象
 ALGEBRAIC COMBINATORICS

Weiying Guo \& Arun Ram
Comparing formulas for type $G L_{n}$ Macdonald polynomials - Supplement
Volume 5, issue 5 (2022), p. 885-923.
https://doi.org/10.5802/alco. 228

© The author(s), 2022.
(cc) BY This article is licensed under the

Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Comparing formulas for type $G L_{n}$ Macdonald polynomials - Supplement

Weiying Guo \& Arun Ram

Dedicated to Hélène Barcelo

Abstract

This paper is a supplement to [5], containing examples, remarks and additional material that could be useful to researchers working with Type $G L_{n}$ Macdonald polynomials. In the course of our comparison of the alcove walk formula and the nonattacking fillings formulas for type $G L_{n}$ Macdonald polynomials we did many examples and significant analysis of the literature. In the preparation of [5] it seemed sensible to produce a document with focus and this material was removed. This is paper resurrects and organizes that material, in hopes that others may also find it useful.

0. Introduction

This paper is a supplement to [5], containing examples, remarks and additional material that could be useful to researchers working with Type $G L_{n}$ Macdonald polynomials. In the course of our comparison of the alcove walk formula and the nonattacking fillings formulas for type $G L_{n}$ Macdonald polynomials we did many examples and significant analysis of the literature. In the preparation of [5] it seemed sensible to produce a document with focus and this material was removed. This is paper resurrects and organizes that material, in hopes that others may also find it useful.

1. The material in Section 1: Several colleagues have asked us questions about permuted basement Macdonald polynomials and KZ-families (the permuted basement Macdonald polynomials are called relative Macdonald polynomials in this paper). These questions are helpfully considered in the context of the results of the two paragraphs following equation (6.6) in Macdonald's Séminaire Bourbaki article [11] and Sections 5.4 and 5.5 of Macdonald's followup book [12] treating the fully general case. In hopes of making these results more accessible, in Section 1 we have recast these completely in the type $G L_{n}$ and included their proofs (which are not difficult). These results are the H decomposition in Section 1.1, symmetrization statement in Proposition 1.1, and the KZ-family characterization in Proposition 1.2. We hope that these type $G L_{n}$ specific expositions of these results can be helpful to the community.
2. The material in Section 2: This section has a focus on counting the number of alcove walks and the number of nonattacking fillings, in order to compare the number of terms that appear in alcove walks formula and the nonattacking fillings formula for Macdonald polynomials. Some explicit formulas for these counts, which may not have been widely noticed before, are included.

[^0]3. The material in Section 3: This section explains how to recast the alcove walks and nonattacking fillings into path form and pipe dream form. Pictures are provided.
$4,5,6$. The material in Sections 4-6: These sections provide explicit examples of the main results of [5]: the inversions and the box-greedy reduced word for u_{μ} proved in [5, Proposition 2.2], the step-by-step and box-by-box recursions for computing Macdonald polynomials in [5, Proposition 4.1 and 4.3] and some specific examples to help support the exposition of the type $G L_{n}$ double affine Hecke algebra (DAHA) given in [5, Section 5].
7. The material in Section 7: In this final section we provide additional explicit expansions of Macdonald polynomials for special cases: $n=2, n=3$, a single column, partitions with 3 boxes, and explicit nonattacking fillings and their weights for E_{μ} where μ has less than 3 boxes.
8. Section 8 contains some brief remarks about the queue tableaux and multiline queues which appear in [4, Section 1.2 and Definition A.2].
A small warning: Even though they all have a Type A root system, type $S L_{n}$ Macdonald polynomials, type $P G L_{n}$ Macdonald polynomals and type $G L_{n}$ Macdonald polynomials are all different (though the relationship is well known and not difficult). We should stress that this paper is specific to the $G L_{n}$-case and some results of this paper do not hold for Type $S L_{n}$ or type $P G L_{n}$ unless properly modified.

1. Symmetrization, H decomposition of $\mathbb{C}[X]$ and KZ-families

Let $q, t^{\frac{1}{2}} \in \mathbb{C}^{\times}$. Following the notation of $[10, \mathrm{Ch} . \mathrm{VI}(3.1)]$, let $T_{q^{-1}, x_{1}}$ be the operator on $\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ given by

$$
T_{q^{-1}, x_{n}} h\left(x_{1}, \ldots, x_{n}\right)=h\left(x_{1}, \ldots, x_{n-1}, q^{-1} x_{n}\right) .
$$

The symmetric group S_{n} acts on $\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ by permuting the the variables x_{1}, \ldots, x_{n}. Define operators $T_{1}, \ldots, T_{n-1}, g$ and g^{\vee} on $\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ by

$$
\begin{gather*}
T_{i}=t^{-\frac{1}{2}}\left(t-\frac{t x_{i}-x_{i+1}}{x_{i}-x_{i+1}}\left(1-s_{i}\right)\right) \tag{1}\\
g=s_{1} s_{2} \cdots s_{n-1} T_{q^{-1}, x_{n}}, \quad g^{\vee}=x_{1} T_{1} \cdots T_{n-1}
\end{gather*}
$$

where s_{1}, \ldots, s_{n-1} are the simple transpositions in S_{n}. The Cherednik-Dunkl operators are

$$
\begin{equation*}
Y_{1}=g T_{n-1} \cdots T_{1}, \quad Y_{2}=T_{1}^{-1} Y_{1} T_{1}^{-1}, \quad \ldots, \quad Y_{n}=T_{n-1}^{-1} Y_{n-1} T_{n}^{-1} \tag{2}
\end{equation*}
$$

For $\mu \in \mathbb{Z}^{n}$ the nonsymmetric Macdonald polynomial E_{μ} is the (unique) element $E_{\mu} \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ such that the coefficient of $x_{1}^{\mu_{1}} \cdots x_{n}^{\mu_{n}}$ in E_{μ} is 1 and

$$
\begin{equation*}
Y_{i} E_{\mu}=q^{-\mu_{i}} t^{-\left(v_{\mu}(i)-1\right)+\frac{1}{2}(n-1)} E_{\mu}, \tag{3}
\end{equation*}
$$

where $v_{\mu} \in S_{n}$ is the minimal length permutation such that $v_{\mu} \mu$ is weakly increasing. Let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ and let $z \in S_{n}$.
(4) The relative Macdonald polynomial E_{μ}^{z} is $\quad E_{\mu}^{z}=t^{-\frac{1}{2}\left(\ell\left(z v_{\mu}^{-1}\right)-\ell\left(v_{\mu}^{-1}\right)\right)} T_{z} E_{\mu}$.

Let $\lambda=\left(\lambda_{1} \geqslant \cdots \geqslant \lambda_{n}\right) \in \mathbb{Z}^{n}$.
(5) The symmetric Macdonald polynomial P_{λ} is $\quad P_{\lambda}=\sum_{\nu \in S_{n} \lambda} t^{\frac{1}{2} \ell\left(z_{\nu}\right)} T_{z_{\nu}} E_{\lambda}$,
where the sum is over rearrangements ν of λ and $z_{\nu} \in S_{n}$ is minimal length such that $\nu=z_{\nu} \lambda$.
1.1. The H-modules $\mathbb{C}[X]^{\lambda}$. Let H be the algebra generated by the operators T_{1}, \ldots, T_{n-1} and Y_{1}, \ldots, Y_{n} (so that H is an affine Hecke algebra) and let

$$
\tau_{i}^{\vee}=T_{i}+\frac{t^{-\frac{1}{2}}(1-t)}{1-Y_{i}^{-1} Y_{i+1}} \quad \text { for } i \in\{1, \ldots, n-1\}
$$

As H-modules

$$
\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]=\underset{\lambda}{\bigoplus} \mathbb{C}[X]^{\lambda} \quad \text { where } \quad \mathbb{C}[X]^{\lambda}=\operatorname{span}\left\{E_{\mu} \mid \mu \in S_{n} \lambda\right\}
$$

and the direct sum is over decreasing $\lambda=\left(\lambda_{1} \geqslant \cdots \geqslant \lambda_{n}\right) \in \mathbb{Z}^{n}$. A description of the action of H on $\mathbb{C}[X]^{\lambda}$ is given by the following. Let $\mu \in \mathbb{Z}^{n}$ and, with notations as in (3), let

$$
\begin{aligned}
& a_{\mu}=q^{\mu_{i}-\mu_{i+1}} t^{v_{\mu}(i)-v_{\mu}(i+1)}, \\
& a_{s_{i} \mu}=q^{\mu_{i+1}-\mu_{i}} t^{v_{\mu}(i+1)-v_{\mu}(i)},
\end{aligned} \quad \text { and } \quad D_{\mu}=\frac{\left(1-t a_{\mu}\right)\left(1-t a_{s_{i} \mu}\right)}{\left(1-a_{\mu}\right)\left(1-a_{s_{i} \mu}\right)} .
$$

Assume that $\mu_{i}>\mu_{i+1}$. By using the identity $E_{s_{i} \mu}=t^{\frac{1}{2}} \tau_{i}^{\vee} E_{\mu}$ from [5, (3.5)], the eigenvalue from (3) and [5, Proposition 5.5 (5.23)], it is straightforward to compute that

$$
\begin{array}{cc}
Y_{i}^{-1} Y_{i+1} E_{\mu}=a_{\mu} E_{\mu}, & t^{\frac{1}{2}} \tau_{i}^{\vee} E_{\mu}=E_{s_{i} \mu}, \tag{6}\\
Y_{i}^{-1} Y_{i+1} E_{s_{i} \mu}=a_{s_{i} \mu} E_{s_{i} \mu}, & t^{\frac{1}{2}} \tau_{i}^{\vee} E_{s_{i} \mu}=D_{\mu} E_{\mu}, \\
t^{\frac{1}{2}} T_{i} E_{\mu}=-\frac{1-t}{1-a_{\mu}} E_{\mu}+E_{s_{i} \mu}, & \text { and }
\end{array} t^{\frac{1}{2}} T_{i} E_{s_{i} \mu}=D_{\mu} E_{\mu}+\frac{1-t}{1-a_{s_{i} \mu}} E_{s_{i} \mu} . .
$$

Now assume that $\mu_{i}=\mu_{i+1}$. Then $v_{\mu}(i+1)=v_{\mu}(i)+1$ and $a_{\mu}=t^{-1}$ so that

$$
\begin{equation*}
Y_{i}^{-1} Y_{i+1} E_{\mu}=t^{-1} E_{\mu}, \quad\left(t^{\frac{1}{2}} \tau_{i}^{\vee}\right) E_{\mu}=0, \quad \text { and } \quad\left(t^{\frac{1}{2}} T_{i}\right) E_{\mu}=t E_{\mu} \tag{7}
\end{equation*}
$$

These formulas make explicit the action of H on $\mathbb{C}[X]^{\lambda}$ in the basis $\left\{E_{\mu} \mid \mu \in S_{n} \lambda\right\}$.
The formulas in (6) are the type $G L_{n}$ special cases of [12, (5.4.3),(5.6.6)].
1.2. Symmetrization of E_{μ} FOR $\mu \in \mathbb{Z}^{n}$. If $z \in S_{n}$ and

$$
z=s_{i_{1}} \cdots s_{i_{\ell}} \text { is a reduced word, } \quad \text { let } \quad T_{z}=T_{i_{1}} \cdots T_{i_{\ell}}
$$

Let w_{0} be the longest element of S_{n} so that

$$
w_{0}(i)=n-i+1, \text { for } i \in\{1, \ldots, n\}, \quad \text { and } \quad \ell\left(w_{0}\right)=\frac{n(n-1)}{2}=\binom{n}{2}
$$

Following [12, (5.5.7), (5.5.16), (5.5.17)], let

$$
\begin{equation*}
\mathbf{1}_{\mathbf{0}}=t^{-\frac{1}{2} \ell\left(w_{0}\right)} \sum_{z \in S_{n}} t^{\frac{1}{2} \ell(z)} T_{z} \tag{8}
\end{equation*}
$$

so that $T_{i} \mathbf{1}_{0}=\mathbf{1}_{0} T_{i}=t^{\frac{1}{2}} \mathbf{1}_{0}$ for $i \in\{1, \ldots, n-1\}$, and

$$
\begin{equation*}
\mathbf{1}_{0}^{2}=W_{0}(t) \mathbf{1}_{0}, \quad \text { where } \quad W_{0}(t)=\sum_{z \in S_{n}} t^{\ell(z)} \tag{9}
\end{equation*}
$$

is the Poincaré polynomial for S_{n}.
For $\mu \in \mathbb{Z}^{n}$, the symmetrization of E_{μ} is (see [12, (5.7.1)] and [11, Remarks after (6.8)])

$$
\begin{equation*}
F_{\mu}=\mathbf{1}_{0} E_{\mu}=t^{-\frac{1}{2} \ell\left(w_{0}\right)} \sum_{z \in S_{n}} t^{\frac{1}{2}\left(\ell(z)-\ell\left(z v_{\mu}^{-1}\right)+\ell\left(v_{\mu}^{-1}\right)\right.} E_{\mu}^{z} \tag{10}
\end{equation*}
$$

so that F_{μ} is a (weighted) sum of the relative Macdonald polynomials E_{μ}^{z} defined in (4)). The following Proposition shows that F_{μ} is always, up to an explicit constant factor, equal to the symmetric Macdonald polynomial P_{λ} (defined in (5)). Proposition 1.1 is the specialization of [11, remarks after (6.8)] and [12, (5.7.2)] to our setting.

Proposition 1.1. Let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}^{n}$. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be the weakly decreasing rearrangement of μ and let $z_{\mu} \in S_{n}$ be minimal length such that $\mu=z_{\mu} \lambda$. Let

$$
S_{\lambda}=\left\{y \in S_{n} \mid y \lambda=\lambda\right\} \quad \text { and } \quad W_{\lambda}(t)=\sum_{y \in S_{\lambda}} t^{\ell(y)}
$$

Then

$$
P_{\lambda}=\frac{t^{\frac{1}{2} \ell\left(w_{0}\right)}}{W_{\lambda}(t)}\left(\prod_{(i, j) \in \operatorname{Inv}\left(z_{\mu}\right)} \frac{1-q^{\lambda_{i}-\lambda_{j}} t^{j-i}}{1-q^{\lambda_{i}-\lambda_{j}} t^{j-i+1}}\right) F_{\mu} .
$$

Proof. The proof is by induction on $\ell\left(z_{\mu}\right)$. The base case $z_{\mu}=1$ has $\mu=\lambda$ and $v_{\lambda}=w_{0} z_{\lambda}$ so that

$$
\begin{aligned}
F_{\lambda} & =\mathbf{1}_{0} E_{\lambda}=t^{-\frac{1}{2} \ell\left(w_{0}\right)}\left(\sum_{u \in S_{n} / S_{\lambda}} \sum_{v \in S_{\lambda}} t^{\frac{1}{2} \ell(x)+\ell(y)} T_{x} T_{y}\right) E_{\lambda} \\
& =t^{-\frac{1}{2} \ell\left(w_{0}\right)}\left(\sum_{u \in S_{n} / S_{\lambda}} t^{\frac{1}{2} \ell(x)} T_{x}\right) W_{\lambda}(t) E_{\lambda}=t^{-\frac{1}{2} \ell\left(w_{0}\right)} W_{\lambda}(t) P_{\lambda}
\end{aligned}
$$

where $T_{y} E_{\lambda}=t^{\frac{1}{2} \ell(y)} E_{y}$ is a consequence of (7) and the last equality is (5). For the induction step, assume that μ is not weakly decreasing and let $i \in\{1, \ldots, n-1\}$ be such that $\mu_{i}<\mu_{i+1}$. Then $z_{s_{i} \mu}=s_{i} z_{\mu}$ and $\ell\left(z_{s_{i} \mu}\right)=\ell\left(z_{\mu}\right)-1$. Using $E_{\mu}=t^{\frac{1}{2}} \tau_{i}^{\vee} E_{s_{i} \mu}$ and $\mathbf{1}_{0} T_{i}=\mathbf{1}_{0} t^{\frac{1}{2}}$ from (6) and (7) gives

$$
\begin{aligned}
F_{\mu} & =\mathbf{1}_{0} E_{\mu}=\mathbf{1}_{0} t^{\frac{1}{2}} \tau_{i_{1}} E_{s_{i} \mu}=\mathbf{1}_{0}\left(t^{\frac{1}{2}} T_{i}+\frac{1-t}{1-Y_{i}^{-1} Y_{i+1}}\right) E_{s_{i} \mu} \\
& =\mathbf{1}_{0}\left(t+\frac{1-t}{1-Y_{i}^{-1} Y_{i+1}}\right) E_{s_{i} \mu}=\mathbf{1}_{0} \frac{1-t Y_{i}^{-1} Y_{i+1}}{1-Y_{i}^{-1} Y_{i+1}} E_{s_{i} \mu} \\
& =\mathbf{1}_{0} \frac{1-t q^{\mu_{i+1}-\mu_{i}} t^{v_{\mu}(i+1)-v_{\mu}(i)}}{1-q^{\mu_{i+1}-\mu_{i}} t^{v_{\mu}(i+1)-v_{\mu}(i)}} E_{s_{i} \mu}=\frac{1-q^{\mu_{i+1}-\mu_{i}} t^{v_{\mu}(i+1)-v_{\mu}(i)+1}}{1-q^{\mu_{i+1}-\mu_{i}} t^{v_{\mu}(i+1)-v_{\mu}(i)}} F_{s_{i} \mu}
\end{aligned}
$$

and the result follows by induction (see Section 1.3.3 for an example).
1.3. The KZ-Family basis of $\mathbb{C}[X]^{\lambda}$. For $\mu \in \mathbb{Z}^{n}$, let $\lambda=\left(\lambda_{1} \geqslant \cdots \geqslant \lambda_{n}\right)$ be the decreasing rearrangement of μ and let $z_{\mu} \in S_{n}$ be minimal length such that $\mu=z_{\mu} \lambda$. Define

$$
\begin{equation*}
f_{\mu}=E_{\lambda}^{z_{\mu}}=t^{\frac{1}{2} \ell\left(z_{\mu}\right)} T_{z_{\mu}} E_{\lambda} \tag{11}
\end{equation*}
$$

It follows from the identities in the last column of (6) that

$$
\left\{f_{\mu} \mid \mu \in S_{n} \lambda\right\} \quad \text { is another basis of } \mathbb{C}[X]^{\lambda}
$$

The following Proposition says that the $\left\{f_{\mu} \mid \mu \in \mathbb{Z}^{n}\right\}$ form a KZ-family, in the terminology of [8, Def. 3.3] (see also [4, Def. 1.13], [2, (17), (18), (19)], [3, Def. 2]).
Proposition 1.2. Let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geqslant 0}^{n}$. Let $i \in\{1, \ldots, n-1\}$ and let T_{i} and g be as defined in (1). Then

$$
t^{\frac{1}{2}} T_{i} f_{\mu}=\left\{\begin{array}{ll}
f_{s_{i} \mu}, & \text { if } \mu_{i}>\mu_{i+1}, \\
t f_{\mu}, & \text { if } \mu_{i}=\mu_{i+1},
\end{array} \quad \text { and } \quad g f_{\mu}=q^{-\mu_{n}} f_{\left(\mu_{n}, \mu_{1}, \ldots, \mu_{n-1}\right)}\right.
$$

Proof. Assume $\mu_{i}>\mu_{i+1}$. Then $z_{s_{i} \mu}=s_{i} z_{\mu}$ and $\ell\left(z_{s_{i} \mu}\right)=\ell\left(z_{\mu}\right)+1$ so that

$$
t^{\frac{1}{2}} T_{i} f_{\mu}=t^{\frac{1}{2}} T_{i} t^{\frac{1}{2} \ell\left(z_{\mu}\right)} T_{z_{\mu}} E_{\lambda}=t^{\frac{1}{2} \ell\left(z_{s_{i} \mu}\right)} T_{z_{s_{i} \mu}} E_{\lambda}=f_{s_{i} \mu}
$$

Assume $\mu_{i}=\mu_{i+1}$. Then there exists $j \in\{1, \ldots, n-1\}$ such that $s_{j} \lambda=\lambda$ and $s_{i} z_{\mu}=z_{\mu} s_{j}$ (so that $s_{i} \mu=s_{i} z_{\mu} \lambda=z_{\mu} s_{j} \lambda$). Then

$$
t^{\frac{1}{2}} T_{i} f_{\mu}=t^{\frac{1}{2}} T_{i} t^{\frac{1}{2} \ell\left(z_{\mu}\right)} T_{z_{\mu}} E_{\lambda}=t^{\frac{1}{2} \ell\left(z_{\mu}\right)} T_{z_{\mu}}{ }^{\frac{1}{2}} T_{j} E_{\lambda}=t^{\frac{1}{2} \ell\left(z_{\mu}\right)} T_{z_{\mu}} t E_{\lambda}=t f_{\mu}
$$

(c) Let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ and let i and j be such that λ_{i} is the first part of λ equal to μ_{n} and λ_{j} is the last part of λ equal to μ_{n}. Thus $\mu_{n}=\lambda_{i}=\lambda_{i+1}=\cdots=\lambda_{j}$. Write $z_{\mu}=z s_{n-1} \cdots s_{j}$ with $z \in S_{n-1}$ and let $c_{n}=s_{1} \cdots s_{n-1}$. Then, using $v_{\lambda}(j)=$ $1+(j-i)+n-j=n-i+1$ from [5, Proposition 2.1(a)],

$$
\begin{aligned}
g f_{\mu} & =g t^{\frac{1}{2} \ell\left(z_{\mu}\right)} T_{z_{\mu}} E_{\lambda}=g t^{\frac{1}{2} \ell(z)} T_{z} t^{\frac{1}{2}(n-j)} T_{n-1} \cdots T_{j} E_{\lambda} \\
& =t^{\frac{1}{2}(n-j)} g t^{\frac{1}{2} \ell(z)} T_{z} g^{-1} g T_{n-1} \cdots T_{j} E_{\lambda} \\
& =t^{\frac{1}{2}(n-j)}\left(g t^{\frac{1}{2} \ell(z)} T_{z} g^{-1}\right) T_{1} \cdots T_{j-1}\left(T_{j-1}^{-1} \cdots T_{1}^{-1} g T_{n-1} \cdots T_{j}\right) E_{\lambda} \\
& =t^{\frac{1}{2}(n-j)}\left(t^{\frac{1}{2} \ell(z)} T_{c_{n} z c_{n}^{-1}}\right) T_{1} \cdots T_{j-1} Y_{j} E_{\lambda} \\
& =t^{\frac{1}{2}(n-j)}\left(t^{\frac{1}{2} \ell(z)} T_{c_{n} z c_{n}^{-1}}\right) T_{1} \cdots T_{j-1} q^{-\lambda_{j}} t^{-\left(v_{\lambda}(j)-1\right)+\frac{1}{2}(n-1)} E_{\lambda} \\
& =q^{-\lambda_{j}} t^{\frac{1}{2}(n-j)-(n-i+1-1)+\frac{1}{2}(n-1)}\left(t^{\frac{1}{2} \ell(z)} T_{\left.c_{n} z c_{n}^{-1}\right)} T_{1} \cdots T_{i-1} T_{i} \cdots T_{j-1} E_{\lambda}\right. \\
& =q^{-\mu_{n}} t^{-\frac{1}{2} j+i-\frac{1}{2}}\left(t^{\frac{1}{2} \ell(z)} T_{c_{n} z c_{n}^{-1}}\right) T_{1} \cdots T_{i-1} t^{\frac{1}{2}(j-i)} E_{\lambda} \\
& =q^{-\mu_{n}}\left(t^{\frac{1}{2} \ell(z)} T_{\left.c_{n} z c_{n}^{-1}\right)} t^{\frac{1}{2}(i-1)} T_{1} \cdots T_{i-1} E_{\lambda}\right. \\
& =q^{-\mu_{n}} f_{\left(\lambda_{i}, \mu_{1}, \ldots, \mu_{n-1}\right)}=q^{-\mu_{n}} f_{\left(\mu_{n}, \mu_{1}, \ldots, \mu_{n-1}\right)},
\end{aligned}
$$

where the next to last equality follows from

$$
\begin{aligned}
& s_{1} \cdots s_{i-1}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\left(\lambda_{i}, \lambda_{1}, \ldots, \lambda_{i-1}, \lambda_{i+1}, \ldots, \lambda_{n}\right) \text { and } \\
& c_{n} z c_{n}^{-1}\left(\lambda_{i}, \lambda_{1}, \ldots, \lambda_{i-1}, \lambda_{i+1}, \ldots, \lambda_{n}\right)=\left(\lambda_{i}, \mu_{1}, \ldots, \mu_{n-1}\right) .
\end{aligned}
$$

