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On residually thin and nilpotent table
algebras, fusion rings, and association

schemes

Harvey I. Blau

Abstract Residually thin and nilpotent table algebras, which are abstractions of fusion rings
and adjacency algebras of association schemes, are defined and investigated. A formula for
the degrees of basis elements in residually thin table algebras is established, which yields an
integrality result of Gelaki and Nikshych as an immediate corollary; and it is shown that this
formula holds only for such algebras. These theorems for table algebras specialize to new results
for association schemes. Bi-anchored thin-central (BTC) chains of closed subsets are used to
define nilpotence, in the manner of Hanaki for association schemes. Lower BTC-chains are
defined as an abstraction of the lower central series of a finite group. A partial characterization
is proved; and a family of examples illustrates that unlike the case for finite groups, there is
not necessarily a unique lower BTC-chain for a nilpotent table algebra or association scheme.

1. Introduction
We explore two related aspects of some important algebraic and combinatorial struc-
tures: namely, the properties called residual thinness and nilpotence. The former con-
cept has been studied in the framework of association schemes by Zieschang [13, 14]
and Hanaki and Shimabukuro [11], among others; and for hypergroups (as an alge-
braic generalization of schemes) by French and Zieschang [7]. It has been analyzed
(evidently independently) in the setting of fusion categories and fusion rings by Gelaki
and Nikshych [8]. They use the term “nilpotent” for what the other authors above
call “residually thin”. This usage has the desirable consequence that a finite group is
nilpotent in the classical sense if and only if its representation category (resp. charac-
ter ring) is nilpotent as a fusion category (resp. fusion ring) [8, Remark 4.7]. However,
the group algebra of any finite group, as a fusion ring, is nilpotent according to their
definition. This seems to leave room for an alternative definition of nilpotent. The one
presented in this paper (see Definition 1.3 below) is a direct generalization of the one
given for association schemes by Hanaki [9].

Our context here is the family of table algebras, finite dimensional algebras over
the complex numbers with a distinguished basis that satisfies certain axioms (see Def-
inition 1.1 below). The adjacency (or Bose-Mesner) algebras of association schemes,
group algebras, and Hecke (double coset) algebras constructed from group algebras are
examples, and fusion rings comprise a subfamily. Hypergroups, in the sense of [7], are
generalizations of table algebras. Our main results include a formula for the degrees
of the basis elements of a residually thin table algebra, and a proof that this formula
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holds only for such algebras (see Theorem 1.7 below). Gelaki and Nikshych’s integral-
ity theorem [8, Corollary 5.3] for fusion categories is an immediate consequence. These
are evidently new results for association schemes as well. We also define the notion of
thin central chains for a table algebra, in particular upper, lower, and bi-anchored such
chains, and use it to exposit our alternate definition of nilpotent table algebra. This
definition coincides with the usual one in the case of a finite group; and when applied
to commutative table algebras, it is equivalent to both the author’s [2] and Gelaki
and Nikshych’s [8] definitions. Theorems 1.14 and 1.20 below relate residual depth to
nilpotence class (see Definitions 1.15, 1.21), and thus extend Gelaki and Nikshych’s
result for the commutative case [8, Theorem 4.16]. Lower bi-anchored thin-central
chains exist for any nilpotent table algebra by Definition 1.11. Theorem 1.23 gives a
partial characterization of them. But unlike the case of the lower central series of a fi-
nite group, they are not necessarily unique. Example 5.5 shows this, and thereby gives
a negative answer to a question of Hanaki [9, Question 2.11] regarding uniqueness of
lower central series in an association scheme.

We recall a few well known definitions and facts needed in order to state the main
results. These are developed in a number of sources, in particular [1, 6, 3].
Definition 1.1. A table algebra (TA) (A,B) is a finite dimensional algebra A over
the complex numbers C, and a distinguished basis B that contains 1A, such that the
following properties hold:

(1a) The structure constants for B are all nonnegative real numbers; that is, for
all b, c ∈ B,

bc =
∑
d∈B

λbcdd, for some λbcd ∈ R>0.

(1b) There is an algebra anti-automorphism (denoted by ∗) of A such that (a∗)∗ = a
for all a ∈ A; and B∗ = B.

(1c) For all b, c ∈ B, λbc1 = 0 if and only if c 6= b∗.
It follows as a consequence of the definition that λbb∗1 = λb∗b1 > 0 for all b ∈ B.

Frobenius-Perron eigenvalue theory yields that for each table algebra there exists a
unique algebra homomorphism δ : A → C, called the degree map, such that δ(b) =
δ(b∗) > 0 for all b ∈ B. The table algebra (A,B) is called standard if for all b ∈ B,
δ(b) = λbb∗1. Any table algebra can be rescaled (replace each b ∈ B by βbb, for suitable
βb > 0) to one that is standard.

Let (A,B) be a standard table algebra (STA). For any subsets S, T of B, the set
product ST := ∪s∈S,t∈T SuppB(st), S∗ := {s∗|s ∈ S}, and S+ :=

∑
s∈S s. Note that

set product is associative. If T = {t}, a singleton set, then S{t} (resp. {t}S, S{t}S)
is denoted St (resp. tS, StS). The order of a subset S is o(S) := δ(S+).

A nonempty subset C ⊆ B is called closed if C∗C ⊆ C. In this case, (CC,C) is
again a table algebra, and the set of left cosets Cb for b ∈ B partition B, as do the
right cosets bC, and the C-C double cosets CbC. A quotient element, for any b ∈ B,
is b//C := o(C)−1(CbC)+. Let B//C := {b//C|b ∈ B}, and A//C := C(B//C).
Then (A//C,B//C) is a STA, called the quotient algebra, or double coset algebra of
(A,B) by the closed subset C. Its degree map is δ ↓A//C , and its anti-automorphism is
∗ ↓A//C . Furthermore, o(B//C) = o(B)/o(C). The closed subsets D with C ⊆ D ⊆ B
are in bijection with the closed subsets of B//C via D ↔ D//C (see Proposition 2.5
below). The closed subset C is called normal (resp. strongly normal) in B if bC = Cb
(resp. bCb∗ = C) for all b ∈ B. Strongly normal closed subsets are normal, but the
converse is not always true.

An element x ∈ B is called thin (or linear, or grouplike) if xx∗ = 1. This is
equivalent to δ(x) = 1; and if x is thin, then xb ∈ B and bx ∈ B for all b ∈ B.
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So δ(xb) = δ(bx) = δ(b) for all b ∈ B. Now Oϑ(B) := {x ∈ B|xx∗ = 1} = {x ∈
B|δ(x) = 1} is a group, called the thin radical of B; and B is called thin if B = Oϑ(B).
Obviously, Oϑ(B) is the unique maximal closed subset D of B such that D is thin. For
C a closed subset of B, the quotient B//C is thin if and only if C is strongly normal
in B. Since the intersection of strongly normal closed subsets is again strongly normal,
there is a unique minimal closed subset of B, denoted Oϑ(B), such that B//Oϑ(B) is
thin. Now Oϑ(B) is called the thin residue of B, and it equals the closed subset of B
generated by SuppB(bb∗) for all b ∈ B. (See [13, Theorem 2.3.1] or [14, Theorem 3.2.1],
where the algebraic proof for association schemes holds verbatim for table algebras.)

Throughout, Z(A) will denote the center of the algebra A, and Z(B) will mean
B ∩ Z(A).

Definition 1.2. A chain C of length n is a collection {Ci}ni=0 of closed subsets of B
such that either C0 ⊂ C1 ⊂ · · · ⊂ Cn−1 ⊂ Cn or Cn ⊂ Cn−1 ⊂ · · · ⊂ C1 ⊂ C0. It
is called a bi-anchored chain (B-chain) if C0 = {1} and Cn = B (or Cn = {1} and
C0 = B). It is a thin chain (T-chain) if Ci+1//Ci is thin for all 0 6 i 6 n − 1 (or
Ci−1//Ci is thin for all 1 6 i 6 n). It is called a thin-central chain (TC-chain) if
Ci+1//Ci is thin and Ci+1//Ci ⊆ Z(B//Ci) for all 0 6 i 6 n − 1 (or Ci−1//Ci is
thin and Ci−1//Ci ⊆ Z(B//Ci) for all 1 6 i 6 n).

