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On the action of the toggle group of the
Dynkin diagram of type A

Yasuhide Numata & Yuiko Yamanouchi

Abstract In this article, we consider involutions, called togglings, on the set of independent
sets of the Dynkin diagram of type A, or a path graph. We are interested in the action of the
subgroup of the symmetric group of the set of independent sets generated by togglings. We
show that the subgroup coincides with the symmetric group.

1. Introduction
In this article, we are interested in the group generated by operations called toggling.
The operation, toggling, is originally introduced for the set of order ideals of a poset
in Cameron–Fon-Der-Flaass [1]. Let P be a finite poset, J(P ) the set of order ideals
of P . For an element p ∈ P , we define the map τp : J(P )→ J(P ) by

τp(I) =


I ∪ { p } (p is a minimal element of P r I),
I r { p } (p is a maximal element of I),
I (otherwise),

for I ∈ J(P ). The toggle group is a subgroup of the symmetric group of J(P ) gen-
erated by togglings. Since we have a bijection from J(P ) to the set of antichains of
P which maps an order ideal to the maximal elements of the order ideal, we can
regard toggling as an involution on the set of antichains. Moreover we can define
an analogue of the toggling τp as involutions not only on antichains of a poset, but
also on important classes of subsets of a poset, e.g. order ideals of a poset, chains
of a poset, antichains of a poset, interval-closed sets of a certain family of posets.
Moreover we can consider a toggle group on nice subsets of a finite set with a com-
binatorial structure, e.g. independent sets of a graph, which is the main topic in this
article. The toggle groups and their orbit structures are studied from the viewpoint
of dynamical algebraic combinatorics, e.g. Striker–Williams [8], Striker [7], Joseph [2],
and Joseph–Roby [4].

In this article, we write An to denote the Dynkin diagram of type An, i.e. the
path graph with n vertices, and consider togglings on the set of the independent
sets, i.e. subsets of vertices such that no pair are adjacent in the graph, of the graph
An. In [3], Joseph and Roby study the orbit structure and the phenomenon called
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homomesy and related properties for the togglings. They consider the action of the
product of togglings of each vertex of the graph An from left to right, and a map χi

defined as χi(I) = 1 if the independent set I contains i-th vertices, and otherwise
χi(I) = 0. They give a proof for Propp’s conjecture that the statistics χj − χn+1−j

are 0-mesic under the action for all 1 6 j 6 n. Moreover they also show that the
statistics 2χ1 + χ2 and χn−1 + 2χn are 1-mesic under the action.

In this article, we are interested in the transitivity of the action of the toggle group
on the set of independent sets. For a nonempty independent set I, the number of
vertices in the independent set I is greater than the number of vertices in the resulting
independent set τv(I) by the toggling with respect to a vertex v in I. Hence we can
obtain the empty independent set from I by applying the product of the togglings
with respect to all vertices in the independent set. It follows from this observation
that the action is 1-transitive. Multiple transitivity, however, does not seem trivial. In
this paper, we consider the toggle group of the independent sets of An, and show that
the action of the toggle group is fn+2-transitive, where fn+2 is the n+ 2-th Fibonacci
number, i.e. the number of independent sets of An. In other words, we show that the
toggle group coincides with the symmetric group on the set of independent sets of
An.

Remark 1.1. In [5], Macauley, McCammond and Mortveit studied asynchronous cel-
lular automata and their “dynamics groups.” Consider the binary words of length
n with cyclic index, i.e. the sequence x0x1x2 · · ·xn−1 for xi ∈ { 0, 1 } with indices
i ∈ Z/nZ. For a given map F : { 0, 1 }3 → { 0, 1 }, we can consider the operation
to replace the i-th alphabet xi of the word x0x1x2 · · ·xn−1 with F (xi−1, xi, xi+1) for
some index i. Let us consider the case where the local rule F is Rule 201, i.e. a map
defined by

F (a, b, c) =
{

1− b (a = c = 0),
b (otherwise).

In this case, the operation for each index i is invertible. Hence the operations for
all indices i generate a group. Naturally the binary word x0x1x2 · · ·xn−1 can be
identified with the set of indices i such that xi = 1. Since indices are in Z/nZ, the set
can be regarded as the subset of the vertex set of the cycle with n vertices. The orbit
containing the binary word 0 · · · 0 consists of binary words x0x1x2 · · ·xn−1 without
indices i such that xi = xi+1 = 1, corresponding to independent sets of the cycle.
The group acts on the orbit as the toggle group for the cycle. Next consider the
orbit containing the binary word 0 · · · 00110. A binary word x0x1x2 · · ·xn−1 is in the
orbit if and only if (xn−4, xn−3, xn−2, xn−1) = (0, 1, 1, 0) and (xi, xi+1) 6= (1, 1) for
i ∈ { 0, 1, . . . , n− 6 }. For the binary word in the orbit, the subword x0x1x2 · · ·xn−5
corresponds to an independent set of An−4. The group acts on the orbit as the toggle
group for An−4. In [5], Macauley, McCammond and Mortveit conjectured that the
group acts on the orbit with 0 · · · 0 as the symmetric group or the alternating group
on the orbit, and that the group acts on the orbit with 0 · · · 00110 as the symmetric
group on the orbit. In [6], Salo proved the conjecture by automaton-theoretical or
language-theoretical methods. Our results give another proof of the conjecture.

