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Jacobi–Trudi formulas for flagged refined
dual stable Grothendieck polynomials

Jang Soo Kim

Abstract Recently Galashin, Grinberg, and Liu introduced the refined dual stable
Grothendieck polynomials, which are symmetric functions in x = (x1, x2, . . .) with addi-
tional parameters t = (t1, t2, . . .). The refined dual stable Grothendieck polynomials are
defined as a generating function for reverse plane partitions of a given shape. They interpolate
between Schur functions and dual stable Grothendieck polynomials introduced by Lam and
Pylyavskyy in 2007. Flagged refined dual stable Grothendieck polynomials are a more refined
version of refined dual stable Grothendieck polynomials, where lower and upper bounds are
given for the entries of each row or column. In this paper Jacobi–Trudi-type formulas for flagged
refined dual stable Grothendieck polynomials are proved using plethystic substitution. This
resolves a conjecture of Grinberg and generalizes a result by Iwao and Amanov–Yeliussizov.

1. Introduction
The (skew) Schur functions sλ/µ(x) are a central object in algebraic combinatorics.
They are symmetric functions in the variables x = (x1, x2, . . . ) and can be defined
combinatorially as a generating function for semistandard Young tableaux of shape
λ/µ. The Jacobi–Trudi formula and its dual formula express sλ/µ(x) as a determinant
in terms of the complete homogeneous symmetric functions hk(x) and the elementary
symmetric functions ek(x), respectively:

sλ/µ(x) = det
(
hλi−µj−i+j(x)

)
16i,j6`(λ) ,(1)

sλ′/µ′(x) = det
(
eλi−µj−i+j(x)

)
16i,j6`(λ) ,(2)

where `(λ) is the number of parts in λ and λ′ is the transpose of λ.
The row-flagged and column-flagged Schur functions srow(α,β)

λ/µ (x) and s
col(α,β)
λ/µ (x)

are defined as a generating function for semistandard Young tableaux of shape λ/µ
in which entries in each row or column have lower and upper bounds specified by α
and β. Flagged Schur functions were introduced by Lascoux and Schützenberger [10]
in their study of Schubert polynomials. See [2, 12, 14] and references therein for more
details on flagged Schur functions. Jacobi–Trudi formulas for flagged Schur functions
were discovered by Gessel [4] and Wachs [14].
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Theorem 1.1 ([14, Theorems 3.5 and 3.5*]). Let α = (α1, . . . , αn) and β =
(β1, . . . , βn) be sequences of nonnegative integers and let λ and µ be partitions with
at most n parts.

If αi 6 αi+1 and βi 6 βi+1 whenever µi < λi+1, then

(3) s
row(α,β)
λ/µ (x) = det

(
hλi−µj−i+j(xαj+1, . . . , xβi)

)
16i,j6n ,

where (xαj+1, . . . , xβi) is the empty list if βi 6 αj.
If αi − µi 6 αi+1 − µi+1 + 1 and βi − λi 6 βi+1 − λi+1 + 1 whenever µi < λi+1,

then
(4) s

col(α,β)
λ′/µ′ (x) = det

(
eλi−µj−i+j(xαj+1, . . . , xβi)

)
16i,j6n .

Lam and Pylyavskyy [9] introduced dual stable Grothendieck polynomials gλ/µ(x),
which originate from the K-theory of Grassmannians. They showed that gλ/µ(x) is a
generating function for reverse plane partitions of shape λ/µ. The refined dual stable
Grothendieck polynomials g̃λ/µ(x; t) are power series in variables x = (x1, x2, . . . )
and t = (t1, t2, . . . ) introduced by Galashin, Grinberg, and Liu [3]. Similar to dual
stable Grothendieck polynomials, g̃λ/µ(x; t) are defined as a generating function for
reverse plane partitions of shape λ/µ with more refined weight system. The refined
dual stable Grothendieck polynomials interpolate between Schur functions and dual
stable Grothendieck polynomials. If ti = 0 for all i, then g̃λ/µ(x; t) becomes the Schur
function sλ/µ(x), and if ti = 1 for all i, then g̃λ/µ(x; t) becomes the dual stable
Grothendieck polynomial gλ/µ(x).

The following theorem was conjectured by Grinberg [5] and proved independently
by Amanov and Yeliussizov [1], and the author [8].

Theorem 1.2 ([1, 8]). For partitions λ and µ, we have

g̃λ/µ(x; t) = det
(
eλ′

i
−µ′

j
−i+j(x1, x2, . . . , tµ′

j
+1, tµ′

j
+2, . . . , tλ′

i
−1)
)

16i,j6`(λ′)
,

where, if µ′j + 1 > λ′i − 1, the (i, j) entry is defined to be eλ′
i
−µ′

j
−i+j(x1, x2, . . . ).

Since there are two Jacobi–Trudi formulas for sλ/µ(x) in (1) and (2), a natural
question is whether there is a Jacobi–Trudi formula for g̃λ/µ(x; t) in terms of hk’s.
For the case of dual stable Grothendieck polynomials, equivalently the case that all
ti = 1, Amanov and Yeliussizov [1, Theorem 14], and Iwao [7, Proposition 5.2] found
the following formula.

Theorem 1.3 ([1, 7]). For partitions λ and µ, we have
gλ/µ(x) = g̃λ/µ(x; (1, 1, . . . )) = det

(
φi−jhλi−µj−i+j(x)

)
16i,j6`(λ) ,

where φkhn =
∑n
i=0
(
k+i−1
i

)
hn−i.

In this paper we give a Jacobi–Trudi formula for g̃λ/µ(x; t) in terms of hk’s us-
ing plethystic substitution. We also give an equivalent version of Theorem 1.2 using
plethystic substitution. More generally, we prove Jacobi–Trudi formulas for flagged
refined dual stable Grothendieck polynomials g̃col(α,β)

λ′/µ′ (x; t) and g̃row(α,β)
λ/µ (x; t), which

are generating functions for reverse plane partitions in which each column and row
has lower and upper bounds given by α and β. See Section 2 for the precise definitions.

Our main results are the two Jacobi–Trudi-type formulas in the following theorem.

Theorem 1.4. Let α = (α1, . . . , αn) and β = (β1, . . . , βn) be sequences of nonnegative
integers and let λ and µ be partitions with at most n parts.

If αi 6 αi+1 + 1 and βi 6 βi+1 + 1 whenever µi < λi+1, then

(5) g̃
col(α,β)
λ′/µ′ (x; t) = det

(
eλi−µj−i+j [X(αj ,βi] + Tλi−1 − Tµj ]

)
16i,j6n ,
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where X(i,j] = xi+1 + xi+2 + · · · + xj for i < j and X(i,j] = 0 for i > j, and
Ti = t1 + t2 + · · ·+ ti for i > 1 and T0 = 0.

If αi 6 αi+1 and βi 6 βi+1 whenever µi < λi+1, then

(6) g̃
row(α,β)
λ/µ (x; t) = det

(
hλi−µj−i+j [X(αj ,βi] + Ti−1 − Tj−1]

)
16i,j6n .

Note that the assumption on α and β in our formula (5) is different from that in
the formula (4). In fact (5) is not true under the assumptions for (4), see Remark 3.5.

The basic idea of proof of (5) and (6) is to show that both sides of the equation sat-
isfy the same recurrence relation. We also show that (5) is equivalent to the following
formula, which was conjectured by Grinberg (private communication).

Theorem 1.5. Let α = (α1, . . . , αn) and β = (β1, . . . , βn) be sequences of nonnegative
integers and let λ and µ be partitions with at most n parts. If αi 6 αi+1 + 1 and
βi 6 βi+1 + 1 whenever µi < λi+1, then

(7) g̃
col(α,β)
λ′/µ′ (x; t) = det

(
eλi−µj−i+j(xαj+1, . . . , xβi , tµj+1, . . . , tλi−1)

)
16i,j6n .

Note that Theorem 1.2 follows from Theorem 1.5. As a corollary of Theorem 1.4
we obtain two Jacobi–Trudi formulas for the refined dual stable Grothendieck poly-
nomials.

Corollary 1.6. Let λ and µ be partitions with at most n parts. Then
g̃λ′/µ′(x; t) = det

(
eλi−µj−i+j [X + Tλi−1 − Tµj ]

)
16i,j6n ,(8)

g̃λ/µ(x; t) = det
(
hλi−µj−i+j [X + Ti−1 − Tj−1]

)
16i,j6n ,(9)

where X = x1 + x2 + · · · and Ti = t1 + t2 + · · ·+ ti for i > 1 and T0 = 0.

It can also be shown that the formula (8) is equivalent to Theorem 1.2. Note that
Corollary 1.6 reproves the symmetry of g̃λ/µ(x; t) in the x variables.

We note that Motegi and Scrimshaw [13] also proved (9) using difference operators.
The remainder of this paper is organized as follows. In Section 2 we give basic

definitions. In Section 3 we restate our main results and give some remarks. In the
last two sections we prove the main results.

2. Preliminaries
In this section we give necessary definitions to prove the main results.

2.1. Basic definitions. Denote by N the set of nonnegative integers. For n ∈ N,
we denote [n] = {1, 2, . . . , n}. If α ∈ Nn, the ith entry of α is denoted by αi, i.e. α =
(α1, . . . , αn). For α, β ∈ Nn, we write α < β (resp. α 6 β) if αi < βi (resp. αi 6 βi)
for all 1 6 i 6 n.

An element α ∈ Nn is called a partition if α1 > · · · > αn. Denote by Parn the set
of partitions in Nn.

Let λ ∈ Parn. The Young diagram of λ is the set {(i, j) ∈ Z×Z : 1 6 i 6 n and 1 6
j 6 λi}. We will identify λ with its Young diagram. Therefore a partition is considered
as a sequence of nonnegative integers and also as a set of pairs of positive integers.
Each element (i, j) ∈ λ is called a cell. The Young diagram λ will be visualized
as an array of squares where we place a square in row i and column j for each
(i, j) ∈ λ using the matrix coordinates. The transpose λ′ of λ is the partition given
by λ′ = {(j, i) : (i, j) ∈ λ}. Note that if λ = (λ1, . . . , λn) ∈ Parn, then λ′ ∈ Parλ1 . See
Figure 1.

Note that for two partitions λ and µ, we have µ ⊆ λ (as Young diagrams) if and
only if µ 6 λ (as elements in Nn). We will mostly use the notation µ ⊆ λ since this
emphasizes that µ and λ are Young diagrams.
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Figure 1. The Young diagram of λ = (4, 3, 1) on the left and its
transpose λ′ = (3, 2, 2, 1) on the right.

For two partitions λ and µ with µ ⊆ λ, the skew shape λ/µ is the set-theoretic
difference λ−µ of their Young diagrams. In other words, if λ, µ ∈ Parn satisfy µ ⊆ λ,
then λ/µ is the set of pairs (i, j) ∈ Z× Z such that 1 6 i 6 n and µi + 1 6 j 6 λi. A
reverse plane partition (RPP) of shape λ/µ is a filling of λ/µ with positive integers
such that the entries are weakly increasing in each row and column. If R is an RPP
of shape λ/µ, the (i, j) entry of R is denoted by R(i, j). The transpose of R is the
RPP R′ of shape λ′/µ′ given by R′(i, j) = R(j, i) for all (i, j) ∈ λ′/µ′. See Figure 2.

2 2 3
1 1 2 3

1 1 2 2 3
1 2 3
2 2 3

1 1 2
1 1 2 2
1 2 3 3

2 2 2
2 3 3
3

Figure 2. An RPP R of shape (6, 5, 5, 3, 3)/(3, 1) on the left and its
transpose R′ on the right.