Definition 1.3. A STA (A,B) is residually thin if there exists a bi-anchored thin
chain (BT-chain). It is nilpotent if there exists a bi-anchored thin-central chain (BTC-
chain).

Remark 1.4. It is immediate from the definition that for any finite group G, the
group algebra (CG,G) is nilpotent as a STA if and only if G is nilpotent in the usual
group-theoretic sense.

Proposition 1.5. Let (A,B) be a residually thin STA, with BT-chain B = C0 ⊃
C1 ⊃ · · · ⊃ Cn−1 ⊃ Cn = {1}. Then o(Ci) is an integer, and o(Ci+1)|o(Ci) for all
0 6 i 6 n− 1.

Proof. Since each Cj//Cj+1 is a group, o(Cj//Cj+1) = o(Cj)/o(Cj+1) is an integer
for 0 6 j 6 n− 1. Since o(Ci) = o(Ci+1)o(Ci//Ci+1) =

∏
j>i o(Cj//Cj+1), the result

follows. �

Definition 1.6. Let (A,B) be a STA with a B-chain C: B = C0 ⊃ C1 ⊃ · · ·Cn−1 ⊃
Cn = {1}. For any 1 6 i 6 n and any b ∈ B\Ci, define the positive integer m(C, i, b)
for i < n by

m(C, i, b) :=
n−1∏
j=i

card(Cj//Cj+1 · b//Cj+1 · Cj//Cj+1),

where Cj//Cj+1 · b//Cj+1 · Cj//Cj+1 is the Cj//Cj+1 - Cj//Cj+1 double coset of
b//Cj+1 in B//Cj+1; and m(C, n, b) := card(CnbCn) = card{b} = 1.

We now can state our first main results.

Theorem 1.7. Let (A,B) be a STA with a B-chain C: B = C0 ⊃ C1 ⊃ · · · ⊃ Cn−1 ⊃
Cn = {1}. Then C is a thin chain if and only if for all i with 1 6 i 6 n and all
b ∈ Ci−1\Ci,

δ(b) = o(Ci)/m(C, i, b).

Theorem 1.8. Let (A,B) be a STA with a BT-chain C: B = C0 ⊃ C1 ⊃ · · · ⊃ Cn−1 ⊃
Cn = {1}. Let b ∈ Ci for i < n. Then the following hold:

(i) o(Ci+1)/δ(b) is an integer divisor of o(Ci+1)2. In particular, o(Oϑ(B))/δ(b)
is an integer divisor of o(Oϑ(B))2 for all b ∈ B.
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(ii) If each Ci is normal in B (for example, if C is a BTC-chain), then
o(Ci+1)/δ(b) is an integer divisor of o(Ci+1); hence, δ(b) is its complemen-
tary integer divisor.

Theorem 1.7 is proved in Section 3 below, and Theorem 1.8 in Section 4.
Remark 1.9. A fusion ring (A,B) is a table algebra with integer structure constants,
and where λbb∗1 = 1 for all b ∈ B. If φ(b) is the degree of such b, then φ(b)2 is the
degree of the corresponding basis element in the rescaled standard basis. So Gelaki
and Nikshych’s result [8, Corollary 5.3] that o(Oϑ(B))/φ(b)2 is an integer follows
immediately.
Definition 1.10. Let (A,B) be a STA. A TC-chain {Qi}qi=0 is called terminal if
B = Q0 ⊃ Q1 ⊃ · · · ⊃ Qq−1 ⊃ Qq, and there is no closed subset Qq+1 ⊂ Qq such that
{Qi}q+1

i=0 is a TC-chain.
Definition 1.11. Let (A,B) be a STA.

(i) The residual thin chain R is the chain R0 = B, R1 = Oϑ(B), Ri =
Oϑ(Ri−1) for 1 6 i. Thus, R has length r, where r is the least nonnegative
integer with Rr+1 = Rr.

(ii) The radical thin chain J is the chain J0 = {1}, J1 = Oϑ(B), Ji//Ji−1 =
Oϑ(B//Ji−1) for 1 6 i. Thus, J has length j, the least nonnegative integer
with Jj+1 = Jj.

(iii) The upper thin-central chain Z is the chain Z0 = {1}, Z1 = Oϑ(B) ∩
Z(B), Zi//Zi−1 = Oϑ(B//Zi−1) ∩ Z(B//Zi−1) for 1 6 i. Then Z has length
u, the least nonnegative integer with Zu+1 = Zu.

(iv) A lower thin-central chain of length q is a terminal TC-chain Q : Q0 ⊃ Q1 ⊃
· · · ⊃ Qq such that o(Qq) is minimal, and

∑q
i=0 o(Qi) is minimal over all

such chains. In particular, a lower BTC-chain of length q is a BTC-chain
B = Q0 ⊃ Q1 ⊃ · · · ⊃ Qq = {1} such that

∑q
i=0 o(Qi) is minimal.

Definition 1.12. Let (A,B) be a STA. Define Oα(B), the thin abelian residue, to be
the unique closed subset of B with B ⊇ Oα(B) ⊇ Oϑ(B) and Oα(B)//Oϑ(B) is the
commutator subgroup of the group B//Oϑ(B), that is, [B//Oϑ(B), B//Oϑ(B)].
Remark 1.13.

(i) Proposition 2.5(ii) below shows that Oα(B) is well-defined. From its definition
and elementary group theory, it is the unique smallest closed subset of B such
that the quotient is an abelian group.

(ii) If (A,B) is the group algebra of a finite group G, then {Gi}qi=0, where G0 =
G,G1 = [G,G], Gi = [G,Gi−1] for all 1 6 i 6 q, where Gq+1 = Gq, is the
unique lower TC-chain for (A,B).

(iii) Lower TC-chains for an arbitrary STA (A,B) always exist, by the definition.
If (A,B) is nilpotent, then every lower BTC-chain of minimal length begins
B = Q0 ⊃ Q1 = Oα(B), but is not necessarily unique. See Example 5.5 and
Theorem 1.23 below. The example yields a negative answer to a question of
Hanaki [9, Question 2.11] for association schemes.

The following theorem is proved by French and Zieschang [7, Theorem 6.1] in
their more general context of hypergroups. We include a short proof in Section 4, for
completeness.
Theorem 1.14. Let (A,B) be a STA. If C = {Ci}ni=0 is a T-chain, B = C0 ⊃ C1 ⊃
· · · ⊃ Cn, then Ci ⊇ Ri for all 0 6 i 6 n. Hence, (A,B) is residually thin if and only
if the residual T-chain R is bi-anchored. Furthermore, if (A,B) is residually thin,
and if C is any BT-chain of length n, then n > r (r = the length of R).
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Definition 1.15. The residual depth of a residually thin STA (A,B) is the minimum
length of all BT-chains in B; by Theorem 1.14, it equals r, the length of R.

Remark 1.16. The radical T-chain J in a residually thin STA of depth r may be
bi-anchored of arbitrarily large length j > r, or it may not be bi-anchored at all. See
Example 4.2 below.

Definition 1.17. [5, Definition 1.4] Let p be a prime. A STA (A,B) is called p-
standard if o(B) = pN for some integer N > 0, and for all b ∈ B, δ(b) = pnb for
some integer nb > 0. An association scheme is called a p-scheme if its adjacency
algebra is p-standard.

Proposition 1.18. Let (A,B) be a STA with o(B) = pN for some prime p and integer
N > 0. Then (A,B) is p-standard if and only if it is residually thin.

Remark 1.19. Not every p-standard table algebra is nilpotent. The example from [5,
Remark 1.4], which is taken from [10, No.10851], is 2-standard of order 32, but has
no nontrivial thin central basis elements.

