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Horn inequalities

Shiliang Gao, Gidon Orelowitz & Alexander Yong

In honor of Ian Goulden and David Jackson,
and their groundbreaking discoveries

Abstract The Newell–Littlewood numbers Nµ,ν,λ are tensor product multiplicities of Weyl
modules for classical Lie groups, in the stable limit. For which triples of partitions (µ, ν, λ) does
Nµ,ν,λ > 0 hold? The Littlewood–Richardson coefficient case is solved by the Horn inequalities
(in work of A. Klyachko and A. Knutson-T. Tao). We extend these celebrated linear inequalities
to a much larger family, suggesting a general solution.

1. Introduction
1.1. Background. This is a sequel to [7]. We study Newell–Littlewood numbers
[14, 15]

(1) Nµ,ν,λ =
∑

α,β,γ

cµ
α,βcν

α,γcλ
β,γ ;

the indices are partitions in Parn = {(λ1, λ2, . . . , λn) ∈ Zn
⩾0 : λ1 ⩾ λ2 ⩾ · · · ⩾ λn}.

Also, cµ
α,β is the Littlewood–Richardson coefficient. The Newell–Littlewood numbers

are tensor product multiplicities for the irreducible representations of a classical Lie
algebra g in the “stable limit”; we refer the reader to [7] for additional background
and references, such as [8].

Consider the problem:
Classify (µ, ν, λ) ∈ Par3

n such that Nµ,ν,λ > 0.
Since Nµ,ν,λ=cλ

µ,ν if |λ|= |µ|+|ν| [7, Lemma 2.2(II)], a subproblem asks when cλ
µ,ν > 0?

The solution to that case is 1990’s combined breakthrough work of A. Klyachko [10]
and A. Knutson–T. Tao [11]. For I = {i1 < · · · < id} ⊆ Z>0, let

τ(I) := (id − d ⩾ · · · ⩾ i2 − 2 ⩾ i1 − 1) ∈ Pard.
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Theorem 1.1 ([10, 11]). Let µ, ν, λ ∈ Parn such that |λ| = |µ| + |ν|. Then cλ
µ,ν > 0 if

and only if for every d < n, and every triple of subsets I, J, K ⊆ [n] of cardinality d

such that c
τ(K)
τ(I),τ(J) > 0,

(2)
∑
k∈K

λk ⩽
∑
i∈I

µi +
∑
j∈J

νj .

The recursive Horn inequalities (2) were introduced in A. Horn’s 1962 paper [9].
The inequalities have a pre-history [3, 5].

Let g be a semisimple complex Lie algebra, Λ+ be the set of dominant integral
weights, and Lg be the root lattice. Suppose Vλ is the irreducible representation of g
indexed by λ ∈ Λ+. Define multiplicities mλ

µ,ν by

Vµ ⊗ Vν =
⊕

λ∈Λ+

V
⊕mλ

µ,ν

λ .

The tensor semigroup is
Tensor(g) = {(µ, ν, λ) ∈ Λ3

+ : mλ
µ,ν > 0}.

Compare this with the saturated tensor semigroup,
SatTensor(g) = {(µ, ν, λ) ∈ Λ3

+ : µ + ν − w0 · λ ∈ Lg and ∃t ∈ Z>0, mtλ
tµ,tν > 0}

where w0 is the longest length element of the Weyl group associated to g.
There are generalized Horn inequalities describing SatTensor(g) [2]. Since Nµ,ν,λ is

a tensor product multiplicity for g of classical type B, C, D, these results are related
to our classification problem, but do not solve it. Classifying Nµ,ν,λ > 0 concerns
Tensor(g) rather than the possibly different SatTensor(g). In type A, the saturation
theorem [11] implies

Tensor(sl(n)) = SatTensor(sl(n)).
For the other classical types, saturation is either false, or not known (see [13, 17]).(1)

N. Ressayre [16] introduces different generalized Horn inequalities that hold when
the Kronecker coefficient gµ,ν,λ is nonzero. Those coefficients are also tensor product
multiplicities, but for Specht modules, not Weyl modules.

1.2. Main results. We suggest an answer to our problem, by introducing a large,
new family of inequalities extending (2).