1.3.1. Examples of the elements E_{μ} and f_{μ} in $\mathbb{C}[X]^{(2,1,0)}$.

$$
\begin{aligned}
E_{(2,1,0)}= & x_{1}^{2} x_{2}+\left(\frac{1-t}{1-q t^{2}}\right) q x_{1} x_{2} x_{3}, \\
E_{(2,0,1)}= & x_{1}^{2} x_{3}+\left(\frac{1-t}{1-q t}\right) x_{1}^{2} x_{2}+\left(\frac{1-t}{1-q t}\right) q x_{1} x_{2} x_{3}, \\
E_{(1,2,0)}= & x_{1} x_{2}^{2}+\left(\frac{1-t}{1-q t}\right) x_{1}^{2} x_{2}+\left(\frac{1-t}{1-q t}\right) q x_{1} x_{2} x_{3}, \\
E_{(0,2,1)}= & x_{2}^{2} x_{3}+\left(\frac{1-t}{1-q t}\right) x_{1} x_{2}^{2}+\left(\frac{1-t}{1-q^{2} t^{2}}\right) x_{1}^{2} x_{3}+\left(\frac{1-t}{1-q^{2} t^{2}}\right)\left(\frac{1-t}{1-q t}\right) x_{1}^{2} x_{2} \\
& +\left(\left(\frac{1-t}{1-q t}\right)+\left(\frac{1-t}{1-q^{2} t^{2}}\right)\left(\frac{1-t}{1-q t}\right) q\right) x_{1} x_{2} x_{3}, \\
E_{(1,0,2)}= & x_{1} x_{3}^{2}+\left(\frac{1-t}{1-q t}\right) x_{1}^{2} x_{3}+\left(\frac{1-t}{1-q^{2} t^{2}}\right) x_{1} x_{2}^{2}+\left(\frac{1-t}{1-q^{2} t^{2}}\right)\left(\frac{1-t}{1-q t}\right) x_{1}^{2} x_{2} \\
& +\left(\left(\frac{1-t}{1-q t}\right)+\left(\frac{1-t}{1-q^{2} t^{2}}\right)\left(\frac{1-t}{1-q t}\right) q\right) x_{1} x_{2} x_{3}, \\
E_{(0,1,2)}= & x_{2} x_{3}^{2}+\left(\frac{1-t}{1-q t}\right) x_{2}^{2} x_{3}+\left(\frac{1-t}{1-q t}\right) x_{1} x_{3}^{2}+\left(\frac{1-t}{1-q^{2} t^{2}}\right)\left(\frac{1-t}{1-q t}\right) x_{1}^{2} x_{3} \\
& +\left(\frac{1-t}{1-q^{2} t^{2}}\right) t x_{1}^{2} x_{2}+\left(\frac{1-t}{1-q^{2} t^{2}}\right)\left(\frac{1-t}{1-q t}\right) x_{1}^{2} x_{2} \\
& +\left(\frac{1-t}{1-q^{2} t^{2}}\right)\left(\frac{1-t}{1-q t}\right) q t x_{1} x_{2}^{2}+\left(\frac{1-t}{1-q^{2} t^{2}}\right)\left(\frac{1-t}{1-q t}\right) x_{1} x_{2}^{2} \\
& +\left(\frac{1-t}{1-q t}\right)^{2} x_{1} x_{2} x_{3}+\left(\frac{1-t}{1-q^{2} t^{2}}\right)\left(\frac{1-t}{1-q t}\right) q t x_{1} x_{2} x_{3} \\
& +\left(\frac{1-t}{1-q^{2} t^{2}}\right)\left(\frac{1-t}{1-q t}\right)^{2} q x_{1} x_{2} x_{3}+\left(\frac{1-t}{1-q t}\right) x_{1} x_{2} x_{3},
\end{aligned}
$$

Weiying Guo \& Arun Ram

$$
\begin{aligned}
& f_{(2,1,0)}=E_{(2,1,0)}=x_{1}^{2} x_{2}+q \frac{(1-t)}{\left(1-q t^{2}\right)} x_{1} x_{2} x_{3} \\
& f_{(1,2,0)}=t^{\frac{1}{2}} T_{s_{1}} E_{(2,1,0)}=x_{1} x_{2}^{2}+t^{-1} \frac{(1-t) q t^{2}}{\left(1-q t^{2}\right)} x_{1} x_{2} x_{3}, \\
& f_{(2,0,1)}=t^{\frac{1}{2}} T_{s_{2}} E_{(2,1,0)}=x_{1}^{2} x_{3}+t^{-1} \frac{(1-t) q t^{2}}{\left(1-q t^{2}\right)} x_{1} x_{2} x_{3}, \\
& f_{(1,0,2)}=t^{\frac{2}{2}} T_{s_{2}} T_{s_{1}} E_{(2,1,0)}=x_{1} x_{3}^{2}+\frac{(1-t)}{\left(1-q t^{2}\right)} x_{1} x_{2} x_{3}, \\
& f_{(0,2,1)}=t^{\frac{2}{2}} T_{s_{1}} T_{s_{2}} E_{(2,1,0)}=x_{2}^{2} x_{3}+\frac{(1-t)}{\left(1-q t^{2}\right)} x_{1} x_{2} x_{3} \\
& f_{(0,1,2)}=t^{\frac{3}{2}} T_{s_{1}} T_{s_{2}} T_{s_{1}} E_{(2,1,0)}=x_{2} x_{3}^{2}+t \frac{(1-t)}{\left(1-q t^{2}\right)} x_{1} x_{2} x_{3}
\end{aligned}
$$

1.3.2. $P_{(2,1,0)}$ as a symmetrization of $E_{(2,1,0)}$. When $n=3$ then

$$
W_{0}(t)=\sum_{w \in S_{3}} t^{\ell(w)}=(1+t)\left(1+t+t^{2}\right)=\frac{\left(1-t^{2}\right)\left(1-t^{3}\right)}{(1-t)(1-t)},
$$

and

$$
\mathbf{1}_{0}=t^{-\frac{3}{2}}+t^{-\frac{2}{2}} T_{1}+t^{-\frac{2}{2}} T_{2}+t^{-\frac{1}{2}} T_{1} T_{2}+t^{-\frac{1}{2}} T_{2} T_{1}+T_{1} T_{2} T_{1}
$$

Since $S_{(2,1,0)}=\{1\}$ then $W_{(2,1,0)}(t)=1$ and

$$
P_{(2,1,0)}=\frac{t^{\frac{3}{2}}}{W_{(2,1,0)}(t)} \mathbf{1}_{0} E_{(2,1,0)}=t^{\frac{3}{2}} \mathbf{1}_{0} t^{-\frac{3}{2}} \tau_{\pi}^{\vee} \tau_{\pi}^{\vee} \tau_{1}^{\vee} \tau_{\pi}^{\vee} \mathbf{1}
$$

and, with $f_{(2,1,0)}, f_{(1,2,0)}, \ldots, f_{(0,1,2)}$ as in Section 1.3.1,

$$
\begin{aligned}
P_{(2,1,0)}= & \left(1+t^{\frac{1}{2}} T_{1}+t^{\frac{1}{2}} T_{2}+t^{\frac{2}{2}} T_{1} T_{2}+t^{\frac{2}{2}} T_{2} T_{1}+t^{\frac{3}{2}} T_{1} T_{2} T_{1}\right) E_{(2,1,0)} \\
= & f_{(2,1,0)}+f_{(1,2,0)}+f_{(2,0,1)}+f_{(1,0,2)}+f_{(0,2,1)}+f_{(0,1,2)} \\
= & \left(x_{1}^{2} x_{2}+q \frac{(1-t)}{\left.1-q t^{2}\right)} x_{1} x_{2} x_{3}\right)+\left(x_{1} x_{2}^{2}+q t \frac{(1-t)}{\left(1-q t^{2}\right)} x_{1} x_{2} x_{3}\right) \\
& \quad+\left(x_{1}^{2} x_{3}+q t \frac{(1-t)}{\left(1-q t^{2}\right)} x_{1} x_{2} x_{3}\right)+\left(x_{1} x_{3}^{2}+\frac{(1-t)}{\left(1-q t^{2}\right)} x_{1} x_{2} x_{3}\right) \\
& \quad+\left(x_{2}^{2} x_{3}+\frac{(1-t)}{\left(1-q t^{2}\right)} x_{1} x_{2} x_{3}\right)+\left(x_{2} x_{3}^{2}+t \frac{(1-t)}{\left(1-q t^{2}\right)} x_{1} x_{2} x_{3}\right) \\
= & x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2} \\
& \quad+\left(\frac{\left(1-t^{2}\right)}{(1-q t)} \frac{\left(1-q^{2} t\right)}{\left(1-q t^{2}\right)}+\frac{(1-t)}{(1-q)} \frac{\left(1-q^{2}\right)}{(1-q t)}\right) x_{1} x_{2} x_{3} .
\end{aligned}
$$

1.3.3. Symmetrizations for μ with distinct parts when $n=3$. If $n=3$ and $\lambda_{1}>\lambda_{2}>$ λ_{3} then $S_{\lambda}=\{1\}$ and $W_{\lambda}(t)=1$ and $w_{0}=s_{1} s_{2} s_{1}$ and $\ell\left(w_{0}\right)=3$. Then

$$
\begin{aligned}
& F_{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)}=t^{\frac{3}{2}} \mathbf{1}_{0} E_{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)}=P_{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)}, \\
& F_{\left(\lambda_{2}, \lambda_{1}, \lambda_{3}\right)}=t^{\frac{3}{2}}\left(\frac{1-t q^{\lambda_{1}-\lambda_{2}} t^{2-1}}{1-q^{\lambda_{1}-\lambda_{2}} t^{2-1}}\right) P_{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)}, \\
& F_{\left(\lambda_{1}, \lambda_{3}, \lambda_{2}\right)}=t^{\frac{3}{2}}\left(\frac{1-t q^{\lambda_{2}-\lambda_{3}} t^{3-2}}{1-q^{\lambda_{2}-\lambda_{3}} t^{3-2}}\right) P_{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)}, \\
& F_{\left(\lambda_{2}, \lambda_{3}, \lambda_{1}\right)}=t^{\frac{3}{2}}\left(\frac{1-t q^{\lambda_{1}-\lambda_{3}} t^{3-1}}{1-q^{\lambda_{1}-\lambda_{3}} t^{3-1}}\right)\left(\frac{1-t q^{\lambda_{1}-\lambda_{2}} t^{2-1}}{1-q^{\lambda_{1}-\lambda_{2}} t^{2-1}}\right) P_{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)}, \\
& F_{\left(\lambda_{3}, \lambda_{1}, \lambda_{2}\right)}=t^{\frac{3}{2}}\left(\frac{1-t q^{\lambda_{1}-\lambda_{3}} t^{3-1}}{1-q^{\lambda_{1}-\lambda_{3}} t^{3-1}}\right)\left(\frac{1-t q^{\lambda_{2}-\lambda_{3}} t^{3-2}}{1-q^{\lambda_{2}-\lambda_{3}} t^{3-2}}\right) P_{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)} \\
& F_{\left(\lambda_{3}, \lambda_{2}, \lambda_{1}\right)}=t^{\frac{3}{2}}\left(\frac{1-t q^{\lambda_{1}-\lambda_{2}} t^{2-1}}{1-q^{\lambda_{1}-\lambda_{2}} t^{2-1}}\right)\left(\frac{1-t q^{\lambda_{1}-\lambda_{3}} t^{3-1}}{1-q^{\lambda_{1}-\lambda_{3}} t^{3-1}}\right)\left(\frac{1-t q^{\lambda_{2}-\lambda_{3}} t^{3-2}}{1-q^{\lambda_{2}-\lambda_{3}} t^{3-2}}\right) P_{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)} .
\end{aligned}
$$

For example, using $v_{\lambda}(1)=3, v_{\lambda}(2)=2, v_{\lambda}(3)=1$, and

$$
Y_{i}^{-1} Y_{j} E_{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)}=q^{\lambda_{i}-\lambda_{j}} t^{v_{\lambda}(i)-v_{\lambda}(j)} E_{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)}
$$

and $v_{\lambda}(i)-v_{\lambda}(j)=(n-i+1)-(n-j+1)=i-j$,

$$
\begin{aligned}
F_{\left(\lambda_{2}, \lambda_{1}, \lambda_{3}\right)} & =\mathbf{1}_{0} t^{\frac{1}{2}} \tau_{1}^{\vee} E_{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)}=\mathbf{1}_{0}\left(t^{\frac{1}{2}} T_{1}+\frac{(1-t)}{1-Y_{1}^{-1} Y_{2}}\right) E_{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)} \\
& =\mathbf{1}_{0}\left(t+\frac{(1-t)}{1-Y_{1}^{-1} Y_{2}}\right) E_{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)}=\mathbf{1}_{0}\left(\frac{1-t Y_{1}^{-1} Y_{2}}{1-Y_{1}^{-1} Y_{2}}\right) E_{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)} \\
& =\mathbf{1}_{0}\left(\frac{1-t q^{\lambda_{1}-\lambda_{2}} t^{2-1}}{1-q^{\lambda_{1}-\lambda_{2}} t^{2-1}}\right) E_{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)}=\left(\frac{1-t q^{\lambda_{1}-\lambda_{2}} t^{2-1}}{1-q^{\lambda_{1}-\lambda_{2}} t^{2-1}}\right) P_{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)}
\end{aligned}
$$

and

$$
\begin{aligned}
& F_{\left(\lambda_{2}, \lambda_{3}, \lambda_{1}\right)}=\mathbf{1}_{0} t^{\frac{1}{2}} \tau_{2}^{\vee} t^{\frac{1}{2}} \tau_{1}^{\vee} E_{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)}=\mathbf{1}_{0}\left(\frac{1-t Y_{2}^{-1} Y_{3}}{1-Y_{2}^{-1} Y_{3}}\right) t^{\frac{1}{2}} \tau_{1}^{\vee} E_{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)} \\
& \quad=\mathbf{1}_{0} t^{\frac{1}{2}} \tau_{1}^{\vee}\left(\frac{1-t Y_{1}^{-1} Y_{3}}{1-Y_{1}^{-1} Y_{3}}\right) E_{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)}=\mathbf{1}_{0} t^{\frac{1}{2}} \tau_{1}^{\vee}\left(\frac{1-t q^{\lambda_{1}-\lambda_{3}} t^{3-1}}{1-q^{\lambda_{1}-\lambda_{3}} t^{3-1}}\right) E_{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)} \\
& \quad=\left(\frac{1-t q^{\lambda_{1}-\lambda_{3}} t^{3-1}}{1-q^{\lambda_{1}-\lambda_{3}} t^{3-1}}\right)\left(\frac{1-t q^{\lambda_{1}-\lambda_{2}} t^{2-1}}{1-q^{\lambda_{1}-\lambda_{2}} t^{2-1}}\right) P_{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)} .
\end{aligned}
$$

1.3.4. Examples of the $g f_{\mu}$ condition for a KZ-family. Let $n=3$ and $\lambda=(2,1,0)$. Then $v_{\lambda}(1)=3, v_{\lambda}(2)=2$ and $v_{\lambda}(3)=1$ and

$$
Y_{i} E_{(2,1,0)}=q^{-\lambda_{i}} t^{-\left(v_{\lambda}(i)-1\right)+\frac{1}{2}(n-1)} E_{(2,1,0)} .
$$

Then

$$
Y_{1}=g T_{2} T_{1}, \quad Y_{2}=T_{1}^{-1} g T_{2}, \quad Y_{3}=T_{2}^{-1} T_{1}^{-2} g
$$

Since

$$
\begin{array}{lll}
f_{(2,1,0)}=E_{(2,1,0)}, & f_{(1,2,0)}=t^{\frac{1}{2}} T_{1} E_{(2,1,0)}, & f_{(2,0,1)}=t^{\frac{1}{2}} T_{2} E_{(2,1,0)} \\
f_{(0,2,1)}=t^{\frac{2}{2}} T_{1} T_{2} E_{(2,1,0)}, & f_{(1,0,2)}=t^{\frac{2}{2}} T_{2} T_{1} E_{(2,1,0)}, & f_{(0,1,2)}=t^{\frac{3}{2}} T_{1} T_{2} T_{1} E_{(2,1,0)},
\end{array}
$$

then

$$
\begin{aligned}
g f_{(2,1,0)} & =g E_{(2,1,0)}=T_{1} T_{2}\left(T_{2}^{-1} T_{1}^{-1} g\right) E_{(2,1,0)}=T_{1} T_{2} Y_{3} E_{(2,1,0)} \\
& =q^{-0} t^{1} T_{1} T_{2} E_{(2,1,0)}=f_{(0,2,1)}, \\
g f_{(1,2,0)} & =g t^{\frac{1}{2}} T_{1} E_{(2,1,0)}=t^{\frac{1}{2}} T_{2} g E_{(2,1,0)}=t^{\frac{1}{2}} T_{2} t T_{1} T_{2} E_{(2,1,0)}=f_{(0,1,2)}, \\
g f_{(2,0,1)} & =g t^{\frac{1}{2}} T_{2} E_{(2,1,0)}=t^{\frac{1}{2}} T_{1} T_{1}^{-1} g T_{2} E_{(2,1,0)}=t^{\frac{1}{2}} T_{1} Y_{2} E_{(2,1,0)} \\
& =t^{\frac{1}{2}} T_{1} q^{-1} t^{-1+1} E_{(2,1,0)}=q^{-1} f_{(1,2,0)}, \\
g f_{(0,2,1)} & =g t^{\frac{2}{2}} T_{1} T_{2} E_{(2,1,0)}=t^{\frac{2}{2}} T_{2} g T_{2} E_{(2,1,0)}=t^{\frac{2}{2}} T_{2} T_{1} q^{-1} t^{0} E_{(2,1,0)}=q^{-1} f_{(1,0,2)}, \\
g f_{(1,0,2)} & =t^{\frac{2}{2}} g T_{2} T_{1} E_{(2,1,0)}=t^{\frac{2}{2}} Y_{1} E_{(2,1,0)}=t^{\frac{2}{2}} q^{-2} t^{-2+1} E_{(2,1,0)}=q^{-2} f_{(2,1,0)}, \\
g f_{(0,1,2)} & =t^{\frac{3}{2}} g T_{1} T_{2} T_{1} E_{(2,1,0)}=t^{\frac{3}{2}} T_{1} g T_{2} T_{1} E_{(2,1,0)}=t^{\frac{3}{2}} T_{1} q^{-2} t^{-1} E_{(2,1,0)} \\
& =q^{-2} f_{(1,2,0)} .
\end{aligned}
$$

2. Boxes, ARMS, LEGS AND COUNTING TERMS

2.0.1. Common terminology.

The set of weak compositions, $\mathbb{Z}_{\geqslant 0}^{n}=\left\{\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \mid \mu_{i} \in \mathbb{Z}_{\geqslant 0}\right\}$, the set of strong compositions, $\quad \mathbb{Z}_{>0}^{n}=\left\{\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \mid \mu_{i} \in \mathbb{Z}_{>0}\right\}$, the lattice of integral weights, $\mathbb{Z}^{n}=\left\{\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \mid \mu_{i} \in \mathbb{Z}\right\}$,
dominant integral weights, $\left(\mathbb{Z}^{n}\right)^{+}=\left\{\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}^{n} \mid \mu_{1} \geqslant \mu_{2} \geqslant \cdots \geqslant \mu_{n}\right\}$, partititions of length $\leqslant n \quad\left(\mathbb{Z}_{\geqslant 0}^{n}\right)^{+}=\left\{\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geqslant 0}^{n} \mid \mu_{1} \geqslant \mu_{2} \geqslant \cdots \geqslant \mu_{n}\right\}$.
2.0.2. Examples of box diagrams. If $\lambda=(5,4,4,1,0)$ and $\mu=(0,4,5,1,4)$ then

To conform to [10, p.2], we draw the box (i, j) as a square in row i and column j using the same coordinates as are usually used for matrices.