We have the following analog of Theorem 1.14 for thin-central chains and nilpotent
STAs. It is a straightforward generalization of [9, Theorem 2.5].

Theorem 1.20. Let (A,B) be a STA. If C = {Ci}ni=0, {1} = C0 ⊂ C1 ⊂ · · · ⊂ Cn is
a TC-chain, then Ci ⊆ Zi for all 0 6 i 6 n. Hence, (A,B) is nilpotent if and only if
the upper TC-chain Z is bi-anchored. Furthermore, if (A,B) is nilpotent, and if C is
any BTC-chain of length n, then n > u (u = the length of Z).

Definition 1.21. The nilpotence class of a nilpotent STA (A,B) is the minimum
length of all the BTC-chains in B. By Theorem 1.20, it equals u, the length of Z.

It follows from Theorem 1.14 that for any nilpotent STA, the nilpotence class is at
least the residual depth. If A is commutative, then every T-chain is a TC-chain, hence
by Theorem 1.20 the residual depth is at least the nilpotence class. So the following
result of Gelaki and Nikshych is immediate.

Corollary 1.22. [8, Theorem 4.16] Let (A,B) be a commutative STA. Then (A,B)
is residually thin iff R is bi-anchored iff Z is bi-anchored iff (A,B) is nilpotent; and
in this case, the residual depth and nilpotence class of (A,B) are equal.

Theorem 1.23. If (A,B) is a nilpotent STA, then every lower BTC-chain of length
u begins B ⊃ Oα(B).

Preliminary results (mostly known) and some further definitions are collected in
Section 2. Theorem 1.7 and a related more general result are proved in Section 3.
Section 4 contains proofs of Theorem 1.14, Theorem 1.8, Proposition 1.18, and other
structural results for residually thin STAs. In particular, we show that if D is any
closed subset of a residually thin table basis B, then o(D) is an integer such that
o(D) | o(B). Example 4.2 is also presented. Section 5 establishes Theorem 1.20 and
Theorem 1.23, and studies further aspects of TC-chains and nilpotent STAs. In par-
ticular, Corollary 5.4 shows that a STA (A,B) is nilpotent if and only if B//Oϑ(B) is
nilpotent as a group, and Zk ⊇ Oϑ(B) for some integer k. Example 5.5 demonstrates
that lower BTC-chains in a nilpotent STA are not always unique.

2. Preliminaries
The results in the section for which proofs are omitted are known; proofs for them
are given in [1], [6], or [3]. Throughout, (A,B) is a table algebra (TA).

There is a positive definite Hermitian form ( , ) on A such that for all b, c, d ∈ B,
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(b, c) = βbc∗1; and (bc, d) = (b, dc∗) = (c, b∗d).

Definition 2.1. Let (A,B), (U, V ) be TAs. A table algebra (TA-)homomorphism ψ :
(A,B) → (U, V ) is an algebra homomorphism ψ : A → U, (ψ(1A) = 1U ), such that
for each b ∈ B, there is some v ∈ V and αb ∈ R>0 with ψ(b) = αbv. Define Vψ :=
{v ∈ V | ψ(b) = αbv for some b ∈ B and αb ∈ R>0}. Then Vψ is a closed subset of V .
Now ψ is called a TA-isomorphism if ψ is one-to-one and Vψ = V . This is equivalent
to ψ : A → U being an algebra isomorphism. If there exists such a TA-isomorphism,
we write (A,B) ∼= (U, V ).

Definition 2.2. The kernel of a TA-homomorphism ψ is defined as kerψ := {b ∈
B|ψ(b) = αb1U for some αb ∈ R>0}.

Then ψ preserves the respective anti-automorphisms, kerψ is a normal closed sub-
set of B, and the following “Fundamental Homomorphism Theorem” holds:

Proposition 2.3. Let ψ : (A,B) → (U, V ) be a TA-epimorphism of STAs. Let
C = kerψ. Let e = eC := o(C)−1C+, a central idempotent of A. Then π : (A,B) →
(A//C,B//C), where π(b) = be for all b ∈ B, is a TA-epimorphism, as be =
(δ(b)/δ(b//C))b//C. Furthermore, there is a TA-isomorphism ψ : (A//C,B//C) →
(U, V ) such that ψ◦π = ψ. Finally, since both (A//C,B//C) and (U, V ) are standard,
then for all b ∈ B, ψ(b//C) = v, where ψ(b) = αbv for some αb ∈ R>0.

Proposition 2.3 has the following consequence:

Lemma 2.4. Let (A,B) be a STA with closed subsets C,D where D is normal in B.
Then DC = CD is a closed subset, D ∩ C is a normal closed subset of C, and

C//(D ∩ C) ∼= CD//D,

via a TA-isomorphism that yields the correspondence c//D∩C ↔ c//D, for all c ∈ C.

The first two parts of the next proposition are contained in [6, Proposition 2.13],
and part (iii) is proved for hypergroups in [7, Lemma 4.6]. Parts (iii), (iv), and (v)
are proved below.

Proposition 2.5. Let (A,B) be a STA and C a closed subset of B. Then the following
hold:

(i) The correspondence D 7→ D//C is a bijection between the set of closed subsets
of B that contain C and the set of closed subsets of B//C.

(ii) Suppose that D is a closed subset of B with C ⊆ D ⊆ B. Then for all b ∈ B,
(b//C)//(D//C) = b//D. Hence, (B//C)//(D//C) = B//D.

(iii) Suppose that C ⊆ D ⊆ B. Then D is strongly normal in B if and only if
D//C is strongly normal in B//C.

(iv) Suppose that C ⊆ D ⊆ B and D is normal in B. Then D//C is normal in
B//C.

(v) Suppose that C ⊆ D ⊆ B and C is normal in B. Then D is a normal subset
of B if and only if D//C is a normal subset of B//C.

Proof. (iii) D is strongly normal in B iff B//D is thin iff (B//C)//(D//C) is thin
(by (ii)) iff D//C is strongly normal in B//C.

(iv) Since D is assumed normal in B, (CbC)D = D(CbC) for all b ∈ B. It follows
that b//C ·D//C = D//C · b//C, hence D//C is a normal subset of B//C.

(v) Suppose that C is a normal subset of B, and that D//C is normal in B//C.
Then for all b ∈ B, b//C · D//C = D//C · b//C, hence (CbC)D = D(CbC). But
C ⊆ D, so CD = D = DC. Thus we have CbD = DbC. Since C is normal in B,
CbD = bCD = bD, and DbC = DCb = Db. The result follows. �
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Lemma 2.6. Let (A,B) be a STA with closed subsets C1 ⊇ C2 and D such that C2
is strongly normal in C1, and for all c ∈ C1, cD ⊆ DcC2. Then DC1 and DC2 are
closed subsets such that DC2 is strongly normal in DC1.

Proof. It follows from the hypothesis that C1D ⊆ DC1. Then C1D = (DC1)∗ ⊇
(C1D)∗ = DC1. So DC1 = C1D, hence DC1 is a closed subset. The hypothesis
restricted to c ∈ C2 similarly yields DC2 = C2D, hence DC2 is closed. Any b ∈ DC1
is in Supp(dc) for some d ∈ D, c ∈ C1. Then set products

bDC2b
∗ ⊆ dcDC2c

∗d∗ = d(cD)C2c
∗d∗ ⊆ d(DcC2)C2c

∗d∗ = D(cC2c
∗)d∗.

Now C2 strongly normal in C1 and C2D = DC2 yield
D(cC2c

∗)d∗ = DC2d
∗ = D(C2d

∗) ⊆ D(DC2) = DC2. �

Remark 2.7. Given closed subsets C1 ⊇ C2 and D with C2 strongly normal in C1,
the final hypothesis of Lemma 2.6 will follow from either D normal in B, or both
C1 and C2 normal in B with (c//C2) · (DC2//C2) = (DC2//C2) · (c//C2) for all
c ∈ C1. This is because the latter assumption implies that cDC2 = (C2cC2)(DC2) =
(DC2)(C2cC2) = DcC2.