Definition 1.2. An extended Horn inequality is

(3) 0 ⩽
∑
i∈A

µi −
∑
i∈A′

µi +
∑
j∈B

νj −
∑
j∈B′

νj +
∑
k∈C

λk −
∑

k∈C′

λk

where A, A′, B, B′, C, C ′ ⊆ [n] := {1, 2, . . . , n} satisfy
(I) A ∩ A′ = B ∩ B′ = C ∩ C ′ = ∅

(II) |A| = |B′| + |C ′|, |B| = |A′| + |C ′|, |C| = |A′| + |B′|
(III) There exist A1, A2, B1, B2, C1, C2 ⊆ [n] such that:

(1) |A1| = |A2| = |A′|, |B1| = |B2| = |B′|, |C1| = |C2| = |C ′|
(2) c

τ(A′)
τ(A1),τ(A2), c

τ(B′)
τ(B1),τ(B2), c

τ(C′)
τ(C1),τ(C2) > 0

(3) c
τ(A)
τ(B1),τ(C2), c

τ(B)
τ(C1),τ(A2), c

τ(C)
τ(A1),τ(B2) > 0.

This family contains a number of simpler-to-state subfamilies, including the Horn
inequalities (2) and those considered in [7]; see Proposition 2.6. This is our main
result:

(1)Since this paper was submitted, N. Ressayre and the authors [6] further study the relationship
of our classification problem to [2].
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Theorem 1.3. (µ, ν, λ) ∈ Par3
n satisfies (3) if Nµ,ν,λ > 0.

We prove Theorem 1.3 in Section 2. Another necessary condition for Nµ,ν,λ > 0 is
a parity requirement [7, Lemma 2.2]:
(4) |µ| + |ν| + |λ| ≡ 0 ( mod 2).

Let Gn be the tuples (A, A′, B, B′, C, C ′) satisfying (I)–(III). We believe that (3)
combined with (4) provides a classification.
Conjecture 1.4. If (µ, ν, λ) ∈ Par3

n satisfies (4), and (3) holds for every
(A, A′, B, B′, C, C ′) ∈ Gn, then Nµ,ν,λ > 0.(2)

This is exhaustively computer-checked, with D. Brewster’s assistance, for up to
n ⩽ 4 and |µ|, |ν|, |λ| ⩽ 20, for n = 5 and |µ|, |ν|, |λ| ⩽ 16, and for n = 6 and
|µ|, |ν|, |λ| ⩽ 12.

Since the extended Horn inequalities are homogeneous in µi, νj , λk, Conjecture 1.4
immediately implies the Newell–Littlewood saturation conjecture [7, Conjecture 5.4]:
(5) If (µ, ν, λ) ∈ Par3

n and (4) holds, then Ntµ,tν,tλ > 0 ⇒ Nµ,ν,λ > 0,
where t ∈ Z>0 and tµ = (tµ1, tµ2, . . .) ∈ Parn. However, unlike the situation of [11],
we have no proof that (5) ⇒ Conjecture 1.4.(3)

The Newell–Littlewood numbers enjoy a symmetry ([7, Lemma 2.2(I)]), namely,
that
(6) Nµ(1),µ(2),µ(3) = Nµ(σ(1)),µ(σ(2)),µ(σ(3)) , for any σ ∈ S3.

By construction, the extended Horn inequalities respect this S3-symmetry. It is also
evident from the definition that Gn ⊂ Gn+1.

In Section 3 we prove the “Pieri case” of Conjecture 1.4.
Theorem 1.5. Conjecture 1.4 is true when at least one of µ, ν, λ is a row or a column.

In contrast with [2, 16], our methods are completely combinatorial, starting from
(1). The main work was the uncovering of the form of the inequalities (3).

2. Proof of Theorem 1.3, subfamilies, and stability
2.1. Proof of Theorem 1.3. We need this result of E. Briand–R. Orellana–
M. Rosas:
Theorem 2.1 ([4, Theorem 4]). For any partition λ, µ and ν such that λ ⊆ (nk+l), µ ⊆
(nk) and ν ⊆ (nl),

cλ
µ,ν = cλ∨(nk+l)

µ∨(nk),ν∨(nl) ,

where if θ ⊆ (nm), θ∨(nm) is the partition obtained by taking the complement of
θ ⊆ n × m and rotating 180-degrees.