This article is organized as follows: In Section 2, we consider the family of the sym-
metric groups indexed by the Fibonacci sequence. We give systems of generators for
them as Theorem 2.6. In Section 3, we recall the definition of toggling on independent
sets of a graph, and we consider the toggle group for independent sets of the graph
An. As Theorem 3.7, we state that the toggle groups for independent sets of the graph
An are isomorphic to the symmetric groups indexed by the Fibonacci sequence. We
give proofs of main theorems in Section 4.
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2. Systems of generators for symmetric groups indexed by the
Fibonacci sequence

Let { fn }n=0,1,... be the Fibonacci sequence, i.e. the sequence of numbers defined by
f0 = 0, f1 = 1, and fn = fn−1 + fn−2. We define Fn+2 to be the set { 1, 2, . . . , fn+2 }.
We decompose Fn+2 into Fn+1 and F̂n, where

F̂n = Fn+2 r Fn+1

= { 1 + fn+1, 2 + fn+1, . . . , fn + fn+1 = fn+2 }
= { i+ fn+1 | i ∈ Fn } .

Here we consider the family {Sfn
}n=3,4,... of symmetric groups indexed by the

Fibonacci sequence. For n 6 m, we regard Sn as a subset of Sm in the usual manner.
In this article, for a set X, SX stands for the symmetric group on X. Under this
notation, Sfn

= SFn
.

For n = 1, 2, . . ., we define t̂n ∈ Sfn+2 to be the product

(1, fn+1 + 1)(2, fn+1 + 2) · · · (fn, fn+1 + fn)

of fn transpositions. For n > 1, the inner automorphism by t̂n induces the isomor-
phism

SFn
→ SF̌n

t 7→ t̂ntt̂
−1
n .

Since Fn = { 1, 2, . . . , fn } and F̌n = { i+ fn+1 | i ∈ Fn }, we have Fn ∩ F̌n = ∅,
which implies that every element of SFn

commutes with every element of SF̌n
. For t

and t′ ∈ Sfn , it follows that t′ ∈ Sfn commutes with t̂ntt̂−1
n ∈ SF̌n

, which implies

t · t̂ntt̂−1
n · t′ · t̂nt′t̂−1

n = t · t′ · t̂ntt̂−1
n · t̂nt′t̂−1

n = tt′ · t̂ntt′t̂−1
n

Hence the inner automorphism by t̂n induces the isomorphism

Sfn
→ S̃fn

t 7→ t · t̂ntt̂−1
n ,

where

S̃fn =
{
g ∈ Sfn+2

∣∣∣∣ ∀i 6 fn, g(i+ fn+1) = g(i) + fn+1
fn < ∀i 6 fn+1, g(i) = i

}
⊂ SFn ×SF̂n

⊂ SFn+1 ×SF̂n
⊂ SFn+2 .

For 1 6 k 6 n, we define tk,n ∈ SFn+2 by

tk,n =


tk,n−1 · t̂ntk,n−2t̂

−1
n (k 6 n− 2),

tn−1,n−1 (k = n− 1),
t̂n (i = n),

recursively. By definition, for k < n, tk,n is an element of SFn+1 ×SF̂n
, and tn−1,n is

an element of SFn+1 . We define subsets Gn and G′n of SFn+2 by

G′n = { tk,n | k 6 n− 2 } ,
Gn = { tk,n | k 6 n } .

Example 2.1. Consider the case where n = 1. Since t̂1 is the transposition (1, 2) ∈
Sf3 = S2, we have t1,1 = t̂1 = (1, 2) and G1 = { (1, 2) }. Hence G1 generates
S2 = Sf3 .
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Example 2.2. In the case where n = 2, t̂2 is the transposition (1, 3) ∈ Sf4 = S3, we
have t1,2 = t1,1 = (1, 2) and t2,2 = t̂2 = (1, 3). Hence G2 = { (1, 2), (1, 3) }. The set
G2 generates S3 = Sf4 .

Example 2.3. In the case where n = 3, t̂4 is the product (1, 4)(2, 5) ∈ Sf5 = S5 of
the transpositions, we have

t1,3 = (1, 2) · (4, 5),
t2,3 = t2,2 = (1, 3),
t3,3 = t̂3 = (1, 4)(2, 5).

Hence

G3 = { (1, 2)(4, 5), (1, 3), (1, 4)(2, 5) } ,
G′3 = { (1, 2)(4, 5) } .