Lemma 2.8. Let (A,B) be a STA with closed subset C and normal closed subset D.
If Oϑ(C) ⊆ D, then C//(D ∩ C) is thin.

Proof. Lemma 2.6 implies that DOϑ(C) is strongly normal in DC. But Oϑ(C) ⊆ D
by hypothesis, so D is strongly normal in DC. Hence, DC//D is thin. By Lemma 2.4,
C//(D ∩ C) is thin. �

Lemma 2.9. Let (A,B) be a STA, C a closed subset of B, and b ∈ B. Then δ is
constant over the double coset CbC if and only if o(CbC) = card(CbC)δ(b′) for all
b′ ∈ CbC.

Proof. Since o(CbC) =
∑
b′∈CbC δ(b′) and card(CbC) are independent of any partic-

ular b′ ∈ CbC, the proof is immediate. �

Lemma 2.10. Let (A,B) be a STA, C a thin closed subset of B, and b ∈ B. Then
card(CbC) | o(C)2. If C is normal in B, then card(CbC) | o(C).

Proof. The group C×C acts on the double coset CbC as follows: for all c1, c2, x, y,∈ C,

(c1bc2)(x,y) = x−1c1bc2y.

The double coset itself is the sole orbit under this action. Hence, if S := {(x, y) ∈ C×
C | x−1by = b}, i.e. S is the stabilizer of b under the action, then card(CbC) = |C×C :
S|. If C is normal in B, then CbC = bC, and C acts on bC by right multiplication. If
Sr denotes the stabilizer of b in C under this action, then card(CbC) = |C : Sr|. �

Lemma 2.11. Let (A,B) be a STA, and C = {Ci}ni=0 a BT-chain with B = C0 ⊃ C1 ⊃
· · · ⊃ Cn = {1}. Then for all 1 6 i 6 n and all b ∈ B\Ci, m(C, i, b) | o(Ci)2. If each
Ci is normal in B (in particular, if C is a BTC-chain), then m(C, i, b) | o(Ci).

Proof. This is immediate from the definitions if i = n, so assume 1 6 i < n and
b ∈ B\Ci. Lemma 2.10 implies that for each j with i 6 j 6 n− 1,

card(Cj//Cj+1 · b//Cj+1 · Cj//Cj+1) | o(Cj//Cj+1)2 = o(Cj)2/o(Cj+1)2.

Hence,

m(C, i, b) =
n−1∏
j=i

card(Cj//Cj+1 · b//Cj+1 · Cj//Cj+1)
∣∣∣∣ n−1∏
j=i

o(Cj)2

o(Cj+1)2 = o(Ci)2.
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If each Ci is normal in B, then each Cj//Cj+1 is a thin normal closed subset of
B//Cj+1, by Proposition 2.5(iv). So Lemma 2.10 yields that for all i 6 j 6 n− 1,

card(Cj//Cj+1 · b//Cj+1 · Cj//Cj+1) = card(b//Cj+1 · Cj//Cj+1) | o(Cj//Cj+1).

Therefore, m(C, i, b) |
∏n−1
j=i (o(Cj)/o(Cj+1)) = o(Ci). �

3. Degrees and double cosets
Throughout this section, (A,B) is a STA with degree map δ, and C = {Ci}ni=0 is a
B-chain with B = C0 ⊃ C1 · · · ⊃ Cn = {1}. We prove a theorem that, for a given
B-chain, yields a criterion whereby the degree of a quotient element is found in terms
of the cardinality of double cosets in quotient bases determined by the chain. The
result is applied to prove Theorem 1.7.

Definition 3.1. Fix integer k with 0 < k < n. Define the chain

C//Ck := {Ci//Ck}ki=0.

Remark 3.2. We have by Proposition 2.5(i) that

B//Ck = C0//Ck ⊃ C1//Ck · · · ⊃ Ck−1//Ck ⊃ Ck//Ck,

so that C//Ck is indeed a B-chain of length k in B//Ck.

Lemma 3.3. Fix integers i, k with 0 6 i 6 k 6 n, so that Ci ⊇ Ck. Then for all
b ∈ B\Ci,

m(C, i, b) = m(C//Ck, i, b//Ck) ·m(C, k, b).

Proof. If i = k, then m(C//Ck, k, b//Ck) = 1 by definition, as C//Ck has length k.
If k = n, then m(C, n, b) = 1, C//Cn = C, and b//Cn = b. So we may assume that
i < k < n. Proposition 2.5(ii) implies for all i 6 j 6 k − 1,

((Cj//Ck)//(Cj+1//Ck)) · ((b//Ck)//(Cj+1//Ck)) · ((Cj//Ck)//(Cj+1//Ck))

= Cj//Cj+1 · b//Cj+1 · Cj//Cj+1,

so that by Definition 1.6, m(C//Ck, i, b//Ck) =
∏
i6j6k−1 card(Cj//Cj+1 · b//Cj+1 ·

Cj//Cj+1). Since by the same definition m(C, k, b) (resp. m(C, i, b)) equals the anal-
ogous product over k 6 j 6 n− 1 (resp. i 6 j 6 n− 1), the result follows. �

Theorem 3.4. Let C = {Ci}ni=0 be a B-chain with B = C0 ⊃ C1 ⊃ · · · ⊃ Cn = {1}.
Then δ is constant on each double coset Cj//Cj+1 · b//Cj+1 · Cj//Cj+1 for all 0 6
i 6 j 6 n− 1 and all b ∈ B\Ci if and only if, for all 0 6 i 6 n− 1,

δ(b//Ci) = δ(b)
o(Ci)

m(C, i, b).

Proof. Fix i > 0. By Proposition 2.5(ii), δ is constant on Cj//Cj+1·b//Cj+1·Cj//Cj+1
for all i 6 j 6 n− 1 and all b ∈ B\Ci if and only if δ is constant on

(1) ((Cj//Cn−1)//(Cj+1//Cn−1)) · ((b//Cn−1)//(Cj+1//Cn−1))
· ((Cj//Cn−1)//(Cj+1//Cn−1)) for all i 6 j 6 n− 2 and all b ∈ B\Ci,

and

(2) δ is constant on Cn−1bCn−1 for all b ∈ B\Ci.

Since B\Ci is a union of Cn−1-Cn−1 double cosets, Lemma 2.9 implies that (2) is
equivalent to δ(b//Cn−1) = δ(b)

o(Cn−1)m(C, n− 1, b) for all b ∈ B\Ci. So if i = n− 1, the
theorem is proved.
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Suppose that i < n− 1. By induction on n, (1) is equivalent to

δ ((b//Cn−1)//(Ci//Cn−1)) = δ(b//Cn−1)
o(Ci//Cn−1)m(C//Cn−1, i, b//Cn−1)

for all b ∈ B\Ci. So if (1) and (2) both hold, we have

δ(b//Ci) = δ ((b//Cn−1)//(Ci//Cn−1)) = δ(b//Cn−1)
o(Ci)/o(Cn−1)m(C//Cn−1, i, b//Cn−1)

= δ(b)
o(Cn−1)o(Ci)/o(Cn−1)m(C, n− 1, b) ·m(C//Cn−1, i, b//Cn−1).

Hence by Lemma 3.3, δ(b//Ci) = δ(b)
o(Ci)m(C, i, b).

Conversely, suppose that for all 0 6 i 6 n and all b ∈ B\Ci, δ(b//Ci) =
δ(b)
o(Ci)m(C, i, b). If i = n− 1, we have already shown that δ is constant on Cn−1bCn−1.
Suppose that i < n− 1. Then by Lemma 3.3,

δ(b//Ci) = δ(b)
o(Ci)

m(C, n− 1, b) ·m(C//Cn−1, i, b//Cn−1)

= o(Cn−1)
o(Ci)

δ(b//Cn−1)m(C//Cn−1, i, b//Cn−1).