We use the following reformulation of the main definition.
Lemma 2.2. In Definition 1.2, it is equivalent to replace Condition (III)(3) with

(III)(3)′ mA := min(|B′|, |C ′|), mB := min(|A′|, |C ′|), mC := min(|A′|, |B′|)

0 < c
τ(Ac∪[n+1,n+|A|−mA])
τ(Bc

1∪[n+1,n+|B1|−mA]),τ(Cc
2∪[n+1,n+|C2|−mA]),

0 < c
τ(Bc∪[n+1,n+|B|−mB ])
τ(Cc

1∪[n+1,n+|C1|−mB ]),τ(Ac
2∪[n+1,n+|A2|−mB ]),

0 < c
τ(Cc∪[n+1,n+|C|−mC ])
τ(Ac

1∪[n+1,n+|A1|−mC ]),τ(Bc
2∪[n+1,n+|B2|−mC ]).

(2)The “saturated version” of this conjecture is now [6, Theorem 1.5].
(3)The proof of this direction is now [6, Corollary 10.5].
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(Above Ac, Bc, Cc ⊆ [n].)

Proof. Notice that

τ(Cc ∪ [n + 1, n + |C| − mC ]) = τ(Cc) ∪ (n + 1 − (n − |C| + 1))|C|−mC

= τ(Cc) ∪ |C||C|−mC

Now, τ(Cc) is in fact τ(C)∨ and transposed. Thus

τ(Cc) ∪ |C||C|−mC = (τ(C)∨ + (|C| − mC)|C|)′,

where for a partition α, we denote α′ to be the transpose of α.
A similar equality holds for the other two arguments. Hence

c
τ(Cc∪[n+1,n+|C|−mC ])
τ(Ac

1∪[n+1,n+|A1|−mC ]),τ(Bc
2∪[n+1,n+|B2|−mC ])

= c
(τ(C)∨+|C||C|−mC )′

(τ(A1)∨+|A1||A1|−mC )′,(τ(B2)∨+|B2||B2|−mC )′

= c
τ(C)∨+(|C|−mC)|C|

τ(A1)∨+(|A1|−mC )|A1|,τ(B2)∨+(|B2|−mC)|B2| ,

where we have used the standard symmetry cγ
α,β = cγ′

α′,β′ .
Since

τ(C)∨ ⊆ (n − |C|)|C|, τ(A1)∨ ⊆ (n − |A1|)|A1| and τ(B2)∨ ⊆ (n − |B2|)|B2|,

one has

τ(C)∨ + (|C| − mC)|C| ⊆ (n − mC)|C|,

τ(A1)∨ + (|A1| − mC)|A1| ⊆ (n − mC)|A1|,

τ(B2)∨ + (|B2| − mC)|B2| ⊆ (n − mC)|B2|.

Observe

(τ(C)∨ + (|C| − mC)|C|)∨((n−mC )|C|) = τ(C),

(τ(A1)∨ + (|A1| − mC)|A1|)∨((n−mC)|A1|) = τ(A1),

(τ(B2)∨ + (|C| − mC)|B2|)∨((n−mC)|B2|) = τ(B2).

Since, by Condition (II), |C| = |A1| + |B2|, we can apply Theorem 2.1 and obtain

c
τ(C)∨+(|C|−mC)|C|

τ(A1)∨+(|A1|−mC )|A1|,τ(B2)∨+(|B2|−mC)|B2| = c
τ(C)
τ(A1),τ(B2).

The other two cases are similarly proved to be equivalent with the corresponding
condition in Definition 1.2. □

Let (A, A′, B, B′, C, C ′) ∈ Gn, and let (A1, A2, B1, B2, C1, C2) be as in (III). Let
µ, ν, λ ∈ Parn satisfy Nµ,ν,λ > 0. By (1), there exist α, β, γ ∈ Parn such that

cµ
α,β , cν

α,γ , cλ
β,γ > 0.

By Theorem 1.1, (µ, α, β), (ν, α, γ), and (λ, β, γ) satisfy (2). In particular,

(7)
∑
i∈A′

µi ⩽
∑
i∈A1

βi+
∑
i∈A2

αi,
∑
j∈B′

νj ⩽
∑

j∈B1

αj +
∑

j∈B2

γj ,
∑

k∈C′

λk ⩽
∑

k∈C1

γk +
∑

k∈C2

βk
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In addition, since µ, α, β ∈ Parn, and in view of Lemma 2.2,∑
i∈A

µi = |µ| −
∑
i∈Ac

µi

= |µ| −
∑

i∈Ac∪[n+1,n+|A|−mA]

µi

⩾ |µ| −
∑

i∈Bc
1∪[n+1,n+|B1|−mA]

αi −
∑

i∈Cc
2∪[n+1,n+|C2|−mA]

βi

= |µ| −
∑
i∈Bc

1

αi −
∑
i∈Cc

2

βi

= |α| −
∑
i∈Bc

1

αi + |β| −
∑
i∈Cc

2

βi

=
∑
i∈B1

αi +
∑
i∈C2

βi.