For λ, µ ∈ Nn, the set of RPPs of shape λ/µ is denoted by RPPλ/µ. If µ 6∈ Parn,
λ 6∈ Parn, or µ 6⊆ λ, then RPPλ/µ is defined to be the empty set. For R ∈ RPPλ/µ,
define

wt(R) =
∏
i>1

x
ai(R)
i t

bi(R)
i ,

where ai(R) is the number of columns of R containing an i and bi(R) is the number
of cells (i, j) such that (i, j), (i + 1, j) ∈ λ/µ and R(i, j) = R(i + 1, j). For example,
if R is the RPP shown in Figure 2 on the left, then wt(R) = x3

1x
5
2x

3
3t1t

3
2t3t

2
4 and

wt(R′) = x3
1x

5
2x

5
3t

2
1t2t3t4.

Let x = {x1, x2, . . . } and t = {t1, t2, . . . } be sets of variables. For r ∈ N and s ∈ Z,
define

X(r,s] = xr+1 + xr+2 + · · ·+ xs,

where empty sums are zero, i.e. X(r,s] = 0 if r > s. In other words, X(r,s] is the sum
of the variables xi for the integers i in the interval (r, s] = {u ∈ R : r < u 6 s}. We
define T(r,s] in the same way using the variables ti. For integers i, we also define

Xi = x1 + x2 + · · ·+ xi, Ti = t1 + t2 + · · ·+ ti,

where empty sums are zero, i.e. Xi = Ti = 0 if i 6 0. Note that if 0 6 r 6 s, then
X(r,s] = Xs −Xr.

Let z = {zi : i ∈ I} be a set of variables, where I ⊆ N. The elementary symmetric
function en(z) and the complete homogeneous symmetric function hn(z), for n > 1,
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are defined by

en(z) =
∑

i1<···<in in I

zi1 · · · zin ,

hn(z) =
∑

i16···6in in I

zi1 · · · zin .

We define e0(z) = h0(z) = 1 and ek(z) = hk(z) = 0 for k < 0. Note that ek(z) = 0
whenever z = {zi : i ∈ I} satisfies |I| < k.

2.2. Flagged refined dual stable Grothendieck polynomial. For λ, µ ∈ Nn,
the refined dual stable Grothendieck polynomial g̃λ/µ(x; t) is defined by

g̃λ/µ(x; t) =
∑

R∈RPPλ/µ

wt(R).

The polynomials g̃λ/µ(x; t) were introduced by Galashin, Grinberg, and Liu [3]. They
showed that g̃λ/µ(x; t) is symmetric in the variables x but not in the variables t.

For α, β, λ, µ ∈ Nn, define RPProw(α,β)
λ/µ to be the set of RPPs R of shape λ/µ such

that αi + 1 6 R(i, j) 6 βi for all (i, j) ∈ λ/µ. Similarly, for α, β ∈ Nn and partitions
λ, µ with λ′, µ′ ∈ Nn, define RPPcol(α,β)

λ/µ to be the set of RPPs R of shape λ/µ such
that αj + 1 6 R(i, j) 6 βj for all (i, j) ∈ λ/µ.

The row-flagged refined dual stable Grothendieck polynomial g̃row(α,β)
λ/µ (x; t) and

the column-flagged refined dual stable Grothendieck polynomial g̃col(α,β)
λ/µ (x; t) are de-

fined by

g̃
row(α,β)
λ/µ (x; t) =

∑
R∈RPProw(α,β)

λ/µ

wt(R),

g̃
col(α,β)
λ/µ (x; t) =

∑
R∈RPPcol(α,β)

λ/µ

wt(R).

For simplicity we will sometimes omit (x; t) and write g̃row(α,β)
λ/µ and g̃col(α,β)

λ/µ .

2.3. Plethystic substitution. Let Λ = ΛQ denote the ring of symmetric functions
with rational coefficients. The power sum symmetric functions pk(x) = xk1 + xk2 + · · ·
generate Λ as a Q-algebra. Let Q[[a1, a2, . . . ]] denote the ring of formal power series
in variables a1, a2, . . . with rational coefficients. Once A ∈ Q[[a1, a2, . . . ]] is fixed, the
plethystic substitution f [A] for f ∈ Λ is defined by the following rules:

• for k > 1, pk[A] is obtained from A by replacing each ai by aki ,
• the map f 7→ f [A] is a ring homomorphism from Λ to Q[[a1, a2, . . . ]].

If A = a1 + · · · + an, then pk[A] = ak1 + · · · + akn = pk(a1, . . . , an), which implies
f [A] = f(a1, . . . , an) for all f ∈ Λ. We refer the reader to [11] for more details on
plethystic substitution. We need the following well known properties of the plethystic
substitution.

Proposition 2.1. Let A,B ∈ QJa1, a2, . . .K and f ∈ Λ. Then

f [A+B] =
∑
(f)

f(1)[A]f(2)[B],

f [−A] = (S(f))[A],
where the Sweedler notation is used and S is the antipode of the Hopf algebra of sym-
metric functions. See [6] for more details on the Sweedler notation and the antipode.
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In this paper we only need to compute f [A] and f [A − B] when f = ek or f =
hk, and both A and B are sums of variables taken from x = (x1, x2, . . . ) and t =
(t1, t2, . . . ). If A and B are any formal power series with integer coefficients, since
Shk = (−1)kek and Sek = (−1)khk, we have

hk[−A] = (−1)kek[A],(10)
ek[−A] = (−1)khk[A],(11)

hk[A−B] =
k∑
i=0

hk−i[A](−1)iei[B],(12)

ek[A−B] =
k∑
i=0

ek−i[A](−1)ihi[B].(13)

3. Main results
In this section we restate our main results, Theorem 1.4 in the introduction, as two
separate theorems, Theorems 3.2 and 3.4, and prove their corollaries. The main results
will be proved in the next two sections.

The following theorem is Theorem 1.5 in the introduction, which is equivalent to
one of the main results.

Theorem 3.1. Let α, β ∈ Nn and µ, λ ∈ Parn. If αi 6 αi+1 + 1 and βi 6 βi+1 + 1
whenever µi < λi+1, then

g̃
col(α,β)
λ′/µ′ (x; t) = det

(
eλi−µj−i+j(xαj+1, . . . , xβi , tµj+1, . . . , tλi−1)

)
16i,j6n .

The following theorem is the first main result in this paper. Using simple determi-
nant evaluation techniques we show that Theorem 3.1 is equivalent to this theorem,
see Proposition 4.19.

Theorem 3.2. Let α, β ∈ Nn and µ, λ ∈ Parn. If αi 6 αi+1 + 1 and βi 6 βi+1 + 1
whenever µi < λi+1, then

g̃
col(α,β)
λ′/µ′ (x; t) = det

(
eλi−µj−i+j [X(αj ,βi] + Tλi−1 − Tµj ]

)
16i,j6n .

Remark 3.3.Note that the (i, j) entry of the matrix in Theorem 3.1 can be written as
eλi−µj−i+j(xαj+1, . . . , xβi , tµj+1, . . . , tλi−1) = eλi−µj−i+j [X(αj ,βi] + T(µj ,λi−1]].

If we replace T(µj ,λi−1] by Tλi−1 − Tµj , we obtain Theorem 3.2. However, unlike the
t variables, replacing X(αj ,βi] by Xβi − Xαj does not give a correct formula. For
example, if n = 1, µ = ∅, λ = (1), α = (2) and β = (1), then g̃

col(α,β)
λ′/µ′ (x; t) = 0 by

definition, but
det
(
eλi−µj−i+j [Xβi −Xαj + Tλi−1 − Tµj ]

)
16i,j6n = e1[−x2] = −h1(x2) 6= 0.

The following theorem is the second main result, which is a dual version of Theo-
rem 3.2.

Theorem 3.4. Let α, β ∈ Nn and µ, λ ∈ Parn. If αi 6 αi+1 and βi 6 βi+1 whenever
µi < λi+1, then

g̃
row(α,β)
λ/µ (x; t) = det

(
hλi−µj−i+j [X(αj ,βi] + Ti−1 − Tj−1]

)
16i,j6n .

Theorems 3.2 and 3.4 combined yield Theorem 1.4. Note that, for the variables
in the plethystic substitution in Theorem 3.4, there are four ways of choosing the x
and t variables from {X(αj ,βi], Xβi −Xαj} and {T(j−1,i−1], Ti−1−Tj−1}, respectively.
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In contrast to Theorem 3.2, the choice in Theorem 3.4 is the only one that gives a
correct formula.

Remark 3.5. Recall that in the formula (4) the assumption is αi−µi 6 αi+1−µi+1+1
and βi−λi 6 βi+1−λi+1 + 1 whenever µi < λi+1. On the other hand the assumption
in Theorem 3.2 is αi 6 αi+1 + 1 and βi 6 βi+1 + 1 whenever µi < λi+1. We cannot
replace the assumption in Theorem 3.2 by that in (4). For example, if λ = (3, 3),
µ = (2), α = (2, 0), and β = (2, 2), then g̃col(α,β)

λ′/µ′ (x; t) = 0 but

det
(
eλi−µj−i+j [X(αj ,βi] + Tλi−1 − Tµj ]

)
16i,j6n = det

(
0 x1x2t1t2
1 e3(x1, x2, t1, t2)

)
6= 0.

Remark 3.6. In Theorem 3.4 the assumption αi 6 αi+1 and βi 6 βi+1 whenever
µi < λi+1 is necessary. For example, if λ = (2, 2), µ = (1), α = (1, 0), and β = (1, 1),
then g̃row(α,β)

λ/µ = 0 but

det
(
hλi−µj−i+j [X(αj ,βi] + Ti−1 − Tj−1]

)
16i,j6n = det

(
0 x3

1 − x2
1t1

1 x2
1

)
6= 0.

Moreover, the assumption λ, µ ∈ Parn is also necessary. If λ = (1, 1), µ = (0, 1),
α = (0, 0), and β = (1, 1), then g̃row(α,β)

λ/µ = 0 but

det
(
hλi−µj−i+j [X(αj ,βi] + Ti−1 − Tj−1]

)
16i,j6n = det

(
x1 x1 − t1
1 1

)
6= 0.

The following corollary is the formula (9) in the introduction.

Corollary 3.7. For any λ, µ ∈ Parn, we have

g̃λ/µ(x; t) = det
(
hλi−µj−i+j [X + Ti−1 − Tj−1]

)
16i,j6n .

Proof. Let (an) denote the sequence (a, a, . . . , a) consisting of n a’s. By definition of
g̃

row(α,β)
λ/µ (x; t) and Theorem 3.4,

g̃λ/µ(x; t) = lim
b→∞

g̃λ/µ((x1, . . . , xb, 0, 0, . . . ); t)

= lim
b→∞

g̃
row((0n),(bn))
λ/µ (x; t)

= lim
b→∞

det
(
hλi−µj−i+j [X(0,b] + Ti−1 − Tj−1]

)
16i,j6n

= det
(
hλi−µj−i+j [X + Ti−1 − Tj−1]

)
16i,j6n . �

Similarly, Theorem 1.2 follows from Theorem 3.1, and (8) follows from (5).
Theorem 1.3 is the special case ti = 1 of Corollary 3.7. Amanov and Yeliussizov [1]

showed Theorem 1.3 using Theorem 1.2 and an involution τ : Λ → Λ satisfying
τ(g̃λ/µ(x; t)) = g̃λ′/µ′(x; t) when all ti are equal to 1. Unfortunately there is no such
map for the general t. To see this suppose that there were an algebra homomorphism
ψ : Λ→ Λ satisfying ψ(g̃λ/µ(x; t)) = g̃λ′/µ′(x; t). Then it must satisfy

ψ(hk(x)) = ψ(g̃(k)(x; t)) = g̃(1k)(x; t) = ek[X + Tk−1].

Since hk(x) = g̃(k)(x; t) = g̃(k+1)/(1)(x; t), we must also have

ψ(hk(x)) = ψ(g̃(k+1)/(1)(x; t)) = g̃(1k+1)/(1)(x; t) = ek[X + Tk − T1].