The cylindrical coordinate of the box (i, j) is the number $i+n j$.
2.0.3. Formulas for $\# \operatorname{Nleg}_{\mu}(i, j)$ and $\# \operatorname{Narm}_{\mu}(i, j)$. Using cylindrical coordinates for boxes define, for a box $b \in d g(\mu)$,

$$
\begin{align*}
\operatorname{attack}_{\mu}(b) & =\{b-1, \ldots, b-n+1\} \cap \widehat{d g}(\mu) \tag{12}\\
\operatorname{Nleg}_{\mu}(b) & =\left(b+n \mathbb{Z}_{>0}\right) \cap d g(\mu) \text { and } \tag{13}\\
\operatorname{Narm}_{\mu}(b) & =\left\{a \in \operatorname{attack}_{\mu}(b) \mid \# \operatorname{Nleg}_{\mu}(a) \leqslant \# \operatorname{Nleg}_{\mu}(b)\right\} . \tag{14}
\end{align*}
$$

As in $[6,(15)]$, the number of elements of $\operatorname{Nleg}_{\mu}(i, j)$ and $\operatorname{Narm}_{\mu}(i, j)$ are

$$
\begin{aligned}
\# \operatorname{Nleg}_{\mu}(i, j) & =\#\left\{\left(i, j^{\prime}\right) \in d g(\mu) \mid j^{\prime}>j\right\}=\mu_{i}-j \\
\# \operatorname{Narm}_{\mu}(i, j) & =\#\left\{\left(i^{\prime}, j\right) \in d g(\mu) \mid i^{\prime}<i \text { and } \mu_{i^{\prime}} \leqslant \mu_{i}\right\} \\
& +\#\left\{\left(i^{\prime}, j-1\right) \in \widehat{d g}(\mu) \mid i^{\prime}>i \text { and } \mu_{i^{\prime}}<\mu_{i}\right\}
\end{aligned}
$$

where $\widehat{d g}(\mu)=d g(\mu) \cup\{(1,0), \ldots,(n, 0)\}$.
2.0.4. Relating HHL arms and legs to Macdonald arms and legs. If μ is decreasing so that $\mu_{1} \geqslant \mu_{2} \geqslant \cdots \geqslant \mu_{n}$ then μ is a partition and
$\# \operatorname{Narm}_{\mu}(i, j)=\mu_{j-1}^{\prime}-i=\operatorname{leg}_{\mu}(i, j-1) \quad$ and $\quad \# \operatorname{Nleg}_{\mu}(i, j)=\mu_{i}-j=\operatorname{arm}_{\mu}(i, j)$.
If μ is increasing so that $\mu_{1} \leqslant \mu_{2} \leqslant \cdots \leqslant \mu_{n}$ then $w_{0} \mu=\left(\mu_{n}, \ldots, \mu_{1}\right)$ is a partition and

$$
\left.\begin{array}{rl}
\# \operatorname{Narm}_{\mu}(i, j) & =\left(w_{0} \mu\right)_{j}^{\prime}-(n-i) \\
& =\operatorname{leg}_{w_{0} \mu}(n-i, j)
\end{array} \quad \text { and } \quad \# \operatorname{Nleg}_{\mu}(i, j)=\mu_{i}-j=\left(w_{0} \mu\right)_{n-i}-j\right)
$$

(see [6, remarks before (17)] and [7, p. 136, remarks before Figure 6]).
2.0.5. Formulas for the number of alcove walks and nonattacking fillings. The motivation for computing $\# \mathrm{AW}_{\mu}^{z}$ and $\# \mathrm{NAF}_{\mu}^{z}$ is that the alcove walks formula and the nonattacking fillings formulas for the relative Macdonald polynomial E_{μ}^{z} are, respectively,

$$
E_{\mu}^{z}=\sum_{p \in A W_{\mu}^{z}} \mathrm{wt}(p) \quad \text { and } \quad E_{\mu}^{z}=\sum_{T \in \mathrm{NAF}_{\mu}^{z}} \mathrm{wt}(T)
$$

(see [5, Theorem 1.1]). The number of terms in the first formula is $\# \mathrm{AW}_{\mu}^{z}$ and the number of terms in the second formula is $\# \mathrm{NAF}_{\mu}^{z}$.

For a box $(i, j) \in d g(\mu)$ define $u_{\mu}(i, j)$ by the equation

$$
u_{\mu}(i, j)+1=n-\# \operatorname{attack}_{\mu}(i, j)
$$

Since \# $\operatorname{attack}_{\mu}(i, j)=\#\left\{i^{\prime} \in\{1, \ldots, i-1\} \mid \mu_{i^{\prime}} \geqslant j\right\}+\#\left\{i^{\prime} \in\{i+1, \ldots, n\} \mid \mu_{i^{\prime}} \geqslant\right.$ $j-1\}$ then
$u_{\mu}(i, j)=\#\left\{i^{\prime} \in\{1, \ldots, i-1\} \mid \mu_{i^{\prime}}<j \leqslant \mu_{i}\right\}+\#\left\{i^{\prime} \in\{i+1, \ldots, n\} \mid \mu_{i^{\prime}}<j-1<\mu_{i}\right\}$.
Let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geqslant 0}^{n}$ and $z \in S_{n}$. By [5, Proposition (2.2)] and the definition of alcove walks and nonattacking fillings in [5, (1.11) and (1.7)],

$$
\begin{equation*}
\# \mathrm{AW}_{\mu}^{z}=2^{\ell\left(u_{\mu}\right)}=\prod_{(i, j) \in \mu} 2^{u_{\mu}(i, j)} \quad \text { and } \quad \# \mathrm{NAF}_{\mu}^{z}=\prod_{(i, j) \in \mu}\left(u_{\mu}(i, j)+1\right) \tag{15}
\end{equation*}
$$

(The right hand side does not depend on the choice of z.) For example (as in [4, Table 1]),

$$
\# \mathrm{NAF}_{(4,3,3,3,2,2,1,1,0,0)}^{z}=\left(\begin{array}{l}
1 \cdot 3 \cdot 5 \cdot 7 \\
\cdot 1 \cdot 3 \cdot 5 \\
\cdot 1 \cdot 3 \cdot 5 \\
\cdot 1 \cdot 3 \cdot 5 \\
\cdot 1 \cdot 3 \\
\cdot 1 \cdot 3 \\
\cdot 1 \\
\cdot 1
\end{array}\right)=3189375, \quad \text { for } z \in S_{10}
$$

2.1. The column strict tableaux formula for P_{λ}. Let λ and μ be partitions such that $\lambda \supseteq \mu$ and λ / μ is a horizontal strip. Following [10, Ch. VI §7 Ex. 2(b)], define

$$
\psi_{\lambda / \mu}=\prod_{1 \leqslant i<j \leqslant \ell(\mu)} \frac{\left(\frac{\left(q^{\mu_{i}-\mu_{j}} t^{j-i+1} ; q\right)_{\infty}\left(q^{\lambda_{i}-\lambda_{j+1}} t^{j-i+1} ; q\right)_{\infty}}{\left(q^{\mu_{i}-\mu_{j}+1} t^{j-i} ; q\right)_{\infty}\left(q^{\lambda_{i}-\lambda_{j+1}+1} t^{j-i} ; q\right)_{\infty}}\right)}{\left(\frac{\left(q^{\lambda_{i}-\mu_{j}} t^{j-i+1} ; q\right)_{\infty}\left(q^{\mu_{i}-\lambda_{j+1}} t^{j-i+1} ; q\right)_{\infty}}{\left(q^{\lambda_{i}-\mu_{j}+1} t^{j-i} ; q\right)_{\infty}\left(q^{\mu_{i}-\lambda_{j+1}+1} t^{j-i} ; q\right)_{\infty}}\right)}
$$

where the infinite product $(x ; q)_{\infty}=(1-x)(1-x q)\left(1-x q^{2}\right) \cdots$.
A column strict tableau of shape λ is a filling $T: d g(\lambda) \rightarrow\{1, \ldots, n\}$ such that

$$
T(i, j) \leqslant T(i, j+1) \quad \text { and } \quad T(i, j)<T(i+1, j)
$$

For a column strict tableau T define

$$
\psi_{T}=\prod_{i=1}^{r} \psi_{\lambda^{(i)} / \lambda^{(i-1)}} \quad \text { where } \quad \lambda^{(i)}=\{u \in d g(\lambda) \mid T(u) \leqslant i\} .
$$

Then [10, Ch. VI (7.13')] gives

$$
\begin{equation*}
P_{\lambda}=\sum_{T} \psi_{T} x^{T}, \quad \text { where } \quad x^{T}=x_{1}^{\#(1 \mathrm{~s} \text { in } T)} \cdots x_{n}^{\#(n \mathrm{~s} \text { in } T)} \tag{16}
\end{equation*}
$$

By [10, Ch. $1 \S 3$ Ex. 4], this formula for P_{λ} has

$$
\prod_{b \in \lambda} \frac{n+c(b)}{h(b)} \text { terms, where } \quad \begin{aligned}
& c(b) \text { is the content of the box } b, \\
& h(b) \text { is the hook length at the box } b .
\end{aligned}
$$

2.1.1. Comparing numbers of terms in formulas for P_{λ}. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be a partition and write $\lambda=\left(0^{m_{0}} 1^{m_{1}} 2^{m_{2}} \cdots\right)$ so that m_{i} is the number of rows of λ of length i. Then number of elements of the orbit $S_{n} \lambda$ (the number of rearrangements of λ) is

$$
\operatorname{Card}\left(S_{n} \lambda\right)=\frac{n!}{m_{\lambda}!}, \quad \text { where } \quad m_{\lambda}!=m_{0}!m_{1}!m_{2}!\cdots
$$

By (5), the symmetric Macdonald polynomial is given by $P_{\lambda}=\sum_{\nu \in S_{n} \lambda} E_{\lambda}^{z}$, and using the alcove walks formula for E_{λ}^{z} and the nonattacking fillings formulas for E_{λ}^{z} provide formulas for P_{λ} with

$$
\frac{n!}{m_{\lambda}!} \cdot \# \mathrm{AW}_{\lambda}^{z} \text { terms, } \quad \text { and } \quad \frac{n!}{m_{\lambda}!} \cdot \# \mathrm{NAF}_{\lambda}^{z} \text { terms, respectively. }
$$

Alternatively, by Proposition 1.1, there is a constant (const) such that

$$
P_{\lambda}=(\text { const }) \sum_{\nu \in S_{n} \lambda} E_{\operatorname{rev}(\lambda)}^{z}, \quad \text { where } \quad \begin{aligned}
& \text { if } \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}, 0, \ldots, 0\right) \text { with } \lambda_{k} \neq 0 \\
& \text { then } \operatorname{rev}(\lambda)=\left(\lambda_{k}, \ldots, \lambda_{2}, \lambda_{1}, 0, \ldots, 0\right)
\end{aligned}
$$

Then using the alcove walks formula for $E_{\operatorname{rev}(\lambda)}^{z}$ and the nonattacking fillings formulas for $E_{r e v(\lambda)}^{z}$ provide formulas for P_{λ} with
$\frac{n!}{m_{\lambda}!} \cdot \# \mathrm{AW}_{\operatorname{rev}(\lambda)}^{z}$ terms, and $\frac{n!}{m_{\lambda}!} \cdot \# \mathrm{NAF}_{\operatorname{rev}(\lambda)}^{z}$ terms, respectively.
Let λ be a partition. Let $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{k}^{\prime}\right)$ be the conjugate partition to λ so that λ_{j}^{\prime} is the length of the j th column of λ. For $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}, 0, \ldots, 0\right)$ with $\lambda_{k} \neq 0$ let $\operatorname{rev}(\lambda)=\left(\lambda_{k}, \ldots, \lambda_{2}, \lambda_{1}, 0, \ldots, 0\right)$. Then $u_{\lambda}(i, 1)=u_{\operatorname{rev}(\lambda)}(i, 1)=0$ and if $j>1$ then $u_{\lambda}(i, j)=n-\lambda_{j-1}^{\prime}$ and $u_{r e v(\lambda)}(i, j)=n-\lambda_{j}^{\prime}$. Thus

$$
\begin{gathered}
\# \mathrm{AW}_{\lambda}=\prod_{\substack{(i, j) \in \lambda \\
j>1}} 2^{n-\lambda_{j-1}^{\prime}}, \\
\# \operatorname{NAF}_{\lambda}=\prod_{\substack{(i, j) \in \lambda}}\left(n-\lambda_{j-1}^{\prime}+1\right), \quad \# \operatorname{NAF}_{r e v(\lambda)}=\prod_{\substack{(i, j) \in \lambda \\
j>1}}\left(n-\lambda_{j}^{\prime}+1\right),
\end{gathered}
$$

and

$$
\begin{gathered}
t(\lambda)=n!\cdot \prod_{\substack{(i, j) \in \lambda \\
j>1}}\left(n-\lambda_{j-1}^{\prime}+1\right), \\
c(\lambda)=\prod_{\substack{(i, j) \in \lambda \\
j>1}} \frac{2^{n-\lambda_{j-1}^{\prime}}}{n-\lambda_{j-1}^{\prime}+1}, \quad r(\lambda)=\prod_{\substack{(i, j \in \in \lambda \\
j>1}} \frac{n-\lambda_{j}^{\prime}+1}{n-\lambda_{j-1}^{\prime}+1}
\end{gathered}
$$

are formulas for the values provided in the table in [9, end of §3] (Lenart assumes that the parts of λ are distinct so that $\left.m_{\lambda}!=1\right)$. For example, if $\lambda=(5,4,2,1,0)$ as in the last row of Lenart's table then

$$
\begin{gathered}
t(\lambda)=5!\cdot\left(\begin{array}{l}
1 \cdot 2 \cdot 3 \cdot 4 \cdot 4 \\
1 \cdot 2 \cdot 3 \cdot 4 \\
1 \cdot 2 \\
1
\end{array}\right) \\
c(\lambda)=\frac{\left(\begin{array}{l}
2^{0} \cdot 2^{1} \cdot 2^{2} \cdot 2^{3} \cdot 2^{3} \\
2^{0} \cdot 2^{1} \cdot 2^{2} \cdot 2^{3} \\
2^{0} \cdot 2^{1} \\
2^{0}
\end{array}\right)}{\left(\begin{array}{l}
1 \cdot 2 \cdot 3 \cdot 4 \cdot 4 \\
1 \cdot 2 \cdot 3 \cdot 4 \\
1 \cdot 2 \\
1
\end{array}\right)}, \quad r(\lambda)=\frac{\left(\begin{array}{l}
1 \\
1 \cdot 3 \\
1 \cdot 3 \cdot 4 \cdot 4 \\
1 \cdot 3 \cdot 4 \cdot 4 \cdot 5
\end{array}\right)}{\left(\begin{array}{l}
1 \cdot 2 \cdot 3 \cdot 4 \cdot 4 \\
1 \cdot 2 \cdot 3 \cdot 4 \\
1 \cdot 2 \\
1
\end{array}\right)}
\end{gathered}
$$

so that $t(\lambda)=552960, c(\lambda)=\frac{128}{9} \approx 14.222$ and $r(\lambda)=\frac{15}{2}=7.5$. To compare this with the number of column strict tableaux of shape $\lambda=(5,4,2,1,0)$ (the number of terms in the formula for P_{λ} in (16)),

$$
\prod_{b \in \lambda} \frac{n+c(b)}{h(b)}=\frac{\left(\begin{array}{l}
5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \\
4 \cdot 5 \cdot 6 \cdot 7 \\
3 \cdot 4 \\
2
\end{array}\right)}{\left(\begin{array}{l}
8 \cdot 6 \cdot 4 \cdot 3 \cdot 1 \\
6 \cdot 4 \cdot 2 \cdot 1 \\
3 \cdot 1 \\
1
\end{array}\right)}=5 \cdot 7 \cdot 3 \cdot 5 \cdot 7=3675
$$

and $\frac{552960}{3675}=150.465$.

3. Converting fillings and alcove walks to paths and pipe dreams

3.0.1. Hyperplanes and alcoves. Let $\mathbb{R}^{n}=\mathfrak{a}_{\mathbb{R}}^{*}=\mathbb{R} \varepsilon_{1}+\cdots+\mathbb{R} \varepsilon_{n}$. For $i, j, k \in\{1, \ldots, n\}$ with $i<j$ and $\ell \in \mathbb{Z}$ define

$$
\begin{align*}
\mathfrak{a}^{\varepsilon_{i}^{\vee}-\varepsilon_{j}^{\vee}+\ell K} & =\left\{\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{R}^{n} \mid \mu_{i}-\mu_{j}=-\ell\right\}, \quad \text { and } \\
\mathfrak{a}_{k}^{\varepsilon_{k}^{\vee}+\ell K} & =\left\{\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{R}^{n} \mid \mu_{k}=-\ell\right\} . \tag{17}
\end{align*}
$$

The union of these hyperplanes is
$\mathcal{H}=\left\{\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{R}^{n} \mid\right.$ if $i, j \in\{1, \ldots, n\}$ and $i \neq j$ then $\mu_{i} \notin \mathbb{Z}$ and $\left.\mu_{i}-\mu_{j} \notin \mathbb{Z}\right\}$.
An alcove is a connected component of

$$
\mathbb{R}^{n}-\mathcal{H}, \quad \text { the complement of the hyperplanes listed in (17). }
$$

The fundamental alcove is

$$
A_{1}=\left\{\begin{array}{l|l}
\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{R}^{n} & \begin{array}{l}
\mu_{1}-\mu_{n} \in \mathbb{R}_{>0} \text { and } \\
\text { if } i \in\{1, \ldots, n\} \text { then } \mu_{i} \in \mathbb{R}_{(-1,0)}
\end{array}
\end{array}\right\}
$$

For $n=2$, some pictures of these hyperplanes and paths in $\mathfrak{a}_{\mathbb{R}}^{*} \cong \mathbb{R}^{2}$ are in section 3.0.8.
3.0.2. Bijection $W \leftrightarrow W \cdot \frac{1}{n} \rho \leftrightarrow\{$ alcoves $\}$. Let W be the group of n-periodic permutations and define an action of $W_{G L_{n}}$ on \mathbb{R}^{n} by

$$
\begin{align*}
\pi\left(\mu_{1}, \ldots, \mu_{n}\right) & =\left(\mu_{n}+1, \mu_{1}, \ldots, \mu_{n}\right) \tag{18}\\
\text { and } \quad s_{i}\left(\mu_{1}, \ldots, \mu_{n}\right) & =\left(\mu_{1}, \ldots, \mu_{i-1}, \mu_{i+1}, \mu_{i}, \mu_{i+1}, \ldots, \mu_{n}\right)
\end{align*}
$$

for $i \in\{1, \ldots, n-1\}$. Let

$$
\begin{equation*}
\rho=\left(\frac{n-1}{2}, \frac{n-3}{2}, \ldots, \frac{-(n-1)}{2}\right)=(n-1, n-2, \ldots, 1,0)-\frac{n-1}{2}(1,1, \ldots, 1) . \tag{19}
\end{equation*}
$$

Then the maps
and so we can identify W with the set of alcoves and with the orbit $W \cdot \frac{1}{n} \rho$. The statement in (20) holds because the stabilizer of $\frac{1}{n} \rho$ under the action of W on \mathbb{R}^{n} is $\{1\}$.
3.0.3. Reflections in W. For any pair $(j, k) \in \mathbb{Z} \times \mathbb{Z}$ with $j \neq k$ define $s_{j k}(j)=k, \quad s_{j k}(k)=(j), \quad s_{j k}(i)=i$ if $i \neq j \bmod n$ and $i \neq k \bmod n .$.

If $i \in\{1, \ldots, n-1\}$ and $t_{\mu} v=\left(\left(\mu_{1}\right)_{v(1)},\left(\mu_{2}\right)_{v(2)}, \ldots,\left(\mu_{n}\right)_{v(n)}\right)$ then

$$
s_{i} t_{\mu} v=\left(\left(\mu_{1}\right)_{v(1)}, \ldots,\left(\mu_{i-1}\right)_{v(i-1)},\left(\mu_{i+1}\right)_{v(i+1)},\left(\mu_{i}\right)_{v(i)},\left(\mu_{i+2}\right)_{v(i+2)}, \ldots,\left(\mu_{n}\right)_{v(n)}\right)
$$

so that, in extended one-line notation, s_{i} acts by switching the i th and $(i+1)$ st components. The hyperplane

$$
\mathfrak{a}^{\beta^{\vee}} \text { between } t_{\mu} v A_{1} \text { and } s_{i} t_{\mu} v A_{1} \text { has root } \quad \beta^{\vee}=\varepsilon_{v(i+1)}^{\vee}-\varepsilon_{v(i)}^{\vee}+\left(\mu_{i}-\mu_{i+1}\right) K
$$

3.0.4. Paths. A path is a piecewise linear function $\gamma: \mathbb{R}_{[0, a]} \rightarrow \mathbb{R}^{n}$, where $a \in \mathbb{R}_{>0}$ and $\mathbb{R}_{[0, a]}=\{t \in \mathbb{R} \mid 0 \leqslant t \leqslant a\}$. The concatenation of paths $\gamma_{1}: \mathbb{R}_{[0, a]} \rightarrow \mathfrak{h}_{\mathbb{R}}^{*}$ and $\gamma_{2}: \mathbb{R}_{[0, b]} \rightarrow \mathfrak{h}_{\mathbb{R}}^{*}$ is the path

$$
\gamma_{1} \gamma_{2}: \mathbb{R}_{[0, a+b]} \rightarrow \mathfrak{h}_{\mathbb{R}}^{*} \quad \text { given by } \quad\left(\gamma_{1} \gamma_{2}\right)(t)= \begin{cases}\gamma_{1}(t), & \text { if } i \in \mathbb{R}_{[0, a]}, \\ \gamma_{1}(a)+\gamma_{2}(t-a), & \text { if } t \in \mathbb{R}_{[a, a+b]}\end{cases}
$$

3.0.5. Paths corresponding to nonattacking fillings. The straight line path $0 \rightarrow \varepsilon_{i}$ is

$$
\begin{aligned}
x_{i}: \mathbb{R}_{[0,1]} & \rightarrow \mathbb{R}^{n} \\
t & \mapsto t \varepsilon_{i} .
\end{aligned}
$$

If T is a nonattacking filling of type (z, μ) then the word, or path, of T is

$$
\vec{x}_{T}=\prod_{u \in \mu} x_{T(u)} \quad \text { taken in increasing order of cylindrical coordinate. }
$$

The path, or word,

$$
\vec{x}_{T}=x_{i_{1}} x_{i_{2}} \cdots x_{i_{\ell}} \quad \text { is } \quad 0 \rightarrow \varepsilon_{i_{1}} \rightarrow\left(\varepsilon_{i_{1}}+\varepsilon_{i_{2}}\right) \rightarrow \cdots \rightarrow \varepsilon_{i_{1}}+\cdots+\varepsilon_{i_{\ell}}
$$

as a sequence of straight line segments.
3.0.6. Paths corresponding to alcove walks. Define paths $\omega: \mathbb{R}_{[0,1]} \rightarrow \mathbb{R}^{n}$ and $c_{\alpha}: \mathbb{R}_{[0,1]} \rightarrow \mathbb{R}^{n}$ and $f_{\alpha}: \mathbb{R}_{[0,1]} \rightarrow \mathbb{R}^{n}$ by

$$
\omega(t)=\frac{t}{n}(1,1, \ldots, 1), \quad c_{\alpha}(t)=t \alpha \quad \text { and } \quad f_{\alpha}(t)= \begin{cases}t \alpha, & \text { if } 0 \leqslant t \leqslant \frac{1}{2} \\ (1-t) \alpha, & \text { if } \frac{1}{2} \leqslant t \leqslant 1\end{cases}
$$

Let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geqslant 0}^{n}$ and $z \in S_{n}$. Let $s_{\pi}=\pi$ and let $\vec{u}_{\mu}=s_{i_{1}} \cdots s_{i_{r}}$ be a reduced word for u_{μ}. An alcove walk of type $\left(z, \vec{u}_{\mu}\right)$ is

$$
\begin{equation*}
\text { a sequence } \quad p=\left(p_{0}, p_{1}, \ldots, p_{r}\right) \text { of elements of } W \text { such that } \tag{21}
\end{equation*}
$$

$p_{0}=z$; if $s_{i_{k}}=\pi$ then $p_{k}=p_{k-1} \pi$; and if $s_{i_{k}} \neq \pi$ then $p_{k} \in\left\{p_{k-1}, p_{k-1} s_{i_{k}}\right\}$. The path corresponding to p is

$$
\gamma_{\beta_{1}} \cdots \gamma_{\beta_{\ell}}, \quad \text { where } \quad \gamma_{\beta_{j}}= \begin{cases}f_{p_{k-1} \alpha_{i_{k}}}, & \text { if } p_{k}=p_{k-1} \tag{22}\\ c_{p_{k-1} \alpha_{i_{k}}}, & \text { if } p_{k}=p_{k-1} s_{i_{k}}, \\ \omega, & \text { if } p_{k}=p_{k-1} \pi\end{cases}
$$

See $\S 6.0 .3$ for pictures in \mathbb{R}^{2}, for $n=2$. The pictures of paths for $n=3$ in sections 3.0.9 and 3.0.9 are projections from \mathbb{R}^{3} to the plane $\left\{\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \in \mathbb{R}^{3} \mid \gamma_{1}+\gamma_{2}+\gamma_{3}=0\right\}$.
3.0.7. Pipe dreams corresponding to nonattacking fillings. Let $\mu \in \mathbb{Z}_{\geqslant 0}^{n}$. A filling of $d g(\mu)$ is a function $T: d g(\mu) \rightarrow\{1, \ldots, n\}$. If the filling is nonattacking then it satisfies the column distinct condition,

$$
\begin{equation*}
\text { if } j \in \mathbb{Z}_{\geqslant 0} \text { and }(i, j),\left(i^{\prime}, j\right) \in D \text { then } T(i, j) \neq T\left(i^{\prime}, j\right), \tag{CD}
\end{equation*}
$$

and so the filling T can be converted into a pipe dream $P:\{1, \ldots, n\} \times \mathbb{Z}_{\geqslant 0} \rightarrow$ $\{1, \ldots, n\}$ by setting

$$
\begin{equation*}
P(k, j)=i \quad \text { if and only if } \quad T(i, j)=k \tag{23}
\end{equation*}
$$

and putting $P(k, j)=0$ if there does not exist $i \in\{1, \ldots, n\}$ such that $T(i, j)=k$. (This bijection is given in $[1,(5.10)]$ and [4, Definition A.6]. In [4, Definition A.6] the pipe dreams are the multiline queues and the fillings are the Queue Tableaux and in $[1,(5.10)]$ the pipe dreams are the μ-legal configurations.) The column distinct condition on T is exactly the condition that P obtained in this way is a function.