Since

S̃f3 =
{
g ∈ Sf5

∣∣∣∣ ∀i 6 f3, g(i+ f4) = g(i) + f4
f3 < ∀i 6 f4, g(i) = i

}
= { g ∈ Sf5 | g(1 + 3) = g(1) + 3, g(2 + 3) = g(2) + 3, g(3) = 3 } ,

the group S̃f3 is generated by { (1, 2)(4, 5) }. It follows from direct calculation that

(1, 3) = t2,3,

(2, 3) = t1,3(1, 3)t−1
1,3,

(4, 3) = t3,3(1, 3)t−1
3,3,

(5, 3) = t1,3(4, 3)t−1
1,3.

Hence G3 generates S5 = Sf5 .

Example 2.4. Consider the case where n = 4. In this case, t̂4 = (1, 6)(2, 7)(3, 8) ∈
Sf6 = S8 of the transpositions. Hence

t1,4 = (1, 2)(4, 5) · (6, 7),
t2,4 = (1, 3) · (6, 8),
t3,4 = t3,3 = (1, 4)(2, 5),
t4,4 = t̂4 = (1, 6)(2, 7)(3, 8).

Hence

G4 = { (1, 2)(4, 5)(6, 7), (1, 3)(6, 8), (1, 4)(2, 5), (1, 6)(2, 7)(3, 8) } ,
G′4 = { (1, 2)(4, 5)(6, 7), (1, 3)(6, 8) } .

We show the following theorems by induction on n in Subsection 4.1.

Theorem 2.5. For n = 3, 4, . . ., the set G′n generates the group S̃fn . Hence the group
〈G′n〉 generated by G′n is isomorphic to Sfn

.

Theorem 2.6. For n = 1, 2, . . ., the set Gn generates the fn+2-th symmetric group
Sfn+2 .
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3. The toggle group for independent sets of the Dynkin diagram
of type A

In this article, we consider simple graphs. We regard a graph as the pair (V,E) of the
set V of vertices and the set E of edges. We also regard an edge as a subset of V of
size two. An independent set of a graph is a subset I of the vertex set V of the graph
satisfying

u, v ∈ I =⇒ {u, v} 6∈ E.
Roughly speaking, an independent set of a graph is a subset of vertices such that no
pair is adjacent in (V,E).

Let I be the set of independent sets of a graph (V,E). For a vertex v ∈ V , we
define the map τv by

τv : I → I

I 7→


I r { v } (v ∈ I),
I ∪ { v } (v 6∈ I and I ∪ { v } ∈ I),
I (otherwise).

By definition, the map τv is an involution on I. Hence τv is an element of the sym-
metric group SI on I. We call the map τv the toggling on I with respect to v. We
also call the subgroup generated by all togglings the toggle group of the graph (V,E).

Remark 3.1. Let I be the set of independent sets of a graph (V,E). For a vertex
v ∈ V , we can also describe the toggling τv as follows: We define Nv(V,E) to be the
set of neighbours of v, i.e. { u | {u, v} ∈ E }. Let I ′ = { I ∈ I | I ∩Nv(V,E) 6= ∅ }.
The toggling τv acts on I ′ trivially. Let

V ′ = V r ({ v } ∪Nv(V,E)),
E′ = { {u,w} ∈ E | u,w ∈ V ′ } .

The graph (V ′, E′) is the induced subgraph of the graph (V,E) with respect to all
vertices except v and its neighbours. Let I ′′ be the set of independent sets of (V ′, E′).
For I ∈ I ′′, I and I∪{ v } are independent sets of (V,E). Then we have τv(I) = I∪{ v }
and τv(I∪{ v }) = I for I ∈ I ′′. Since I = I ′∪I ′′∪I ′′′ for I ′′′ = { I ∪ { v } | I ∈ I ′′ },
the toggling τv is the involution on I defined by

τ(I) = τ(I) (I ∈ I ′),
τ(I) = τ(I ∪ { v }) (I ∈ I ′′),
τ(I ∪ { v }) = τ(I) (I ∈ I ′′).

The toggling τv ∈ SI is the product of transpositions swapping I and I∪{ v }. Hence,
the toggling τv ∈ SI is an even permutation if and only if #I ′ is even.

Remark 3.2. The toggle group acts on the set I of independent sets naturally. More-
over, for an independent set I = { v1, v2, . . . , vl } of size l, we have

τv1 ◦ τv2 ◦ · · · ◦ τvl
(I) = ∅.

We can obtain the empty set from any independent set by applying some togglings.
Hence the group generated by all togglings of a graph acts transitively on the set
of independent sets of the graph. In other words, the action of the toggle group is
1-transitive.

We give some small examples. First we consider cycles. The toggle group of some
cycle is a proper subgroup of the symmetric group on the set of independent sets.
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Example 3.3 (Ã3). Consider the cycle (V,E) such that

V = { 0, 1, 2, 3 } , E = { {0, 1},{1, 2},{2, 3},{3, 0} } .

and the set I of its independent sets. Consider the toggling τ0 for the vertex 0.
The induced subgraph with respect to all vertices except 0 and neighbours of 0 is
({ 2 } ,∅). The set of its independent sets is {∅, { 2 } }, consisting of two elements.
Hence τ0 ∈ SI is an even permutation. Similarly, we can show that τv ∈ SI is an even
permutation for each vertex v ∈ V . Hence we have the toggle group is a subgroup of
the alternating group on I, which is a proper subgroup of the symmetric group SI .