So

δ ((b//Cn−1)//(Ci//Cn−1)) = δ(b//Cn−1)
o(Ci//Cn−1)m(C//Cn−1, i, b//Cn−1)

for all 0 6 i 6 n − 2 and b ∈ B\Ci, whence C//Cn−1 satisfies the same hypothesis
as C. Then by induction on n, δ is constant on all double cosets

((Cj//Cn−1)//(Cj+1//Cn−1)) · ((b//Cn−1)//(Cj+1//Cn−1))
· ((Cj//Cn−1)//(Cj+1//Cn−1)) = Cj//Cj+1 · b//Cj+1 · Cj//Cj+1,

for all i 6 j 6 n− 2 and b ∈ B\Ci. This establishes the converse. �

Proof of Theorem 1.7. Observe that Cn−1 is thin iff δ(b) = 1 for all b ∈ Cn−1\Cn iff
δ(b) = o(Cn)/m(C, n, b).

If C is thin, then Cj//Cj+1 is a thin closed subset for all 0 6 j 6 n − 1, by
definition. So δ is constant on each double coset Cj//Cj+1 · b//Cj+1 · Cj//Cj+1 for
all 0 6 i 6 j 6 n − 1 and all b ∈ B\Ci. Hence, δ(b//Ci) = δ(b)

o(Ci)m(C, i, b) for all
0 6 i 6 n − 1 and b ∈ B\Ci, by Theorem 3.4. But Ci−1//Ci thin and b ∈ Ci−1\Ci
imply that δ(b//Ci) = 1. Hence, δ(b) = o(Ci)/m(C, i, b) for 0 6 i 6 n− 1.

Conversely, suppose that δ(b) = o(Ci)/m(C, i, b) for all 0 6 i 6 n and all b ∈
Ci−1\Ci. In particular if i = n, then Cn−1 is thin, as noted above. So δ is constant
on Cn−1bCn−1 for all b ∈ B.

If i < n and b ∈ Ci−1\Ci, then Cn−1 thin, Lemma 2.9 and Lemma 3.3 imply that

δ(b//Cn−1) = δ(b)
o(Cn−1)m(C, n−1, b) = o(Ci)m(C, n− 1, b)

m(C, i, b)o(Cn−1) = o(Ci//Cn−1)
m(C//Cn−1, i, b//Cn−1) .

So the same hypothesis holds for the chain C//Cn−1 in B//Cn−1 as for C. Induction
on n implies that C//Cn−1 is thin. Since Cj//Cj+1 = (Cj//Cn−1)//(Cj+1//Cn−1)
for all 0 6 j 6 n− 2 by Proposition 2.5(ii), C is thin. �
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4. Residually thin STAs
In this section, we prove Theorem 1.14, Theorem 1.8, Proposition 1.18, and in The-
orem 4.1 properties of residually thin STAs. Parts of the latter result are proved for
hypergroups in [7], as noted below; but we include proofs here, as they fit easily into
our context. Example 4.2 below illustrates how much residual depth and radical length
can differ. Throughout, (A,B) denotes a STA.

Proof of Theorem 1.14. Let C = {Ci}ni=0 be a T-chain in B, B = C0 ⊃ C1 ⊃
· · · ⊃ Cn−1 ⊃ Cn. Then B//C1 is thin, by Definition 1.2. Since R1 = Oϑ(B) is
the unique minimal closed subset of B such that B//R1 is thin, C1 ⊇ R1. Sup-
pose that Ci ⊇ Ri for some i > 1. Since by definition Ci//Ci+1 is thin, Ci+1
is (strongly) normal in Ci. Hence, RiCi+1 = Ci+1Ri is a closed subset of Ci. So
by Proposition 2.5(i), RiCi+1//Ci+1 is a subgroup of Ci//Ci+1. By Lemma 2.4,
Ri//(Ri ∩ Ci+1) ∼= RiCi+1//Ci+1. Thus, Ri//(Ri ∩ Ci+1) is thin. Then by the def-
inition of R, Ri+1 ⊆ Ri ∩ Ci+1 ⊆ Ci+1. It follows by induction that Ci ⊇ Ri for
0 6 i 6 n. So if Cn = {1}, then Rn = {1} and n > r. The theorem follows. �

Proof of Theorem 1.8. Let b ∈ Ci. We may assume that b 6= 1. So for some j with
i 6 j < n, b ∈ Cj\Cj+1. Theorem 1.7 then implies that o(Cj+1)/δ(b) = m(C, j+ 1, b),
which is an integer. Lemma 2.11 yields further that o(Cj+1)/δ(b) | o(Cj+1)2. As
j + 1 6 i+ 1, o(Cj+1) | o(Ci+1) by Proposition 1.5. Hence, o(Ci+1)/δ(b) is an integer
and o(Ci+1)/δ(b) | o(Ci+1)2. If each Cj is normal in B, then Lemma 2.11 implies that
o(Cj+1)/δ(b) | o(Cj+1), so o(Ci+1)/δ(b) | o(Ci+1).

By Theorem 1.14, the residual thin chain R is also bi-anchored. Since b ∈ B =
R0, and R1 = Oϑ(B), our proof shows that o(Oϑ(B))/δ(b) is an integer divisor of
o(Oϑ(B))2. �

Proof of Proposition 1.18. Suppose that (A,B) is p-standard. By [5, Proposition 3.2],
there is a chain {1} ⊂ C1 ⊂ C2 ⊂ · · · ⊂ CN = B with Ci+1//Ci a cyclic group of order
p for 0 6 i < N . So by Definition 1.3, (A,B) is residually thin. Suppose that (A,B)
is residually thin. Let {Ri}ri=0 be the residual thin chain, so that B = R0 ⊃ R1 ⊃
· · · ⊃ Rr = {1}, by Theorem 1.14. By Proposition 1.5, o(R1) is an integer divisor
of o(B) = pN . Thus, o(R1) = pN1 for some nonnegative integer N1 < N . For each
b ∈ B, pN1/δ(b) = o(R1)/δ(b) is an integer divisor of o(R1)2 = p2N1 by Theorem 1.8.
It follows that δ(b) is a power of p, and (A,B) is p-standard. �

Part (i) and most of (ii) of the next result are proved for hypergroups by French
and Zieschang in [7, Theorem 6.3]. Since the proofs in our context are shorter, they
are included below. Part (iii) seems new.

Theorem 4.1. Let (A,B) be a residually thin STA of depth n, with a BT-chain
{Ci}ni=0, B = C0 ⊃ C1 ⊃ · · · ⊃ Cn = {1}. Let D be any closed subset of B.

(i) The distinct members of {D ∩ Ci}ni=0 form a BT-chain for D, hence D is
residually thin of depth at most n. In particular, o(D) is an integer.

(ii) Suppose either that D is normal in B, or that each Ci is normal in B and
(c//Ci+1) · (DCi+1//Ci+1) = (DCi+1//Ci+1) · (c//Ci+1) for all c ∈ Ci. Then
the distinct members of {DCi//D}ni=0 form a BT-chain for B//D, hence
B//D is residually thin of depth at most n.

(iii) o(D) | o(B).

Proof. Let b ∈ D∩Ci. Then b(D∩Ci+1)b∗ ⊆ Ci+1, since Ci+1 is strongly normal in Ci;
and b(D∩Ci+1)b∗ ⊆ D, since b ∈ D and D is closed. Thus, b(D∩Ci+1)b∗ ⊆ D∩Ci+1.
So D ∩ Ci+1 is strongly normal in D ∩ Ci. Hence, (D ∩ Ci)//(D ∩ Ci+1) is thin. So
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D is residually thin of depth at most n, and o(D) is an integer by Proposition 1.5.
Thus, (i) follows.

Assume the hypotheses of (ii). Then each DCi is closed, and the hypotheses of
Lemma 2.6 hold for each pair Ci, Ci+1, by Remark 2.7. By Lemma 2.6, each DCi+1 is
strongly normal in DCi. So DCi//DCi+1 = (DCi//D)//(DCi+1//D) is thin. There-
fore, the distinct members of {DCi//D}ni=0 form a BT-chain for B//D, and (ii) is
proved.