For example,

1	1	1	1	1	1	1	1	3	
2	2	1	3						
3	2	2	3	2	2	1	2	2	2
3		3		3					

are the 4 nonattacking fillings of $\mu=(2,2,0)$. Converting these to pipe dreams gives

$$
\left(\begin{array}{l|ll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{l|ll}
1 & 1 & 1 \\
2 & 2 & 0 \\
3 & 0 & 2
\end{array}\right) \quad\left(\begin{array}{l|ll}
1 & 1 & 2 \\
2 & 2 & 1 \\
3 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{l|ll}
1 & 1 & 0 \\
2 & 2 & 2 \\
3 & 0 & 1
\end{array}\right)
$$

The example in [1, Figure 5] has

and the picture of this pipe dream from [1, Figure 5] is

([1] index rows bottom to top instead of top to bottom). The example in [4, Figures 3 and 12] has

$$
\begin{array}{cc|c|ccc}
6 & 6 & 5 & 3 \\
1 & 1 & 6 \\
2 & 2 & 2 \\
7 & 7 & 4 \\
8 & 8 \\
3 & 8 \\
4 & & \\
5 & & \\
\text { nonattacking filling }
\end{array} \quad \text { and pipe dream } \quad P=\left(\begin{array}{l|lll}
2 & 2 & 0 & 0 \\
3 & 3 & 3 & 0 \\
6 & 0 & 0 & 1 \\
7 & 0 & 4 & 0 \\
8 & 0 & 1 & 0 \\
1 & 1 & 2 & 0 \\
4 & 4 & 0 & 0 \\
5 & 5 & 0 & 0
\end{array}\right)
$$

and the picture of this pipe dream (multiline queue in the terminology of [4]) from [4, Fig. 3] is

3.0.8. Alcove walks, nonattacking fillings and paths for $E_{(3,0)}$. The explicit expansion of $E_{(3,0)}$ is

$$
E_{(3,0)}=x_{1}^{3}+\left(\frac{1-t}{1-q^{2} t}\right) q^{2} x_{1} x_{2}^{2}+\left(\left(\frac{1-t}{1-q t}\right) q+\left(\frac{1-t}{1-q^{2} t}\right)\left(\frac{1-t}{1-q t}\right) q^{2}\right) x_{1}^{2} x_{2}
$$

The nonattacking fillings, words, paths, alcove walks and corresponding weights for $E_{(3,0)}$ are

The first row contains the nonattacking fillings. The second row contains the words of the nonattacking fillings. The red paths are the paths corresponding to the words of the nonattacking fillings, and the blue paths are the paths corresponding to the alcove walks. We used a shortened notation for the alcove walks so that

$$
\begin{aligned}
& \pi s_{1} \pi s_{1} \pi \text { represents the alcove walk }\left(1, \pi, \pi s_{1}, \pi s_{1} \pi, \pi s_{1} \pi s_{1}, \pi s_{1} \pi s_{1} \pi\right), \\
& \pi s_{1} \pi 1 \pi \\
& \pi 1 \pi s_{1} \pi \\
& \text { represents the alcove walk }\left(1, \pi, \pi s_{1}, \pi s_{1} \pi, \pi s_{1} \pi, \pi s_{1} \pi^{2}\right) \\
& \pi 1 \pi 1 \pi \quad \text { represents the alcove walk }\left(1, \pi, \pi, \pi^{2}, \pi^{2} s_{1}, \pi^{2} s_{1} \pi\right) \\
&
\end{aligned}
$$

The last row contains the weights of the alcove walks (which are the same as the weights of the nonattacking fillings to illustrate that the factors of the form $\left(\frac{1-t}{1-q^{a} t^{b}}\right)$ are in bijection with the folds of the blue path.
3.0.9. Alcove walks, nonattacking fillings and pipe dreams for $E_{(2,0.1)}$. In the orthogonal projection from \mathbb{R}^{3} to the plane

$$
\left\{\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \in \mathbb{R}^{3} \mid \gamma_{1}+\gamma_{2}+\gamma_{3}=0\right\}
$$

(so that we can draw 2-dimensional pictures), the straight line paths x_{1}, x_{2}, x_{3} to ε_{1}, $\varepsilon_{2}, \varepsilon_{3}$, respectively, are pictured as

The explicit expansion of $E_{(2,0,1)}$ is

$$
E_{(2,0,1)}=x_{1} x_{3} x_{1}+\frac{1-t}{1-q t} x_{1} x_{2} x_{1}+q t \frac{1-t}{1-q t^{2}} x_{1} x_{3} x_{2}+q \frac{1-t}{1-q t} \frac{1-t}{1-q t^{2}} x_{1} x_{2} x_{3}
$$

The nonattacking fillings, words, paths, alcove walks and corresponding weights for $E_{(2,0,1)}$ are

$\pi s_{1} \pi s_{1} \pi$

$\pi 1 \pi s_{1} \pi$

where we have used the same shortened notation for alcove walks as in the table in Section 3.0.8. The sections of type ω in the paths corresponding to the alcove walks (see (22)) are not visible in these pictures since the pictures are in a projection orthogonal to the direction of ω.
3.0.10. Alcove walks, nonattacking fillings and pipe dreams for $E_{(1,2,0)}$. The explicit expansion of $E_{(1,2,0)}$ is

$$
E_{(1,2,0)}=x_{1} x_{2} x_{2}+\frac{1-t}{1-q t} x_{1} x_{2} x_{1}+q \frac{\left(1-q t^{2}\right)}{(1-q t)} \frac{(1-t)}{\left(1-q t^{2}\right)} x_{1} x_{2} x_{3}
$$

The nonattacking fillings, words, paths, alcove walks and corresponding weights for $E_{(1,2,0)}$ are

where we have used the same shortened notation for alcove walks as in the table in Section 3.0.8. The sections of type ω in the paths corresponding to the alcove walks (see (22)) are not visible in these pictures since the pictures are in a projection orthogonal to the direction of ω. For this example, there are 4 alcove walks and 3 nonattacking fillings.

4. Reduced words and inversions

4.0.1. Examples of the inversion set $\operatorname{Inv}(w)$. Define n-periodic permutations π and $s_{0}, s_{1}, \ldots, s_{n-1} \in W$ by

$$
\begin{equation*}
\pi(i)=i+1, \quad \text { for } i \in \mathbb{Z} \tag{25}
\end{equation*}
$$

$$
\begin{align*}
& s_{i}(i)=i+1, \tag{26}\\
& s_{i}(i+1)=i,
\end{align*} \quad \text { and } \quad s_{i}(j)=j \text { for } j \in\{0,1, \ldots, i-1, i+2, \ldots, n-1\}
$$

An inversion of a bijection $w: \mathbb{Z} \rightarrow \mathbb{Z}$ is

$$
(j, k) \in \mathbb{Z} \times \mathbb{Z} \quad \text { with } \quad j<k \text { and } w(j)>w(k)
$$

and the affine root corresponding to an inversion
(27) $(i, k)=(i, j+\ell n) \quad$ with $i, j \in\{1, \ldots, n\}$ and $\ell \in \mathbb{Z}, \quad$ is $\quad \beta^{\vee}=\varepsilon_{i}^{\vee}-\varepsilon_{j}^{\vee}+\ell K$.

Let $n=3$. The element

$$
w=s_{1} s_{2} \quad \text { has } \quad w(1)=2, w(2)=3, w(3)=1
$$

and $w(1)>w(3)$ and $w(2)>w(3)$ and

$$
\operatorname{Inv}(w)=\left\{\alpha_{2}^{\vee}, s_{2} \alpha_{1}^{\vee}\right\}=\left\{\varepsilon_{2}^{\vee}-\varepsilon_{3}^{\vee}, \varepsilon_{1}^{\vee}-\varepsilon_{3}^{\vee}\right\}
$$

The element

$$
w=s_{2} s_{1} \quad \text { has } \quad w(1)=3, w(2)=1, w(3)=2
$$

and $w(1)>w(2)$ and $w(1)>w(3)$ and

$$
\operatorname{Inv}(w)=\left\{\alpha_{1}^{\vee}, s_{1} \alpha_{2}^{\vee}\right\}=\left\{\varepsilon_{1}^{\vee}-\varepsilon_{2}^{\vee}, \varepsilon_{1}^{\vee}-\varepsilon_{3}^{\vee}\right\}
$$

These are examples of $[5,(2.11)]$.
4.0.2. Relations in the affine Weyl group W. The following relations are useful when working with n-periodic permutations.

Proposition 4.1. Then

$$
\begin{gather*}
s_{0}=t_{\varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee}} s_{n-1} \cdots s_{2} s_{1} s_{2} \cdots s_{n-1}, \quad t_{\varepsilon_{1}^{\vee}}=\pi s_{n-1} \cdots s_{2} s_{1}, \tag{28}\\
\text { and } \quad t_{\varepsilon_{i+1}^{\vee}}=s_{i} t_{\varepsilon_{i}^{\vee}} s_{i}, \quad \pi s_{i} \pi^{-1}=s_{i+1}, \tag{29}
\end{gather*}
$$

for $i \in\{1, \ldots, n-1\}$.
Proof. Proof of (28): If $i \notin\{1, n\}$

$$
t_{\varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee}} s_{n-1} \cdots s_{2} s_{1} s_{2} \cdots s_{n-1}(i) t_{\varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee}}(i)=i=s_{0}(i) .
$$

If $i=1$ then

$$
t_{\varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee}} s_{n-1} \cdots s_{2} s_{1} s_{2} \cdots s_{n-1}(1)=t_{\varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee}}(n)=n-n=0=s_{0}(1),
$$

and, if $i=n$ then

$$
t_{\varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee}} s_{n-1} \cdots s_{2} s_{1} s_{2} \cdots s_{n-1}(n)=t_{\varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee}}(1)=1+n=s_{0}(n)
$$

For $i \in\{2, \ldots, n\}$

$$
\begin{aligned}
\pi s_{n-1} \cdots s_{1}(i) & =\pi(i-1)=i=t_{\varepsilon_{1}}(i), \quad \text { and } \\
\pi s_{n-1} \cdots s_{1}(1) & =\pi(n)=n+1=t_{\varepsilon_{1}}(1)
\end{aligned}
$$

Proof of (29):

$$
\begin{aligned}
s_{i} t_{\varepsilon_{i}^{\vee}}^{\vee} s_{i}(i) & =s_{i} t_{\varepsilon_{i}^{\vee}}(i+1)=s_{i}(i+1)=i=t_{\varepsilon_{i+1}^{\vee}}(i), \\
s_{i} t_{\varepsilon_{i}^{\vee}} s_{i}(i+1) & =s_{i} t_{\varepsilon_{i}^{\vee}}(i)=s_{i}(i+n)=i+1+n,=t_{\varepsilon_{i+1}^{\vee}}(i+1), \text { and } \\
s_{i} t_{\varepsilon_{i}^{\vee}} s_{i}(j) & =s_{i} t_{\varepsilon_{i}^{\vee}}(j)=s_{i}(j)=j=t_{\varepsilon_{i+1}}(j),
\end{aligned}
$$

if $j \in\{1, \ldots, n\}$ and $j \notin\{i, i+1\}$. Finally,

$$
\begin{aligned}
\pi s_{i} \pi^{-1}(i) & =\pi s_{i}(i-1)=\pi(i)=i+1=s_{i+1}(i), \quad \text { and } \\
\pi s_{i} \pi^{-1}(i+1) & =\pi s_{i}(i)=\pi(i+1)=i+2=s_{i+1}(i+1)
\end{aligned}
$$

4.0.3. The "affine Weyl group" and the "extended affine Weyl group". The type $G L_{n}$ affine Weyl group W is generated by s_{1}, \ldots, s_{n} and π. The group W contains also s_{0} and all the elements t_{μ} for $\mu \in \mathbb{Z}^{n}$. The projection homomorphism is the group homomorphism ${ }^{-}: W \rightarrow S_{n}$ given by

$$
\begin{equation*}
\overline{t_{\mu} v}=v, \quad \text { for } \mu \in \mathbb{Z}^{n} \text { and } v \in S_{n} \tag{30}
\end{equation*}
$$

The subgroup $W_{P G L_{n}}$ generated by $s_{0}, s_{1}, \ldots, s_{n-1}$ is the type $P G L_{n}$-affine Weyl group.

$$
\begin{aligned}
W_{P G L_{n}} & =\left\{t_{\mu} v \mid \mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}^{n} \text { with } \mu_{1}+\cdots+\mu_{n}=0 \text { and } v \in S_{n}\right\}, \quad \text { and } \\
W_{G L_{n}} & =W=\left\{t_{\mu} v \mid \mu \in \mathbb{Z}^{n}, v \in S_{n}\right\}=\left\{\pi^{h} w \mid h \in \mathbb{Z}, w \in W_{P G L_{n}}\right\} .
\end{aligned}
$$

Then

$$
W_{G L_{n}}=\mathbb{Z}^{n} \rtimes S_{n}=\Omega \ltimes W_{P G L_{n}}, \quad \text { where } \quad \Omega=\left\{\pi^{h} \mid h \in \mathbb{Z}\right\} \quad \text { with } \quad \Omega \cong \mathbb{Z} .
$$

The symbols \ltimes and \rtimes are brief notations whose purpose is to indicate that the relations in (29) hold.

The group $W_{P G L_{n}}$ is also a quotient of $W_{G L_{n}}$, by the relation $\pi=1$. The type $S L_{n}$ affine Weyl group is the quotient of $W_{G L_{n}}$ by the relation $\pi^{n}=1$. This is equivalent to putting a relation requiring

$$
t_{\mu}=t_{\nu} \quad \text { if } \mu_{i}=\nu_{i} \bmod n \text { for } i \in\{1, \ldots, n\}
$$

As explained in [13, Ch. 3, Exercise after Corollary 5], there is a Chevalley group G_{d} for each positive integer d dividing n. The group G_{d} is a central extension of $P G L_{n}$ by $\mathbb{Z} / d \mathbb{Z}$ (so that $G_{1}=P G L_{n}$ and $G_{n}=S L_{n}$). Each of these groups G_{d} has an affine Weyl group $W_{G_{d}}$. The group $W_{G_{d}}$ is the quotient of $W_{G L_{n}}$ by the relation $\pi^{d}=1$, and is an extension of $W_{P G L_{n}}$ by $\mathbb{Z} / d \mathbb{Z}$. The group $W_{P G L_{n}}$ is sometimes called the "affine Weyl group of type A " and the groups $W_{G L_{n}}$ and $W_{G_{d}}$ for $d \neq 1$ are sometimes called the "extended affine Weyl groups of type A ". We prefer the more specific terminologies "affine Weyl group of type $P G L_{n}$ " for $W_{P G L_{n}}$, "affine Weyl group of type $S L_{n}$ " for $W_{S L_{n}}$, "affine Weyl group of type $G L_{n}$ " for $W_{G L_{n}}$, and "affine Weyl group of type $P G L_{n} \searrow(\mathbb{Z} / d \mathbb{Z})$ " for $W_{G_{d}}$ (the symbol \searrow indicates a central extension).
4.0.4. The elements $u_{\mu}, v_{\mu}, z_{\mu}$ and t_{μ}. Let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geqslant 0}^{n}$ and let u_{μ} be the minimal length n-periodic permutation such that

$$
u_{\mu}(0,0, \ldots, 0)=\left(\mu_{1}, \ldots, \mu_{n}\right)
$$

Let $\lambda=\left(\lambda, \ldots, \lambda_{n}\right)$ be the weakly decreasing rearrangement of μ and let
$z_{\mu} \in S_{n} \quad$ be minimal length such that $\quad z_{\mu} \lambda=\mu$, and let
$v_{\mu} \in S_{n}$ be minimal length such that $v_{\mu} \mu$ is weakly increasing.
Let $t_{\mu}: \mathbb{Z} \rightarrow \mathbb{Z}$ be the n-periodic permutation determined by

$$
\begin{equation*}
t_{\mu}(1)=1+n \mu_{1}, \quad t_{\mu}(2)=2+n \mu_{2}, \quad \ldots, \quad t_{\mu}(n)=n+n \mu_{n} \tag{31}
\end{equation*}
$$

4.0.5. Relating $u_{\mu}, v_{\mu}, z_{\mu}$ to $u_{\lambda}, v_{\lambda}, z_{\lambda}$. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n}$ with $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n}$. Let $S_{\lambda}=\left\{w \in S_{n} \mid w \lambda=\lambda\right\}$ be the stabilizer of λ in S_{n}. Let
w_{0} be the longest element in S_{n},
w_{λ} the longest length element in S_{λ}, and w^{λ} the minimal length element in the coset $w_{0} S_{\lambda}$,
so that

$$
w_{0}=w^{\lambda} w_{\lambda} \quad \text { and } \quad\binom{n}{2}=\ell\left(w_{0}\right)=\ell\left(w^{\lambda}\right)+\ell\left(w_{\lambda}\right)
$$

Let $\mu \in \mathbb{Z}^{n}$ and let λ be the decreasing rearrangement of λ. Let $z_{\mu} \in S_{n}$ be minimal length such that $\mu=z_{\mu} \lambda$. Then $z_{\lambda}=1$,

$$
\begin{gathered}
t_{\mu}=u_{\mu} v_{\mu}=\left(z_{\mu} u_{\lambda}\right) v_{\mu} \quad \text { and } \quad t_{\lambda}=u_{\lambda} v_{\lambda}=u_{\lambda}\left(w^{\lambda}\right)^{-1}, \quad \text { with } \\
\ell\left(t_{\mu}\right)=\ell\left(u_{\mu}\right)+\ell\left(v_{\mu}\right)=\ell\left(z_{\mu}\right)+\ell\left(u_{\lambda}\right)+\ell\left(v_{\mu}\right) \quad \text { and } \quad \ell\left(t_{\lambda}\right)=\ell\left(u_{\lambda}\right)+\ell\left(\left(w^{\lambda}\right)^{-1}\right) .
\end{gathered}
$$