Next we consider trees. For the tree in Example 3.4, the toggle group equals the
symmetric group on the set of independent sets. For the tree in Example 3.5, the
toggle group is a proper subgroup of the symmetric group on the set of independent
sets.

Example 3.4 (D4). Consider the tree (V,E) such that

V = { 1, 2, 3, 4 } , E = { {1, 3},{2, 3},{3, 4} } .

The set I of independent sets of the tree consists of the following:

I1 = ∅ I2 = { 1 } I3 = { 2 } I4 = { 1, 2 }
I5 = { 4 } I6 = { 1, 4 } I7 = { 2, 4 } I8 = { 1, 2, 4 } I9 = { 3 } .

We regard I as { 1, 2, . . . , 9 } by identifying Ik with k. Then togglings are the product
of the transpositions as follows:

τ1 = (1, 2)(3, 4)(5, 6)(7, 8) τ2 = (1, 3)(2, 4)(5, 7)(6, 8)
τ4 = (1, 5)(2, 6)(3, 7)(4, 8) τ3 = (1, 9).

Let

σ2 = τ1, σ3 = τ2, σ4 = τ2τ1, σ5 = τ4,

σ6 = τ4τ1, σ7 = τ4τ2, σ8 = τ4τ2τ1.

Then we have σk(1) = k and σk(9). Hence we have

σkτ3σ
−1
k = (σk(1), σk(9)) = (k, 9).

Since we have (1, 9), (2, 9), . . . , (8, 9) in the toggle group, the toggle group is the sym-
metric group SI .

Example 3.5 (D̃5). Consider the tree (V,E) such that

V = { 0, 1, 2, 3, 4, 5 } , E = { {1, 3},{2, 3},{3, 4},{4, 5},{4, 0} } ,

and the set I of its independent sets. Consider the toggling τ3 for the vertex 3. The
induced subgraph with respect to all vertices except 3 and neighbours of 3 is the
disjoint union of the graphs ({ 0 } ,∅) and ({ 5 } ,∅). The number of the independent
sets of the disjoint union of graphs is the product of the number of the independent
sets of each graph. Since the number of the independent sets of ({ 0 } ,∅) is two,
the number of the independent sets of the induced graph is even. Hence τ3 ∈ SI
is even. Similarly, we have τ4 is even. Next consider the toggling τ1 for the vertex
1. The induced subgraph with respect to all vertices except 1 and neighbours of 1 is
the disjoint union of the graphs ({ 2 } ,∅) and ({ 0, 4, 5 } , { {0, 4},{4, 5} }). Hence we
have the number of independent sets of the induced subgraph is even, which implies
τ1 is even. Similarly, it follows that τv is even for v ∈ { 0, 2, 5 }. Hence the toggle
group is a subgroup of the alternating group on I, which is a proper subgroup of SI .
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Let An = (Vn, En) be the graph such that

Vn = { 1, . . . , n } ,
En = { {1, 2},{2, 3} . . . ,{n− 1, n} } ,

i.e. the Dynkin diagram of type An. Let In be the set of independent sets of An. In
this article, we are interested in the togglings of the graph An.

For 1 6 k 6 n, we define τk,n to be the toggling τk on In with respect to k ∈ Vn, i.e.

τk,n : In → In

I 7→


I r { k } (k ∈ I),
I ∪ { k } (k − 1, k, k + 1 6∈ I),
I (otherwise).

We also define define Γn to be the group generated by togglings

{ τ1,n, τ2,n, . . . , τn,n } .

We call this group the toggle group of An. By definition the toggle group Γn of An

acts on the set In of independent sets on An+1, naturally. In the other words, the
toggle group Γn is a subgroup of the symmetric group SIn

of In.

Remark 3.6. The togglings τk,n for 1 6 k 6 n satisfy the following relations:

τ2
k,n = id .

τk,nτk′,n = τk′,nτk,n (|k − k′| > 1).
(τk,nτk+1,n)6 = id .

Hence the toggle group Γn is a finite quotient group of the Coxeter group with
respect to

•6 • 6 • 6 · · · 6•︸ ︷︷ ︸
n

,

which is infinite if n > 2.

We will show the following theorem in Subsection 4.2.

Theorem 3.7. For n = 1, 2, . . ., the toggle group Γn of An is the symmetric group
SIn

of the set In of independent sets of An. Hence the toggle group Γn of An is
isomorphic to the fn+2-th symmetric group Sfn+2 .

Corollary 3.8. For n = 1, 2, . . ., the action of the toggle group Γn of An+1 on In is
fn+2-transitive.