By the same logic,∑
j∈B

νj ⩾
∑

j∈C1

γj +
∑

j∈A2

αj and
∑
k∈C

γk ⩾
∑

k∈A1

βk +
∑

k∈B2

γk.

Therefore,

∑
i∈A′

µi +
∑
j∈B′

νj +
∑

k∈C′

λk ⩽

(∑
i∈A1

βi +
∑
i∈A2

αi

)
+

∑
j∈B1

αj +
∑

j∈B2

γj


+
(∑

k∈C1

γk +
∑

k∈C2

βk

)

=
(∑

i∈B1

αi +
∑
i∈C2

βi

)
+

∑
j∈C1

γj +
∑

j∈A2

αj


+
(∑

k∈A1

βk +
∑

k∈B2

γk

)
⩽
∑
i∈A

µi +
∑
j∈B

νj +
∑
k∈C

λk. □

Remark 2.3. Using the above argument, one can show that other inequalities of the
form (3) hold. For example, we can replace (III) by (III)(3)′ and replace (II) by

(II)′ |A| ⩾ max(|B′|, |C ′|), |B| ⩾ max(|A′|, |C ′|), |C| ⩾ max(|A′|, |B′|).
Any (µ, ν, λ) ∈ Par3

n such that Nµ,ν,λ > 0 satisfies the corresponding inequality.

2.2. Special subclasses of the inequalities. In [7] we proved:

Theorem 2.4 (Extended Weyl inequalities). Let (µ, ν, λ) ∈ Par3
n and 1 ⩽ k ⩽ i < j ⩽

l ⩽ n, let m = min(i − k, l − j) and M = max(i − k, l − j). If Nµ,ν,λ > 0 then

(8) µi − µj ⩽ λk − λl + νm−p+1 + νM+p+2, where 0 ⩽ p ⩽ m.

Definition 2.5. For disjoint X, Y ⊆ [n], the subset-sum inequalities are

(9) 0 ⩽
∑
i∈X

µi +
∑
i∈Y

νi −
∑
i∈Y

µi −
∑
i∈X

νi +
|X|+|Y |∑

i=1
λi.
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Proposition 2.6. Any (µ, ν, λ) ∈ Par3
n that satisfy all of the extended Horn inequali-

ties (3) also satisfy all S3-permutations (6) of:
(i) the Horn inequalities (2);
(ii) the extended Weyl inequalities (8);
(iii) the subset-sum inequalities (9);
(iv) the triangle inequalities on |µ|, |ν|, and |λ|;
(v) |µ ∧ ν| ⩾ |µ|+|ν|−|λ|

2 .

Proof. A Horn inequality is of the form∑
i∈X

µi ⩽
∑
j∈Y

νj +
∑
k∈Z

λk

for X, Y, Z ⊆ [n] and c
τ(X)
τ(Y ),τ(Z) > 0. Letting

(A, A′, B, B′, C, C ′) := (∅, X, Y,∅, Z,∅)
with (A1, A2, B1, B2, C1, C2) as (Z, Y,∅,∅,∅,∅) shows this is an extended Horn in-
equality. The Littlewood–Richardson positivity conditions (III)(2) and (III)(3) clearly
hold. Any S3-symmetry of the Horn inequality is of the form (3), since being of the
form (3) is evidently preserved under S3.

Similarly, let
(A, A′, B, B′, C, C ′) := ({j}, {i}, {m − p + 1, M + p + 2},∅, {k}, {l})

with (A1, A2, B1, B2, C1, C2) as ({k}, {i − k + 1},∅,∅, {l − j + 1}, {j}). Let us only
comment on the assertion c

τ(B)
τ(C1),τ(A2) = c

(M+p,m−p)
(l−j),(i−k) > 0, which is true by Pieri’s rule.