Using that $z_{\mu} t_{\lambda} z_{\mu}^{-1}=t_{z_{\mu} \lambda}=t_{\mu}$ gives that the elements u_{μ} and v_{μ} are given in terms of z_{μ}, u_{λ} and w^{λ} by
$u_{\mu}=z_{\mu} u_{\lambda} \quad$ and $\quad v_{\mu}=v_{\lambda} z_{\mu}^{-1}=\left(w^{\lambda}\right)^{-1} z_{\mu}^{-1}=\left(z_{\mu} w^{\lambda}\right)^{-1}=\left(z_{\mu} w_{0} w_{\lambda}\right)^{-1}=w_{\lambda} w_{0} z_{\mu}^{-1}$,
since $v_{\lambda}=\left(w^{\lambda}\right)^{-1}$ and $v_{\lambda}=v_{\mu} z_{\mu}$ with $\ell\left(\left(w_{\lambda}\right)^{-1}\right)=\ell\left(v_{\lambda}\right)=\ell\left(v_{\mu}\right)+\ell\left(z_{\mu}\right)$.
4.0.6. Inversions of $t_{\varepsilon_{1}}, t_{-\varepsilon_{1}}$ and $t_{\varepsilon_{2}}$. Let t_{μ} be as in (31) and let $\varepsilon_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ where the 1 appears in the i th position. Then

$$
\begin{aligned}
& t_{\varepsilon_{1}}=\left(1_{1}, 0_{2}, \ldots, 0_{n}\right)=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
n+1 & 2 & \cdots & n
\end{array}\right)=\pi s_{n-1} \cdots s_{1}, \\
& t_{-\varepsilon_{1}}=\left(-1_{1}, 0_{2}, \ldots, 0_{n}\right)=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
1-n & 2 & \cdots & n
\end{array}\right)=s_{1} \cdots s_{n-1} \pi^{-1}, \\
& t_{\varepsilon_{1}} s_{1}=\left(0_{2}, 1_{1}, 0_{3}, \ldots, 0_{n}\right)=\left(\begin{array}{lrrll}
1 & 2 & 3 & \cdots & n \\
2 & 1+n & 3 & \cdots & n
\end{array}\right)=\pi s_{n-1} \cdots s_{2}, \\
& s_{1} t_{\varepsilon_{1}}=\left(1_{2}, 0_{1}, 0_{3}, \ldots, 0_{n}\right)=\left(\begin{array}{rrrr}
1 & 2 & 3 & \cdots
\end{array}\right) n, s_{1} \pi s_{n-1} \cdots s_{1}, \\
& t_{\varepsilon_{2}}=s_{1} t_{\varepsilon_{1}} s_{1}=\left(0_{1}, 1_{2}, 0_{3}, \ldots, 0_{n}\right)=\left(\begin{array}{cccc}
1 & 2 & 3 & \cdots
\end{array}\right) n, ~ s_{1} \pi s_{n-1} \cdots s_{2},
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Inv}\left(t_{\varepsilon_{1}}\right) & =\{(1,2),(1,3), \ldots,(1, n)\} \\
& =\left\{\alpha_{1}^{\vee}, s_{1} \alpha_{2}^{\vee}, \ldots, s_{1} \cdots s_{n-2} \alpha_{n-1}^{\vee}\right\}=\left\{\varepsilon_{1}^{\vee}-\varepsilon_{2}^{\vee}, \varepsilon_{1}^{\vee}-\varepsilon_{3}^{\vee}, \ldots, \varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee}\right\} \\
\operatorname{Inv}\left(t_{-\varepsilon_{1}}\right) & =\{(2-n, 1),(3-n, 1), \ldots,(n-n, 1)\} \\
& =\{(n, 1+n),(n-1,1+n), \ldots,(2,1+n)\} \\
& =\left\{\pi \alpha_{n-1}^{\vee}, \pi s_{n-1} \alpha_{n-2}^{\vee}, \ldots, \pi s_{n-1} \cdots s_{2} \alpha_{1}^{\vee}\right\} \\
& =\left\{\varepsilon_{n}^{\vee}-\left(\varepsilon_{1}^{\vee}-K\right), \varepsilon_{n-1}^{\vee}-\left(\varepsilon_{1}^{\vee}-K\right), \ldots \varepsilon_{2}^{\vee}-\left(\varepsilon_{1}^{\vee}-K\right)\right\} \\
\operatorname{Inv}\left(t_{\varepsilon_{1}} s_{1}\right) & =\{(2,3), \ldots,(2, n)\} \\
& =\left\{\alpha_{2}^{\vee}, s_{2} \alpha_{3}^{\vee}, \ldots, s_{2} \cdots s_{n-2} \alpha_{n-1}^{\vee}\right\}=\left\{\varepsilon_{2}^{\vee}-\varepsilon_{3}^{\vee}, \varepsilon_{2}^{\vee}-\varepsilon_{4}^{\vee}, \ldots, \varepsilon_{2}^{\vee}-\varepsilon_{n}^{\vee}\right\} \\
\operatorname{Inv}\left(s_{1} t_{\varepsilon_{1}}\right) & =\{(1,2),(1,3), \ldots,(1, n),(1-n, 2)\}=\{(1,2),(1,3), \ldots,(1, n),(1,2+n)\} \\
& =\left\{\alpha_{1}^{\vee}, s_{1} \alpha_{2}^{\vee}, \ldots, s_{1} \cdots s_{n-2} \alpha_{n-1}^{\vee}, s_{1} \cdots s_{n-2} s_{n-1} \pi^{-1} \alpha_{1}^{\vee}\right\} \\
& =\left\{\varepsilon_{1}^{\vee}-\varepsilon_{2}^{\vee}, \varepsilon_{1}^{\vee}-\varepsilon_{3}^{\vee}, \ldots, \varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee},\left(\varepsilon_{1}^{\vee}+K\right)-\varepsilon_{2}^{\vee}\right\} \\
\operatorname{Inv}\left(t_{\varepsilon_{2}}\right) & =\{((2,3), \ldots,(2, n),(2-n, 1)\}=\{((2,3), \ldots,(2, n),(2,1+n)\} \\
& =\left\{\alpha_{2}^{\vee}, s_{2} \alpha_{3}^{\vee}, \ldots, s_{2} \cdots s_{n-2} \alpha_{n-1}^{\vee}, s_{2} \cdots s_{n-2} s_{n-1} \pi^{-1} \alpha_{1}^{\vee}\right\} \\
& =\left\{\varepsilon_{2}^{\vee}-\varepsilon_{3}^{\vee}, \varepsilon_{2}^{\vee}-\varepsilon_{4}^{\vee}, \ldots, \varepsilon_{2}^{\vee}-\varepsilon_{n}^{\vee},\left(\varepsilon_{2}^{\vee}+K\right)-\varepsilon_{1}^{\vee}\right\},
\end{aligned}
$$

where we have used

$$
\begin{aligned}
s_{1} \cdots s_{n-1} \pi^{-1} \alpha_{1}^{\vee} & =s_{1} \cdots s_{n-1} \pi^{-1}\left(\varepsilon_{1}^{\vee}-\varepsilon_{2}^{\vee}\right) \\
& =s_{1} \cdots s_{n-1}\left(\left(\varepsilon_{n}^{\vee}+K\right)-\varepsilon_{1}^{\vee}\right)=\left(\varepsilon_{1}^{\vee}+K\right)-\varepsilon_{2}^{\vee}
\end{aligned}
$$

and

$$
s_{2} \cdots s_{n-1} \pi^{-1} \alpha_{1}^{\vee}=s_{2} \cdots s_{n-1}\left(\left(\varepsilon_{n}^{\vee}+K\right)-\varepsilon_{1}^{\vee}\right)=\left(\varepsilon_{2}^{\vee}+K\right)-\varepsilon_{1}^{\vee}
$$

4.0.7. The elements u_{μ} and v_{μ} for $\mu=(0,4,5,1,4)$. Let $u_{\mu}, v_{\mu}, z_{\mu}$ and t_{μ} be as in Section 4.0.4. If $\mu=(0,4,5,1,4)$ then

$$
\lambda=(5,4,4,1,0) \quad \text { and } \quad z_{\mu}=s_{2} s_{4} s_{1} s_{2} s_{3} s_{4}
$$

since $(5,4,4,1,0) \xrightarrow{s_{1} s_{2} s_{3} s_{4}}(0,5,4,4,1) \xrightarrow{s_{4}}(0,5,4,1,4) \xrightarrow{s_{2}}(0,4,5,1,4)$. Also

$$
v_{\mu}=s_{4} s_{2} s_{3}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 5 & 2 & 4
\end{array}\right), \quad \text { with }
$$

$$
\begin{aligned}
& v_{\mu}(1)=1=1 \\
& v_{\mu}(2)=3=1+\#\{1\} \\
& v_{\mu}(3)=5=1+\#\{1,2\}+\#\{4\} \\
& v_{\mu}(4)=2=1+\#\{1\} \\
& v_{\mu}(5)=4=1+\#\{2,4\}
\end{aligned}
$$

Weiying Guo \& Arun Ram

Then $v_{\mu}=\left(0_{1}, 0_{3}, 0_{5}, 0_{3}, 0_{4}\right)$ and

$$
\begin{aligned}
\operatorname{Inv}\left(v_{\mu}\right) & =\{(2,4),(3,4),(3,5)\}=\left\{\alpha_{3}^{\vee}, s_{3} \alpha_{2}^{\vee}, s_{3} s_{2} \alpha_{4}^{\vee}\right\} \\
& =\left\{\varepsilon_{3}^{\vee}-\varepsilon_{4}^{\vee}, \varepsilon_{2}^{\vee}-\varepsilon_{4}^{\vee}, \varepsilon_{3}^{\vee}-\varepsilon_{5}^{\vee}\right\} .
\end{aligned}
$$

Then, with $n=5$,

$$
\begin{aligned}
& v_{\mu}^{-1}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 4 & 2 & 5 & 3
\end{array}\right)=\left(0_{1}, 0_{4}, 0_{2}, 0_{5}, 0_{3}\right) \quad \text { and } \\
& u_{\mu}=t_{\mu} v_{\mu}^{-1}=\left(0_{1}, 4_{3}, 5_{5}, 1_{2}, 4_{4}\right) \\
& =\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 4+n & 2+4 n & 5+4 n \\
3+5 n
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 9 & 22 & 25 & 28
\end{array}\right) .
\end{aligned}
$$

Then

$$
\ell\left(t_{\lambda}\right)=\left(\begin{array}{l}
(5-4)+(5-4)+(5-1)+(5-0) \\
+(4-4)+(4-1)+(4-0) \\
+(4-1)+(4-0) \\
+(1-0)
\end{array}\right)=26=\ell\left(t_{\mu}\right)=\ell\left(u_{\mu}\right)+\ell\left(v_{\mu}\right)
$$

with

$$
\ell\left(u_{\mu}\right)=6+7 \cdot 2+3=23, \quad \ell\left(v_{\mu}\right)=3, \quad \ell\left(z_{\mu}\right)=6 .
$$

The decreasing rearrangement of $\mu=(0,4,5,1,4)$ is $\lambda=(5,4,4,1,0)$ and

$$
z_{\lambda}=1, \quad w_{\lambda}=s_{2}, \quad v_{\lambda}=w_{0} s_{2}
$$

4.0.8. The box greedy reduced word for u_{μ}. If $\mu=(0,4,5,1,4)$ then the box greedy reduced word for u_{μ} is
and the length of u_{μ} is

$$
\ell\left(u_{\mu}\right)=6+14+3=23, \quad \text { since } \quad \ell(\pi)=0 \quad \text { and } \quad \ell\left(s_{i}\right)=1 .
$$

Using one-line notation for n-periodic permutations, the computation verifying the expression for u_{μ}^{\square} is

$$
\begin{aligned}
& \left(0_{1}, 4_{3}, 5_{5}, 1_{2}, 4_{4}\right) \xrightarrow{s_{1}}\left(4_{3}, 0_{1}, 5_{5}, 1_{2}, 4_{4}\right) \xrightarrow{\pi^{-1}} \\
& \left.\left.\left(0_{1}, 5_{5}, 1_{2}, 4_{4}, 3_{3}\right)\right) \xrightarrow{s_{1}}\left(5_{5}, 0_{1}, 1_{2}, 4_{4}, 3_{3}\right)\right) \xrightarrow{\pi^{-1}} \\
& \left.\left.\left(0_{1}, 1_{2}, 4_{4}, 3_{3}, 4_{5}\right)\right) \xrightarrow{s_{3}}\left(1_{2}, 0_{1}, 4_{4}, 3_{3}, 4_{5}\right)\right) \xrightarrow{\pi^{-1}} \\
& \left.\left.\left(0_{1}, 4_{4}, 3_{3}, 4_{5}, 0_{2}\right)\right) \xrightarrow{s_{1}}\left(4_{4}, 0_{1}, 3_{3}, 4_{5}, 0_{2}\right)\right) \xrightarrow{\pi^{-1}} \\
& \left.\left.\left(0_{1}, 3_{3}, 4_{5}, 0_{2}, 3_{4}\right)\right) \xrightarrow{s_{1}}\left(3_{3}, 0_{1}, 4_{5}, 0_{2}, 3_{4}\right)\right) \xrightarrow{\pi^{-1}} \\
& \left.\left.\left(0_{1}, 4_{5}, 0_{2}, 3_{4}, 2_{3}\right)\right) \xrightarrow{s_{3}}\left(4_{5}, 0_{1}, 0_{2}, 3_{4}, 2_{3}\right)\right) \xrightarrow{\pi^{-1}} \\
& \left.\left.\left.\left(0_{1}, 0_{2}, 3_{4}, 2_{3}, 3_{5}\right)\right) \xrightarrow{s_{2}}\left(0_{1}, 3_{4}, 0_{2}, 2_{3}, 3_{5}\right)\right) \xrightarrow{s_{1}}\left(3_{4}, 0_{1}, 0_{2}, 2_{3}, 3_{5}\right)\right) \xrightarrow{\pi^{-1}} \\
& \left.\left.\left.\left(0_{1}, 0_{2}, 2_{3}, 3_{5}, 2_{4}\right)\right) \xrightarrow{s_{2}}\left(0_{1}, 2_{3}, 0_{2}, 3_{5}, 2_{4}\right)\right) \xrightarrow{s_{1}}\left(2_{3}, 0_{1}, 0_{2}, 3_{5}, 2_{4}\right)\right) \xrightarrow{\pi^{-1}} \\
& \left.\left.\left.\left(0_{1}, 0_{2}, 3_{5}, 2_{4}, 1_{3}\right)\right) \xrightarrow{s_{2}}\left(0_{1}, 3_{5}, 0_{2}, 2_{4}, 1_{3}\right)\right) \xrightarrow{s_{1}}\left(3_{5}, 0_{1}, 0_{2}, 2_{4}, 1_{3}\right)\right) \xrightarrow{\pi^{-1}} \\
& \left.\left.\left.\left(0_{1}, 0_{2}, 2_{4}, 1_{3}, 2_{5}\right)\right) \xrightarrow{s_{2}}\left(0_{1}, 2_{4}, 0_{2}, 1_{3}, 2_{5}\right)\right) \xrightarrow{s_{1}}\left(2_{4}, 0_{1}, 0_{2}, 1_{3}, 2_{5}\right)\right) \xrightarrow{\pi^{-1}} \\
& \left.\left.\left.\left(0_{1}, 0_{2}, 1_{3}, 2_{5}, 1_{4}\right)\right) \xrightarrow{s_{2}}\left(0_{1}, 1_{3}, 0_{2}, 2_{5}, 1_{4}\right)\right) \xrightarrow{s_{1}}\left(1_{3}, 0_{1}, 0_{2}, 2_{5}, 1_{4}\right)\right) \xrightarrow{\pi^{-1}} \\
& \left.\left.\left.\left(0_{1}, 0_{2}, 2_{5}, 1_{4}, 0_{3}\right)\right) \xrightarrow{s_{2}}\left(0_{1}, 2_{5}, 0_{2}, 1_{4}, 0_{3}\right)\right) \xrightarrow{s_{1}}\left(2_{5}, 0_{1}, 0_{2}, 1_{4}, 0_{3}\right)\right) \xrightarrow{\pi^{-1}} \\
& \left.\left.\left.\left(0_{1}, 0_{2}, 1_{4}, 0_{3}, 1_{5}\right)\right) \xrightarrow{s_{2}}\left(0_{1}, 1_{4}, 0_{2}, 0_{3}, 1_{5}\right)\right) \xrightarrow{s_{1}}\left(1_{4}, 0_{1}, 0_{2}, 0_{3}, 1_{5}\right)\right) \xrightarrow{\pi^{-1}} \\
& \left.\left.\left.\left(0_{1}, 0_{2}, 0_{3}, 1_{5}, 0_{4}\right)\right) \xrightarrow{s_{3}}\left(0_{1}, 0_{2}, 1_{5}, 0_{3}, 0_{4}\right)\right) \xrightarrow{s_{2}}\left(0_{1}, 1_{5}, 0_{2}, 0_{3}, 0_{4}\right)\right) \\
& \left.\left.\xrightarrow{s_{7}}\left(1_{5}, 0_{1}, 0_{2}, 0_{3}, 0_{4}\right)\right) \xrightarrow{\pi^{-1}}\left(0_{1}, 0_{2}, 0_{3}, 0_{4}, 0_{5}\right)\right)
\end{aligned}
$$

4.0.9. Inversions of u_{μ}. If $\mu=(0,4,5,1,4)$ then the inversion set of u_{μ} is

$\operatorname{Inv}\left(u_{\mu}\right)=$	$\alpha_{31}^{\vee}+4 K$	$\alpha_{31}^{\vee}+3 K$	$\alpha_{31}^{\vee}+2 K$ $\alpha_{32}^{\vee}+2 K$	$\alpha_{31}^{\vee}+K$ $\alpha_{32}^{\vee}+K$	
	$\alpha_{51}^{\vee}+5 K$	$\alpha_{51}^{\vee}+4 K$	$\alpha_{51}^{\vee}+3 K$ $\alpha_{52}^{\vee}+3 K$	$\begin{aligned} & \alpha_{51}^{\vee}+2 K \\ & \alpha_{52}^{\vee}+2 K \end{aligned}$	$\begin{array}{\|c\|} \hline \alpha_{51}^{\vee}+K \\ \alpha_{52}^{\vee}+K \\ \alpha_{53}^{\vee}+K \\ \hline \end{array}$
	$\alpha_{21}^{\vee}+K$				
	$\alpha_{41}^{\vee}+4 K$	$\alpha_{41}^{\vee}+3 K$ $\alpha_{42}^{\vee}+3 K$	$\alpha_{41}^{\vee}+2 K$ $\alpha_{42}^{\vee}+2 K$	$\alpha_{41}^{\vee}+K$ $\alpha_{42}^{\vee}+K$	

where $\alpha_{i j}^{\vee}=\varepsilon_{i}^{\vee}-\varepsilon_{j}^{\vee}$. The following is an example that executes the last line of the proof of [5, Proposition 2.2]. The factor of s_{1} in the factorization $u_{\mu}=s_{1} \pi u_{(0,5,1,4,3)}$
gives the root

$$
\begin{aligned}
& u_{(0,5,1,4,3)}^{-1} \pi^{-1}\left(\varepsilon_{1}^{\vee}-\varepsilon_{2}^{\vee}\right)=u_{(0,5,1,4,3)}^{-1} \pi^{-1}\left(\varepsilon_{1}^{\vee}-\varepsilon_{2}^{\vee}\right)=u_{(0,5,1,4,3)}^{-1}\left(\left(\varepsilon_{5}^{\vee}+K\right)-\varepsilon_{1}^{\vee}\right) \\
& \quad=v_{(0,5,1,4,3)} t_{(0,5,1,4,3)}^{-1}\left(\varepsilon_{5}^{\vee}-\varepsilon_{1}^{\vee}+K\right)=v_{(0,5,1,4,3)}\left(\varepsilon_{5}^{\vee}+3 K-\left(\varepsilon_{1}^{\vee}+0 K\right)+K\right) \\
& \quad=\varepsilon_{3}^{\vee}-\varepsilon_{1}^{\vee}+4 K, \quad \text { since } v_{(0,5,1,4,3)}^{\vee}(5)=3 .
\end{aligned}
$$

4.0.10. The column-greedy reduced word for u_{μ}. Let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geqslant 0}^{n}$. Let $J=\left(j_{1}<\ldots<j_{r}\right)$ be the sequence of positions of the nonzero entries of μ and let ν be the composition defined by

$$
\nu_{j}=\mu_{j}-1 \quad \text { if } j \in J \quad \text { and } \quad \nu_{k}=0 \quad \text { if } k \notin J,
$$

so that ν is the composition which has one fewer box than μ in each (nonempty) row. Define the column-greedy reduced word for the element u_{μ} inductively by setting

$$
\begin{equation*}
u_{\mu}^{\downarrow}=\left(\prod_{m=1}^{r} s_{j_{m}-1} \cdots s_{m+1} s_{m}\right) \pi^{r} u_{\nu}^{\downarrow} \tag{33}
\end{equation*}
$$

where the product is taken in increasing order.
For example, if $\lambda=(5,4,4,1,0)$ then $z_{\lambda}=1, w_{\lambda}=s_{2}, v_{\lambda}=w_{0} s_{2}$ and the column greedy reduced word for u_{λ} is

The computation verifying the expression for u_{λ}^{\downarrow} is

$$
\begin{gathered}
(5,4,4,1,0) \xrightarrow{\pi^{-4}} \\
(0,4,3,3,0) \xrightarrow{s_{1} s_{2} s_{3}}(4,3,3,0,0) \xrightarrow{\pi^{-3}} \\
(0,0,3,2,2) \stackrel{s_{2} s_{1} s_{3} s_{3} s_{2} s_{4} s_{3}}{\rightarrow}(3,2,2,0,0) \xrightarrow{\pi^{-3}} \\
(0,0,2,1,1) \xrightarrow{s_{2} s_{1} s_{3} s_{2} s_{4} s_{4} s_{3}}(2,1,1,0,0) \xrightarrow{\pi^{-3}} \\
(0,0,2,0,0) \xrightarrow{s_{2} s_{1}}(1,0,0,0,0) \xrightarrow{\pi^{-1}}(0,0,0,0,0)
\end{gathered}
$$

If $\mu=(0,4,5,1,4)$ then the column greedy reduced word for u_{μ} is

$$
u_{\mu}^{\downarrow}=s_{1} s_{2} s_{3} s_{4} \pi^{4} \cdot s_{1} s_{2} s_{4} s_{3} \pi^{3} \cdot s_{2} s_{1} s_{3} s_{2} s_{4} s_{3} \pi^{3} \cdot s_{2} s_{1} s_{3} s_{2} s_{4} s_{3} \pi^{3} \cdot s_{3} s_{2} s_{1} \pi
$$

This follows from (32) by using that $\pi s_{i} \pi^{-1}=s_{i+1}$.