4. Proof of Main Theorems
4.1. Theorems 2.5 and 2.6. Here we show these Theorems 2.5 and 2.6 by induction
on n. To show theorems, we show some lemmas.

Lemma 4.1. If n > 3 and Gn−2 generates Sfn
, then G′n generates S̃fn

.

Proof. Consider the isomorphism

ϕ : Sfn → S̃fn

t 7→ t · t̂ntt̂−1
n .
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By definition, for k 6 n− 2, tk,n is the image ϕ(tk,n−2) of tk,n−2. Hence we have

〈G′n〉 = 〈ϕ(t1,n−2), ϕ(t2,n−2), . . . , ϕ(tn−2,n−2)〉
= ϕ(〈t1,n−2, t2,n−2, . . . , tn−2,n−2〉)
= ϕ(〈Gn−2〉).

Since Gn−2 generates Sfn
, we have 〈G′n〉 = ϕ(Sfn

) = S̃fn
. �

Lemma 4.2. If n > 4 and G′n generates S̃fn
, then the group 〈Gn〉 generated by Gn

contains cyclic permutations (i, i+ 1, i+ 2) for 1 6 i 6 fn+2 − 2.

Proof. We decompose Fn+2 into three subsets

Fn = { 1, 2, . . . , fn } ,

F̂n−1 = { i+ fn | i ∈ Fn−1 } ,

F̂n = { i+ fn+1 | i ∈ Fn } .

First we show that (1, 2, 3) ∈ 〈Gn〉. Since n > 4, fn > f3 = 2. Since S̃fn
= 〈G′n〉 ⊂

〈Gn〉, the group 〈Gn〉 contains the following elements:

(1, 2)t̂n(1, 2)t̂−1
n = (1, 2)(fn+1 + 1, fn+1 + 2),

(2, 3)t̂n(2, 3)t̂−1
n = (2, 3)(fn+1 + 2, fn+1 + 3).

Since tn−1,n = t̂n−1 ∈ Gn, we have

t̂n−1(1, 2)(fn+1 + 1, fn+1 + 2)t̂−1
n−1 ∈ 〈Gn〉 .

Since t̂n−1 ∈ SFn+1 ,

t̂n−1(1, 2)(fn+1 + 1, fn+1 + 2)t̂−1
n−1 = t̂n−1(1, 2)t̂−1

n−1 · (fn+1 + 1, fn+1 + 2)
= (fn + 1, fn + 2)(fn+1 + 1, fn+1 + 2).

Hence 〈Gn〉 contains

(fn + 1, fn + 2)(fn+1 + 1, fn+1 + 2) · (2, 3)(fn+1 + 2, fn+1 + 3)
= (2, 3) · (fn + 1, fn + 2) · (fn+1 + 1, fn+1 + 2)(fn+1 + 2, fn+1 + 3)
= (2, 3) · (fn + 1, fn + 2) · (fn+1 + 1, fn+1 + 2, fn+1 + 3).

Hence 〈Gn〉 contains the square

((2, 3) · (fn + 1, fn + 2) · (fn+1 + 1, fn+1 + 2, fn+1 + 3))2

= (2, 3)2 · (fn + 1, fn + 2)2 · (fn+1 + 1, fn+1 + 2, fn+1 + 3)2

= (fn+1 + 1, fn+1 + 3, fn+1 + 2)

of the element. Since t̂n(fn+1 + 1, fn+1 + 3, fn+1 + 2)t̂−1
n = (1, 3, 2), 〈Gn〉 contains

cyclic permutations (1, 3, 2) and (1, 2, 3).
Next we show that 〈Gn〉 contains the cyclic permutation (i, j, k) for i, j, k ∈ Fn. Fix

an element σ ∈ SFn
such that σ(1) = i, σ(2) = j, σ(3) = k. Since S̃fn

= 〈G′n〉 ⊂ 〈Gn〉,
〈Gn〉 contains σ̃ = σt̂nσt̂

−1
n ∈ S̃fn . Hence 〈Gn〉 contains

σ̃(1, 2, 3)σ̃−1 = (σ̃(1), σ̃(2), σ̃(3)) = (σ(1), σ(2), σ(3)) = (i, j, k).

Next we show that 〈Gn〉 contains the cyclic permutation (i, j, k) for i, j, k ∈ F̂n−1 =
{ i′ + fn | i′ ∈ Fn−1 }. Since Fn−1 contains i− fn, j− fn and k− fn for i, j, k ∈ F̂n−1,
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〈Gn〉 contains (i− fn, j − fn, k − fn). Hence 〈Gn〉 contains
t̂n−1(i− fn, j − fn, k − fn)t̂−1

n−1 = (t̂n−1(i− fn), t̂n−1(j − fn))t̂n−1(k − fn))
= (i, j, k).