Since ek[X + Tk−1] 6= ek[X + Tk − T1], the map ψ cannot exist.
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4. A proof of the Jacobi–Trudi formula for g̃
col(α,β)
λ′/µ′

In this section we prove the Jacobi–Trudi formula for g̃col(α,β)
λ′/µ′ in Theorem 3.2. The

basic idea of the proof is to show that both sides of the equation satisfy the same
recurrence relation. We first introduce several definitions.

A diagram is just a (finite) set of pairs (i, j) of positive integers. As in the case
of Young diagrams we visualize a diagram ρ as an array of squares where a square
is placed in row i and column j for each (i, j) ∈ ρ. For a diagram ρ, define ρi to be
the number of j’s such that (i, j) ∈ ρ. The kth row (resp. column) of ρ is the set of
cells (i, j) ∈ ρ with i = k (resp. j = k). For two diagrams σ and ρ with ρ ⊆ σ, denote
by σ − ρ their set-theoretic difference, which is also a diagram. If a diagram ρ is a
Young diagram with at most n rows, it is identified with the partition (ρ1, . . . , ρn) as
before. If R is an RPP of shape λ/µ and ρ ⊆ λ/µ is a diagram, the restriction of R to
ρ is denoted by R|ρ. We extend the definition of an RPP of shape λ/µ to an RPP of
shape ρ for any diagram ρ as follows. A reverse plane partition (RPP) of shape ρ is a
filling R of ρ with positive integers such that R(i, j) 6 R(i′, j′) for all (i, j), (i′, j′) ∈ ρ
with i 6 i′ and j 6 j′. The notation used for RPPs of shape λ/µ will be extended to
RPPs of shape ρ in the obvious way. For example, RPPρ is the set of RPPs of shape ρ
and RPProw(α,β)

ρ is the set of elements R ∈ RPPρ with the additional condition that
αi + 1 6 R(i, j) 6 βi for all (i, j) ∈ ρ.

Let µ, λ ∈ Parn with µ ⊆ λ. We define a total order ≺ on the cells in λ/µ as
follows: (i, j) ≺ (i′, j′) if and only if j > j′ or j = j′ and i < i′. Note that by
definition (i, j) ≺ (i′, j′) implies (i, j) 6= (i′, j′). Denote by (λ/µ)(m) the set of the
first m cells in λ/µ in the total order ≺. Note that (λ/µ)(m) is not necessarily a skew
shape, see Figure 3.

Definition 4.1. Let α, β ∈ Nn and µ, λ ∈ Parn with µ ⊆ λ. Let ρ = (λ/µ)(m) for
some 0 6 m 6 |λ/µ| and let R0 ∈ RPProw(α,β)

ρ . Then we define

RPProw(α,β)
λ/µ (R0) = {R ∈ RPProw(α,β)

λ/µ : R|ρ = R0},
C(ρ) = {1 6 i 6 n : ρi > 0},

B(R0, β) = (β̃1, . . . , β̃n),

where β̃i is defined by

β̃i =
{
R0(i, λi − ρi + 1), if i ∈ C(ρ),
βi, if i /∈ C(ρ).

Note that if i ∈ C(ρ), then (i, λi − ρi + 1) is the leftmost cell in the ith row of ρ.

One may consider an element in RPProw(α,β)
λ/µ (R0) as an RPP in RPProw(α,β)

λ/µ that
can be obtained from R0 by filling the remaining cells in (λ/µ) − ρ. The motivation
for introducing RPProw(α,β)

λ/µ (R0) is to construct an RPP of shape λ/µ by filling the
cells in λ/µ one at a time with respect to the order of the cells given by ≺. This will
allow us to find a recurrence relation for a generating function for restricted RPPs.

Note that each element β̃i in B(R0, β) acts as an upper bound for the remaining
entries in row i for an RPP in RPProw(α,β)

λ/µ (R0). For example, if R0 is the RPP shown
in Figure 3, and α = (0, 0, 1, 1, 2) and β = (5, 5, 6, 7, 7), then C(ρ) = {1, 2, 3, 4} and
B(R0, β) = (3, 1, 3, 4, 7). Note also that if the ith row of (λ/µ)− ρ is empty, then the
lower and upper bounds for the entries in row i are irrelevant.

Algebraic Combinatorics, Vol. 5 #1 (2022) 128



Jacobi–Trudi formulas for flagged dual Grothendieck polynomials

3 3 4 4
1 1 4 4 5

3 4 4 6
4 4

Figure 3. The left diagram shows λ/µ and ρ = (λ/µ)(m), where
λ = (8, 7, 7, 5, 3), µ = (4, 2), m = 15, and the cells in ρ are the gray
cells. The right diagram shows an RPP of shape ρ.

For R ∈ RPPλ/µ, we define

wt(R) =
∏
i>1

x
ai(R)
i t

bi(R)
i ,

where ai(R) is the number of columns containing an i and bi(R) is the number of cells
(i, j) such that (i, j), (i+ 1, j) ∈ λ/µ and R(i, j) = R(i+ 1, j). We also define

wt(R) =
∏
j>1

x
aj(R)
j t

bj(R)
j ,

where aj(R) is the number of rows containing a j and bj(R) is the number of cells
(i, j) such that (i, j), (i, j + 1) ∈ λ/µ and R(i, j) = R(i, j + 1).

Note that an RPP R and its transpose R′ satisfy wt(R) = wt(R′).

Definition 4.2. For any α, β ∈ Nn, µ, λ ∈ Parn with µ ⊆ λ, and a fixed RPP R0 of
shape ρ = (λ/µ)(m), define

Rα,βλ,µ(R0) =
∑

R∈RPProw(α,β)
λ/µ

(R0)

wt(R),

Rα,βλ,µ(R0) =
∑

R∈RPProw(α,β)
λ/µ

(R0)

wt(R).

Note that, by definition,

g̃
row(α,β)
λ/µ (x; t) = Rα,βλ,µ(∅),

g̃
col(α,β)
λ/µ (x; t) = Rα,βλ′,µ′(∅),

where ∅ is the unique filling of the empty diagram and we define Rα,βλ,µ(∅) =
Rα,βλ,µ(∅) = 0 if µ 6⊆ λ. In order to avoid using transposes in the proof, instead of the
latter equation above we will consider

g̃
col(α,β)
λ′/µ′ (x; t) = Rα,βλ,µ(∅).

Definitions 4.1 and 4.2 will also be used in the next section. We need one more
definition for this section.
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Definition 4.3. For α, β, µ, λ ∈ Nn, C ⊆ [n], and 1 6 i, j 6 n, define

eα,βλ,µ(i, j) = eλi−i−µj+j [X(αj ,βi] + Tλi−1 − Tµj ],

eα,βλ,µ(i, j) = eλi−i−µj+j [X(αj ,βi−1] + Tλi − Tµj ],

eα,βλ,µ(C; i, j) =
{
eα,βλ,µ(i, j), if i 6∈ C,
eα,βλ,µ(i, j), if i ∈ C,

Eα,βλ,µ (C) = det(eα,βλ,µ(C; i, j))16i,j6n,

Eα,βλ,µ = det(eα,βλ,µ(i, j))16i,j6n.

If µ ⊆ λ, ρ = (λ/µ)(m), and R0 ∈ RPProw(α,β)
ρ , we define

(14) Eα,βλ,µ (R0) = wt(R0)Eα,B(R0,β)
λ−ρ,µ (C(ρ)).

Note that
Eα,βλ,µ = Eα,βλ,µ (∅) = Eα,βλ,µ (∅),

where the second ∅ stands for the unique filling of the empty diagram (λ/µ)(0).
Using the notation above Theorem 3.2 can be stated as

Eα,βλ,µ = Rα,βλ,µ(∅).
Our strategy is to show that both sides of the above equation satisfy the same recur-
rence relation.

We will frequently use the following lemmas, which can easily be proved using
elementary linear algebra.

Lemma 4.4. Let A = (ai,j)16i,j6n be a matrix. If there is an integer 1 6 k 6 n such
that ai,j = 0 for all k 6 i 6 n and 1 6 j 6 k, then det(A) = 0. Similarly, if there
is an integer 1 6 k 6 n such that ai,j = 0 for all 1 6 i 6 k and k 6 j 6 n, then
det(A) = 0.

Lemma 4.5. Let A = (ai,j)16i,j6n be a matrix. If there is an integer 0 6 k 6 n such
that ai,j = 0 for all k + 1 6 i 6 n and 1 6 j 6 k, then

det(A) = det(ai,j)16i,j6k det(ai,j)k+16i,j6n.

Similarly, if there is an integer 0 6 k 6 n such that ai,j = 0 for all 1 6 i 6 k and
k + 1 6 j 6 n, then

det(A) = det(ai,j)16i,j6k det(ai,j)k+16i,j6n.

Lemma 4.6. Let A = (ai,j)16i,j6n be a matrix. Assume that there is an integer 1 6
k 6 n such that ai,j = χ(i = j = k) for all k 6 i 6 n and 1 6 j 6 k. Then,
det(A) = det(ai,j)16i,j6k−1 det(ai,j)k+16i,j6n. Furthermore, each nonzero term in
the expansion of det(A) must contain the (k, k) entry (which is 1).

4.1. Technical lemmas. In this subsection we give a list of lemmas that will be
used to prove Theorem 3.2.

From now on, once n is given, let εk = (0, . . . , 0, 1, 0, . . . , 0) be the sequence of n−1
zeros and one 1, where the unique 1 is at position k. For a statement p, we define
χ(p) = 1 if p is true and χ(p) = 0 otherwise.

Let QParn denote the set of α ∈ Nn such that αi 6 αi+1 + 1 for all i ∈ [n − 1].
Note that if α ∈ QParn and 1 6 i 6 j 6 n, then αi 6 αj + j − i.

We note a simple but crucial fact: If k ∈ Z, and if A is a sum of fewer than k
variables, then
(15) ek[A] = 0.
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(This is because ek[A] = ek (a1, a2, . . . , am) whenever A = a1 +a2 + · · ·+am is a sum
of variables.)

Now we give a list of lemmas.
Lemma 4.7. Let Z be a formal power series with integer coefficients and let z be any
(single) variable. Then, for any integer k,

ek[Z] = ek[Z − z] + zek−1[Z − z].
Proof. Since ek(x) = 0 for k < 0 and e0(x) = 1, the equation is clear when k 6 0.
Now we assume k > 1. By (13), for any m > 0, we have

em[Z − z] =
m∑
i=0

em−i[Z](−1)ihi(z) =
m∑
i=0

em−i[Z](−z)i.

Thus

ek[Z − z] + zek−1[Z − z] =
k∑
i=0

ek−i[Z](−z)i −
k−1∑
i=0

ek−i−1[Z](−z)i+1 = ek[Z],

as desired. �

Lemma 4.8. If i > j > 0 and k > i− j, then
ek[Ti − Tj ] = 0.

Proof. By definition we have ek[Ti−Tj ] = ek[tj+1 + · · ·+ ti] = ek(tj+1, . . . , ti), which
is equal to 0 because k > i− j. �

Lemma 4.9. Let α, β ∈ Nn, µ ∈ Parn, and C ⊆ [n]. Then
Eα,βµ,µ (C) = 1.

Proof. If i > j, we have µi − i − µj + j 6 0, where the equality holds if and
only if i = j. This shows that for all 1 6 j 6 i 6 n, we have eα,βµ,µ(C; i, j) =
χ(i = j) since eµi−i−µj+j [Y − Z] = χ(i = j) for any sums Y and Z of variables.
Therefore the matrix (eα,βµ,µ(C; i, j))16i,j6n is upper uni-triangular and Eα,βµ,µ (C) =
det(eα,βµ,µ(C; i, j))16i,j6n = 1. �

Lemma 4.10. Let α, β ∈ Nn and λ, µ ∈ Parn with µ 6⊆ λ. Then for any subset C ⊆ [n],

Eα,βλ,µ (C) = 0.
Proof. Since µ 6⊆ λ, there is an integer 1 6 k 6 n such that µk > λk. Then for all
k 6 i 6 n and 1 6 j 6 k, we have λi − i − µj + j 6 λk − k − µk + k < 0, and
therefore eα,βλ,µ(C; i, j) = 0 since em(x) = 0 for m < 0. By Lemma 4.4 this shows that
Eα,βλ,µ (C) = det(eα,βλ,µ(C; i, j))16i,j6n = 0. �

Lemma 4.11. Let α, β ∈ QParn and λ, µ ∈ Parn. Suppose that αk > βk and µk < λk
for some 1 6 k 6 n. Then

Eα,βλ,µ = 0.