5. THE STEP-BY-STEP AND BOX-BY-BOX RECURSIONS

5.0.1. Examples of the step-by-step recursion. Examples illustrating [5, Proposition 4.1(a)] are

$$
\begin{gathered}
E_{(1,0,0,1,0,0)}^{(156234)}=x_{1} E_{(0,0,1,0,0,0)}^{(562341)}, \\
E_{(1,0,0,1,0,0)}^{(651234)}=x_{6} E_{(0,0,1,0,0,0)}^{(516234)}
\end{gathered}
$$

An example illustrating [5, Proposition 4.1(b)] with $z s_{i}<z$ is

$$
\begin{aligned}
E_{(0,0,1,1,0,0)}^{(561234)} & =E_{(0,1,0,1,0,0)}^{(516234)}+\left(\frac{1-t}{1-q t^{5-2}}\right) q t^{5-2} t^{-3} E_{(0,1,0,1,0,0)}^{(561234)} \\
& =E_{(0,1,0,1,0,0)}^{(516234)}+\left(\frac{1-t}{1-q t^{5-2}}\right) q E_{(0,1,0,1,0,0)}^{(561234)}
\end{aligned}
$$

with $\mu=(0,0,1,1,0,0)$ and $z=(561234)$,

$$
z v_{\mu}^{-1}=(563412), \quad v_{\mu}^{-1}=(125634), \quad z v_{s_{2} \mu}^{-1}=(513462), \quad v_{s_{2} \mu}^{-1}=(135624)
$$

and

$$
-\frac{1}{2}\left(\ell\left(z v_{\mu}^{-1}\right)-\ell\left(v_{\mu}^{-1}\right)-\ell\left(z v_{s_{2} \mu}^{-1}\right)+\ell\left(v_{s_{2} \mu}^{-1}\right)\right)=-\frac{1}{2}(12-4-7+5)=-\frac{1}{2} \cdot 6=-3 .
$$

An example illustrating [5, Proposition 4.1(b)] with $z s_{i}>z$ is

$$
E_{(0,1,0,1,0,0)}^{(561234)}=E_{(1,0,0,1,0,0)}^{(651234)}+\left(\frac{1-t}{1-q t^{5-1}}\right) E_{(1,0,0,1,0,0)}^{(561234)}
$$

with $\mu=(0,1,0,1,0,0)$ and $z=(561234)$,

$$
z v_{\mu}^{-1}=(513462), \quad v_{\mu}^{-1}=(135624), \quad z v_{s_{1} \mu}^{-1}=(613452), \quad v_{s_{1} \mu}^{-1}=(235614),
$$

and

$$
-\frac{1}{2}\left(\ell\left(z v_{\mu}^{-1}\right)-\ell\left(v_{\mu}^{-1}\right)-\ell\left(z v_{s_{1} \mu}^{-1}\right)+\ell\left(v_{s_{1} \mu}^{-1}\right)\right)=-\frac{1}{2}(7-5-8+6)=0
$$

5.0.2. Examples of the box by box recursion. An example executing the box-by-box recursion is provided just after Theorem 1.1. in [5].
5.0.3. An example of $a 2^{j-1}$ to j term compression when $j=3$. In order to check the powers of t in [5, Lemma 4.2] compute $\tau_{2}^{\vee} \tau_{1}^{\vee} E_{\gamma}$,

$$
\begin{aligned}
\tau_{2}^{\vee} \tau_{1}^{\vee} E_{\gamma} & =C_{-\beta_{2}^{\vee}}\left(T_{1}+f_{-\beta_{1}^{\vee}}\right) E_{\gamma}=C_{-\beta_{2}^{\vee}} T_{1} E_{\gamma}+f_{-\beta_{1}^{\vee}} C_{-\beta_{2}^{\vee}} E_{\gamma} \\
& =C_{-\beta_{2}^{\vee}} T_{1} E_{\gamma}+c_{-\beta_{2}^{\vee}} f_{-\beta_{1}^{\vee}} E_{\gamma}=\left(T_{2}+f_{-\beta_{2}^{\vee}}\right) T_{1} E_{\gamma}+c_{-\beta_{2}^{\vee}} f_{-\beta_{1}^{\vee}} E_{\gamma} \\
& =T_{2} T_{1} E_{\gamma}+f_{-\beta_{2}^{\vee}} T_{1} E_{\gamma}+t^{-\frac{1}{2}} f_{-\beta_{2}} E_{\gamma} \\
& =T_{2} T_{1} E_{\gamma}+t^{\frac{1}{2}} f_{-\beta_{2}^{\vee}}\left(t^{-\frac{1}{2}} T_{1} E_{\gamma}+t^{-\frac{2}{2}} E_{\gamma}\right) .
\end{aligned}
$$

Now replace $T_{2}=T_{2}^{-1}+\left(t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right)$ to get

$$
\begin{aligned}
\tau_{2}^{\vee} \tau_{1}^{\vee} E_{\gamma} & =\left(T_{2}^{-1}+\left(t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right)\right) T_{1} E_{\gamma}+t^{\frac{1}{2}} f_{-\beta_{2}^{\vee}}\left(t^{-\frac{1}{2}} T_{1} E_{\gamma}+t^{-\frac{2}{2}} E_{\gamma}\right) \\
& =T_{2}^{-1} T_{1} E_{\gamma}+\left(t-1+t^{\frac{1}{2}} f_{-\beta_{2}^{\vee}}\right) t^{-\frac{1}{2}} T_{1} E_{\gamma}+t^{\frac{1}{2}} f_{-\beta_{2}^{\vee}} t^{-\frac{2}{2}} E_{\gamma} \\
& =T_{2}^{-1} T_{1} E_{\gamma}+t^{\frac{1}{2}} f_{-\beta_{2}^{\vee}} d_{-\beta_{2}^{\vee}} t^{-\frac{1}{2}} T_{1} E_{\gamma}+t^{\frac{1}{2}} f_{-\beta_{2}^{\vee}} t^{-\frac{2}{2}} E_{\gamma}
\end{aligned}
$$

and then replacing T_{1} in the first term by $T_{1}=T_{1}^{-1}+\left(t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right)$

$$
\begin{aligned}
\tau_{2}^{\vee} \tau_{1}^{\vee} E_{\gamma} & =T_{2}^{-1}\left(T_{1}^{-1}+t^{-\frac{1}{2}}(t-1)\right) E_{\gamma}+t^{\frac{1}{2}} f_{-\beta_{2}^{\vee}} d_{-\beta_{2}} t^{-\frac{1}{2}} T_{1} E_{\gamma}+t^{\frac{1}{2}} f_{-\beta_{2}^{\vee}} t^{-\frac{2}{2}} E_{\gamma} \\
& =T_{2}^{-1} T_{1}^{-1} E_{\gamma}+t^{\frac{1}{2}} f_{-\beta_{2}^{\vee}} d_{-\beta_{2}} t^{-\frac{1}{2}} T_{1} E_{\gamma}+t^{-\frac{1}{2}}(1-t) t^{-\frac{1}{2}} E_{\gamma}+t^{\frac{1}{2}} f_{-\beta_{2}^{\vee}} t^{-\frac{2}{2}} E_{\gamma} \\
& =T_{2}^{-1} T_{1}^{-1} E_{\gamma}+t^{\frac{1}{2}} f_{-\beta_{2}^{\vee}} d_{-\beta_{2}} t^{-\frac{1}{2}} T_{1} E_{\gamma}+\left(t-1+t^{\frac{1}{2}} f_{-\beta_{2}^{\vee}}\right) t^{-\frac{2}{2}} E_{\gamma} \\
& =T_{2}^{-1} T_{1}^{-1} E_{\gamma}+t^{\frac{1}{2}} f_{-\beta_{2}^{\vee}} d_{-\beta_{2}} t^{\frac{1}{2}} T_{1} E_{\gamma}+t^{\frac{1}{2}} f_{-\beta_{2}^{\vee}} d_{-\beta_{2}^{\vee}} t^{-\frac{2}{2}} E_{\gamma} .
\end{aligned}
$$

5.0.4. Check of the norm statistic in the step by step recursion. This is an example which is helpful for checking the coefficients in [5, Proposition 4.3] and its proof. Let

$$
\mu=(0,0,1,1,0,0), \quad \gamma=(1,0,0,1,0,0), \quad \nu=(0,0,1,0,0,0)
$$

and $z=y=(561234)$. Then

$$
\begin{array}{ll}
v_{\mu}^{-1}=(125634), & \ell\left(v_{\mu}^{-1}\right)=2+2=4, \\
y v_{\mu}^{-1}=(563412), & \ell\left(y v_{\mu}^{-1}\right)=4+4+2+2=12, \\
v_{\gamma}^{-1}=(235614), & \ell\left(v_{\mu}^{-1}\right)=1+1+2+2=6, \\
y s_{2} s_{1} v_{\gamma}^{-1}=(563412) & \ell\left(y s_{2} s_{1} v_{\gamma}^{-1}\right)=4+4+2+2= \\
y s_{1} v_{\gamma}^{-1}=(513462) & \ell\left(y s_{1} v_{\gamma}^{-1}=4+1+1+1=7,\right. \\
y v_{\gamma}^{-1}=(613452) & \ell\left(y v_{\gamma}^{-1}\right)=5+1+1+1=8 .
\end{array}
$$

Then $j=3$ and

$$
\begin{aligned}
E_{\mu}^{y} & =t^{-\frac{1}{2}\left(\ell\left(y v_{\mu}\right)-\ell\left(v_{\mu}^{-1}\right)-(3-1)\right.} T_{y} \tau_{2}^{\vee} \tau_{1}^{\vee} E_{\gamma}=t^{-\frac{1}{2}(12-4-2)} T_{y} \tau_{2}^{\vee} \tau_{1}^{\vee} E_{\gamma} \\
E_{\gamma}^{y s_{2} s_{1}} & =t^{-\frac{1}{2}\left(\ell\left(y s_{2} s_{1} v_{\gamma}^{-1}\right)-\ell\left(v_{\gamma}^{-1}\right)\right.} T_{y s_{2} s_{1}} E_{\gamma}=t^{-\frac{1}{2}(12-6)} T_{y s_{2} s_{1}} E_{\gamma}=t^{-\frac{6}{2}} T_{y} T_{2}^{-1} T_{1}^{-1} E_{\gamma} \\
E_{\gamma}^{y s_{1}} & =t^{-\frac{1}{2}\left(\ell\left(y s_{1} v_{\gamma}^{-1}\right)-\ell\left(v_{\gamma}^{-1}\right)\right.} T_{y s_{1}} E_{\gamma}=t^{-\frac{1}{2}(7-6)} T_{y s_{1}} E_{\gamma}=t^{-\frac{1}{2}} T_{y} T_{1} E_{\gamma} \\
E_{\gamma}^{y} & =t^{-\frac{1}{2}\left(\ell\left(y v_{\gamma}^{-1}\right)-\ell\left(v_{\gamma}^{-1}\right)\right.} T_{y} E_{\gamma}=t^{-\frac{1}{2}(8-6)} T_{y} E_{\gamma}=t^{-\frac{2}{2}} T_{y} E_{\gamma}
\end{aligned}
$$

so that

$$
\begin{aligned}
t^{\frac{6}{2}} E_{\mu}^{y} & =t^{\frac{6}{2}} E_{\gamma}^{y s_{2} s_{1}}+d_{-\beta_{1}^{\vee}} f_{-\beta_{1}^{\vee}} t^{\frac{1}{2}} E_{\gamma}^{y s_{1}}+t^{-\frac{1}{2}} d_{-\beta_{1}^{\vee}} f_{-\beta_{1}^{\vee}} t^{\frac{2}{2}} E_{\gamma}^{y} \\
& =t^{\frac{6}{2}} E_{\gamma}^{y s_{2} s_{1}}+\frac{1-t}{1-q t^{5-2}} q t^{5-2} E_{\gamma}^{y s_{1}}+\frac{1-t}{1-q t^{5-2}} q t^{5-2} E_{\gamma}^{y}
\end{aligned}
$$

giving

$$
E_{\mu}^{y}=E_{\gamma}^{y s_{2} s_{1}}+\frac{1-t}{1-q t^{5-2}} q E_{\gamma}^{y s_{1}}+\frac{1-t}{1-q t^{5-2}} q E_{\gamma}^{y}
$$

as in the second line of the example in 5.0.2.
5.0.5. Check of the statistic for $E_{\varepsilon_{j}}^{z}$ where $z(j)=j+k$. This is an example of [5, Proposition 4.3] with

$$
\mu=\varepsilon_{j}, \quad \gamma=\varepsilon_{1}, \quad y=s_{j+(k-1)} \cdots s_{j}
$$

Then

$$
v_{\mu}=s_{n-1} \cdots s_{j}, \quad v_{\gamma}=s_{n-1} \cdots s_{1}, \quad v_{\mu}^{-1}=s_{j} \cdots s_{n-1}, \quad v_{\gamma}^{-1}=s_{1} \cdots s_{n-1}
$$

Then $y v_{\mu}^{-1}=s_{j+k} \cdots s_{n-1}$ and $\ell\left(y v_{\mu}^{-1}\right)=(n-1)-(j-1)-k$ and

$$
\begin{aligned}
\ell\left(y v_{\mu}^{-1}\right)-\ell\left(v_{\mu}^{-1}\right)-(j-1) & =((n-1)-(j-1)-k)-((n-1)-(j-1)) \\
& =-k-(j-1)
\end{aligned}
$$

Next, $y c_{a}^{-1} c_{j} v_{\mu}^{-1}=\left(\left(s_{j+(k-1)} \cdots s_{j}\right)\left(s_{a} \cdots s_{j-1}\right)\left(s_{j} \cdots s_{n-1}\right)\right.$ and

$$
\begin{aligned}
\ell\left(y c_{a}^{-1} c_{j} v_{\mu}^{-1}\right) & =(j-1+k-(j-1))+((j-1)-(a-1))+(n-1-(j-1)) \\
& =(n-1)-(a-1)+k
\end{aligned}
$$

So

$$
\begin{aligned}
& \ell\left(y c_{a}^{-1} c_{j} v_{\mu}^{-1}\right)-\ell\left(y v_{\mu}^{-1}\right)-\ell\left(c_{a}^{-1} c_{j}\right) \\
& \quad=(n-1)-(a-1)+k-((n-1)-(j-1)-k)-((j-1)-(a-1)) \\
& \quad=2 k
\end{aligned}
$$

Thus

$$
\begin{aligned}
E_{\mu}^{z}=E_{\mu}^{y} & =x_{y(j)} E_{\nu}^{y c_{n}}+\frac{(1-t)}{1-q^{\mu_{j} t^{v}(j)-(j-1)}} \sum_{a=0}^{j-1} t^{\frac{1}{2} \cdot 2 k} x_{y(a)} E_{\nu}^{y c_{a}^{-1} c_{n}} \\
& =x_{y(j)}+\frac{(1-t)}{1-q^{\mu_{j}} t^{v_{\mu}(j)-(j-1)}} \sum_{a=0}^{j-1} t^{k} x_{y(a)} .
\end{aligned}
$$

6. Type $G L_{n}$ DAArt, DAHA and the polynomial Representation

6.0.1. Example to check the eigenvalues of Y_{i} on E_{μ}. The box greedy reduced words for $u_{(2,1,0)}, u_{(2,0,1)}$ and $u_{(1,2,0)}$ are

$$
u_{(2,1,0)}^{\square}=\left\lvert\, \begin{array}{|l|l|l|}
\hline \pi & \boxed{s_{1} \pi} \\
\hline \pi & u_{(2,0,1)}^{\square} & =\begin{array}{|l|l|}
\boxed{\pi} & \boxed{s_{1} \pi} \\
\boxed{s_{1} \pi} & u_{(1,2,0)}^{\square}
\end{array}=\left|\begin{array}{|l|}
\boxed{\pi} \\
\hline s_{2} s_{1} \pi \\
\hline
\end{array}\right|
\end{array}\right.
$$

Using $u_{\mu}=t_{\mu} v_{\mu}^{-1}$ to carefully compute v_{μ}^{-1} :

$$
\begin{aligned}
u_{(2,1,0)} & =\pi^{2} s_{1} \pi=t_{\varepsilon_{1}} s_{1} s_{2} t_{\varepsilon_{1}} s_{1} s_{2} s_{1} t_{\varepsilon_{1}} s_{1} s_{2} \\
& =t_{\varepsilon_{1}} t_{\varepsilon_{2}} s_{1} s_{2} s_{1} s_{2} s_{1} t_{\varepsilon_{1}} s_{1} s_{2} \\
& =t_{\varepsilon_{1}} t_{\varepsilon_{2}} s_{2} t_{\varepsilon_{1}} s_{1} s_{2} \\
& =t_{2 \varepsilon_{1}+\varepsilon_{2}} s_{2} s_{1} s_{2}, \quad \text { so } \quad v_{(2,1,0)}^{-1}=s_{2} s_{1} s_{2} \\
u_{(2,0,1)} & =\pi s_{1} \pi s_{1} \pi=t_{\varepsilon_{1}} s_{1} s_{2} s_{1} t_{\varepsilon_{1}} s_{1} s_{2} s_{1} t_{\varepsilon_{1}} s_{1} s_{2} \\
& =t_{\varepsilon_{1}} t_{\varepsilon_{3}} s_{1} s_{2} s_{1} s_{1} s_{2} s_{1} t_{\varepsilon_{1}} s_{1} s_{2} \\
& =t_{2 \varepsilon_{1}+\varepsilon_{3}} s_{1} s_{2}, \quad \text { So } \quad v_{(2,0,1)}^{-1}=s_{1} s_{2} \\
& \\
& =t_{\varepsilon_{1}+2 \varepsilon_{2}} s_{1} s_{2} s_{1} s_{2} \\
& =t_{\varepsilon_{1}+2 \varepsilon_{2}} s_{2} s_{1}, \quad \text { So } \quad v_{(1,2,0)}^{-1}=s_{2} s_{1}
\end{aligned}
$$

Using

$$
\begin{array}{ll}
u_{(2,1,0)}=t_{(2,1,0)} s_{1} s_{2} s_{1}=t_{(2,1,0)} v_{(2,1,0)}^{-1}, & u_{(2,0,1)}=t_{(2,0,1)} s_{1} s_{2}=t_{(2,0,1)} v_{(2,0,1)}^{-1}, \\
u_{(1,2,0)}=t_{(1,2,0)} s_{2} s_{1}=t_{(1,2,0)} v_{(1,2,0)}^{-1}, & u_{(0,2,1)}=t_{(0,2,1)} s_{2}=t_{(0,2,1)} v_{(0,2,1)}^{-1}, \\
u_{(1,0,2)}=t_{(1,0,2)} s_{2},=t_{(1,0,2)} v_{(1,0,2)}^{-1}, & u_{(0,1,2)}=t_{(0,1,2)}=t_{(0,1,2)} v_{(0,1,2)}^{-1},
\end{array}
$$

and the relations

$$
Y_{1} \tau_{\pi}^{\vee}=q^{-1} \tau_{\pi}^{\vee} Y_{3}, \quad Y_{2} \tau_{\pi}^{\vee}=\tau_{\pi}^{\vee} Y_{1}, \quad Y_{3} \tau_{\pi}^{\vee}=\tau_{\pi}^{\vee} Y_{2}
$$

then

$$
\begin{aligned}
Y_{1} E_{(2,1,0)} & =t^{-\frac{3}{2}} Y_{1} \tau_{\pi}^{\vee} \tau_{\pi}^{\vee} \tau_{1}^{\vee} \tau_{\pi}^{\vee} \mathbf{1}=t^{-\frac{3}{2}} q^{-1} \tau_{\pi}^{\vee} Y_{3} \tau_{\pi}^{\vee} \tau_{1}^{\vee} \tau_{\pi}^{\vee} \mathbf{1}=t^{-\frac{3}{2}} q^{-1} \tau_{\pi}^{\vee} \tau_{\pi}^{\vee} Y_{2} \tau_{1}^{\vee} \tau_{\pi}^{\vee} \mathbf{1} \\
& =t^{-\frac{3}{2}} q^{-1} \tau_{\pi}^{\vee} \tau_{\pi}^{\vee} \tau_{1}^{\vee} Y_{1} \tau_{\pi}^{\vee} \mathbf{1}=t^{-\frac{3}{2}} q^{-2} \tau_{\pi}^{\vee} \tau_{\pi}^{\vee} \tau_{1}^{\vee} \tau_{\pi}^{\vee} Y_{3} \mathbf{1} \\
& =q^{-2} t^{-(3-1)+\frac{1}{2}(3-1)} E_{(2,1,0)}, \\
Y_{2} E_{(2,1,0)} & =t^{-\frac{3}{2}} Y_{2} \tau_{\pi}^{\vee} \tau_{\pi}^{\vee} \tau_{1}^{\vee} \tau_{\pi}^{\vee} \mathbf{1}=t^{-\frac{3}{2}} \tau_{\pi}^{\vee} Y_{1} \tau_{\pi}^{\vee} \tau_{1}^{\vee} \tau_{\pi}^{\vee} \mathbf{1}=t^{-\frac{3}{2}} q^{-1} \tau_{\pi}^{\vee} \tau_{\pi}^{\vee} Y_{3} \tau_{1}^{\vee} \tau_{\pi}^{\vee} \mathbf{1} \\
& =t^{-\frac{3}{2}} q^{-1} \tau_{\pi}^{\vee} \tau_{\pi}^{\vee} \tau_{1}^{\vee} Y_{3} \tau_{\pi}^{\vee} \mathbf{1}=t^{-\frac{3}{2}} q^{-1} \tau_{\pi}^{\vee} \tau_{\pi}^{\vee} \tau_{1}^{\vee} \tau_{\pi}^{\vee} Y_{2} \mathbf{1} \\
& =q^{-1} t^{-(2-1)+\frac{1}{2}(3-1)} E_{(2,1,0)}, \\
Y_{3} E_{(2,1,0)} & =t^{-\frac{3}{2}} Y_{3} \tau_{\pi}^{\vee} \tau_{\pi}^{\vee} \tau_{1}^{\vee} \tau_{\pi}^{\vee} \mathbf{1}=t^{-\frac{3}{2}} \tau_{\pi}^{\vee} Y_{2} \tau_{\pi}^{\vee} \tau_{1}^{\vee} \tau_{\pi}^{\vee} \mathbf{1}=t^{-\frac{3}{2}} q^{-1} \tau_{\pi}^{\vee} \tau_{\pi}^{\vee} Y_{1} \tau_{1}^{\vee} \tau_{\pi}^{\vee} \mathbf{1} \\
& =t^{-\frac{3}{2}} q^{-1} \tau_{\pi}^{\vee} \tau_{\pi}^{\vee} \tau_{1}^{\vee} Y_{2} \tau_{\pi}^{\vee} \mathbf{1}=t^{-\frac{3}{2}} q^{-1} \tau_{\pi}^{\vee} \tau_{\pi}^{\vee} \tau_{1}^{\vee} \tau_{\pi}^{\vee} Y_{1} \mathbf{1} \\
& =t^{-(1-1)+\frac{1}{2}(3-1)} E_{(2,1,0) .} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& Y_{1} E_{(1,2,0)}=t^{\frac{1}{2}} Y_{1} \tau_{1}^{\vee} E_{(2,1,0)}=t^{\frac{1}{2}} \tau_{1}^{\vee} Y_{2} E_{(2,1,0)}=q^{-1} t^{-(2-1)+\frac{1}{2}(3-1)} E_{(1,2,0)} \\
& Y_{2} E_{(1,2,0)}=t^{\frac{1}{2}} Y_{2} \tau_{1}^{\vee} E_{(2,1,0)}=t^{\frac{1}{2}} \tau_{1}^{\vee} Y_{1} E_{(2,1,0)}=q^{-2} t^{-(3-1)+\frac{1}{2}(3-1)} E_{(1,2,0)} \\
& Y_{3} E_{(1,2,0)}=t^{\frac{1}{2}} Y_{3} \tau_{1}^{\vee} E_{(2,1,0)}=t^{\frac{1}{2}} \tau_{1}^{\vee} Y_{3} E_{(2,1,0)}=q^{-0} t^{-(1-1)+\frac{1}{2}(3-1)} E_{(1,2,0)}
\end{aligned}
$$

and $v_{(1,2,0)}(1)=s_{1} s_{2}(1)=s_{1}(1)=2, v_{(1,2,0)}(2)=s_{1} s_{2}(2)=s_{1}(3)=3$ and $v_{(1,2,0)}(3)=s_{1} s_{2}(3)=s_{1}(2)=1$.
6.0.2. The elements $X^{\omega_{r}}$. For $i \in\{1, \ldots, n\}$ let $\omega_{i}=\varepsilon_{1}+\cdots+\varepsilon_{i}$. Then

$$
X^{\omega_{i}}=X^{\varepsilon_{1}+\cdots+\varepsilon_{i}}=\left(g^{\vee}\right)^{i} T_{w_{i}}^{-1}, \quad \text { where } \quad w_{i}=\left(\begin{array}{cccccc}
1 & \cdots & i & i+1 & \cdots & n \\
i+1 & \cdots & n & 1 & \cdots & i
\end{array}\right)
$$

In W, the element $t_{\omega_{i}}=\pi^{i} w_{i}$. There are two favorite choices of reduced word for w_{i}, which are

$$
\begin{aligned}
w_{i} & =\left(s_{i} \cdots s_{n-1}\right)\left(s_{i-1} \cdots s_{n-2}\right) \cdots\left(s_{1} \cdots s_{n-i}\right) \\
& =\left(s_{i} \cdots s_{1}\right)\left(s_{i+1} \cdots s_{2}\right) \cdots\left(s_{n-1} \cdots s_{n-i}\right)
\end{aligned}
$$