Now C1 is residually thin of depth n− 1, and is strongly normal in B; and D ∩C1
is a closed subset of C1. So o(D ∩ C1) | o(C1) by induction on n. Since DC1//C1 is
a subgroup of the group B//C1, we have o(DC1//C1) | o(B//C1) = o(B)/o(C1). By
Lemma 2.4, D//(D ∩ C1) ∼= DC1//C1. Thus,

o(D)/o(D ∩ C1) = o(D//(D ∩ C1)) = o(DC1//C1) | o(B)/o(C1).
Hence,

o(D) | o(B)o(D ∩ C1)
o(C1) = o(B)

o(C1)/o(D ∩ C1) | o(B),

where the last division holds because o(C1) | o(B) by Proposition 1.5, and o(D∩C1) |
o(C1). Therefore, (iii) holds. �

Example 4.2. Let G be a finite group, H a proper subgroup of G, Y any other finite
group, and C = H × Y . Define the group homomorphism ψ : C → H by ψ(hy) = h
for all h ∈ H, y ∈ Y . Consider the partial wreath product C ◦ψ G = C ∪ (G\H) as a
basis for a vector space over C [2, Definition 4.1, Definition 4.2], [4, Definition 1.13,
Definition 2.4]. That is, H is replaced inside G by C. Multiplication in C(C ◦ψ G)
is defined as follows: for all h ∈ H, y ∈ Y, g ∈ G\H, (hy) · g = hg (the product in
G), and g · (hy) = gh. If g1, g2 ∈ G\H with g1g2 = h ∈ H, then in C(C ◦ψ G),
g1g2 = 1

o(Y )hY
+ = 1

o(Y )Y
+h. The other products are as in G or C. Rescale each

g ∈ G\H as b := o(Y )g. Define B as the rescaled C ◦ψ G and A := CB. Then (A,B)
is a STA. For all c ∈ C, c∗ = c−1 and cc∗ = 1. For all g ∈ G\H and b = o(Y )g,
b∗ = o(Y )g−1 and bb∗ = o(Y )Y +. Hence, Oϑ(B) = C, and Oϑ(B) = Y . Then the
residual thin chain R is

B ⊃ Oϑ(B) = Y ⊃ {1},
and (A,B) is residually thin of depth 2.

Suppose that H = NG(H); that is, H is its own normalizer in the group G. Then
for all b = o(Y )g ∈ B\C, the set product

bCb∗ = {o(Y )g1 | g1 ∈ gHg−1\H} ∪ ((gHg−1 ∩H)× Y ) 6⊆ H × Y,
since g /∈ NG(H). So if D is any closed subset of B with C ⊂ D ⊆ B, then C is not
strongly normal in D, hence D//C is not thin. It follows that the radical thin chain
J is {1} ⊂ C, of length 1 and not bi-anchored.

Let n > 1 be an arbitrary integer, and suppose that G is a group with a chain
of subgroups H = H1 < H2 < · · · < Hn = G, such that NG(Hi) = Hi+1 for
1 6 i 6 n − 1. (This is the case, for example, if G = D2n , the dihedral group
of order 2n, u is a noncentral involution in G, 〈v〉 is the cyclic subgroup of order
2n−1, and Hi = 〈v2n−i〉 ∪ 〈v2n−i〉u for 1 6 i 6 n.) Let C0 = {1}, C1 = C, and
Ci = C ∪ {o(Y )g | g ∈ Hi\H} for 2 6 i 6 n. Then for each 1 6 i 6 n − 1, Ci is a
closed subset that is strongly normal in Ci+1, but bCib∗ 6⊆ Ci for any b ∈ B\Ci+1. It
follows that Ci+1//Ci = Oϑ(B//Ci). Hence, {Ci}ni=0 is the radical thin chain J of
B, and it is bi-anchored with length n.

Remark 4.3. Regard the groups G, C above as association schemes in the usual way.
(For g ∈ G, the relation gL on underlying set G is given by (x, y) ∈ gL iff xy−1 = g
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for all x, y ∈ G; and similarly for C.) The adjacency algebras are isomorphic as
table algebras to the group algebras CG and CC, and the partial wreath product
constructed above is realized as the adjacency algebra of the wedge product of the
schemes [12, Section 3]. So Example 4.2 applies to association schemes.

5. Nilpotent STAs
We turn now to thin-central chains and nilpotent STAs. Theorems 1.20, 5.2, one
direction of Theorem 5.3, and their proofs given below, are generalized directly from
Hanaki’s results in [9]. Again, (A,B) is always a STA.

Proof of Theorem 1.20. Let {Ci}ni=0, {1} ⊂ C1 ⊂ · · · ⊂ Cn−1 ⊂ Cn be a TC-chain.
Note first that C1 is normal in B; and then by Proposition 2.5(v) all Ci are normal
in B. Now C1 = C1//C0 is thin, and C1 ⊆ Z(B). So C1 ⊆ Oϑ(B) ∩ Z(B) = Z1.

Suppose that Ci ⊆ Zi for some i > 1. Now Ci is strongly normal in Ci+1, and Zi
is normal in B. Hence, Remark 2.7 and Lemma 2.6 imply that Zi = ZiCi is strongly
normal in ZiCi+1. Thus, ZiCi+1//Zi is thin. Since Ci+1//Ci ⊆ Z(B//Ci), for any
c ∈ Ci+1 and b ∈ B, c//Ci · b//Ci = b//Ci · c//Ci. Hence, cbCi = bcCi, which, as
Ci ⊆ Zi, implies that cbZi = bcZi. Since c//Zi is thin, c//Zi · b//Zi = y//Zi for any
y ∈ cbZi, and similarly for b//Zi · c//Zi. Therefore, c//Zi · b//Zi = b//Zi · c//Zi,
whence c//Zi ∈ Z(B//Zi). Then ZiCi+1//Zi ⊆ Oϑ(B//Zi) ∩ Z(B//Zi) = Zi+1//Zi,
and so Ci+1 ⊆ Zi+1. The theorem follows. �

Lemma 5.1. Let (A,B) be a STA, and let C = {Ci}qi=0, C0 ⊃ C1 ⊃ · · · ⊃ Cq be a
TC-chain of length q such that Cq is a normal closed subset of B. Let Q be a closed
subset of B such that B ⊇ Q ⊇ Oϑ(B) and Q//Oϑ(B) is normal in B//Oϑ(B).
Define Qi := Q ∩ Ci for 0 6 i 6 q. Then the distinct members of {Qi}qi=0 form a
TC-chain in B of length at most q.

Proof. Each quotient Qi//Qi+1 = (Q ∩ Ci)//(Q ∩ Ci+1) is thin, by Theorem 4.1(i).
Since B//Oϑ(B) is a group, our hypothesis that Q//Oϑ(B) is normal in B//Oϑ(B)
implies that it is strongly normal. Hence, Q is strongly normal in B by Proposi-
tion 2.5(iii). Each Ci//Ci+1 is normal in B//Ci+1, since Ci//Ci+1 ⊆ Z(B//Ci+1) by
the definition of a TC-chain. Since Cq is normal in B, it follows from Proposition 2.5(v)
that each Ci is normal in B.