Proof. By Lemma 4.4 it is enough to show that eα,βλ,µ(i, j) = 0 assuming 1 6 i 6 k
and k 6 j 6 n. Since α, β ∈ QParn, we have αj + j − k > αk > βk > βi − k + i.
Thus βi − αj 6 j − i and X(αj ,βi] is a sum of at most j − i variables. Furthermore,
Tλi−1 − Tµj is a sum of λi − 1− µj variables (since λi > λk > µk > µj). Using these
two facts, we obtain

eα,βλ,µ(i, j) = eλi−i−µj+j [X(αj ,βi] + Tλi−1 − Tµj ] = 0,
because X(αj ,βi] + Tλi−1 − Tµj is a sum of at most λi − i− µj + j − 1 variables (and
because of (15)). This completes the proof. �
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Lemma 4.12. Let α ∈ QParn, β ∈ Nn, µ ∈ Parn, and λ ∈ Nn. Suppose that k ∈ [n] is
an integer satisfying the following conditions:

(1) µk < λk,
(2) αk < βk, and
(3) if 1 6 j < k and µj < λk, then αj < βk.

Then for any C ⊆ [n], we have

Eα,βλ,µ (C) = Eα,β−εkλ,µ (C r {k}) + yEα,βλ−εk,µ(C ∪ {k}),

where

y =
{
xβk , if k 6∈ C,
tλk , if k ∈ C.

Proof. We consider the two cases k /∈ C and k ∈ C.

Case 1. k 6∈ C. We claim that, for all 1 6 j 6 n,

(16) eα,βλ,µ(k, j) = eα,β−εkλ,µ (k, j) + xβke
α,β
λ−εk,µ(k, j).

By definition we can rewrite (16) as

(17) eλk−k−µj+j [X(αj ,βk] + Tλk−1 − Tµj ]
= eλk−k−µj+j [X(αj ,βk−1] + Tλk−1 − Tµj ]

+ xβkeλk−k−µj+j−1[X(αj ,βk−1] + Tλk−1 − Tµj ].

If αj < βk, (17) follows from Lemma 4.7 with Z = X(αj ,βk] +Tλk−1−Tµj and z = xβk .
Suppose now that αj > βk. Then X(αj ,βk] = 0 and X(αj ,βk−1] = 0. Therefore in

order to prove the claim (17), it suffices to show

(18) eλk−k−µj+j−1[Tλk−1 − Tµj ] = 0,

because then both sides of (17) are equal to eλk−k−µj+j [Tλk−1 − Tµj ]. We will prove
(18) by considering the two cases j 6 k and k < j.

First we assume j 6 k. Since αj > βk and αk < βk, we have j 6= k, thus j < k. Thus,
by condition (3), if µj < λk, then αj < βk, which contradicts the assumption αj > βk.
Thus we must have λk 6 µj . Since j 6 k and λk 6 µj , we have λk−k−µj+j−1 6 −1,
which shows (18).

Now we assume k < j. Then λk > µk > µj . Since λk− k−µj + j− 1 > λk−µj − 1
and λk − 1 > µj , we obtain (18) by Lemma 4.8. This establishes the claim (16).

Using (16) and the linearity of the determinant in its kth row, we obtain the identity
in the lemma in this case.

Case 2. k ∈ C. We claim that, for all 1 6 j 6 n,

(19) eα,βλ,µ(k, j) = eα,β−εkλ,µ (k, j) + tλke
α,β
λ−εk,µ(k, j).

By Lemma 4.7 with Z = X(αj ,βk−1] + Tλk − Tµj and z = tλk , we have

eλk−k−µj+j [X(αj ,βk−1] + Tλk − Tµj ]
= eλk−k−µj+j [X(αj ,βk−1] + Tλk−1 − Tµj ]

+ tλkeλk−k−µj+j−1[X(αj ,βk−1] + Tλk−1 − Tµj ],

which is exactly (19). Using (19) and the linearity of the determinant in its kth row,
we obtain the identity in the lemma in this case, which completes the proof. �

Lemma 4.13. Suppose that α, β, µ, λ ∈ Nn, C ⊆ [n], and r ∈ [n] satisfy r /∈ C,
r − 1 ∈ C, λr = λr−1 + 1, and βr = βr−1 − 1. Then Eα,βλ,µ (C) = 0.
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Proof. We compare rows r and r − 1 of the matrix in the definition of

Eα,βλ,µ (C) = det
(
eα,βλ,µ(C; i, j)

)
16i,j6n

.

Since r /∈ C, the (r, j) entry of the matrix is

eα,βλ,µ(C; r, j) = eα,βλ,µ(r, j) = eλr−r−µj+j [X(αj ,βr] + Tλr−1 − Tµj ].
Since r − 1 ∈ C, the (r − 1, j) entry of the matrix is

eα,βλ,µ(C; r − 1, j) = eα,βλ,µ(r − 1, j) = eλr−1−(r−1)−µj+j [X(αj ,βr−1−1] + Tλr−1 − Tµj ].
Since λr = λr−1 + 1 and βr = βr−1 − 1, the right hand sides of the above two
equations are equal. Therefore rows r − 1 and r of the matrix are identical, which
implies Eα,βλ,µ (C) = 0. �

4.2. Proof of Theorem 3.2. We first show that Rα,βλ,µ(R0) and Eα,βλ,µ (R0) satisfy the
same recurrence relation under certain conditions.
Proposition 4.14. Let α, β ∈ QParn and λ, µ ∈ Parn with α < β and µ < λ. Fix
(r, c) ∈ λ/µ and R0 ∈ RPProw(α,β)

ρ , where ρ is the set of cells (i, j) ∈ λ/µ with
(i, j) ≺ (r, c). Let β̃ = (β̃1, . . . , β̃n) = B(R0, β). Then

Rα,βλ,µ(R0) =
β̃r∑
k=a
Rα,βλ,µ(R0 ∪ {k}),(20)

Eα,βλ,µ (R0) =
β̃r∑
k=a
Eα,βλ,µ (R0 ∪ {k}),(21)

where R0 ∪ {k} is the RPP obtained from R0 by adding the cell (r, c) with entry k,
and

a =
{
β̃r−1, if (r − 1, c) ∈ ρ and β̃r−1 > αr + 1,
αr + 1, otherwise.

Proof. For the sake of readability we will prove a number of small statements in this
proof in Lemma 4.15 later.

Observe that in order to construct an RPP R in RPProw(α,β)
λ/µ such that R|ρ = R0

we must fill the (r, c) cell of R with one of the integers a, a+ 1, . . . , β̃r. Therefore the
first identity (20) is immediate from the definition of Rα,βλ,µ(R0).

It remains to prove the second identity (21). From the inequality (27) below, we
have αr < β̃r.

Let C = C(ρ) = {1 6 i 6 n : ρi > 0} and

(22) s =
{
β̃r − β̃r−1 + 1, if (r − 1, c) ∈ ρ and β̃r−1 > αr + 1,
β̃r − αr, otherwise.

Since s = β̃r − a + 1 > 0 by (28), we can consider s as the number of integers k
satisfying a 6 k 6 β̃r. We will consider the two cases s = 0 and s > 1.

We first consider the case s = 0. In this case, β̃r = a − 1, so that the right hand
side of (21) is zero. Recall from (14) that the left hand side of (21) is

Eα,βλ,µ (R0) = wt(R0)Eα,B(R0,β)
λ−ρ,µ (C(ρ)) = wt(R0)Eα,β̃λ−ρ,µ(C),

since β̃ = B(R0, β) and C = C(ρ). Hence, to prove (21), it suffices to show that

(23) Eα,β̃λ−ρ,µ(C) = 0.
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From (29) below, we get r /∈ C(ρ) = C, whence C = C r {r}. Therefore (23) follows
from Lemma 4.16. This shows (21) for the case s = 0.

It remains to prove (21) for the case s > 1. Let

y =
{
x
β̃r
, if r 6∈ C,

tλr−ρr , if r ∈ C.

Since (r, c) ∈ (λ/µ)− ρ, we have µr < (λ− ρ)r. We also know that αr < β̃r. By (32)
below, if j < r and µj < (λ−ρ)r, then αj < β̃r− (s−1) 6 β̃r (since s > 1). Therefore
by Lemma 4.12 we have

(24) Eα,β̃λ−ρ,µ(C) = yEα,β̃λ−ρ−εr,µ(C ∪ {r}) + Eα,β̃−εrλ−ρ,µ (C r {r}).

For 1 6 i 6 s− 1, by (31) below, we have αr < β̃r − (s− 1) 6 β̃r − i = (β̃ − iεr)r
(whence β̃− iεr ∈ Nn), and furtheremore, by (32) below, we have αj < β̃r− (s− 1) 6
(β̃− iεr)r for each j < r satisfying µj < (λ−ρ)r. Therefore we can apply Lemma 4.12
repeatedly to Eα,β̃−iεrλ−ρ,µ (C r {r}), for i = 1, 2, . . . , s− 1, to get

Eα,β̃−εrλ−ρ,µ (C r {r}) = Eα,β̃−2εr
λ−ρ,µ (C r {r}) + x

β̃r−1E
α,β̃−εr
λ−ρ−εr,µ(C ∪ {r}),

Eα,β̃−2εr
λ−ρ,µ (C r {r}) = Eα,β̃−3εr

λ−ρ,µ (C r {r}) + x
β̃r−2E

α,β̃−2εr
λ−ρ−εr,µ(C ∪ {r}),

...

E
α,β̃−(s−1)εr
λ−ρ,µ (C r {r}) = Eα,β̃−sεrλ−ρ,µ (C r {r}) + x

β̃r−(s−1)E
α,β̃−(s−1)εr
λ−ρ−εr,µ (C ∪ {r}).

Since s > 1, combining (24) and the above equations yields

(25) Eα,β̃λ−ρ,µ(C) = yEα,β̃λ−ρ−εr,µ(C ∪ {r}) + Eα,β̃−sεrλ−ρ,µ (C r {r})

+
s−1∑
i=1

x
β̃r−i

Eα,β̃−iεrλ−ρ−εr,µ(C ∪ {r}).

The second summand of the right hand side of (25) vanishes:

(26) Eα,β̃−sεrλ−ρ,µ (C r {r}) = 0,

because of Lemma 4.16 below.
In view of C = C(ρ) and β̃ = B(R0, β), we can rewrite (14) as

Eα,βλ,µ (R0) = wt(R0)Eα,β̃λ−ρ,µ(C).

Thus, multiplying both sides of (25) by wt(R0) and using (26) we obtain

Eα,βλ,µ (R0) = ywt(R0)Eα,β̃λ−ρ−εr,µ(C ∪ {r}) +
s−1∑
i=1

x
β̃r−i

wt(R0)Eα,β̃−iεrλ−ρ−εr,µ(C ∪ {r}).

One can easily check that ywt(R0) = wt(R0 ∪ {β̃r}) and x
β̃r−i

wt(R0) = wt(R0 ∪
{β̃r − i}) for 1 6 i 6 s− 1. Hence we can rewrite the above equation as

Eα,βλ,µ (R0) =
s−1∑
i=0

wt(R0 ∪ {β̃r − i})Eα,β̃−iεrλ−ρ−εr,µ(C ∪ {r}) =
s−1∑
i=0
Eα,βλ,µ (R0 ∪ {β̃r − i}),

where the last equality follows from β̃−iεr = B(R0∪{β̃r−i}, β). Since s = β̃r−a+1,
this is equivalent to (21) and the proof is completed. �
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The following lemma proves several statements used in the proof of Proposi-
tion 4.14.