Next we show that 〈Gn〉 contains the cyclic permutation (i, j, k) for i, j, k ∈ F̂n =
{ i+ fn+1 | i ∈ Fn }. Since Fn contains i−fn+1, j−fn+1 and k−fn+1 for i, j, k ∈ F̂n,
〈Gn〉 contains (i− fn+1, j − fn+1, k − fn+1). Hence 〈Gn〉 contains
t̂n(i− fn+1, j − fn+1, k − fn+1)t̂−1

n = (t̂n(i− fn+1), t̂n−1(j − fn+1))t̂n(k − fn+1))
= (i, j, k).

Next 〈Gn〉 contains the cyclic permutation (i, j, k) for i ∈ Fn and j, k ∈ F̂n−1 =
{ i′ + fn | i′ ∈ Fn−1 }. For j, k ∈ F̂n−1, we have j− fn and k− fn ∈ Fn−1 ⊂ Fn. Since
fn ∈ FnrFn−1, 〈Gn〉 contains the cyclic permutation (fn, j−fn, k−fn). Hence 〈Gn〉
contains

t̂n−1(fn, j − fn, k − fn)t̂−1
n−1 = (t̂n−1(fn), t̂n−1(j − fn), t̂n−1(k − fn))

= (fn, j, k).

Since S̃fn
= 〈G′n〉 ⊂ 〈Gn〉, 〈Gn〉 contains

σ̃ = (i, fn)t̂n(i, fn)t̂−1
n = (i, fn)(fn+1 + i, fn+1 + fn)

for i < fn. Hence 〈Gn〉 contains
σ̃(fn, j, k)σ̃−1 = (σ̃(fn), σ̃(j), σ̃(k)) = (i, j, k).

Next 〈Gn〉 contains the cyclic permutation (i, j, k) for
i, j ∈ F̂n−1 = { i′ + fn | i′ ∈ Fn−1 } and k ∈ F̂n = { i+ fn+1 | i ∈ Fn } .

Since k− fn+1 ∈ Fn for k ∈ F̂n, 〈Gn〉 contains the cyclic permutation (k− fn+1, i, j).
Hence 〈Gn〉 contains

t̂n(k − fn+1, i, j)t̂−1
n = (t̂n(k − fn+1), t̂n(i), t̂n(j))

= (k, i, j) = (i, j, k).

Next 〈Gn〉 contains the cyclic permutation (i, j, k) for i, j ∈ Fn and k ∈ F̂n−1 =
{ i′ + fn | i′ ∈ Fn−1 }. Since Fn−1 contains k − fn for k ∈ F̂n−1 and F̂n−1 contains
fn + 1, fn + 2, 〈Gn〉 contains (k − fn, fn + 1, fn + 2). Hence 〈Gn〉 contains

t̂n−1(k − fn, fn + 1, fn + 2)t̂−1
n−1 = (t̂n−1(k − fn), t̂n−1(fn + 1), t̂n−1(fn + 2))

= (k, 1, 2).

Fix an element σ ∈ Sfn such that σ(1) = i and σ(2) = j. Since S̃fn = 〈G′n〉 ⊂ 〈Gn〉,
〈Gn〉 contains σ̃ = σt̂nσt̂

−1
n . Hence 〈Gn〉 contains

σ̃(k, 1, 2)σ̃−1 = (σ̃(k), σ̃(1), σ̃(2)) = (k, i, j) = (i, j, k).
Next 〈Gn〉 contains the cyclic permutation (i, j, k) for

i ∈ F̂n−1 = { i′ + fn | i′ ∈ Fn−1 } and j, k ∈ F̂n = { i+ fn+1 | i ∈ Fn } .

Since Fn contains j−fn+1 k−fn+1 for j, k ∈ F̂n, 〈Gn〉 contains the cyclic permutation
(j − fn+1, k − fn+1, i). Hence 〈Gn〉 contains

t̂n(j − fn+1, i− fn+1, i)t̂−1
n = (t̂n(j − fn+1), t̂n(k − fn+1), t̂n(i))

= (j, k, i) = (i, j, k).

Since n > 4, #F̂n−1 = fn−1 > f3 = 2. Hence we have (i, i + 1, i + 2) ∈ 〈G〉 for
1 6 i 6 fn+2 − 2. �
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Lemma 4.3. If n > 4 and G′n generates S̃fn
, then Gn generates SFn+2 .

Proof. Since 〈Gn〉 contains cyclic permutations (i, i + 1, i + 2) for 1 6 i 6 fn+2 − 2
by Lemma 4.2, 〈Gn〉 contains the fn+2-th alternating group Afn+2 . Since either fn or
fn−1 is an odd number, the alternating group Afn+2 does not contain either tn,n = t̂n
or tn,n−1 = t̂n−1. Since the alternating group Afn+2 is a subgroup of Sfn+2 of index
2, the subgroup 〈Gn〉 coincide with Sfn+2 . �

By Examples 2.1, 2.2 and 2.3, we can show the base case, i.e. the case where
n = 1, 2, 3. Moreover we have Lemmas 4.1 and 4.3 for induction step. Hence we have
Theorems 2.5 and 2.6.