For example, if $n=6$ then

$$
\begin{aligned}
& w_{1}=s_{5} s_{4} s_{3} s_{2} s_{1}, \\
& w_{2}=\left(s_{4} s_{3} s_{2} s_{1}\right)\left(s_{5} s_{4} s_{3} s_{2}\right)=\left(s_{4} s_{5}\right)\left(s_{3} s_{4}\right)\left(s_{2} s_{3}\right)\left(s_{1} s_{2}\right) \\
& w_{3}=\left(s_{3} s_{2} s_{1}\right)\left(s_{4} s_{3} s_{2}\right)\left(s_{5} s_{4} s_{3}\right)=\left(s_{3} s_{4} s_{5}\right)\left(s_{2} s_{3} s_{4}\right)\left(s_{1} s_{2} s_{3}\right) \\
& w_{4}=\left(s_{2} s_{1}\right)\left(s_{3} s_{2}\right)\left(s_{4} s_{3}\right)\left(s_{5} s_{4}\right)=\left(s_{2} s_{3} s_{4} s_{5}\right)\left(s_{1} s_{2} s_{3} s_{4}\right) \\
& w_{5}=s_{1} s_{2} s_{3} s_{4} s_{5} \\
& w_{6}=1,
\end{aligned}
$$

and

$$
\begin{aligned}
X^{\omega_{1}} & =g^{\vee} T_{5}^{-1} T_{4}^{-1} T_{3}^{-1} T_{2}^{-1} T_{1}^{-1}, \\
X^{\omega_{2}} & =\left(g^{\vee}\right)^{2}\left(T_{4}^{-1} T_{3}^{-1} T_{2}^{-1} T_{1}^{-1}\right)\left(T_{5}^{-1} T_{4}^{-1} T_{3}^{-1} T_{2}^{-1}\right) \\
& =\left(g^{\vee}\right)^{2}\left(T_{4}^{-1} T_{5}^{-1}\right)\left(T_{3}^{-1} T_{4}^{-1}\right)\left(T_{2}^{-1} T_{3}^{-1}\right)\left(T_{1}^{-1} T_{2}^{-1}\right) \\
X^{\omega_{3}} & =\left(g^{\vee}\right)^{3}\left(T_{3}^{-1} T_{2}^{-1} T_{1}^{-1}\right)\left(T_{4}^{-1} T_{3}^{-1} T_{2}^{-1}\right)\left(T_{5}^{-1} T_{4}^{-1} T_{3}^{-1}\right) \\
& =\left(g^{\vee}\right)^{3}\left(T_{3}^{-1} T_{4}^{-1} T_{5}^{-1}\right)\left(T_{2}^{-1} T_{3}^{-1} T_{4}^{-1}\right)\left(T_{1}^{-1} T_{2}^{-1} T_{3}^{-1}\right) \\
X^{\omega_{4}} & =\left(g^{\vee}\right)^{4}\left(T_{2}^{-1} T_{1}^{-1}\right)\left(T_{3}^{-1} T_{2}^{-1}\right)\left(T_{4}^{-1} T_{3}^{-1}\right)\left(T_{5}^{-1} T_{4}^{-1}\right) \\
& =\left(g^{\vee}\right)^{4}\left(T_{2}^{-1} T_{3}^{-1} T_{4}^{-1} T_{5}^{-1}\right)\left(T_{1}^{-1} T_{2}^{-1} T_{3}^{-1} T_{4}^{-1}\right) \\
X^{\omega_{5}} & =\left(g^{\vee}\right)^{5} T_{1}^{-1} T_{2}^{-1} T_{3}^{-1} T_{4}^{-1} T_{5}^{-1} \\
X^{\omega_{6}} & =\left(g^{\vee}\right)^{6} .
\end{aligned}
$$

6.0.3. Type $G L_{2}$. For type $G L_{2}, X_{1}=g^{\vee} T_{1}^{-1}$ and $X_{2}=T_{1} X_{1} T_{1}=T_{1} g^{\vee}$ and

$$
X_{1} X_{2}=\left(g^{\vee}\right)^{2}, \quad X_{1}^{k+1} T_{1}=\left(g^{\vee} T_{1}^{-1}\right)^{k} g^{\vee}, \quad\left(T_{1} g^{\vee}\right)^{k}=X_{2}^{k} .
$$

The box greedy reduced words for the first few cases are

$$
\begin{aligned}
& u_{(1,0)}^{\square}=\boxed{\pi} \quad u_{(0,1)}^{\square}=\stackrel{\mid}{\boxed{s_{1} \pi}} \\
& u_{(2,0)}^{\square}=\boxed{\pi} \begin{array}{|c|}
\boxed{s_{1} \pi}
\end{array} u_{(1,1)}^{\square}=\frac{\pi}{\mid \pi} \quad u_{(0,2)}^{\square}=\mid \sqrt{s_{1} \pi} \sqrt{s_{1} \pi} \\
& u_{(3,0)}^{\square}=\boxed{s_{1} \pi} \begin{array}{|}
\\
s_{1} \pi \\
\end{array}
\end{aligned}
$$

In this case the construction of E_{μ} as $E_{\mu}=t^{\frac{1}{2} \ell\left(v_{\mu}^{-1}\right)} \tau_{u_{\mu}}^{\vee} \mathbf{1}$ in [5, Proposition 5.7] is

$$
E_{(k+h, k)}=t^{-\frac{1}{2}}\left(\tau_{\pi}^{\vee}\right)^{2 k}\left(\tau_{\pi}^{\vee} \tau_{1}^{\vee}\right)^{h-1} \tau_{\pi}^{\vee} \mathbf{1} \quad \text { and } \quad E_{(k, k+h)}=\left(\tau_{\pi}^{\vee}\right)^{2 k}\left(\tau_{1}^{\vee} \tau_{\pi}^{\vee}\right)^{h} \mathbf{1}
$$

with $\tau_{\pi}^{\vee}=g^{\vee}$.
Let $h \in \mathbb{Z}_{>0}$. The nonattacking fillings and words for $E_{(h, 0)}$ and $E_{(0, h)}$ are
${ }^{1 \mid} \mid i_{1} \cdots i_{h-1} i_{h}$
2
and
$\left.\begin{aligned} & 1 \\ & 2\end{aligned}\right|_{i_{1} \cdots i_{h-1}} i_{h} \quad$ with $i_{1}, \ldots, i_{h} \in\{1,2\}$. $x_{1} x_{i_{2}} \cdots x_{i_{h}}$

$$
x_{i_{1}} \cdots x_{i_{h}}
$$

7. Additional examples

7.0.1. Formulas for E_{μ} when $n=2$.

$$
\begin{aligned}
& E_{(0,0)}=1 \\
& E_{(1,0)}=x_{1} \\
& E_{(0,1)}=x_{2}+\left(\frac{1-t}{1-q t}\right) x_{1} \\
& E_{(1,1)}=x_{1} x_{2} \\
& E_{(2,0)}=x_{1}^{2}+\left(\frac{1-t}{1-q t}\right) q x_{1} x_{2} \\
& E_{(0,2)}=x_{2}^{2}+\left(\frac{1-t}{1-q^{2} t}\right) x_{1}^{2}+\left(\left(\frac{1-t}{1-q t}\right)+\left(\frac{1-t}{1-q^{2} t}\right)\left(\frac{1-t}{1-q t}\right) q\right) x_{1} x_{2} \\
& E_{(3,0)}=x_{1}^{3}+\left(\frac{1-t}{1-q^{2} t}\right) q^{2} x_{1} x_{2}^{2}+\left(\left(\frac{1-t}{1-q t}\right) q+\left(\frac{1-t}{1-q^{2} t}\right)\left(\frac{1-t}{1-q t}\right) q^{2}\right) x_{1}^{2} x_{2}
\end{aligned}
$$

Then [12, (6.2.7) and (6.28)] provides the general formula as follows. Let

$$
(x ; q)_{\infty}=(1-x)(1-x q)\left(1-x q^{2}\right) \cdots, \quad(x ; q)_{r}=\frac{(x ; q)_{\infty}}{\left(q^{r} x ; q\right)_{\infty}}
$$

and

$$
\left[\begin{array}{c}
s \\
r
\end{array}\right]=\frac{(q ; q)_{s}}{(q ; q)_{r}(q ; q)_{s-r}}
$$

Let $k \in \mathbb{Z}_{>0}$ and let $t=q^{k}$. Then

$$
\begin{aligned}
E_{(0, m)} & =\left[\begin{array}{c}
k+m \\
m
\end{array}\right]^{-1} \sum_{i+j=m}\left[\begin{array}{c}
k+i-1 \\
i
\end{array}\right]\left[\begin{array}{c}
k+j \\
j
\end{array}\right] x_{1}^{j} x_{2}^{i} \quad \text { and } \\
E_{(m+1,0)} & =\left[\begin{array}{c}
k+m \\
m
\end{array}\right]^{-1} \sum_{i+j=m}\left[\begin{array}{c}
k+i-1 \\
i
\end{array}\right]\left[\begin{array}{c}
k+j \\
j
\end{array}\right] q^{i} x_{1}^{j+1} x_{2}^{i} .
\end{aligned}
$$

Since $t=q^{k}$, it appears that t must be a power of q. But this is not really the case since we may rewrite these formulas using

$$
\left[\begin{array}{c}
k+m \\
m
\end{array}\right]=\frac{(q ; q)_{k+m}}{(q ; q)_{m}(q ; q)_{k}}=\frac{(q ; q)_{\infty}\left(q^{m} ; q\right)_{\infty}\left(q^{k} ; q\right)_{\infty}}{\left(q^{k+m} ; q\right)_{\infty}(q ; q)_{\infty}(q ; q)_{\infty}}=\frac{\left(q^{m} ; q\right)_{\infty}(t ; q)_{\infty}}{\left(t q^{m} ; q\right)_{\infty}(q ; q)_{\infty}}=\frac{(t ; q)_{m}}{(q ; q)_{m}}
$$

and

$$
\begin{aligned}
{\left[\begin{array}{c}
k+i-1 \\
i
\end{array}\right]\left[\begin{array}{c}
k+j \\
j
\end{array}\right] } & =\frac{\left(q^{i} ; q\right)_{\infty}\left(t q^{-1} ; q\right)_{\infty}}{\left(t q^{i-1} ; q\right)_{\infty}(q ; q)_{\infty}} \frac{\left(q^{j} ; q\right)_{\infty}(t ; q)_{\infty}}{\left(t q^{j} ; q\right)_{\infty}(q ; q)_{\infty}} \\
& =\frac{\left(q^{i} ; q\right)_{\infty}\left(q^{j} ; q\right)_{\infty}\left(t q^{-1} ; q\right)_{\infty}(t ; q)_{\infty}}{(q ; q)_{\infty}(q ; q)_{\infty}\left(t q^{i-1} ; q\right)_{\infty}\left(t q^{j} ; q\right)_{\infty}}
\end{aligned}
$$

7.0.2. Some small E_{μ} for $n=3$.

$$
\begin{aligned}
& E_{(0,0,0)}=1 \\
& E_{(1,0,0)}=x_{1} \\
& E_{(0,1,0)}=x_{2}+\left(\frac{1-t}{1-q t^{2}}\right) x_{1} \\
& E_{(0,0,1)}=x_{3}+\left(\frac{1-t}{1-q t}\right)\left(x_{2}+x_{1}\right) \\
& E_{(1,1,0)}=x_{1} x_{2} \\
& E_{(1,0,1)}=x_{1} x_{3}+\left(\frac{1-t}{1-q t^{2}}\right) x_{1} x_{2} \\
& E_{(0,1,1)}=x_{2} x_{3}+\left(\frac{1-t}{1-q t}\right)\left(x_{1} x_{3}+x_{1} x_{2}\right) \\
& E_{(2,0,0)}=x_{1}^{2}+\left(\frac{1-t}{1-q t}\right) q\left(x_{1} x_{3}+x_{1} x_{2}\right) \\
& E_{(2,2,0)}=x_{1}^{2} x_{2}^{2}+\left(\frac{1-t}{1-q t^{2}}\right) q x_{1}^{2} x_{2} x_{3}+\left(\frac{1-t}{1-q t^{2}}\right) q x_{1} x_{2}^{2} x_{3}
\end{aligned}
$$

and $E_{(2,1,0)}, E_{(2,0,1)}, E_{(1,2,0)}, E_{(0,2,1)}, E_{(1,0,2)}, E_{(0,1,2)}$ are given in section 1.3.1. Additionally,

$$
\begin{aligned}
& P_{(1,0,0)}=m_{1}=x_{1}+x_{2}+x_{3}, \\
& P_{(2,0,0)}=m_{2}+\frac{\left(1-q^{2}\right)(1-t)}{(1-q)(1-t q)} m_{1^{2}}, \\
& P_{(1,1,0)}=m_{1^{2}}=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}
\end{aligned}
$$

where $m_{\lambda}=\sum_{\mu \in S_{n} \lambda} x^{\mu}$ is the monomial symmetric function so that $m_{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$.
7.0.3. E_{λ} and P_{λ} when λ is a partition with 3 boxes. Letting $x^{\gamma}=x_{1}^{\gamma_{1}} \cdots x_{n} \gamma_{n}$ if $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$, let

$$
m_{\lambda}=\sum_{\gamma \in S_{n} \lambda} x^{\gamma}, \quad \text { be the monomial symmetric function (orbit sum). }
$$

Proposition 7.1. Let $\varepsilon_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ where the 1 appears in the i th spot. Then

$$
\begin{aligned}
& E_{3 \varepsilon_{1}}=x_{1}^{3}+\left(\frac{1-t}{1-q^{2} t}\right) q^{2} \sum_{k \in\{2, \ldots, n\}} x_{1} x_{k}^{2} \\
& +\left(\frac{1-t}{1-q t}\right)\left(1+\left(\frac{1-t}{1-q^{2} t}\right) q\right) q \sum_{k \in\{2, \ldots, n\}} x_{1}^{2} x_{k} \\
& +\left(\frac{1-t}{1-q t}\right)\left(\frac{1-t}{1-q^{2} t}\right)(1+q) q^{2} \sum_{\{k, \ell\} \subseteq\{2, \ldots, n\}} x_{1} x_{k} x_{\ell}, \\
& E_{2 \varepsilon_{1}+\varepsilon_{2}}=x_{1}^{2} x_{n}+\left(\frac{1-t}{1-q t^{2}}\right) q\left(x_{1} x_{2} x_{n}+\cdots+x_{1} x_{2} x_{4}+x_{1} x_{2} x_{3}\right), \\
& E_{\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}}=x_{1} x_{2} x_{3},
\end{aligned}
$$

$$
\begin{aligned}
P_{3 \varepsilon_{1}} & =m_{3}+\frac{\left(1-q^{3}\right)}{\left(1-t q^{2}\right)}\left(\frac{1-t}{1-q}\right) m_{21}+\frac{\left(1-q^{3}\right)}{\left(1-t q^{2}\right)} \frac{\left(1-q^{2}\right)}{(1-t q)}\left(\frac{1-t}{1-q}\right)^{2} m_{1^{3}}, \\
P_{2 \varepsilon_{1}+\varepsilon_{2}} & =m_{21}+\left(\frac{\left(1-t^{2}\right)}{(1-q t)} \frac{\left(1-q^{2} t\right)}{\left(1-q t^{2}\right)}+\frac{(1-t)}{(1-q)} \frac{\left(1-q^{2}\right)}{(1-q t)}\right) m_{1^{3}}, \text { and } \\
P_{\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}} & =m_{1^{3}}=e_{3}, \text { where } e_{r} \text { denotes the elementary symmetric function. }
\end{aligned}
$$

Proof. From [5, Proposition 3.5(b)],

$$
\begin{gathered}
E_{2 \varepsilon_{n}}=x_{n}^{2}+\left(\frac{1-t}{1-q^{2} t}\right) \sum_{k \in\{1, \ldots, n-1\}} x_{k}^{2}+\left(\frac{1-t}{1-q t}\right)\left(1+\left(\frac{1-t}{1-q^{2} t}\right) q\right) \sum_{k \in\{1, \ldots, n-1\}} x_{k} x_{n} \\
+\left(\frac{1-t}{1-q t}\right)\left(\frac{1-t}{1-q^{2} t}\right)(1+q) \sum_{\{k, \ell\} \subseteq\{1, \ldots, n-1\}} x_{k} x_{\ell}
\end{gathered}
$$

and applying [5, Proposition 5.8(c)] gives the formula for $E_{3 \varepsilon_{1}}=E_{\pi 2 \varepsilon_{n}}$. Similarly, from [5, Proposition 3.5(c)],

$$
E_{\varepsilon_{1}+\varepsilon_{n}}=x_{1} x_{n}+\left(\frac{1-t}{1-q t^{2}}\right)\left(x_{1} x_{n-1}+\cdots+x_{1} x_{3}+x_{1} x_{2}\right)
$$

and applying [5, Proposition 5.8(c)] gives the formula for $E_{2 \varepsilon_{1}+\varepsilon_{2}}=E_{\pi\left(\varepsilon_{1}+\varepsilon_{n}\right)}$ in the statement. The formula for $E_{\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}}$ follows from the first statement of Proposition 7.2.

For $r \in \mathbb{Z}_{\geqslant 0}$ and $\mu \in \mathbb{Z}_{\geqslant 0}^{n}$ define $(x ; q)_{r}=(1-x)(1-x q)\left(1-x q^{2}\right) \cdots\left(1-x q^{r-1}\right)$

$$
\text { and } \quad(x ; q)_{\mu}=(x ; q)_{\mu_{1}} \cdots(x ; q)_{\mu_{n}}
$$

(when $r=0$ then $(x ; q)_{0}=1$). As proved in [10, Ch. VI equation (4.9) and Ch. VI §2 Ex. 1], if $r \in \mathbb{Z}_{>0}$ then

$$
P_{\varepsilon_{1}+\cdots+\varepsilon_{r}}=e_{r}=m_{1^{r}} \quad \text { and } \quad P_{r \varepsilon_{1}}=\sum_{|\mu|=r} \frac{(q ; q)_{r}}{(t ; q)_{r}} \frac{(t ; q)_{\mu}}{(q ; q)_{\mu}} m_{\mu}
$$

By [10, Ch. VI (4.3) and (4.10)], the formula for $P_{2 \varepsilon_{1}+\varepsilon_{2}}$ follows from the formula for $P_{(2,1,0)}$ in 3 variables given at the end of section 1.3.1.
7.0.4. Macdonald polynomials E_{μ}^{z} and P_{μ} when μ is a single column.

Proposition 7.2. Let $r \in\{1, \ldots, n\}$ and let $\omega_{r}=\varepsilon_{1}+\cdots+\varepsilon_{r}$.

$$
E_{\varepsilon_{1}+\cdots+\varepsilon_{r}}=x_{1} x_{2} \cdots x_{i} .
$$

Let $W^{\omega_{r}}$ be the set of $z \in S_{n}$ such that z is the minimal length element of its coset $z\left(S_{r} \times S_{n-r}\right)$ in S_{n}. If $z \in W^{\omega_{r}}$ then

$$
z=\left(\begin{array}{ccccc}
1 & 2 & \cdots & r & r+1 \\
i_{1} & i_{2} & \cdots & i_{r} & j_{1} \\
\cdots & \cdots & j_{n-r}
\end{array}\right) \quad \text { with } \quad \begin{aligned}
& i_{1}<i_{2}<\cdots<i_{r} \text { and } \\
& j_{1}<j_{2}<\cdots<j_{n-r}
\end{aligned}
$$

and

$$
t^{\frac{1}{2} \ell(z)} T_{z} E_{\omega_{r}}=x_{i_{1}} \ldots x_{i_{r}} \quad \text { and } \quad P_{\omega_{r}}=\sum_{z \in W^{\omega_{r}}} t^{\frac{1}{2} \ell(z)} T_{z} E_{\omega_{r}}=e_{r}
$$

where e_{r} is the rth elementary symmetric function.
Proof. Since

$$
v_{\varepsilon_{1}+\cdots+\varepsilon_{r}}^{-1}=\left(\begin{array}{cccccc}
1 & \cdots & r & r+1 & \cdots & n \\
r+1 & \cdots & n & 1 & \cdots & r
\end{array}\right) \quad \text { with } \quad \ell\left(v_{\varepsilon_{1}+\cdots+\varepsilon_{r}}^{-1}\right)=(n-r) r,
$$

and $u_{\varepsilon_{1}+\cdots+\varepsilon_{r}}=\pi^{r}$ then

$$
\begin{aligned}
E_{\varepsilon_{1}+\cdots+\varepsilon_{r}} & =t^{-\frac{1}{2}(n-r) r}\left(\tau_{\pi}^{\vee}\right)^{r} \mathbf{1}=t^{-\frac{1}{2}(n-r) r}\left(g^{\vee}\right)^{r} \mathbf{1} \\
& =t^{-\frac{1}{2}(n-r) r} X_{1} \cdots X_{r} T_{v_{\varepsilon_{1}+\cdots+\varepsilon_{r}}^{-1}} \mathbf{1}=x_{1} \cdots x_{r} .
\end{aligned}
$$

A reduced word for z is $z=\left(s_{i_{1}-1} \cdots s_{1}\right)\left(s_{i_{2}-1} \cdots s_{2}\right) \cdots\left(s_{i_{r}-1} \cdots s_{r}\right)$. Then

$$
\begin{aligned}
t^{\frac{1}{2} \ell(z)} T_{z} E_{\omega_{r}}= & \left(\left(t^{\frac{1}{2}} T_{i_{1}-1}\right) \cdots\left(t^{\frac{1}{2}} T_{1}\right)\right) \cdot\left(\left(t^{\frac{1}{2}} T_{i_{2}-1}\right) \cdots\left(t^{\frac{1}{2}} T_{2}\right)\right) \\
& \cdots\left(\left(t^{\frac{1}{2}} T_{i_{r}-1}\right) \cdots\left(t^{\frac{1}{2}} T_{r}\right)\right)\left(x_{1} x_{2} \cdots x_{r}\right) \\
= & \left(\left(t^{\frac{1}{2}} T_{i_{1}-1}\right) \cdots\left(t^{\frac{1}{2}} T_{1}\right)\right) \cdot\left(\left(t^{\frac{1}{2}} T_{i_{2}-1}\right) \cdots\left(t^{\frac{1}{2}} T_{2}\right)\right) \\
& \cdots\left(\left(t^{\frac{1}{2}} T_{i_{r-1}-1}\right) \cdots\left(t^{\frac{1}{2}} T_{r-1}\right)\right)\left(x_{1} x_{2} \cdots x_{r-1} x_{i_{r}}\right) \\
= & \left(\left(t^{\frac{1}{2}} T_{i_{1}-1}\right) \cdots\left(t^{\frac{1}{2}} T_{1}\right)\right) \cdot\left(\left(t^{\frac{1}{2}} T_{i_{2}-1}\right) \cdots\left(t^{\frac{1}{2}} T_{2}\right)\right) \\
& \cdots\left(\left(t^{\frac{1}{2}} T_{i_{r-2}-1}\right) \cdots\left(t^{\frac{1}{2}} T_{r-2}\right)\right)\left(x_{1} x_{2} \cdots x_{r-2} x_{i_{r-1}} x_{i_{r}}\right) \\
= & \cdots=x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} .
\end{aligned}
$$

The last equality then follows from (5).
7.0.5. E_{μ}^{z} for a single box.