Lemma 4.15. Following the notation in Proposition 4.14 and letting

s =
{
β̃r − β̃r−1 + 1, if (r − 1, c) ∈ ρ and β̃r−1 > αr + 1,
β̃r − αr, otherwise,

we have
(27) αr < β̃r,

(28) s > 0,

(29) if s = 0, then r /∈ C(ρ),

(30) if βr−1 6 βr, then s > 1,

(31) αr < β̃r − (s− 1), and

(32) if j < r and µj < (λ− ρ)r, then αj < β̃r − (s− 1).

Proof. The first statement (27) is easiest to prove: If r /∈ C(ρ), then β̃r = βr > αr + 1
(since α < β); if r ∈ C(ρ), then β̃r = R0(r, λr − ρr + 1) > αr + 1 (since R0 ∈
RPProw(α,β)

ρ ). In either case we have β̃r > αr + 1, and thus (27) holds.
We will prove the next two statements (28) and (29) by considering the two cases

in the definition of s.

Case 1. (r − 1, c) ∈ ρ and β̃r−1 > αr + 1. Then s = β̃r − β̃r−1 + 1. Note that
βr−1 6 βr + 1 since β ∈ QParn. Observe that r − 1 ∈ C(ρ) and (r − 1, c) is the
leftmost cell in the (r− 1)st row of ρ. Thus β̃r−1 = R0(r− 1, c). If r /∈ C(ρ), we have

(33) β̃r−1 = R0(r − 1, c) 6 βr−1 6 βr + 1 = β̃r + 1

by the definition of β̃r, and thus s = β̃r − β̃r−1 + 1 > 0. If r ∈ C(ρ), then (r, c+ 1) is
the leftmost cell of the rth row of ρ and therefore

(34) β̃r−1 = R0(r − 1, c) 6 R0(r, c+ 1) = β̃r

and thus s = β̃r− β̃r−1 +1 > 1 > 0. Thus we always have s > 0. This means that (28)
holds.

If r ∈ C(ρ), then s = β̃r − β̃r−1 + 1 > 1 by (34), and thus s 6= 0. Taking the
contrapositive yields (29). So we have proved both (28) and (29) in this case.

Case 2. (r − 1, c) /∈ ρ or β̃r−1 < αr + 1. Then, s = β̃r − αr. From (27), we have
β̃r > αr + 1. Therefore s = β̃r − αr > 1 (so s = 0 cannot happen in this case), which
completes the proof of the two statements (28) and (29).

The fourth statement (30) is proved just as we proved (28), except that βr−1 6
βr + 1 = β̃r + 1 is replaced by βr−1 6 βr = β̃r in (33).

Now we prove the fifth statement (31). By definition of s we have

(35) β̃r − (s− 1) =
{
β̃r−1, if (r − 1, c) ∈ ρ and β̃r−1 > αr + 1,
αr + 1, otherwise,

which implies β̃r − (s− 1) > αr + 1. This shows the fifth statement (31).
For the last statement (32) suppose that j < r and µj < (λ − ρ)r. We have

µj < (λ − ρ)r = c by the definition of ρ, thus (j, c) /∈ µ. In view of j < r, this leads
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to (j, c) ∈ λ/µ and consequently (j, c) ∈ ρ. Hence, (r− 1, c) ∈ ρ (since j 6 r− 1 < r),
and thus (as in Case 1 above) β̃r−1 = R0(r − 1, c). Now

αj < αj + 1 6 R0(j, c) 6 R0(r − 1, c) = β̃r−1 6 β̃r − (s− 1),
where the last inequality follows from (35) because (r−1, c) ∈ ρ. This shows (32). �

Now we prove the identity (26) used in the proof of Proposition 4.14.

Lemma 4.16. Following the notation in Proposition 4.14 we have

(36) Eα,β̃−sεrλ−ρ,µ (C r {r}) = 0,

where C = C(ρ) and

s =
{
β̃r − β̃r−1 + 1, if (r − 1, c) ∈ ρ and β̃r−1 > αr + 1,
β̃r − αr, otherwise.

Proof. Clearly, λ−ρ ∈ Nn. Also, (31) shows that β̃r−s > αr > 0, whence β̃−sεr ∈ Nn.
We consider the two cases in the definition of s separately.

Case 1. (r − 1, c) ∈ ρ and β̃r−1 > αr + 1. Then s = β̃r − β̃r−1 + 1. In order to
prove (36) it suffices to check that α, β̃ − sεr, λ − ρ, µ, C r {r}, and r satisfy the
conditions for α, β, λ, µ, C, and r in Lemma 4.13. Since (r − 1, c) ∈ ρ and ρ is the set
of all cells (i, j) ≺ (r, c) we have (λ− ρ)r = (λ− ρ)r−1 + 1. The fact (r− 1, c) ∈ ρ also
implies r − 1 ∈ C r {r}, and clearly r /∈ C r {r}. Since s = β̃r − β̃r−1 + 1, we have
(β̃− sεr)r = (β̃− sεr)r−1− 1. Therefore the conditions in Lemma 4.13 hold, and (36)
is proved in this case.

Case 2. (r − 1, c) /∈ ρ or β̃r−1 < αr + 1. Then s = β̃r − αr. Let d be the integer such
that (d, c) ∈ λ/µ and (d− 1, c) /∈ λ/µ. In other words, (d, c) is the topmost cell in the
cth column of λ/µ, see Figure 4. Then 1 6 d 6 r. Let κ = β̃ − sεr and σ = λ− ρ, so
that

Eα,β̃−sεrλ−ρ,µ (C r {r}) = Eα,κσ,µ (C r {r}) = det(eα,κσ,µ(C r {r}; i, j))16i,j6n.

c

d

r ?

Figure 4. An example of λ/µ and ρ, where the cells in ρ are the
gray cells. The (r, c) cell is marked with a star and the row indices d
and r, and the column index c are shown.

We claim that
(37) Eα,κσ,µ (Cr{r}) = det(eα,κσ,µ(Cr{r}; i, j))16i,j6d−1 det(eα,κσ,µ(Cr{r}; i, j))d6i,j6n.
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To show (37), by Lemma 4.5 it suffices to show that for all d 6 i 6 n and 1 6 j 6 d−1,
we have

(38) eα,κσ,µ(C r {r}; i, j) = 0.

By the definitions of ρ and d (see Figure 4), if d 6 i 6 n and 1 6 j 6 d− 1, we have

σi = (λ− ρ)i 6 c 6 µj
(since (j, c) ∈ µ) and therefore

(39) σi − i− µj + j < σi − µj 6 0.

Then (38) follows from (39) and the claim (37) is proved.
By (37), to show (36) it suffices to show that

(40) det(eα,κσ,µ(C r {r}; i, j))d6i,j6n = 0.

By Lemma 4.4, to show (40) it is enough to show (38) for all d 6 i 6 r and r 6 j 6 n.
By Definition 4.3 we have

eα,κσ,µ(C r {r}; i, j) =
{
eσi−i−µj+j [X(αj ,κi−1] + Tσi − Tµj ], if i ∈ C r {r},
eσi−i−µj+j [X(αj ,κi] + Tσi−1 − Tµj ], if i 6∈ C r {r}.

Suppose i = r and r 6 j 6 n. Then the above equation becomes

(41) eα,κσ,µ(C r {r}; r, j) = eσr−r−µj+j [X(αj ,κr] + Tσr−1 − Tµj ].

Since
σr = (λ− ρ)r > µr > µj ,

the sum X(αj ,κr] + Tσr−1 − Tµj is a sum of max{0, κr − αj}+ σr − 1− µj variables.
Since

κr = (β̃ − sεr)r = β̃r − s = αr 6 αj + j − r
(a consequence of α ∈ QParn and r 6 j) and therefore κr−αj 6 j−r and consequently
max{0, κr − αj} 6 max{0, j − r} = j − r (since r 6 j), we have

max{0, κr − αj}+ σr − 1− µj 6 j − r + σr − 1− µj < σr − r − µj + j.

Thus, (15) shows that the right hand side of (41) is zero, and (38) holds for i = r and
r 6 j 6 n.

It remains to prove (38) for d 6 i 6 r − 1 and r 6 j 6 n. Recall the assumption
that (r−1, c) /∈ ρ or β̃r−1 < αr+1. If (r−1, c) /∈ ρ, then r = d and there is no integer
i with d 6 i 6 r−1. Therefore we may assume (r−1, c) ∈ ρ and β̃r−1 < αr + 1. Since
d 6 i 6 r − 1, we have (i, c) ∈ ρ, which is the leftmost cell in the ith row of ρ. Thus
β̃i = R0(i, c) and considering the case i = r − 1 we also have β̃r−1 = R0(r − 1, c).
Then we obtain

κi = (β̃ − sεr)i = β̃i = R0(i, c) 6 R0(r − 1, c) = β̃r−1 < αr + 1 6 αj + j − r + 1

(a consequence of α ∈ QParn and r 6 j), which shows

κi − 1− αj < j − r < j − i.

Combined with 0 < j − i (which is because i 6 r − 1 < r 6 j), this yields

(42) max{0, κi − 1− αj} < j − i.

Since (i, c) ∈ ρ, we have i ∈ C(ρ) = C. Thus i ∈ C r {r}, and consequently

(43) eα,κσ,µ(C r {r}; i, j) = eσi−i−µj+j [X(αj ,κi−1] + Tσi − Tµj ].
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On the other hand, since d 6 i 6 r − 1 and j > r, we have
σi = (λ− ρ)i = c− 1 (since (i, c) ∈ ρ and (i, c− 1) /∈ ρ)
> µr (since (r, c) ∈ λ/µ)
> µj .

Therefore X(αj ,κi−1] + Tσi − Tµj is a sum of max{0, κi − 1− αj}+ σi − µj variables.
By (42), we have

max{0, κi − 1− αj}+ σi − µj < j − i+ σi − µj = σi − i− µj + j,

which implies (via (15)) that the right hand side of (43) is zero. Thus we obtain (38)
and the proof is completed. �

The parallel recurrence relations for Rα,βλ,µ(R0) and Eα,βλ,µ (R0) in Proposition 4.14
can be used to conclude that they are equal.

Proposition 4.17. Let α, β ∈ QParn, λ, µ ∈ Parn with α < β and µ < λ. Let
ρ = (λ/µ)(m) for some 0 6 m 6 |λ/µ| and let R0 ∈ RPProw(α,β)

ρ . Then

Eα,βλ,µ (R0) = Rα,βλ,µ(R0).

Proof. We use induction on N = |λ/µ| − |ρ|. For the base case, suppose N = 0 so
that ρ = λ/µ. Then clearly Rα,βλ,µ(R0) = wt(R0) and, by Lemma 4.9,

Eα,βλ,µ (R0) = wt(R0)Eα,B(R0,β)
µ,µ (C(ρ)) = wt(R0).

For the inductive step let 0 < N 6 |λ/µ| and assume the assertion for N −1. Since
ρ 6= λ/µ, we can find (r, c) ∈ λ/µ such that ρ = {(i, j) ∈ λ/µ : (i, j) ≺ (r, c)}. By
Proposition 4.14 and the induction hypothesis, we obtain

Eα,βλ,µ (R0) =
β̃r∑
k=a
Eα,βλ,µ (R0 ∪ {k}) =

β̃r∑
k=a
Rα,βλ,µ(R0 ∪ {k}) = Rα,βλ,µ(R0),

where a and β̃ are given as in Proposition 4.14. Hence the assertion still holds for N
and the proof follows by induction. �

Now we are ready to prove Theorem 3.2, which can be restated as follows.