4.2. Proof of Theorem 3.7. To show Theorem 3.7, we give a bijection between In

and Fn+2, and translate togglings to permutations in Sfn+2 .
We can decompose the set In of independent set of the graph An into the following

two subsets:

{ I ∈ In | n 6∈ I } ,
{ I ∈ In | n ∈ I } .

It is easy to see that { I ∈ In | n 6∈ I } = In−1. We define În−2 to be the set
{ I ∈ In | n ∈ I }. For I ∈ In, by definition, we have n − 1 6∈ I if n ∈ I. Hence we
have the bijection ϕn−2 from În−2 to In−2 by removing the vertex n, i.e. the map
defined by

ϕn−2 : În−2 → In−2

I 7→ I r { n } .

Hence we have the recurrence relation #In = #In−1 + #In−2. Since #I1 = 2 and
#I2 = 3, the number #In of independent sets of An is equal to the (n + 2)-th
Fibonacci number fn+2.

Since the number of In is fn+2 = #Fn+2, the elements of In can be indexed by
Fn+2. We give the index ιn(I) of an independent set I in In in the following manner:
In the case where n = 1, we define

ι1(I) =
{

1 (I = ∅),
2 (I = { 1 }).

In the case where n = 2, we define

ι1(I) =


1 (I = ∅),
2 (I = { 1 }),
3 (I = { 2 }).

In the case where n > 2, we define

ιn(I) =
{
ιn−1(I) (I ∈ In−1),
ιn−2(ϕn−2(I)) + fn+1 (I ∈ În−2),

recursively. By definition, the index of an independent set in In−1 is in Fn+1. The
index of an independent set in În−2, corresponding to In−2, is in F̂n. Moreover, if
I ∈ In satisfies ιn(I) 6 fk+2, then I ∈ Ik. We also have

ιn(I ∪ { n }) = ιn−2(I) + fn+1 = ιn−1(I) + fn+1 = ιn(I) + fn+1

for I ∈ In−2.
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Example 4.4. For n = 1, 2, 3, 4, independent sets in In are indexed as in the Figure 1.

I1 F3
{ } 1
{ 1 } 2

I2 F4
{ } 1
{ 1 } 2
{ 2 } 3

I3 F5
{ } 1
{ 1 } 2
{ 2 } 3
{ 3 } 4
{ 1, 3 } 5

I4 F6
{ } 1
{ 1 } 2
{ 2 } 3
{ 3 } 4
{ 1, 3 } 5
{ 4 } 6
{ 1, 4 } 7
{ 2, 4 } 8

Figure 1. ιn(I) for n = 1, 2, 3, 4

Example 4.5. It follows from direct calculation that

ι1(τ1,1({ })) = ι1({ 1 }) = 2,
t1,1(ι1({ })) = t1,1(1) = (1, 2)(1) = 2,
ι1(τ1,1({ 1 })) = ι1({ }) = 1,
t1,1(ι1({ 1 })) = t1,1(2) = (1, 2)(2) = 1.

Hence
ι1(τ1,1(I)) = t1,1(ιn(I))

for I ∈ I1.

Example 4.6. It follows from direct calculation that

ι2(τ1,2({ })) = ι2({ 1 }) = 2,
t1,2(ι2({ })) = t1,2(1) = (1, 2)(1) = 2,
ι2(τ1,2({ 1 })) = ι2({ }) = 1,
t1,2(ι2({ 1 })) = t1,2() = (1, 2)(1) = 1,
ι2(τ1,2({ 2 })) = ι2({ 2 }) = 3,
t1,2(ι2({ 2 })) = t1,2(3) = (1, 2)(3) = 3.

Hence ι2(τ1,2(I)) = t1,2(ιn(I)). It also follows that

ι2(τ2,2({ })) = ι2({ 2 }) = 3,
t2,2(ι2({ })) = t2,2(1) = (1, 3)(1) = 3,
ι2(τ2,2({ 1 })) = ι2({ 1 }) = 2,
t2,2(ι2({ 1 })) = t1,2(2) = (1, 3)(2) = 2,
ι2(τ2,2({ 2 })) = ι2({ }) = 1,
t2,2(ι2({ 2 })) = t2,2(3) = (1, 3)(3) = 1.

Hence ι2(τ2,2(I)) = t2,2(ιn(I)) for I ∈ I2.

By Examples 4.5 and 4.5, we have ιn ◦ τk,n = tk,n ◦ ιn for n = 1, 2. For n > 2, we
have the following lemmas:
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Lemma 4.7. Let n > 2 and k < n− 1. If ιn−1 ◦ τk,n−1 = tk,n−1 ◦ ιn−1, then ιn ◦ τk,n =
tk,n ◦ ιn.