Proposition 7.3. Let $j \in\{1, \ldots, n\}$ and let $z \in S_{n}$. Then

$$
E_{\varepsilon_{j}}^{z}=c_{j} x_{z(j)}+\cdots+c_{2} x_{z(2)}+c_{1} x_{z(1)}
$$

where

$$
c_{a}= \begin{cases}\left(\frac{1-t}{1-q t^{n-j+1}}\right) q t^{C(a)}, & \text { if } z(j)<z(a), \\ \left(\frac{1-t}{1-q t^{n-j+1}}\right) t^{C(a)}, & \text { if } z(j)>z(a), \\ 1, & \text { if } z(j)=z(a) .\end{cases}
$$

with

$$
C(a)= \begin{cases}\left\{k \in\{j+1, \ldots, n\} \left\lvert\, \begin{array}{l}
z(k)<z(j)<z(a) \\
\text { or } z(j)<z(a)<z(k)
\end{array}\right.\right\}, & \text { if } z(j)<z(a), \\
\{k \in\{j+1, \ldots, n\} \mid z(j)>z(k)>z(a)\}, & \text { if } z(j)>z(a)\end{cases}
$$

Proof. The proof is by induction on $\ell(z)$. If $z=1$ then $T_{z}=1$ and the formula is the same as given in [5, Proposition 3.5(a)] for $E_{\varepsilon_{j}}$. Let $r \in\{1, \ldots, n-1\}$ such that $s_{r} z>z$. Recall

$$
\begin{align*}
t^{\frac{1}{2}} T_{r}\left(x_{\ell}\right) & = \begin{cases}x_{r+1}, & \text { if } \ell=r, \\
t x_{r}+(t-1) x_{r+1}, & \text { if } \ell=r+1, \\
t x_{\ell}, & \text { otherwise }\end{cases} \tag{34}\\
t^{-\frac{1}{2}} T_{r}\left(x_{\ell}\right) & = \begin{cases}t^{-1} x_{r+1}, & \text { if } r=\ell, \\
x_{r}+\left(1-t^{-1}\right) x_{r+1}, & \text { if } \ell=r+1, \\
x_{\ell}, & \text { otherwise. }\end{cases}
\end{align*}
$$

Write

$$
t^{-\frac{1}{2}\left(\ell\left(z v_{\varepsilon_{j}}^{-1}\right)-\ell\left(v_{\varepsilon_{j}}^{-1}\right)\right.} E_{\varepsilon_{j}}^{z}=\sum_{i=1}^{n} c_{i}^{z} x_{z(i)} .
$$

If we multiply by $t^{\frac{1}{2}} T_{r}$ then $t^{\frac{1}{2}} T_{r}\left(c_{a}^{z} x_{r}+c_{b}^{z} x_{r+1}\right)=c_{a}^{z} x_{r+1}+c_{b}^{z}\left(t x_{r}+(t-1) x_{r+1}\right)=$ $t c_{b}^{z} x_{r}+\left(c_{b}^{z}(t-1)+c_{a}^{z}\right) x_{r+1}$ giving

$$
c_{a}^{s_{r} z}=t c_{b}^{z} \quad \text { and } \quad c_{b}^{s_{r} z}=c_{b}^{z}(t-1)+c_{a}^{z} .
$$

If we multiply by $t^{-\frac{1}{2}} T_{r}$ then $t^{-\frac{1}{2}} T_{r}\left(c_{a}^{z} x_{r}+c_{b}^{z} x_{r+1}\right)=t^{-1} c_{a}^{z} x_{r+1}+c_{b}^{z}\left(x_{r}+(1-\right.$ $\left.\left.t^{-1}\right) x_{r+1}\right)=c_{b}^{z} x_{r}+\left(c_{b}^{z}\left(1-t^{-1}\right)+t^{-1} c_{a}^{z}\right) x_{r+1}$ giving

$$
c_{a}^{s_{r} z}=c_{b}^{z} \quad \text { and } \quad c_{b}^{s_{r} z}=c_{b}^{z}\left(1-t^{-1}\right)+t^{-1} c_{a}^{z}
$$

Let

$$
a=z^{-1}(r) \text { and } b=z^{-1}(r+1) \quad \text { so that } \quad b=\left(s_{r} z\right)^{-1}(r) \text { and } a=\left(s_{r} z\right)^{-1}(r+1)
$$

Assume $s_{r} z>z$ so that $a<b$. In each of the cases

$$
\begin{array}{lllll}
\text { (lll) } & z(j)<r & a<j & b<j & c_{a}^{z}=c_{b}^{z} \\
\text { (llg) } & z(j)<r & a<j & b>j & c_{b}^{z}=0 \\
\text { (lgg) } & z(j)<r & a>j & b>j & c_{a}^{z}=c_{b}^{z}=0 \\
\text { (ele) } & z(j)=r & a=j & b>j & c_{a}^{z}=1, c_{b}^{z}=0 \\
\text { (flf) } & z(j)=r+1 & a<j & b=j & c_{b}^{z}=1 \\
\text { (gll) } & z(j)>r+1 & a<j & b<j & c_{a}^{z}=c_{b}^{z} \\
\text { (glg) } & z(j)>r+1 & a<j & b>j & c_{b}^{z}=0 \\
\text { (ggg) } & z(j)>r+1 & a>j & b>j & c_{a}^{z}=c_{b}^{z}=0
\end{array}
$$

(1ll) multiply by $t^{-\frac{1}{2}} T_{r}$ to get $c_{a}^{s_{r} z}=c_{b}^{s_{z}}=c_{a}^{z}$
(llg) multiply by $t^{-\frac{1}{2}} T_{r} \quad$ to get $\quad c_{a}^{s_{r} z}=0, c_{b}^{s_{r} z}=t^{-1} c_{a}^{z}$
(lgg) multiply by $t^{-\frac{1}{2}} T_{r} \quad$ to get $\quad c_{a}^{s_{r} z}=c_{b}^{s_{r} z}=0$
(ele) multiply by $t^{\frac{1}{2}} T_{r} \quad$ to get $\quad c_{a}^{s_{r} z}=0, c_{b}^{s_{r} z}=1$,
(flf) multiply by $t^{-\frac{1}{2}} T_{r}$
(gll) multiply by $t^{-\frac{1}{2}} T_{r}$
$\begin{array}{lll}(\mathrm{glg}) \text { multiply by } t^{-\frac{1}{2}} T_{r} & \text { to get } & c_{a}^{s_{r} z}=0, c_{b}^{s_{r} z}=t^{-1} c_{a}^{z}\end{array}$
(ggg) multiply by $t^{-\frac{1}{2}} T_{r}$
to get $\quad c_{a}^{s_{r} z}=c_{b}^{s_{r} z}=0$
Now we need to show that the statistics $C(a)$ provide the same recursions. For example, in the case (fff), $r+1=z(j)>z(a)=r$ with $C(a)=0$ and $r=\left(s_{r} z\right)(j)<$ $\left(s_{r} z\right)(a)=r+1$ and $C(a)=n-j$. So

$$
c_{j}^{z}=1, \quad c_{a}^{z}=\left(\frac{1-t}{1-q t^{n-j+1}}\right) t^{0} \quad \text { and } \quad c_{j}^{s_{r} z}=1, \quad c_{a}^{s_{r} z}=\left(\frac{1-t}{1-q t^{n-j+1}}\right) q t^{n-j}
$$

since

$$
\begin{aligned}
c_{a}^{s_{n} z} & =\left(1-t^{-1}\right)+t^{-1}\left(\frac{1-t}{1-q t^{n-j+1}}\right) t^{0} \\
& =\left(\frac{1-t}{1-q t^{n-j+1}}\right)\left(-t^{-1}\left(1-q t^{n-j+1}\right)+t^{-1}\right)=\left(\frac{1-t}{1-q t^{n-j+1}}\right) q t^{n-j}
\end{aligned}
$$

Some examples are

$$
\begin{aligned}
\left(t^{\frac{1}{2}} T_{i+(k-1)}\right) & \cdots\left(t^{\frac{1}{2}} T_{i}\right) E_{\varepsilon_{i}}=x_{i+k}+\frac{(1-t)}{\left(1-q t^{n-(i-1)}\right)} t^{k}\left(x_{i-1}+\cdots+x_{1}\right) \\
\left(t^{-\frac{1}{2}} T_{i-k}\right) & \cdots\left(t^{-\frac{1}{2}} T_{i-1}\right) E_{\varepsilon_{i}} \\
& =x_{i-k}+\frac{(1-t)}{\left(1-q t^{n-(i-1)}\right)}\binom{q t^{n-i}\left(x_{i}+x_{i-1}+\cdots+x_{i-(k-1)}\right)}{+\left(x_{i-(k+1)}+\cdots+x_{1}\right)} .
\end{aligned}
$$

7.0.6. The nonattacking fillings for $E_{\varepsilon_{i}}$. The box greedy reduced word for $u_{\varepsilon_{i}}$ is

7.0.7. The nonattacking fillings for $E_{\varepsilon_{i}}^{z}$. If $z(i)=i+k$ then the i non-attacking fillings are

$$
\begin{array}{c|c}
z(1) & z(1) \\
\vdots \\
i+k & \vdots \\
\vdots & i+k \\
z(n) & i+k \\
& \vdots \\
t^{-k} & z(n) \mid j \\
& \left(\frac{1-t \geqslant 1}{1-q t^{n-(i-1)}}\right)
\end{array}
$$

If $z(i)=i-k$ then the i non-attacking fillings are

$z(1)$	$z(1)$	$z(1)$
\vdots	\vdots	\vdots
$i-k$	$i-k$	$i-k$
\vdots	\vdots	$i-k \mid j$
$z(n)$	$z(n)$	\vdots
$i \geqslant j>i-k$	$z(n) \mid$	
$\left(\frac{1-t) q t^{n-i}}{1-q t^{n-(i-1)}}\right)$	1	$i-k>j \geqslant 1$

7.0.8. The nonattacking fillings for $E_{2 \varepsilon_{i}}$. The box greedy reduced word for $u_{2 \varepsilon_{i}}$ is

$$
u_{2 \varepsilon_{i}}^{\square}=\left(s_{i-1} \cdots s_{1} \pi\right)\left(s_{n-1} \cdots s_{1} \pi\right)=\begin{array}{c|c|c|}
\hline & \\
\vdots & \\
& \vdots & s_{i-1} \cdots s_{1} \pi \\
& \square & s_{n-1} \cdots s_{1} \pi \\
&
\end{array}
$$

The case $E_{2 \varepsilon_{i}}$ has $i \cdot n$ nonattacking fillngs and 2^{n+i-2} alcove walks. There are no covid triples for any of the nonattacking fillings so that $t^{\operatorname{covid}(T)}=t^{0}=1$, and $q^{\operatorname{maj}(T)}=q^{1}=q$ exactly when $T(i, 1)<T(i, 2)$.

$\left(\frac{1-t}{1-q^{2} t^{n-(i-1)}}\right) \quad\left(\frac{1-t}{1-q t}\right) q \quad\left(\frac{1-t}{1-q t}\right) \quad\left(\frac{1-t}{1-q^{2} t^{n-(i-1)}}\right)\left(\frac{1-t}{1-q t}\right) q$

Weiying Guo \& Arun Ram

7.0.9. The nonattacking fillings for $E_{\varepsilon_{j_{1}}+\varepsilon_{j_{2}}}$. Let $j_{1}, j_{2} \in\{1, \ldots, n\}$ with $j_{1}<j_{2}$. The box greedy reduced word for $u_{\varepsilon_{j_{1}}+\varepsilon_{j_{2}}}$ is

$E_{\varepsilon_{j_{1}}+\varepsilon_{j_{2}}}$ has $j_{1}\left(j_{2}-1\right)$ nonattacking fillings and $2^{j_{1}-1} 2^{j_{2}-2}$ alcove walks.

$$
\begin{array}{c|c}
1 & 1 \\
\vdots \\
j_{1} & 1 \\
\vdots & \vdots \\
j_{2} & j_{1} \\
\vdots & j_{1} \\
n & \vdots \\
j_{1} & j_{2} \\
\hline
\end{array}
$$

8. Queue tableaux

8.0.1. An instance of compression of NAFs - Motivation for Queue Tableaux. In [5, Proposition 3.5(c)], if $j_{1}=j_{2}-1$ then the third and fifth summands disappear to give

$$
\begin{aligned}
E_{\varepsilon_{j_{2}-1}+\varepsilon_{j_{2}}}= & x_{j_{2}-1} x_{j_{2}}+\left(\frac{1-t}{1-q t^{n-\left(j_{2}-1\right)}}\right) \sum_{k=1}^{j_{2}-2} x_{k} x_{j_{2}} \\
& +\left(\frac{1-t}{1-q t^{n-\left(j_{2}-2\right)}}\right)\left(\frac{1-t}{1-q t^{n-\left(j_{2}-1\right)}}+t\right) \sum_{k=1}^{j_{2}-2} x_{k} x_{j_{2}-1} \\
& +\left(\frac{1-t}{1-q t^{n-\left(j_{2}-2\right)}}\right)\left(\frac{1-t}{1-q t^{n-j_{1}}}\right)(1+t) \sum_{\{k, \ell\} \subseteq\left\{1, \ldots, j_{2}-2\right\}} x_{k} x_{\ell} \\
= & x_{j_{2}-1} x_{j_{2}}+\left(\frac{1-t}{1-q t^{n-\left(j_{2}-1\right)}}\right) \sum_{k=1}^{j_{2}-2} x_{k} x_{j_{2}} \\
& +\left(\frac{1-t}{1-q t^{n-\left(j_{2}-2\right)}}\right)\left(\frac{1-q t^{n-\left(j_{2}-2\right)}}{1-q t^{n-\left(j_{2}-1\right)}}\right) \sum_{k=1}^{j_{2}-2} x_{k} x_{j_{2}-1} \\
& +\left(\frac{1-t}{1-q t^{n-\left(j_{2}-2\right)}}\right)\left(\frac{1-t}{1-q t^{n-\left(j_{2}-1\right)}}\right)(1+t) \sum_{\{k, \ell\} \subseteq\left\{1, \ldots, j_{2}-2\right\}} x_{k} x_{\ell},
\end{aligned}
$$

which is an example of the additional cancellation that occurs when there are adjacent rows of equal length and illustrates the the difference between nonattacking fillings and queue tableaux.
8.0.2. Queue tableaux. Following (and slightly generalizing) [4, Definition A.1], a queue tableau of shape (z, μ) is a nonattacking filling T of (z, μ) such that
(QT) If $\mu_{i}=\mu_{i-1}=\cdots=\mu_{i-r}$ then $T(i, j) \notin\{T(i-1, j-1), \ldots, T(i-r, j-1)\}$.
If the parts of μ are distinct then a queue tableau is no different than a nonattacking filling. More generally, if $\mu_{i} \neq \mu_{i+1}$ for $i \in\{1, \ldots, n-1\}$ then a queue tableau is no different than a nonattacking filling.
8.0.3. Multiline queues. The multiline queue corresponding to a queue tableau T is the pipe dream P corresponding to T under the map given in (23), namely

$$
P(k, j)=i \quad \text { if and only if } \quad T(i, j)=k,
$$

The example in [4, Figures 3 and 12] has

$$
\begin{array}{ll|llll}
6 & 6 & 5 & 3 \\
1 & 1 & 6 \\
2 & 2 & 2 \\
7 & 7 & 4 \\
8 & 8 \\
3 & 8 \\
4 & & \\
5 & & \\
\\
\text { queue tableau }
\end{array} \quad \text { and pipe dream } \quad P=\left(\begin{array}{c|ccc}
2 & 2 & 0 & 0 \\
3 & 3 & 3 & 0 \\
6 & 0 & 0 & 1 \\
7 & 0 & 4 & 0 \\
8 & 0 & 1 & 0 \\
1 & 1 & 2 & 0 \\
4 & 4 & 0 & 0 \\
5 & 5 & 0 & 0
\end{array}\right)
$$

The picture of this pipe dream from [4, Figures 3] is

8.0.4. Compression not captured by NAFs or $Q T$. Let $\mathrm{AW}_{\mu}=\mathrm{AW}_{\mu}^{\mathrm{id}}, \mathrm{NAF}_{\mu}=\mathrm{NAF}_{\mu}^{\mathrm{id}}$, and $\mathrm{QT}_{\mu}=\mathrm{QT}_{\mu}^{\mathrm{id}}$. The example

$$
\# \mathrm{AW}_{(2,2,1,1,0,0)}=16, \quad \# \mathrm{NAF}_{(2,2,1,1,0,0)}=9 \quad \text { and } \quad \# \mathrm{QT}_{(2,2,1,1,0,0)}=7
$$

is provided in [4, Figure 4]). The equalities (see (see [5, Proposition 5.8])

$$
\begin{aligned}
& E_{(2,0,1)}\left(x_{1}, x_{2}, x_{3} ; q, t\right)=\left(x_{1} x_{2} x_{3}\right)^{2} E_{(1,2,0)}\left(x_{3}^{-1}, x_{2}^{-1}, x_{1}^{-1} ; q, t\right), \quad \text { and } \\
& E_{(2,2,0)}\left(x_{1}, x_{2}, x_{3} ; q, t\right)=q^{-1} E_{(2,0,1)}\left(x_{3}, x_{1}, x_{2} ; q, t\right)
\end{aligned}
$$

indicate that if one provides a formula for $E_{(1,2,0)}$ then there are formulas for $E_{(2,0,1)}$ and $E_{(2,2,0)}$ with exactly the same number of terms. For these cases,

$$
\begin{array}{lll}
\# \mathrm{AW}_{(1,2,0)}=4, & \# \mathrm{NAF}_{(1,2,0)}=3, & \# \mathrm{QT}_{(1,2,0)}=3 \\
\# \mathrm{AW}_{(2,0,1)}=4, & \# \operatorname{NAF}_{(2,0,1)}=4, & \# \mathrm{QT}_{(2,0,1)}=4 \\
\# \mathrm{AW}_{(2,2,0)}=4, & \# \operatorname{NAF}_{(2,2,0)}=4, & \# \mathrm{QT}_{(2,2,0)}=3
\end{array}
$$

Thus $\mu=(2,0,1)$ is a case where possible compression is not realized by either the NAFs or the QT.
8.0.5. Comparing \#NAF and \#QT for $(r, 0, \ldots, 0)$ and $(r, \ldots, r, 0)$. Since $u_{(r, 0, \ldots, 0)}=$ $\pi\left(s_{n-1} \cdots s_{1} \pi\right)^{r-1}$ and $u_{(r, r, \ldots, r, 0)}=\pi^{n-1}\left(s_{1} \pi\right)^{(n-1)(r-1)}$ then

$$
\begin{gathered}
\#_{\mathrm{AW}_{(r, 0,0, \ldots, 0)}=\left(2^{n-1}\right)^{r-1},}, \quad{\# \mathrm{NAF}_{(r, 0,0, \ldots, 0)}=n^{r-1}}_{\#_{(r, r, \ldots, r, 0)}=\left(2^{n-1}\right)^{r-1},} \quad \text { \#NAF }_{(r, r, \ldots, r, 0)}=\left(2^{n-1}\right)^{r-1} \\
\#_{(r, 0,0, \ldots, 0)}=n^{r-1}
\end{gathered} \quad \text { and } \quad{\# \mathrm{QT}_{(r, r, \ldots, r, 0)}=n^{r-1}}^{2} .
$$

To see the last equality: In a queue tableau of shape $(r, r, \ldots, r, 0)$, for each column after the first, we get to choose the position of the $j \in\{1, \ldots, n\}$ that did not appear in the column before (n choices total for each column).

Acknowledgements. We thank L. Williams and M. Wheeler for bringing our attention to [4] and [1], both of which were important stimuli during our work. We are also very grateful for the encouragement, questions, and discussions from A. Hicks, S. Mason, O. Mandelshtam, Z. Daugherty, Y. Naqvi, S. Assaf, and especially A. Garsia and S. Corteel, which helped so much in getting going and keeping up the energy. We thank S. Billey, Z. Daugherty, C. Lenart and J. Saied, and S. Viswanath for very useful specific comments for improving the exposition. A. Ram extends a very special and heartfelt thank you to P. Diaconis who has provided unfailing support and advice and honesty and encouragement.

References

[1] Alexei Borodin and Michael Wheeler, Nonsymmetric Macdonald polynomials via integrable vertex models, 2019, https://arxiv.org/abs/arXiv:1904.06804.
[2] Luigi Cantini, Jan de Gier, and Michael Wheeler, Matrix product formula for Macdonald polynomials, J. Phys. A 48 (2015), no. 38, 384001, 25 pages.
[3] _ , Matrix product and sum rule for Macdonald polynomials, in 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016), Discrete Math. Theor. Comput. Sci. Proc., BC, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, [2016] ©2016, pp. 311-321.
[4] Sylvie Corteel, Olya Mandelshtam, and Lauren Williams, From multiline queues to Macdonald polynomials via the exclusion process, Sém. Lothar. Combin. 82B (2020), Art. 97, 12 pages.
[5] Weiying Guo and Arun Ram, Comparing formulas for type GLn Macdonald polynomials, Algebr. Comb. 5 (2022), no. 5, 849-883.
[6] J. Haglund, M. Haiman, and N. Loehr, A combinatorial formula for nonsymmetric Macdonald polynomials, Amer. J. Math. 130 (2008), no. 2, 359-383.
[7] James Haglund, The q,t-Catalan numbers and the space of diagonal harmonics, University Lecture Series, vol. 41, American Mathematical Society, Providence, RI, 2008, With an appendix on the combinatorics of Macdonald polynomials.
[8] Masahiro Kasatani and Yoshihiro Takeyama, The quantum Knizhnik-Zamolodchikov equation and non-symmetric Macdonald polynomials, Funkcial. Ekvac. 50 (2007), no. 3, 491-509.
[9] Cristian Lenart, On combinatorial formulas for Macdonald polynomials, Adv. Math. 220 (2009), no. 1, 324-340.
[10] I. G. Macdonald, Symmetric functions and Hall polynomials. With contributions by A. Zelevinsky, second ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995.
[11] , Affine Hecke algebras and orthogonal polynomials, Astérisque (1996), no. 237, Exp. No. 797, 4, 189-207, Séminaire Bourbaki, Vol. 1994/95.
[12] , Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, vol. 157, Cambridge University Press, Cambridge, 2003.
[13] Robert Steinberg, John Faulkner, and Robert Wilson, Lectures on Chevalley groups, Yale University New Haven, 1967, Notes prepared by John Faulkner and Robert Wilson. Revised and corrected edition of the 1968 original.

Weiying Guo, University of Melbourne, School of Mathematics and Statistics, Parkville Victoria 3010, Melbourne (Australia),
E-mail : guwg@student.unimelb.edu.au
Arun Ram, University of Melbourne, School of Mathematics and Statistics, Parkville Vic 3010, Melbourne (Australia)
E-mail : aram@unimelb.edu.au

[^0]: Manuscript received 7th April 2021, revised 5th June 2022, accepted 18th January 2022.
 Keywords. Macdonald polynomials, affine Hecke algebras, tableaux.