Thus, (8) is of the form (3).
The subset-sum inequalities are of type (3). Let

(A, A′, B, B′, C, C ′) := (X, Y, Y, X, [|X| + |Y |],∅)
with (A1, A2, B1, B2, C1, C2) := ([|Y |], Y, X, [|X|],∅,∅). By letting X = [n] and Y =
∅, the triangle inequalities are cases of the subset-sum inequalities. The verification
is clear.

Let X := {i ∈ [n] : µi ⩽ νi}, and let Y := {i ∈ [n] : µi > νi} = Xc. Then

|µ ∧ ν| =
∑
i∈X

µi +
∑
j∈Y

νj ,

and so (v) can be rewritten as

2
∑
i∈X

µi + 2
∑
j∈Y

νj ⩾
n∑

i=1
µi +

n∑
j=1

νj −
n∑

k=1
λk

or

0 ⩽
∑
i∈X

µi −
∑
i∈Y

µi +
∑
j∈Y

νj −
∑
j∈X

νj +
n∑

k=1
λk

This is a subset-sum inequality, and we are done by (iii). □

Example 2.7. The extended Horn inequalities for n = 2 are the S3-permutations
(6) of:

0 ⩽ µ1 + ν1 − λ1(10)
0 ⩽ µ1 + ν2 − λ2(11)

0 ⩽ µ1 + µ2 + ν1 + ν2 − λ1 − λ2(12)
0 ⩽ µ1 − µ2 − ν1 + ν2 + λ1 + λ2(13)
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Newell–Littlewood numbers II

where (10) and (11) are Horn inequalities, (12) is a triangle inequality, and (13) is
both an extended Weyl inequality and a subset-sum inequality.

Example 2.8. The extended Horn inequalities for n = 3 are the S3-permutations of
the n = 3 Horn inequalities, extended Weyl inequalities, subset-sum inequalities,

0 ⩽ −µ1 + µ2 + µ3 + ν1 − ν2 + ν3 + λ1 + λ2 − λ3,(14)
0 ⩽ µ1 − µ2 + µ3 + ν1 − ν2 + ν3 + λ1 − λ2 + λ3,(15)

0 ⩽ µ1 − µ2 + ν1 − ν2 + λ2 + λ3,(16)
0 ⩽ µ2 − µ3 + ν2 − ν3 + λ2 + λ3.(17)

Example 2.9 (Minimal inequalities?). The Horn inequalities (2) are redundant. One
can shorten the list to those where

c
τ(K)
τ(I),τ(J) = 1;

this is a result of P. Belkale [1, Theorem 9] (conjectured by C. Woodward). That
each of these inequalities are essential is proved by A. Knutson-T. Tao-C. Woodward
[12, Section 6]. We know of no naïve analogue of these results.(4) Specifically, the
inequalities (15), (16), and (17) are redundant, since they are implied by the “parti-
tion inequalities”, i.e. µ, ν, λ ∈ Par3. However, all Littlewood–Richardson coefficients
associated with (16) and (17) are 1.

Proposition 2.10. Conjecture 1.4 holds for n = 2.

Proof. We prove the contrapositive. Suppose Nµ,ν,λ = 0 and (4) holds. By [7, The-
orem 5.14] either an n = 2 Horn inequality or extended Weyl inequality fails. By
Proposition 2.6(ii), the inequalities (3) include the Horn inequalities and the extended
Weyl inequalities. Therefore, an inequality (3) is violated. □

3. Proof of Theorem 1.5
First consider the case where one of the partitions is a single row. Without loss of
generality, λ = (p). By Proposition 2.6(i), (µ, ν, λ) satisfies all S3 permutations of the
Horn inequalities. In particular, they satisfy µi+1 ⩽ νi + λ2 and νi+1 ⩽ µi + λ2 for all
i ∈ [n − 1]. This implies that µi+1 ⩽ νi and νi+1 ⩽ µi, so µi+1, νi+1 ⩽ (µ ∧ ν)i for all
i ∈ [n − 1], which is equivalent to saying that µ/(µ ∧ ν) and ν/(µ ∧ ν) are horizontal
strips.

Let k := |µ|+|ν|−p
2 . Since Proposition 2.6(iv) says that (µ, ν, λ) satisfies the triangle

inequalities, k ⩾ 0. Moreover, |µ| + |ν| + |λ| is even (by hypothesis), hence k ∈ Z⩾0.
Proposition 2.6(v) also says that k ⩽ |µ ∧ ν|.

Claim 3.1. There exist at least |µ ∧ ν| − k columns i such that µ′
i = ν′

i > 0.