Theorem 4.18. Let α, β ∈ Nn and µ, λ ∈ Parn. If αi 6 αi+1 + 1 and βi 6 βi+1 + 1
whenever µi < λi+1, then

(44) Eα,βλ,µ = Rα,βλ,µ(∅).

Proof. We will successively reduce the cases so that we eventually have the assump-
tions α, β ∈ QParn, α < β and µ < λ in Proposition 4.17. For a diagram σ, we
denote by δ(σ) the diagram obtained by translating σ down by one row, so that
δk(σ) = {(i + k, j) : (i, j) ∈ σ} for all k > 0. Note that there is a canonical bijec-
tion between the RPPs R of shape σ and the RPPs R′ of shape δk(σ), and that this
bijection satisfies wt(R′) = wt(R).

If µ 6⊆ λ, both sides of the equation (44) are zero by Lemma 4.10 and the definition
of Rα,βλ,µ(∅). Hence we may assume µ ⊆ λ. Thus, either λk = µk for some 1 6 k 6 n,
or µ < λ.

Suppose that λk = µk for some 1 6 k 6 n. Then, for k 6 i 6 n and 1 6 j 6 k,
since λi − i − µj + j 6 λk − k − µk + k = 0 and the equality holds if and only if
i = j = k, we have

eα,βλ,µ(i, j) = eλi−i−µj+j [X(αj ,βi] + Tλi−1 − Tµj ] = χ(i = j = k).
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By Lemma 4.6 this shows that

Eα,βλ,µ = Eα
(1),β(1)

λ(1),µ(1) E
α(2),β(2)

λ(2),µ(2) ,

where γ(1) = (γ1, . . . , γk−1) and γ(2) = (γk+1, . . . , γn) for each γ ∈ {α, β, λ, µ}. Since
the skew shape λ/µ is the disjoint union of λ(1)/µ(1) and δk(λ(2)/µ(2)), the definition
of Rα,βλ,µ(C) immediately gives

Rα,βλ,µ(∅) = Rα,βλ(1),µ(1)(∅)Rα,βδk(λ(2)),δk(µ(2))(∅) = Rα
(1),β(1)

λ(1),µ(1) (∅)Rα
(2),β(2)

λ(2),µ(2) (∅).
Hence, by induction, it suffices to consider the case µ < λ.

Suppose that there is an integer k ∈ [n− 1] such that µk > λk+1. Then we have

Rα,βλ,µ(∅) = Rα,βλ(1),µ(1)(∅)Rα,βδk(λ(2)),δk(µ(2))(∅) = Rα
(1),β(1)

λ(1),µ(1) (∅)Rα
(2),β(2)

λ(2),µ(2) (∅).

since the skew shape λ/µ is the disjoint union of λ(1)/µ(1) and δk(λ(2)/µ(2)), where
γ(1) = (γ1, . . . , γk) and γ(2) = (γk+1, . . . , γn) for each γ ∈ {α, β, λ, µ}. For all k + 1 6
i 6 n and 1 6 j 6 k, we have eα,βλ,µ(i, j) = 0 because

λi − i− µj + j 6 λk+1 − (k + 1)− µk + k < 0.
By Lemma 4.5, this shows that

Eα,βλ,µ = Eα
(1),β(1)

λ(1),µ(1) E
α(2),β(2)

λ(2),µ(2) .

Thus, by induction, we may assume that µk < λk+1 for all k ∈ [n − 1]. In this case
by assumption we have α, β ∈ QParn.

Suppose now that αk > βk for some 1 6 k 6 n. Then by Lemma 4.11 we have
Eα,βλ,µ = 0. Again, by definition, Rα,βλ,µ(∅) = 0.

The remaining case is that µ < λ and α < β. This is done in Proposition 4.17 with
R0 = ∅ and the proof is completed. �

Finally we show that Theorems 3.1 and 3.2 are equivalent.

Proposition 4.19. Let α, β ∈ Nn and µ, λ ∈ Parn. Then

det
(
eλi−µj−i+j(xαj+1, . . . , xβi , tµj+1, . . . , tλi−1)

)
16i,j6n

= det
(
eλi−µj−i+j [X(αj ,βi] + Tλi−1 − Tµj ]

)
16i,j6n .

Proof. If µ 6⊆ λ, both sides of the equation are zero by the same argument as in
the proof of Lemma 4.10. Hence we may assume that µ ⊆ λ. Let A and B be the
matrices in the left hand side and in the right hand side respectively. We investigate the
contribution of the (i, j)-entries Ai,j and Bi,j in the determinants when Ai,j 6= Bi,j .

Suppose Ai,j 6= Bi,j . Since µj < λi implies Ai,j = Bi,j , we must have λi 6 µj .
Note that λi 6 µj 6 λj . If λi < λj , then i > j and λi − µj − i+ j < 0, which implies
Ai,j = Bi,j = 0, a contradiction. Thus we must have λi = λj . Since λi 6 µj 6 λj ,
we also have µj = λj . We now use an argument in the proof of Theorem 4.18. For
j 6 r 6 n and 1 6 s 6 j, since λr − µs− r+ s 6 λj − µj − j + j = 0 and the equality
holds if and only if r = s = j, we have

Ar,s = Br,s = χ(r = s = j).
Therefore, by the second claim of Lemma 4.6, each nonzero term in the expansion of
det(A) and det(B) must contain the (j, j) entry, which is 1 for both matrices. Thus if
Ai,j 6= Bi,j , these entries Ai,j and Bi,j do not contribute to the determinants, which
implies det(A) = det(B). �

Theorem 3.1 now follows from Theorem 3.2 and Proposition 4.19.
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5. A proof of the Jacobi–Trudi formula for g̃
row(α,β)
λ/µ

In this section we prove the Jacobi–Trudi formula for g̃row(α,β)
λ/µ in Theorem 3.4. The

proof is similar to (but not exactly the same as) that in the previous section.
We use the notation in Definitions 4.1 and 4.2 from the previous section. The

notation below will also be used throughout this section.

Definition 5.1. For α, β, µ, λ ∈ Nn, C ⊆ [n], and 1 6 i, j 6 n, define

hα,βλ,µ(i, j) = hλi−i−µj+j [X(αj ,βi] + Ti−1 − Tj−1],

h
α,β

λ,µ(i, j) = χ(αj < βi)hα,βλ,µ(i, j),

hα,βλ,µ(C; i, j) =
{
hα,βλ,µ(i, j), if i 6∈ C,
h
α,β

λ,µ(i, j), if i ∈ C,

Hα,β
λ,µ (C) = det

(
hα,βλ,µ(C; i, j)

)
16i,j6n

,

Hα,β
λ,µ = Hα,β

λ,µ (∅),

H
α,β

λ,µ = Hα,β
λ,µ ([n]).

If µ ⊆ λ, ρ = (λ/µ)(m), and R0 ∈ RPProw(α,β)
ρ , we define

(45) Hα,βλ,µ(R0) = wt(R0)Hα,B(R0,β)
λ−ρ,µ .

Note that in the definition ofHα,βλ,µ(R0), we usedH instead ofH. Using the notation
above, Theorem 3.4 can be rewritten as

Hα,β
λ,µ = Rα,βλ,µ(∅).

We will show that both sides of the above equation satisfy the same recurrence rela-
tion.

5.1. Technical lemmas. In this subsection we give a list of lemmas that will be
used to prove Theorem 3.4.

Let RParn denote the set of α ∈ Nn such that αi 6 αi+1 for all i ∈ [n − 1]. Note
that if α ∈ RParn and 1 6 i 6 j 6 n, then αi 6 αj . Clearly, RParn ⊆ QParn, where
QParn is defined as in Section 4.

Lemma 5.2. Let Z be any formal power series with integer coefficients and let z be a
(single) variable. Then, for any integer k,

hk[Z] = hk[Z − z] + zhk−1[Z].

Proof. Since hk(x) = 0 for k < 0 and h0(x) = 1, the equation holds for k 6 0. For
k > 1, by (12), we have

hk[Z − z] =
k∑
i=0

(−1)iei(z)hk−i[Z] = hk[Z]− zhk−1[Z],

which is equivalent to the equation in the lemma. �

Lemma 5.3. Let i, j, k be positive integers such that j > i and k > j − i. Then
hk[Ti−1 − Tj−1] = 0.

Proof. By the property (10) of the plethystic substitution, we have
hk[Ti−1 − Tj−1] = hk[−ti − ti+1 − · · · − tj−1] = (−1)kek(ti, ti+1, . . . , tj−1) = 0,

as desired. �
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Lemma 5.4. Let α, β ∈ Nn, µ ∈ Parn, and C ⊆ [n]. If α < β, then

Hα,β
µ,µ (C) = 1.

Proof. This can be proved by the same argument as in the proof of Lemma 4.9. Note
that we need the condition α < β to ensure that the (i, i) entry

hα,βµ,µ(C; i, i) = χ(αi < βi)hα,βµ,µ(i, i)
is 1 for i ∈ C. �

Lemma 5.5. Let α, β ∈ Nn and λ, µ ∈ Parn. If µ 6⊆ λ, then for any C ⊆ [n],

Hα,β
λ,µ (C) = 0.

Proof. This can be proved by the same argument as in the proof of Lemma 4.10. �

Lemma 5.6. Let α, β ∈ RParn and µ, λ ∈ Parn. Suppose that αk > βk and µk < λk
for some 1 6 k 6 n. Then for any C ⊆ [n],

Hα,β
λ,µ (C) = 0.

Proof. Since hα,βλ,µ(C; i, j) is a multiple of hα,βλ,µ(i, j), by Lemma 4.4, it suffices to show
hα,βλ,µ(i, j) = 0 assuming 1 6 i 6 k and k 6 j 6 n. From α, β ∈ RParn, we obtain
αj > αk > βk > βi, so X(αj ,βi] = 0. Because of this, and of

λi − i− µj + j > λk − µk − i+ j > j − i,
by Lemma 5.3,

hα,βλ,µ(i, j) = hλi−i−µj+j [X(αj ,βi] + Ti−1 − Tj−1] = hλi−i−µj+j [Ti−1 − Tj−1] = 0,
as desired. �

Lemma 5.7. Let α ∈ RParn, β ∈ Nn, µ ∈ Parn, and λ ∈ Nn. Suppose that there is an
integer 1 6 k 6 n such that αk < βk and µk < λk. Then for any subset C ⊆ [n] with
k ∈ C, we have

Hα,β
λ,µ (C) = Hα,β

λ,µ (C r {k}).

Proof. It is sufficient to show that for all 1 6 j 6 n,

(46) hα,βλ,µ(C; k, j) = hα,βλ,µ(C r {k}; k, j).

For a contradiction suppose that (46) does not hold for some 1 6 j 6 n. Since

hα,βλ,µ(C; k, j) = χ(αj < βk)hα,βλ,µ(k, j),

hα,βλ,µ(C r {k}; k, j) = hα,βλ,µ(k, j),

we must have χ(αj < βk) = 0, or equivalently, βk 6 αj . Then by assumption we have
αk < βk 6 αj , which implies k < j (since α ∈ RParn). Thus

λk − k − µj + j > λk − k − µk + j > j − k.
By Lemma 5.3,

hα,βλ,µ(k, j) = hλk−k−µj+j [X(αj ,βk] + Tk−1 − Tj−1] = hλk−k−µj+j [Tk−1 − Tj−1] = 0.

But this implies that both sides of (46) are zero, a contradiction. Therefore (46) is
true for all 1 6 j 6 n, which completes the proof. �

Lemma 5.8. Let α ∈ RParn, β ∈ Nn, and µ, λ ∈ Parn with α < β and µ < λ. Then,
for any C ⊆ [n],

Hα,β
λ,µ (C) = Hα,β

λ,µ .
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Proof. We claim that, if k ∈ C, then

Hα,β
λ,µ (C) = Hα,β

λ,µ (C r {k}).

