5 + s6 + s7)⊗ s221

+ (s32 + s42 + s41 + 2s51 + s61 + s6 + s7 + s8)⊗ s2111

+ (s33 + s52 + s61 + s71 + s9)⊗ s11111

S⊗5 = ∇(ŝ5)⊗ + s111 ⊗ s11111,

S⊗41 = ∇(ŝ41)⊗ + s111 ⊗ s2111 + s211 ⊗ s11111,

S⊗311 = ∇(ŝ311)⊗ + s111 ⊗ s221 + s211 ⊗ s2111 + s311 ⊗ s11111,

S⊗2111 = ∇(ŝ2111)⊗ + s211 ⊗ s221 + s311 ⊗ s2111 + s411 ⊗ s11111,

S⊗11111 = ∇(ŝ11111)⊗ + (s211 + s311)⊗ s221 + (s111 + s211 + s311 + s411)⊗ s2111

+ (s1111 + s311 + s411 + s511)⊗ s11111.

(The value of ∇(ŝ11111)⊗) may be found in [5].)

3.2. The expansions of S⊗ρ for hooks of size 6.

S⊗6 = 1⊗ s51 + (s1 + s2 + s3)⊗ s42 + (s1 + s2 + s3 + s4)⊗ s411

+ (s21 + s2 + s4)⊗ s33

+ (s22 + s11 + 2s21 + 2s31 + s41 + s2 + 2s3 + 2s4 + 2s5 + s6)⊗ s321

+ (s32 + s11 + s21 + 2s31 + s41 + s51 + s3 + s4 + 2s5 + s6 + s7)⊗ s3111

+ (s211 + s32 + s21 + s31 + s41 + s51 + s4 + s5 + s7)⊗ s222

+ (s111 + s211 + s311 + s22 + s32 + s42 + s21 + 2s31 + 3s41 + 2s51 + s61

+ s4 + s5 + 2s6 + s7 + s8)⊗ s2211

+ (s111 + s211 + s311 + s411 + s33 + s32 + s42 + s52

+ s31 + 2s41 + 2s51 + 2s61 + s71 + s6 + s7 + s8 + s9)⊗ s21111

+ (s1111 + s311 + s411 + s511 + s43 + s42 + s62 + s61 + s71 + s81 + s10.)⊗ s111111
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S⊗51 = s1 ⊗ s51 + (s11 + s21 + s2 + s3 + s4)⊗ s42

+ (s11 + s21 + s31 + s2 + s3 + s4 + s5)⊗ s411

+ (s21 + s31 + s3 + s5)⊗ s33

+ (s111 + s211 + 2s22 + s32 + 2s21 + 4s31 + 3s41 + s51

+ s3 + 2s4 + 2s5 + 2s6 + s7)⊗ s321

+ (s111 + s211 + s311 + s21 + s22 + 2s32 + s42 + 2s31 + 3s41 + 2s51 + s61

+ s4 + s5 + 2s6 + s7 + s8)⊗ s3111

+ (s211 + s311 + s22 + s32 + s42 + s31 + 2s41 + s51 + s61

+ s5 + s6 + s8)⊗ s222

+ (s221 + 2s211 + 2s311 + s411 + s33 + s22 + 3s32 + 2s42 + s52 + s31 + 3s41

+ 4s51 + 2s61 + s71 + s5 + s6 + 2s7 + s8 + s9)⊗ s2211

+ (s1111 + s221 + s321 + s211 + 2s311 + 2s411 + s511 + s33 + s43 + s32 + 3s42

+ 2s52 + s62 + s41 + 2s51 + 3s61 + 2s71 + s81

+ s7 + s8 + s9 + s(10))⊗ s21111

+ (s2111 + s321 + s421 + s411 + s511 + s611 + s43 + s53 + s52 + s62

+ s71 + s72 + s81 + s91 + s(11))⊗ s111111

S⊗411 = s2 ⊗ s51 + (s21 + s31 + s3 + s4 + s5)⊗ s42

+ (s22 + s21 + s31 + s41 + s3 + s4 + s5 + s6)⊗ s411

+ (s211 + s22 + s31 + s41 + s4 + s6)⊗ s33

+ (2s211 + s311 + s22 + 3s32 + s42 + 2s31 + 4s41 + 3s51 + s61

+ s4 + 2s5 + 2s6 + 2s7 + s8)⊗ s321

+ (s221 + s211 + s311 + s411 + s33 + 2s32 + 2s42 + s52 + s31 + 2s41

+ 3s51 + 2s61 + s71 + s5 + s6 + 2s7 + s8 + s9)⊗ s3111

+ (s221 + s311 + s411 + s33 + s32 + s42 + s52

+ s41 + 2s51 + s61 + s71 + s6 + s7 + s9)⊗ s222

+ (s1111 + s221 + s321 + 3s311 + 2s411 + s511

+ s33 + s43 + s32 + 4s42 + 2s52 + s62

+ s41 + 3s51 + 4s61 + 2s71 + s81

+ s6 + s7 + 2s8 + s9 + s(10))⊗ s2211

+ (s2111 + 2s321 + s421 + s311 + 2s411 + 2s511 + s611 + s33 + 2s43 + s53

+ s42 + 3s52 + 2s62 + s72 + s51 + 2s61 + 3s71 + 2s81 + s91

+ s8 + s9 + s(10) + s(11))⊗ s21111

+ (s3111 + s331 + s421 + s521 + s511 + s611 + s711 + s44 + s53 + s63

+ s62 + s72 + s82 + s81 + s91 + s(10,1) + s(12))⊗ s111111
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S⊗3111 = s3 ⊗ s51 + (s22 + s31 + s41 + s4 + s5 + s6)⊗ s42