Proof. First we consider the case where ιn(I) 6 fn+1. In this case, In−1 contains I.
Hence we have τk,n(I) = τk,n−1(I), which implies ιn(τk,n(I)) = ιn(τk,n−1(I)). Since
In−1 contains τk,n−1(I), we have ιn(τk,n−1(I)) = ιn−1(τk,n−1(I)). By assumption, we
have

ιn−1(τk,n−1(I)) = tk,n−1(ιn−1(I)) = tk,n−1(ιn(I)).
Since tk,n = tk,n−1, ιn(τk,n(I)) = tk,nιn(I).

Next consider the case where fn+1 < ιn(I). We show that ιn(τk,n(I)) equals
tk,n(ιn(I)) = tk,n−1t̂ntk,n−1t̂

−1
n (ιn(I))

= t̂ntk,n−1t̂
−1
n (ιn(I))

= tk,n−1(ιn(I)− fn+1) + fn+1.

In this case we have n ∈ I. Hence I ′ = I r { n } ∈ In−1 and ιn(I) = ι(I ′) + fn+1. It
is easy to show that

τk,n(I) = τk,n−1(I ′) ∪ { n } .
Hence we have

ιn(τk,n(I)) = ιn(τk,n−1(I ′) ∪ { n })
= ιn(τk,n−1(I ′)) + fn+1

= ιn−1(τk,n−1(I ′)) + fn+1.

By assumption, we have ιn−1(τk,n−1(I ′)) = tk,n−1(ιn−1((I ′)). Hence we have
ιn(τk,n(I)) = ιn−1(τk,n−1(I ′)) + fn+1

= tk,n−1(ιn−1((I ′)) + fn+1

= tk,n−1(ιn−1((I)− fn+1) + fn+1. �

Lemma 4.8. Let n > 2. If ιn−1 ◦ τn−1,n−1 = tn−1,n−1 ◦ ιn−1, then ιn ◦ τn−1,n =
tn−1,n ◦ ιn.

Proof. First consider the case where ιn(I) 6 fn+1. In this case, we have I ∈
In−1. Hence we have τn−1,n(I) = τn−1,n−1(I), which implies ιn(τn−1,n(I)) =
ιn(τn−1,n−1(I)). Since τn−1,n−1(I) ∈ In−1, we have

ιn(τn−1,n−1(I)) = ιn−1(τn−1,n−1(I)).
Hence we have ιn−1(τn−1,n−1(I)) = tn−1,n−1(ιn−1(I)) = tn−1,n−1(ιn(I)). Since
tn−1,n = tn−1,n−1, we have ιn(τn−1,n(I)) = tn−1,n(ιn(I)).

Next we consider the case where fn+1 < ιn(I). We show that ιn(τn−1,n(I)) equals
t̂n−1(ιn(I)) = ιn(I). In this case, I contains n. Hence it follows that τn−1,n(I) = I
and that ιn(τn−1,n(I)) = ιn(I). �

Lemma 4.9. We have ιn ◦ τn,n = tn,n ◦ ιn for n > 2.

Proof. First we consider the case where ιn(I) 6 fn. We show that ιn(τn,n(I)) equals
t̂n(ιn(I)) = ιn(I) + fn+1. In this case, we have I ∈ In−2, which implies I does not
contain n − 1, n. Hence τn,n(I) = I ∪ { n }. Since ιn(I ∪ { n }) = ιn(I) + fn+1 for
I ∈ In−2, it follows that ιn(τn,n(I)) = ιn(I) + fn+1.

Next we consider the case where fn < ιn(I) 6 fn+1. We show that ιn(τn,n(I))
equals t̂n(ιn(I)) = ιn(I). In this case, we have I ∈ În−3, which implies I contains
n− 1. Hence τn,n(I) = I and ιn(τn,n(I)) = ιn(I).

Finaly we consider the case where fn+1 < ιn(I) 6 fn+2. We show that ιn(τn,n(I))
equals t̂n(ιn(I)) = ιn(I) − fn+1. In this case, we have I ∈ În−2, which implies I
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contains n. Hence τn,n(I) = I r { n }. Since ιn(I ∪{ n }) = ιn(I) + fn+1 for I ∈ In−2,
it follows that ιn(τn,n(I)) = ιn(I)− fn+1. �

Lemmas 4.7, 4.8 and 4.9 imply the following lemma:

Lemma 4.10. If n > 2 and ιn−1 ◦ τk,n−1 = tk,n−1 ◦ ιn−1, then ιn ◦ τk,n = tk,n ◦ ιn.

Therefore, by induction on n, we have ιn ◦ τk,n = tk,n ◦ ιn for n > 1.
Since ιn induces a bijection between In and Fn+2, the bijective map

{ τ1,n, . . . , τn,n } → Gn

τk,n 7→ tk,n

induces the homomorphism from Γn to 〈Gn〉 which preserves the actions. Since Gn

generates the fn+2-th symmetric group Sfn+2 , the group Γn is isomorphic to Sfn+2 .
Hence |Γn| = |Sfn+2 | = |SIn |. Since Γn ⊂ SIn , we have Theorem 3.7.
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