By assumption we have αk < βk and µk < λk. Thus the claim follows from Lemma 5.7.
Applying the claim iteratively yields the desired result. �

Lemma 5.9. Let α ∈ RParn, β ∈ Nn, µ ∈ Parn, and λ ∈ Nn. Suppose that k is an
integer satisfying αk < βk and µk < λk. Then

H
α,β

λ,µ =
{
H
α,β−εk
λ,µ + xβkH

α,β

λ−εk,µ, if αk + 1 < βk,

Hα,β−εk
λ,µ ([n] r {k}) + xβkH

α,β

λ−εk,µ, if αk + 1 = βk.

Proof. We first claim that, for all 1 6 j 6 n,

(47) hα,βλ,µ(k, j) = hα,β−εkλ,µ (k, j) + xβkh
α,β

λ−εk,µ(k, j).

The claim is restated as

hλk−k−µj+j [X(αj ,βk] + Tk−1 − Tj−1] = hλk−k−µj+j [X(αj ,βk−1] + Tk−1 − Tj−1]
+ xβkχ(αj < βk)hλk−k−µj+j−1[X(αj ,βk] + Tk−1 − Tj−1].

If αj > βk, both sides of the above equation are equal to hλk−k−µj+j [Tk−1−Tj−1]. If
αj < βk, the equation follows from Lemma 5.2 with Z = X(αj ,βk] + Tk−1 − Tj−1 and
z = xβk . This establishes (47).

By Lemma 5.7 and (47),

(48) H
α,β

λ,µ = Hα,β
λ,µ ([n]) = Hα,β

λ,µ ([n] r {k}) = Hα,β−εk
λ,µ ([n] r {k}) + xβkH

α,β

λ−εk,µ,

where the last equality follows from the linearity of the determinant in its kth row.
This shows the lemma for the case αk + 1 = βk. If αk + 1 < βk, Lemma 5.7 gives

Hα,β−εk
λ,µ ([n] r {k}) = Hα,β−εk

λ,µ ([n]) = H
α,β−εk
λ,µ ,

which together with (48) finishes the proof. �

Lemma 5.10. Let α, β, µ, λ ∈ Nn, and 2 6 k 6 n with βk = βk−1 and λk = λk−1 + 1.
Then

H
α,β

λ,µ = tk−1H
α,β

λ−εk,µ.

Proof. We claim that, for all 1 6 j 6 n,

(49) h
α,β

λ,µ(k, j) = h
α,β

λ,µ(k − 1, j) + tk−1h
α,β

λ−εk,µ(k, j).

To prove the claim, since χ(αj < βk) = χ(αj < βk−1), it suffices to show that

hλk−k−µj+j [X(αj ,βk] + Tk−1 − Tj−1] = hλk−1−(k−1)−µj+j [X(αj ,βk−1] + Tk−2 − Tj−1]
+ tk−1hλk−k−µj+j−1[X(αj ,βk] + Tk−1 − Tj−1],

which is, by assumption, the same as

hλk−k−µj+j [X(αj ,βk] + Tk−1 − Tj−1] = hλk−k−µj+j [X(αj ,βk] + Tk−2 − Tj−1]
+ tk−1hλk−k−µj+j−1[X(αj ,βk] + Tk−1 − Tj−1].

This follows from Lemma 5.2 with Z = X(αj ,βk] + Tk−1 − Tj−1 and z = tk−1.
Using (49) and subtracting the (k − 1)st row from the kth row of the matrix for

the determinant Hα,β

λ,µ we obtain the lemma. �
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5.2. Proof of Theorem 3.4. We first show that Rα,βλ,µ(R0) and Hα,βλ,µ(R0) satisfy
the same recurrence relation under certain conditions.
Proposition 5.11. Let α, β ∈ RParn, λ, µ ∈ Parn with α < β and µ < λ. Fix
(r, c) ∈ λ/µ and R0 ∈ RPProw(α,β)

ρ , where ρ is the set of cells (i, j) ∈ λ/µ with
(i, j) ≺ (r, c). Let β̃ = (β̃1, . . . , β̃n) = B(R0, β). Then

Rα,βλ,µ(R0) =
β̃r∑
k=a
Rα,βλ,µ(R0 ∪ {k}),(50)

Hα,βλ,µ(R0) =
β̃r∑
k=a
Hα,βλ,µ(R0 ∪ {k}),(51)

where R0 ∪ {k} is the RPP obtained from R0 by adding the cell (r, c) with entry k,
and

a =
{
β̃r−1, if (r − 1, c) ∈ ρ and β̃r−1 > αr + 1,
αr + 1, otherwise.

Proof. The first identity (50) is immediate from the definition of Rα,βλ,µ(R0). For the
second identity (51), let C = C(ρ) = {1 6 i 6 n : ρi > 0} and

s =
{
β̃r − β̃r−1 + 1, if (r − 1, c) ∈ ρ and β̃r−1 > αr + 1,
β̃r − αr, otherwise.

Note that β ∈ RParn ⊆ QParn and βr−1 6 βr; thus, (30) yields s > 1. Further-
more, (31) yields β̃r−s > αr > 0, thus β̃−sεr ∈ Nn. Finally, λ−ρ ∈ Nn. We consider
the two cases in the definition of s.
Case 1. (r − 1, c) ∈ ρ and β̃r−1 > αr + 1. Then s = β̃r − β̃r−1 + 1. Therefore, for
0 6 i 6 s− 2, we have

(β̃ − iεr)r = β̃r − i > β̃r − (s− 1) = β̃r−1 > αr + 1.
Note that since (r, c) ∈ (λ/µ)−ρ, we have (λ−ρ)r > µr. Thus we can apply Lemma 5.9

repeatedly to Hα,β̃−iεr
λ−ρ,µ , for 0 6 i 6 s− 2:

H
α,β̃

λ−ρ,µ = H
α,β̃−εr
λ−ρ,µ + x

β̃r
H
α,β̃

λ−ρ−εr,µ,

H
α,β̃−εr
λ−ρ,µ = H

α,β̃−2εr
λ−ρ,µ + x

β̃r−1H
α,β̃−εr
λ−ρ−εr,µ,

...

H
α,β̃−(s−2)εr
λ−ρ,µ = H

α,β̃−(s−1)εr
λ−ρ,µ + x

β̃r−(s−2)H
α,β̃−(s−2)εr
λ−ρ−εr,µ .

Combining the above equations gives

(52) H
α,β̃

λ−ρ,µ = H
α,β̃−(s−1)εr
λ−ρ,µ +

s−2∑
i=0

x
β̃r−i

H
α,β̃−iεr
λ−ρ−εr,µ.

Note that if s = 1, then (52) is trivial. Since (r − 1, c) ∈ ρ, by the construction of ρ
we have (λ− ρ)r = (λ− ρ)r−1 + 1. Since

(β̃ − (s− 1)εr)r = β̃r − (s− 1) = β̃r−1 = (β̃ − (s− 1)εr)r−1,

Lemma 5.10 gives

(53) H
α,β̃−(s−1)εr
λ−ρ,µ = tr−1H

α,β̃−(s−1)εr
λ−ρ−εr,µ .
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By (52) and (53) we obtain

(54) H
α,β̃

λ−ρ,µ = tr−1H
α,β̃−(s−1)εr
λ−ρ−εr,µ +

s−2∑
i=0

x
β̃r−i

H
α,β̃−iεr
λ−ρ−εr,µ.

Since β̃ = B(R0, β), we can rewrite (45) as

Hα,βλ,µ(R0) = wt(R0)Hα,β̃

λ−ρ,µ.

Since
tr−1 wt(R0) = wt(R0 ∪ {β̃r−1}) = wt(R0 ∪ {β̃r − (s− 1)}),

x
β̃r−i

wt(R0) = wt(R0 ∪ {β̃r − i}) for 0 6 i 6 s− 2,

multiplying both sides of (54) by wt(R0) gives

Hα,βλ,µ(R0) =
s−1∑
i=0

wt(R0 ∪ {β̃r − i})H
α,β̃−iεr
λ−ρ−εr,µ =

s−1∑
i=0
Hα,βλ,µ(R0 ∪ {β̃r − i}),

where the last equality follows from β̃− iεr = B(R0∪{β̃r− i}, β). The above equation
is the same as (51).

Case 2. (r − 1, c) 6∈ ρ or β̃r−1 < αr + 1. Then s = β̃r − αr. As in Case 1 we have
(λ− ρ)r > µr, and, for 0 6 i 6 s− 1,

(β̃ − iεr)r = β̃r − i > β̃r − (s− 1) = αr + 1,
where the equality holds if and only if i = s − 1. Thus we can apply Lemma 5.9
repeatedly to Hα,β̃−iεr

λ−ρ,µ , for 0 6 i 6 s− 1:

H
α,β̃

λ−ρ,µ = H
α,β̃−εr
λ−ρ,µ + x

β̃r
H
α,β̃

λ−ρ−εr,µ,

H
α,β̃−εr
λ−ρ,µ = H

α,β̃−2εr
λ−ρ,µ + x

β̃r−1H
α,β̃−εr
λ−ρ−εr,µ,

...

H
α,β̃−(s−2)εr
λ−ρ,µ = H

α,β̃−(s−1)εr
λ−ρ,µ + x

β̃r−(s−2)H
α,β̃−(s−2)εr
λ−ρ−εr,µ ,

H
α,β̃−(s−1)εr
λ−ρ,µ = Hα,β̃−sεr

λ−ρ,µ ([n] r {r}) + x
β̃r−(s−1)H

α,β̃−(s−1)εr
λ−ρ−εr,µ .

Lemma 5.12 below shows Hα,β̃−sεr
λ−ρ,µ ([n] r {r}) = 0. Thus, combining the above equa-

tions, we obtain

H
α,β̃

λ−ρ,µ =
s−1∑
i=0

x
β̃r−i

H
α,β̃−iεr
λ−ρ−εr,µ.

Observe that, for 0 6 i 6 s − 1, we have x
β̃r−i

wt(R0) = wt(R0 ∪ {β̃r − i})
(because we have (r − 1, c) /∈ ρ or β̃r−1 < αr + 1 = β̃r − (s − 1) 6 β̃r − i) and
β̃− iεr = B(R0 ∪{β̃r − i}, β). Thus, similarly to the argument in Case 1, multiplying
both sides of the above equation by wt(R0) gives

Hα,βλ,µ(R0) =
s−1∑
i=0
Hα,βλ,µ(R0 ∪ {β̃r − i}),

which is the same as (51). This completes the proof. �

We now prove a statement used in the proof of Proposition 5.11.
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Lemma 5.12. Following the notation in Proposition 5.11, suppose (r − 1, c) /∈ ρ or
β̃r−1 < αr + 1, and let s = β̃r − αr. Then we have

(55) Hα,β̃−sεr
λ−ρ,µ ([n] r {r}) = 0.

Proof. We proceed similarly as in the proof of Lemma 4.16. Let d be the integer such
that (d, c) ∈ λ/µ and (d− 1, c) /∈ λ/µ, see Figure 4. Then 1 6 d 6 r. Let κ = β̃ − sεr
and σ = λ− ρ, so that

Hα,β̃−sεr
λ−ρ,µ ([n] r {r}) = Hα,κ

σ,µ ([n] r {r}) = det(hα,κσ,µ([n] r {r}; i, j))16i,j6n.

By the same argument as in the proof of (37) we have

Hα,κ
σ,µ ([n] r {r}) = det(hα,κσ,µ([n] r {r}; i, j))16i,j6d−1 det(hα,κσ,µ([n] r {r}; i, j))d6i,j6n.

Therefore, it suffices to show that

det(hα,κσ,µ([n] r {r}; i, j))d6i,j6n = 0.

By Lemma 4.4, in order to show the above equation it is enough to show that, for all
d 6 i 6 r and r 6 j 6 n,

(56) hα,κσ,µ([n] r {r}; i, j) = 0.