If x ∈ Qi and b ∈ B, then x//Qi+1 thin implies that x//Qi+1 · b//Qi+1 · x∗//Qi+1
is a basis element in B//Qi+1. Since Q is strongly normal in B and x∗ ∈ Q,
Supp(bx∗b∗) ⊆ Q, hence Supp(xbx∗b∗) ⊆ Q. Also, x ∈ Ci, and Ci//Ci+1 ⊆
Z(B//Ci+1) imply that x//Ci+1 · b//Ci+1 · x∗//Ci+1 = b//Ci+1. Therefore,
Supp(x//Ci+1 · b//Ci+1 · x∗//Ci+1 · b∗//Ci+1) contains 1//Ci+1. Since Ci+1 is
normal in B, this says that Supp(xbx∗b∗Ci+1) ∩ Ci+1 6= ∅, hence (via the Hermitian
form), Supp(xbx∗b∗) ∩ Ci+1 6= ∅. Since Qi+1 = Q ∩ Ci+1, Supp(xbx∗b∗) ∩ Qi+1 6=
∅. So 1//Qi+1 ∈ Supp(x//Qi+1 · b//Qi+1 · x∗//Qi+1 · b∗//Qi+1), and thus
x//Qi+1 · b//Qi+1 = b//Qi+1 · x//Qi+1. Therefore, Qi//Qi+1 ⊆ Z(B//Qi+1)
for all i. Thus, the distinct terms of {Qi}qi=0 form a TC-chain of length at most q. �

Proof of Theorem 1.23. Let C = {Ci}ui=0 be a BTC-chain of length u, the nilpotence
class of (A,B), such that

∑u
i=0 o(Ci) is minimal. Then C is immediately a lower

BTC-chain. Write C as B = C0 ⊃ C1 ⊃ · · · ⊃ Cu = {1}. Let Q = Oα(B). By
Lemma 5.1, the distinct terms of {Q ∩ Ci}ui=0 form a TC-chain of length at most
u. Now B//C1 ⊆ Z(B//C1) and is thin, so B//C1 is an abelian group. Therefore,
C1 ⊇ Q. Hence, Q∩C1 = Q = Q∩C0. So this TC-chain starts with Q and has length
at most u − 1. Since B//Q is an abelian group, we have that the distinct terms of
{B} ∪ {Q∩Ci}ui=0 form a BTC-chain of length at most u. But Theorem 1.20 implies
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that the length is at least u; so we have that all terms are distinct and form a terminal
BTC-chain of length u,

(3) B ⊃ Q = Q ∩ C1 ⊃ Q ∩ C2 ⊃ · · · ⊃ Q ∩ Cu−1 ⊃ Q ∩ Cu = {1}.

Now o(B) +
∑u
i=1 o(Q ∩ Ci) 6

∑u
i=0 o(Ci). But minimality of the latter implies that

the sums are equal. Since Q ∩ Ci ⊆ Ci, and hence o(Q ∩ Ci) 6 o(Ci) for 1 6 i 6 n,
it follows that Q ∩ Ci = Ci. Thus, C1 = Q ∩ C1 = Q, and every lower BTC-chain of
length u begins B ⊃ Oα(B). �

Theorem 5.2. Let (A,B) be a nilpotent STA of class u, and let B = Cu ⊃ Cu−1 ⊃
· · · ⊃ C1 ⊃ C0 = {1} be a BTC-chain of length u. Let V be any closed subset of B.
Then the distinct members of {V ∩ Ci}ui=0 form a BTC-chain for V ; hence (CV, V )
is nilpotent of class at most u.

Proof. Each Ci is normal in B, hence each V ∩Ci is normal in V . By Theorem 4.1(i),
(V ∩Ci+1)//(V ∩ Ci) is thin for 0 6 i 6 u− 1. Since (V ∩Ci+1)Ci//Ci ⊆ Ci+1//Ci,
which is central in B//Ci, then (V ∩ Ci+1)Ci//Ci is central in V Ci//Ci.

By Lemma 2.4, V//(V ∩ Ci) ∼= V Ci//Ci, where the isomorphic correspondence
between table bases is v//(V ∩ Ci) ↔ v//Ci for all v ∈ V . Under this bijection,
(V ∩ Ci+1)//(V ∩ Ci) ↔ (V ∩ Ci+1)Ci//Ci. It follows that (V ∩ Ci+1)//(V ∩ Ci) is
central in V//(V ∩ Ci). Therefore, the distinct members of {V ∩ Ci}ui=0 comprise a
BTC-chain for V ; and (CV, V ) is nilpotent of class at most u. �

Recall that the upper TC-chain Z = {Zi} is defined for any STA (A,B) in Defini-
tion 1.11; and is bi-anchored if and only if (A,B) is nilpotent, by Theorem 1.20.

Theorem 5.3. Let (A,B) be a STA, and D a closed subset of B. Then (A,B) is
nilpotent if and only if (A//D,B//D) is nilpotent and Zk ⊇ D for some k > 0.

Proof. Suppose that (A,B) is nilpotent, say of class u, so that Zu = B ⊇ D. Since all
the Zi are normal inB, Theorem 4.1(i) implies that the distinct terms of {DZi//D}ui=0
form a BT-chain

B//D = DZu//D ⊇ DZu−1//D ⊇ · · · ⊇ DZ1//D ⊇ DZ0//D = D//D

for B//D. Then for all y ∈ Zi and b ∈ B,

y//Zi−1 · b//Zi−1 = b//Zi−1 · y//Zi−1 ⇒ ybZi−1 = byZi−1

⇒ ybDZi−1 = byDZi−1 ⇒ DZi−1ybDZi−1 = DZi−1byDZi−1.

Now Zi−1 normal in B and y//Zi−1 central in B//Zi−1 imply that DZi−1y =
Zi−1yD = yDZi−1. So

DZi−1ybDZi−1 = y(DZi−1bDZi−1) = (DZi−1yDZi−1)(DZi−1bDZi−1).

Similarly, DZi−1byDZi−1 = (DZi−1bDZi−1)(DZi−1yDZi−1). Therefore,

(4) (DZi−1yDZi−1)(DZi−1bDZi−1) = (DZi−1bDZi−1)(DZi−1yDZi−1).

Since y//DZi−1 is thin, both y//DZi−1 · b//DZi−1 and b//DZi−1 · y//DZi−1 are
single basis elements in B//DZi−1. So it follows from (4) that

y//DZi−1 · b//DZi−1 = b//DZi−1 · yDZi−1.

Then by Proposition 2.5(ii),

(y//D)//(DZi−1//D) · (b//D)//(DZi−1//D)
= (b//D)//(DZi−1//D) · (y//D)//(DZi−1//D).
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Since every element of DZi//D has the form y//D for some y ∈ Zi, this shows that
(DZi//D)//(DZi−1//D) ⊆ Z((B//D)//(DZi−1//D)). Therefore, the distinct terms
of {DZi//D}ui=0 form a BTC-chain for B//D, so that (A//D,B//D) is nilpotent.

Conversely, suppose that (A//D,B//D) is nilpotent and Zk ⊇ D for some k >
0. Then (A//Zk, B//Zk) = ((A//D)//(Zk//D), (B//D)//(Zk//D)) is nilpotent, by
Proposition 2.5(ii) and the first part of this proof. Hence, there is a TC-chain

Zk//Zk = Y0//Zk ⊂ Y1//Zk ⊂ · · · ⊂ Ym//Zk = B//Zk.

So Yi//Yi−1 = (Yi//Zk)//(Yi−1//Zk) is thin and contained in
Z((B//Zk)//(Yi−1//Zk)) = Z(B//Yi−1),

for each 1 6 i 6 m. Thus,
{1} = Z0 ⊂ Z1 ⊂ · · · ⊂ Zk ⊂ Y1 ⊂ · · · ⊂ Ym−1 ⊂ Ym = B

is a BTC-chain for B, and (A,B) is nilpotent. �

Corollary 5.4. A STA (A,B) is nilpotent if and only if B//Oϑ(B) is a nilpotent
group and Zk ⊇ Oϑ(B) for some integer k > 0.