+ (s32 + s31 + s41 + s51 + s4 + s5 + s6 + s7)⊗ s411

+ (s32 + s41 + s51 + s5 + s7)⊗ s33

+ (s221 + 2s311 + s411 + s33 + 2s32 + 3s42 + s52 + 2s41 + 4s51

+ 3s61 + s71 + s5 + 2s6 + 2s7 + 2s8 + s9)⊗ s321

+ (s321 + s311 + s411 + s511 + s33 + s43 + 2s42 + 2s52 + s62

+ s41 + 2s51 + 3s61 + 2s71 + s81

+ s6 + s7 + 2s8 + s9 + s(10))⊗ s3111

+ (s321 + s311 + s411 + s511 + s43 + 2s42 + s52 + s62

+ s51 + 2s61 + s71 + s81 + s7 + s8 + s(10))⊗ s222

+ (s2111 + 2s321 + s421 + 3s411 + 2s511 + s611 + s33 + 2s43 + s53

+ s42 + 4s52 + 2s62 + s72

+ s51 + 3s61 + 4s71 + 2s81 + s91

+ s7 + s8 + 2s9 + s(10) + s11.)⊗ s2211

+ (s3111 + s331 + 2s421 + s521 + s411 + 2s511 + 2s611 + s711

+ s44 + s43 + 2s53 + s63

+ s52 + 3s62 + 2s72 + s82

+ s61 + 2s71 + 3s81 + 2s91 + s(10,1)

+ s9 + s(10) + s(11) + s(12))⊗ s21111

+ (s4111 + s431 + s521 + s621 + s611 + s711 + s811

+ s54 + s63 + s73 + s72 + s82

+ s91 + s92 + s(10,1) + s(11,1) + s(13))⊗ s111111
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S⊗21111 = s4 ⊗ s51 + (+s32s31 + s41 + s51 + s5 + s6 + s7)⊗ s42

+ (s32 + s42 + s41 + s51 + s61 + s5 + s6 + s7 + s8)⊗ s411

+ (s311 + s22 + s42 + s41 + s51 + s61 + s6 + s8)⊗ s33

+ (s221 + s321 + s311 + 2s411 + s511 + s33 + s43

+ s32 + 3s42 + 3s52 + s62

+ s41 + 3s51 + 4s61 + 3s71 + s81

+ s6 + 2s7 + 2s8 + 2s9 + s(10))⊗ s321

+ (s321 + s421 + s411 + s511 + s611 + s33 + s43 + s53

+ s42 + 3s52 + 2s62 + s72

+ s51 + 2s61 + 3s71 + 2s81 + s91

+ s7 + s8 + 2s9 + s(10) + s(11))⊗ s3111

+ (s2111 + s321 + s421 + s33 + s411 + s511 + s611

+ s43 + s53 + 2s52 + s62 + s72

+ s51 + s61 + 2s71 + s81 + s91 + s8 + s9 + s(11))⊗ s222

+ (s3111 + s331 + s321 + 2s421 + s521 + s411 + 3s511 + 2s611 + s711

+ s44 + 2s43 + 2s53 + s63

+ s42 + 2s52 + 4s62 + 2s72 + s82

+ 2s61 + 3s71 + 4s81 + 2s91 + s(10,1)

+ s8 + s9 + 2s(10) + s(11) + s(12))⊗ s2211

+ (s4111 + s331 + s431 + s421 + 2s521 + s621

+ s511 + 2s611 + 2s711 + s811

+ s54 + s43 + 2s53 + 2s63 + s73

+ 2s62 + 3s72 + 2s82 + s92

+ s71 + 2s81 + 3s91 + 2s(10,1) + s(11,1)

+ s(10) + s(11) + s(12) + s(13))⊗ s21111

+ (s5111 + s431 + s531 + s621 + s721 + s711 + s811 + s911

+ s64 + s63 + s73 + s83

+ s82 + s92 + s(10,2)

+ s(10,1) + s(11,1) + s(12,1) + s(14))⊗ s111111

(The value of S⊗111111 = E6 may be found in [5].)

3.3. The e-expansions of the Tρ’s for hooks of size 6 4.

T1 = 1⊗ e1;

T2 = 1⊗ e2,

T11 = 1⊗ e11 + s1 ⊗ e2;

T3 = 1⊗ e21 + s1 ⊗ e3,

T21 = 1⊗ e21 + s1 ⊗ e21 + s2 ⊗ e3,

T111 = 1⊗ e111 + (2s1 + s2)⊗ e21 + (s11 + s3)⊗ e3;

T4 = 1⊗ e211 + s1 ⊗ e22 + (s1 + s2)⊗ e31 + (s11 + s3)⊗ e4,

T31 = (1 + s1)⊗ e211 + s2 ⊗ e22 + (s11 + s1 + s2 + s3)⊗ e31 + (s21 + s4)⊗ e4,
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T211 = (1 + s1 + s2)⊗ e211 + (s11 + s1 + s3)⊗ e22 + (s21 + s2 + s3 + s4)⊗ e31

+ (s31 + s5)⊗ e4,

T1111 = 1⊗ e1111 + (3s1 + 2s2 + s3)⊗ e211 + (s11 + s21 + s2 + s4)⊗ e22

+ (2s11 + s21 + s31 + 2s3 + s4 + s5)⊗ e31 + (s111 + s31 + s41 + s6)⊗ e4.
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possibility of perusing sufficiently large expressions resulting from difficult explicit
computations. These calculations were very elegantly realized by Pauline Hubert and
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