Proof. Without loss of generality, say that µ1 ⩽ ν1. Since µ/(µ ∧ ν) is a horizontal
strip, there are |µ/(µ ∧ ν)| = |µ| − |µ ∧ ν| columns i such that µ′

i > ν′
i, and similarly

there are |ν| − |µ ∧ ν| columns i such that µ′
i < ν′

i. Since there are ν1 columns where
at least one of µ′

i or ν′
i is nonzero, this means that there are ν1 − |µ| − |ν| + 2|µ ∧ ν|

columns such that µ′
i = ν′

i > 0, so it suffices to prove that
ν1 − |µ| − |ν| + 2|µ ∧ ν| ⩾ |µ ∧ ν| − k.

Rearranging the terms and substituting in for the definition of k, this becomes

(18) 0 ⩽ ν1 − |µ| − |ν| + |µ ∧ ν| + |µ| + |ν| − p

2 .

(4)Theorem 1.2 of the preprint [6] now offers an analogue.
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Define

X := {i ∈ [n] : µi > νi} and Y := {i ∈ [n] : µi ⩽ νi} = Xc.

By assumption, 1 ∈ Y . Hence from (18) and the definition of | · |,

0 ⩽ 2ν1 − 2|µ| − 2|ν| + 2|µ ∧ ν| + (|µ| + |ν| − p)
= 2ν1 − |µ| − |ν| + 2|µ ∧ ν| − p

= 2ν1 −
n∑

i=1
µi −

n∑
i=1

νi + 2
∑
i∈X

νi + 2
∑
i∈Y

µi − p

= 2ν1 −
∑
i∈X

µi −
∑
i∈Y

νi +
∑
i∈X

νi +
∑
i∈Y

µi − p

= −
∑
i∈X

µi −
∑

i∈Y ∖{1}

νi +
∑

i∈X∪{1}

νi +
∑
i∈Y

µi − p.

However, this is always true, since

(Y, X, X ∪ {1}, Y ∖ {1}, [n] ∖ {1}, {1}) ∈ Gn,

which can be seen by letting

(A1, A2, B1, B2, C1, C2) =
([|X| + 1] ∖ {1}, {i − 1 : i ∈ X}, {i − 1 ∈ Z>0 : i ∈ Y }, [|Y |] ∖ {1}, {1}, {1}).

The verification of c
τ(B)
τ(C1),τ(A2) > 0 relies on

τ({i − 1 : i ∈ X}) = τ(X ∪ {1}).

Similarly one checks c
τ(A)
τ(B1),τ(C2) > 0. □

Let α be the partition formed by removing the southernmost box from the |µ∧ν|−k
rightmost columns i of µ ∧ ν such that µ′

i = ν′
i > 0. Since µ ∧ ν = (µ′ ∧ ν′)′, the boxes

removed from µ∧ν to form α are in different columns than the boxes removed from µ
to form µ ∧ ν or from ν to form µ ∧ ν. Thus, µ/α and ν/α are both horizontal strips.
Also,

|µ/α| = |µ/(µ ∧ ν)| + |(µ ∧ ν)/α|
= (|µ| − |µ ∧ ν|) + (|µ ∧ ν| − k)

= |µ| − |µ| + |ν| − p

2

= |µ| + p − |ν|
2

and similarly |ν/α| = |ν|+p−|µ|
2 .

As a result, one can remove a horizontal strip from µ of length |µ|+p−|ν|
2 , and then

add a horizontal strip of length |ν|+p−|µ|
2 back in to result in ν. This is exactly the

statement of Proposition 2.4 of [7], so Nµ,ν,(p) > 0.
Now consider the case where one of the partitions is a single column. Without loss

of generality, λ = (1p). By Proposition 2.6, (µ, ν, λ) satisfies all S3 permutations of
the Horn inequalities. In particular, they satisfy µi ⩽ νi + λ1 and νi ⩽ µi + λ1 for all
i ∈ [n]. This implies that µi ⩽ νi + 1 and νi ⩽ µi + 1, so µi, νi ⩽ (µ ∧ ν)i + 1 for all
i ∈ [n + 1], which is equivalent to saying that µ/(µ ∧ ν) and ν/(µ ∧ ν) are vertical
strips.

Let k := |µ|+|ν|−p
2 . As before, k ∈ Z⩾0 and k ⩽ |µ ∧ ν|.
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Claim 3.2. There exist at least |µ ∧ ν| − k rows i such that µi = νi > 0.