Example 5.5. Fix an odd prime p. Let G be a p-group of nilpotence class u > 3,
hence with lower central series

G = G0 ⊃ G1 = [G,G] ⊃ G2 = [G,G1] ⊃ · · · ⊃ Gu−2 ⊃ Gu−1 ⊃ Gu = {1}.
Assume furthermore that Gu−2 is abelian, and |Gu−1| = p. (This holds, for example,
if G is the multiplicative group of upper unitriangular (u + 1) × (u + 1) (u > 3)
matrices over the field Fp.) Let H = Gu−2; Y = 〈y〉, a group of order p; C = H × Y ,
and ψ : C → H be the group homomorphism hys 7→ h for all h ∈ H, ys ∈ Y . As in
Example 4.2, let B be the standard rescaling of the partial wreath product C ◦ψ G,
and A = CB. Then

B = {bg := pg | g ∈ G\H} ∪ C,
where bg(hys) = bgh, (hys)bg = hbg for all g ∈ G\H, h ∈ H, ys ∈ Y ; and if
g1, g2 ∈ G\H, then

bg1bg2 =
{
phY + if g1g2 = h ∈ H,
pbg1g2 if g1g2 /∈ H.

In particular, ysbg = bgy
s = bg, and bgbg−1 = pY +, for all g ∈ G\H. Thus, b∗g = bg−1 .

Now B//Y ∼= G via the correspondence bg//Y ↔ g for all g ∈ G\H and hys//Y ↔ h
for all h ∈ H, ys ∈ Y . We so identify the two groups.

Define
Qi := {bg | g ∈ Gi\H} ∪ C, 0 6 i 6 u− 2.

Then Qi is a closed subset, Qi ⊇ Y , and Qi//Y = Gi. So for 1 6 i 6 u− 2,
Qi−1//Qi = (Qi−1//Y )//(Qi//Y ) = Gi−1//Gi

(5) is thin and is central in G//Gi = (B//Y )//(Qi//Y ) = B//Qi.

Because {Gi} is the lower central series for G, each Qi, for 1 6 i 6 u−2, is the unique
minimal closed subset in Qi−1 among all closed subsets that contain Y such that (5)
holds. But any closed subset of B that is not contained in C contains bg for some
g ∈ G\H, and so contains Supp(bgb∗g) = Y . Therefore, for 1 6 i 6 u− 2, Qi is in fact
the unique minimal closed subset in Qi−1 so that (5) is true. Hence,

∑u−2
i=0 o(Qi) is

uniquely minimal for all TC-chains of length u− 2 that proceed down from B.
Let Gu−1 = 〈z〉, of order p by our choice of G. Fix any integer j with 1 6 j < p,

and let Dj := 〈zjy〉. Then Gu−1 central in G and Y central in B imply that each
Dj ⊆ Z(B). Since C is an abelian group (as H = Gu−2 is abelian, again by choice

Algebraic Combinatorics, Vol. 5 #1 (2022) 34



Residually thin and nilpotent table algebras

of G), Qu−2//Dj = C//Dj is thin and abelian. Furthermore, for all x = hyr ∈ Qu−2
and bg ∈ B\Qu−2, we have in the nilpotent group G that hg = ghzt for some integer
t. So in B, bg = pg, yrbg = bgy

r = bg, and C abelian yield

xbg = hyrbg = hbg = bghz
t = bghy

rzt = bgxz
t = bgz

tx.

Now zt = zjs for some integer s, and bgzjs = bg(zjy)s. Hence,

xbgDj = bgx(zjy)sDj = bgxDj .

Therefore, x//Dj · bg//Dj = bg//Dj · x//Dj , thus Qu−2//Dj ⊆ Z(B//Dj). Since
Dj ⊆ Z(B) and o(Dj) = p, it follows that for each 1 6 j < p,

B ⊃ Q1 ⊃ Q2 ⊃ · · · ⊃ Qu−2 ⊃ Dj ⊃ {1}

is a lower BTC-chain for B. Each Qi is the unique minimal closed subset of Qi−1 that
exists in a BTC-chain, for all i 6 u− 2; but each Dj is minimal such in Qu−2. Thus
there are p− 1 stringently minimal such chains, not a unique one. As in Example 4.2,
the algebraic construction here is realized as the adjacency algebra of the wedge
product of association schemes. Hence this example too applies to association schemes.
So the answer to [9, Question 2.11] is negative.

Our final result displays the role played in general by the subsets Supp(b∗b) for
b ∈ B in finding TC-chains in B from the top down, with each term minimal in the
previous one.

Theorem 5.6. Let U be a closed subset in a STA (A,B). Let V = Oα(U). Let S be
the closed subset of U such that S ⊇ V and S//V = 〈Supp(b∗//V · b//V ) ∩ (U//V ) |
b ∈ B〉. Assume that U//V is normal in B//V . Then the following hold:

(i) There is a unique closed subset C of U that is minimal (with respect to inclu-
sion) such that C ⊇ S, C//V is normal in B//V , and U//C ⊆ Z(B//C).

(ii) If D is any closed subset of U that is minimal with respect to inclusion such
that V ⊆ D, D//V is normal in B//V , and U//D ⊆ Z(B//D), then D ⊆ C.

Proof. If Y is any closed subset with V ⊆ Y ⊆ U , then U//V an abelian group
implies that Y//V is a normal abelian subgroup of U//V . Hence by V normal in U
and Proposition 2.5(v), Y is normal in U ; and U//Y is an abelian group, in particular
is thin.

Suppose that C is a closed subset of U such that V ⊆ C, C//V is normal in B//V ,
and U//C ⊆ Z(B//C). Then U//C thin implies that for any x ∈ U and b ∈ B,
x//C · b//C · x∗//C = b//C. Hence,

(x//V )//(C//V ) · (b//V )//(C//V ) · (x∗//V )(C//V ) = (b//V )//(C//V ),

which, since C//V is thin and normal in B//V , implies that

x//V · b//V · x∗//V = b//V · cx,b//V, some cx,b ∈ C.

Suppose that D is another closed subset of U with V ⊆ D, D//V normal in B//V ,
and U//D ⊆ Z(B//D). Since V ⊆ C ∩D ⊆ U , U//C ∩D is also thin. An argument
similar to the one above yields that for all x ∈ U and b ∈ B,

x//V · b//V · x∗//V = b//V · dx,b//V, some dx,b ∈ D.

Therefore, b//V · cx,b//V = b//V · dx,b//V , so that b//V · (cx,b//V ) · (dx,b//V )−1 =
b//V . Then the thin element (cx,b//V ) · (dx,b//V )−1 is in Supp(b∗//V · b//V ), by the
Hermitian form for the STA B//V . Thus, (cx,b//V ) · (dx,b//V )−1 ∈ S//V .
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Suppose that C ⊇ S. Then dx,b//V ∈ (C//V ) · (cx,b//V ) = C//V . Therefore,
dx,b ∈ C ∩D. Now V ⊆ C ∩D, and both closed subsets are normal in U . Hence,

x//V · b//V · x∗//V = b//V · dx,b//V
⇒ V xbx∗V = V bdx,bV

⇒ (C ∩D)xbx∗(C ∩D) = (C ∩D)bdx,b(C ∩D)
⇒ (x//C ∩D) · (b//C ∩D) · (x∗//C ∩D) = (b//C ∩D) · (dx,b//C ∩D)

= b//C ∩D,
since dx,b ∈ C∩D implies that dx,b//C∩D = 1//C∩D. It follows that U//(C∩D) ⊆
Z(B//(C ∩ D)). Now C//V and D//V are normal in B//V . So if x ∈ C ∩ D and
b ∈ B, then

x//V · b//V = b//V · c//V = b//V · d//V,
for some c ∈ C, d ∈ D (both of which depend on x and b). Hence, b//V · c//V ·
(d//V )−1 = b//V , so that

c//V · (d//V )−1 ∈ Supp(b∗//V · b//V ) ∩ (U//V ) ⊆ S//V ⊆ C//V.
Therefore, d//V ∈ C//V , so d ∈ C ∩D. We now have that ((C ∩D)//V ) · (b//V ) ⊆
(b//V ) · ((C ∩D)//V ). Replacing b by b∗ and then applying the anti-automorphism
yields the opposite containment, hence (C ∩D)//V is normal in B//V .

We have shown that C ∩ D satisfies the same hypotheses as D, provided that
C ⊇ S. Both claims of the theorem follow immediately. �
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