By Definition 5.1 we have

hα,κσ,µ([n] r {r}; i, j) =
{
hσi−i−µj+j [X(αj ,κi] + Ti−1 − Tj−1], if i = r,

χ(αj < κi)hσi−i−µj+j [X(αj ,κi] + Ti−1 − Tj−1], if i 6= r.

Suppose i = r and r 6 j 6 n. Then the above equation becomes

hα,κσ,µ([n] r {r}; r, j) = hσr−r−µj+j [X(αj ,κr] + Tr−1 − Tj−1].

Since κr = (β̃ − sεr)r = β̃r − s = αr 6 αj , this equation can be further simplified to

(57) hα,κσ,µ([n] r {r}; r, j) = hσr−r−µj+j [Tr−1 − Tj−1].

Since (r, c) ∈ ρ, we have
σr = (λ− ρ)r > µr > µj ,

which implies
σr − r − µj + j > j − r.

Thus, Lemma 5.3 gives

(58) hσr−r−µj+j [Tr−1 − Tj−1] = 0.

By (57) and (58) we obtain (56) for i = r and r 6 j 6 n.
It remains to prove (56) for d 6 i 6 r − 1 and r 6 j 6 n. In this case,

hα,κσ,µ([n] r {r}; i, j) = χ(αj < κi)hσi−i−µj+j [X(αj ,κi] + Ti−1 − Tj−1].

Thus it suffices to show that κi 6 αj . Since d 6 r−1 < r, we have (r−1, c) ∈ ρ. Then
by assumption in this lemma, β̃r−1 < αr + 1. Since d 6 i 6 r − 1, we have (i, c) ∈ ρ;
in view of (i, c− 1) /∈ ρ, this leads to β̃i = R0(i, c), and similarly β̃r−1 = R0(r− 1, c).
Therefore

κi = (β̃ − sεr)i = β̃i = R0(i, c) 6 R0(r − 1, c) = β̃r−1 < αr + 1 6 αj + 1

(since α ∈ RParn), which shows κi 6 αj , as desired. �

The fact that Rα,βλ,µ(R0) and Hα,βλ,µ(R0) satisfy the same recurrence relation can be
used to show that they are equal.

Algebraic Combinatorics, Vol. 5 #1 (2022) 145



Jang Soo Kim

Proposition 5.13. Let α, β ∈ RParn, λ, µ ∈ Parn with α < β and µ < λ. Let
ρ = (λ/µ)(m) for some 0 6 m 6 |λ/µ| and let R0 ∈ RPProw(α,β)

ρ . Then

Hα,βλ,µ(R0) = Rα,βλ,µ(R0).

Proof. This can be proved by the same argument as in the proof of Proposition 4.17
where we use Lemma 5.4 and Proposition 5.11 in place of Lemma 4.9 and Proposi-
tion 4.14, respectively. �

Now we are ready to prove Theorem 3.4, which can be restated as follows.

Theorem 5.14. Let α, β ∈ Nn and µ, λ ∈ Parn. If αi 6 αi+1 and βi 6 βi+1 whenever
µi < λi+1, then

Hα,β
λ,µ = Rα,βλ,µ(∅).

Proof. As we did in the proof of Theorem 4.18 we will successively reduce the cases
so that we eventually have the assumptions α, β ∈ RParn, α < β and µ < λ in Propo-
sition 5.13. For a diagram σ, we denote by δ(σ) the diagram obtained by translating
σ down by one row, so that δk(σ) = {(i + k, j) : (i, j) ∈ σ} for all k > 0. Let φ be
the shifting operator on Q[[x1, x2, . . . , t1, t2, . . . ]] replacing each variable ti by ti+1.
Then φk is an algebra homomorphism and it sends Ti−1 − Tj−1 to Ti+k−1 − Tj+k−1
for all positive integers i, j, k. Note that there is a canonical bijection between the
RPPs R of shape σ and the RPPs R′ of shape δk(σ), and that this bijection satisfies
wt(R′) = φk(wt(R)).

If µ 6⊆ λ, both sides are zero by Lemma 5.5 and the definition of Rα,βλ,µ(∅). Hence
we may assume µ ⊆ λ. Thus, either λk = µk for some 1 6 k 6 n, or µ < λ.

Suppose that λk = µk for some 1 6 k 6 n. Then for k 6 i 6 n and 1 6 j 6 k, we
have λi − i − µj + j 6 λk − k − µk + k = 0, where the equality holds if and only if
i = j = k. Thus

hα,βλ,µ(i, j) = hλi−i−µj+j [X(αj ,βi] + Ti−1 − Tj−1] = χ(i = j = k).

By Lemma 4.6, this implies

Hα,β
λ,µ = Hα(1),β(1)

λ(1),µ(1) φ
k
(
Hα(2),β(2)

λ(2),µ(2)

)
,

where γ(1) = (γ1, . . . , γk−1) and γ(2) = (γk+1, . . . , γn) for each γ ∈ {α, β, λ, µ}. The
definition of Rα,βλ,µ(∅) immediately gives

Rα,βλ,µ(∅) = Rα,β
λ(1),µ(1)(∅)Rα,β

δk(λ(2)),δk(µ(2))(∅) = Rα
(1),β(1)

λ(1),µ(1) (∅)φk
(
Rα

(2),β(2)

λ(2),µ(2) (∅)
)

because λ/µ is the disjoint union of λ(1)/µ(1) and δk(λ(2)/µ(2)). Hence, by induction,
it suffices to consider the case µ < λ.

Suppose that there is an integer k ∈ [n− 1] such that µk > λk+1. Then we have

Rα,βλ,µ(∅) = Rα,β
λ(1),µ(1)(∅)Rα,β

δk(λ(2)),δk(µ(2))(∅) = Rα
(1),β(1)

λ(1),µ(1) (∅)φk
(
Rα

(2),β(2)

λ(2),µ(2) (∅)
)
,

where γ(1) = (γ1, . . . , γk) and γ(2) = (γk+1, . . . , γn) for each γ ∈ {α, β, λ, µ}, because
λ/µ is the disjoint union of λ(1)/µ(1) and δk(λ(2)/µ(2)). For all k + 1 6 i 6 n and
1 6 j 6 k, we have hα,βλ,µ(i, j) = 0 because

λi − i− µj + j 6 λk+1 − (k + 1)− µk + k < 0.

By Lemma 4.5, this implies

Hα,β
λ,µ = Hα(1),β(1)

λ(1),µ(1) φ
k
(
Hα(2),β(2)

λ(2),µ(2)

)
.
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Thus, by induction, we may assume µk < λk+1 for all k ∈ [n − 1]. In this case by
assumption we have α, β ∈ RParn.

Suppose that αk > βk for some 1 6 k 6 n. Then by Lemma 5.6 with C = ∅ we
have Hα,β

λ,µ = 0. Again, by definition, Rα,βλ,µ(∅) = 0.
The remaining case is that α, β ∈ RParn, µ < λ, and α < β. In this case, by

Lemma 5.8 and Proposition 5.13,

Hα,β
λ,µ = Hα,β

λ,µ ([n]) = H
α,β

λ,µ = Hα,βλ,µ(∅) = Rα,βλ,µ(∅),

which completes the proof. �

Acknowledgements. The author is grateful to Darij Grinberg for providing his con-
jecture, Theorem 1.5, for fruitful discussions, and for his thorough reading of the
manuscript and providing many useful comments, which significantly improved the
presentation of this paper. The author is particularly grateful to Darij Grinberg for
the idea that improved Theorem 3.2. He also thanks Travis Scrimshaw for helpful
discussions and the anonymous referee for useful comments.

This work was initiated while the author was participating the 2020 program in Al-
gebraic and Enumerative Combinatorics at Institut Mittag-Leffler. The author would
like to thank the institute for the hospitality and Sara Billey, Petter Brändén, Sylvie
Corteel, and Svante Linusson for organizing the program.

This material is based upon work supported by the Swedish Research Council under
grant no. 2016-06596 while the author was in residence at Institut Mittag-Leffler in
Djursholm, Sweden during the winter of 2020.

The author was supported by NRF grants #2019R1F1A1059081 and
#2016R1A5A1008055.

References
[1] Alimzhan Amanov and Damir Yeliussizov, Determinantal formulas for dual Grothendieck poly-

nomials, Preprint, https://arxiv.org/abs/2003.03907v1.
[2] William Y. C. Chen, Bingqing Li, and J. D. Louck, The flagged double Schur function, J.

Algebraic Combin. 15 (2002), no. 1, 7–26.
[3] Pavel Galashin, Darij Grinberg, and Gaku Liu, Refined dual stable Grothendieck polynomials

and generalized Bender–Knuth involutions, Electron. J. Combin. 23 (2016), no. 3, Paper no. 3.14
(28 pages).

[4] Ira M. Gessel, Determinants and plane partitions, Unpublished manuscript.
[5] Darij Grinberg, Refined dual stable Grothendieck polynomials, http://www.cip.ifi.lmu.de/

~grinberg/algebra/chicago2015.pdf.
[6] Darij Grinberg and Victor Reiner, Hopf algebras in combinatorics, Preprint, https://arxiv.

org/abs/1409.8356v7.
[7] Shinsuke Iwao, Free-fermions and adjoint actions on stable β-Grothendieck polynomials,

Preprint, https://arxiv.org/abs/2004.09499, 2020.
[8] Jang Soo Kim, Jacobi–Trudi formula for refined dual stable Grothendieck polynomials, J. Com-

bin. Theory Ser. A 180 (2021), Paper no. 105415 (33 pages).
[9] Thomas Lam and Pavlo Pylyavskyy, Combinatorial Hopf algebras and K-homology of Grass-

mannians, Int. Math. Res. Not. IMRN (2007), no. 24, Paper no. rnm125 (48 pages).
[10] Alain Lascoux and Marcel-Paul Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris

Sér. I Math. 294 (1982), no. 13, 447–450.
[11] Nicholas A. Loehr and Jeffrey B. Remmel, A computational and combinatorial exposé of plethys-

tic calculus, J. Algebraic Combin. 33 (2011), no. 2, 163–198.
[12] Grigory Merzon and Evgeny Smirnov, Determinantal identities for flagged Schur and Schubert

polynomials, Eur. J. Math. 2 (2016), no. 1, 227–245.
[13] Kohei Motegi and Travis Scrimshaw, Refined dual Grothendieck polynomials, integrability, and

the Schur measure, Preprint, https://arxiv.org/abs/2012.15011v1.
[14] Michelle L. Wachs, Flagged Schur functions, Schubert polynomials, and symmetrizing operators,

J. Combin. Theory Ser. A 40 (1985), no. 2, 276–289.

Algebraic Combinatorics, Vol. 5 #1 (2022) 147

https://arxiv.org/abs/2003.03907v1
http://www.cip.ifi.lmu.de/~grinberg/algebra/chicago2015.pdf
http://www.cip.ifi.lmu.de/~grinberg/algebra/chicago2015.pdf
https://arxiv.org/abs/1409.8356v7
https://arxiv.org/abs/1409.8356v7
https://arxiv.org/abs/2004.09499
https://arxiv.org/abs/2012.15011v1


Jang Soo Kim

Jang Soo Kim, Department of Mathematics, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-
do 16419, South Korea
E-mail : jangsookim@skku.edu

Algebraic Combinatorics, Vol. 5 #1 (2022) 148

mailto:jangsookim@skku.edu

	1. Introduction
	2. Preliminaries
	2.1. Basic definitions
	2.2. Flagged refined dual stable Grothendieck polynomial
	2.3. Plethystic substitution

	3. Main results
	4. A proof of the Jacobi–Trudi formula for wg lambda'/mu' col(alpha,beta)
	4.1. Technical lemmas
	4.2. Proof of Theorem 3.2

	5. A proof of the Jacobi–Trudi formula for wg lambda/mu row(alpha,beta)
	5.1. Technical lemmas
	5.2. Proof of Theorem 3.4

	References