Proof. Since µ/(µ ∧ ν) is a vertical strip, there are |µ/(µ ∧ ν)| = |µ| − |µ ∧ ν| rows i
such that µi > νi, and similarly there are |ν| − |µ ∧ ν| rows i such that µi < νi. Let
L = max(ℓ(µ), ℓ(ν)). Since there are L rows where at least one of µi or νi is nonzero,
this means that there are L − |µ| − |ν| + 2|µ ∧ ν| rows such that µi = νi > 0, so it
suffices to prove that

L − |µ| − |ν| + 2|µ ∧ ν| ⩾ |µ ∧ ν| − k.

Rearranging the terms and substituting in for the definition of k, this becomes

0 ⩽ L − |µ| − |ν| + |µ ∧ ν| + |µ| + |ν| − p

2 .

Define

X := {i ∈ [L] : µi > νi} and Y := {i ∈ [L] : µi ⩽ νi} = [L] ∖ X.

Multiplying the above expression by 2 and using the definition of | · |, we get:

0 ⩽ 2L − 2|µ| − 2|ν| + 2|µ ∧ ν| + (|µ| + |ν| − p)
= 2L − |µ| − |ν| + 2|µ ∧ ν| − p

= 2L −
L∑

i=1
µi −

L∑
i=1

νi + 2
∑
i∈X

νi + 2
∑
i∈Y

µi − p

= 2L −
∑
i∈X

µi −
∑
i∈Y

νi +
∑
i∈X

νi +
∑
i∈Y

µi − p.

We split the remainder of the proof of the claim into two cases: whether L < p or
L ⩾ p.

Case 1: (L < p). Here we can rewrite the above inequality as

0 ⩽ −
∑
i∈X

µi −
∑
i∈Y

νi +
∑

i∈X∪([p]∖[L])

νi +
∑

i∈Y ∪([p]∖[L])

µi + L − (p − L).

However, this is always true, since

(Y ∪ ([p] ∖ [L]), X, X ∪ ([p] ∖ [L]), Y, [L], [p] ∖ [L]) ∈ Gn

which can be seen by letting

(A1, A2, B1, B2, C1, C2) = ([|X|], X, Y, [|Y |], [|Y | + p − L]∖ [|Y |], [|X| + p − L]∖ [|X|]).

The slightly trickier verification needed from (III)(3) is

c
τ(B)
τ(C1),τ(A2) = c

τ(X∪([p]−[L]))
τ([|Y |−p+L]−[|Y |]),τ(X) = c

τ(X)+(L−|X|)p−L

|Y |p−L,τ(X) = c
τ(X)+|Y |p−L

|Y |p−L,τ(X) > 0;

the latter is obvious. The check c
τ(A)
τ(B1),τ(C2) > 0 is analogous.

Case 2: (L ⩾ p). Here we can instead rewrite the above inequality as

0 ⩽ 2(L − p) −
∑
i∈X

µi −
∑
i∈Y

νi +
∑
i∈X

νi +
∑
i∈Y

µi + p,

and so it suffices to show

0 ⩽ −
∑
i∈X

µi −
∑
i∈Y

νi +
∑
i∈X

νi +
∑
i∈Y

µi + p.

This is true since (Y, X, X, Y, [L],∅) ∈ Gn is just a subset-sum inequality. □
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Let α be the partition formed by removing the rightmost box from the |µ ∧ ν| − k
southernmost rows i of µ ∧ ν such that µi = νi > 0. Since the boxes removed from
µ ∧ ν to form α are in different rows than the boxes removed from µ to form µ ∧ ν or
from ν to form µ ∧ ν, µ/α and ν/α are both vertical strips. In addition,

|µ/α| = |µ/(µ ∧ ν)| + |(µ ∧ ν)/α|
= (|µ| − |µ ∧ ν|) + (|µ ∧ ν| − k)

= |µ| − |µ| + |ν| − p

2

= |µ| + p − |ν|
2

and similarly |ν/α| = |ν|+p−|µ|
2 .

As a result, one can remove a vertical strip from µ of length |µ|+p−|ν|
2 , and then add

a vertical strip of length |ν|+p−|µ|
2 back in to result in ν. This is exactly the conjugate

statement of Proposition 2.4 of [7], so Nµ,ν,(1p) > 0. □
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