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Combinatorics of the immaculate inverse
Kostka matrix

Nicholas A. Loehr & Elizabeth Niese

Abstract The classical Kostka matrix counts semistandard tableaux and expands Schur sym-
metric functions in terms of monomial symmetric functions. The entries in the inverse Kostka
matrix can be computed by various algebraic and combinatorial formulas involving determi-
nants, special rim hook tableaux, raising operators, and tournaments. Our goal here is to de-
velop an analogous combinatorial theory for the inverse of the immaculate Kostka matrix. The
immaculate Kostka matrix enumerates dual immaculate tableaux and gives a combinatorial
definition of the dual immaculate quasisymmetric functions S∗α. We develop several formulas
for the entries in the inverse of this matrix based on suitably generalized raising operators,
tournaments, and special rim-hook tableaux. Our analysis reveals how the combinatorial con-
ditions defining dual immaculate tableaux arise naturally from algebraic properties of raising
operators. We also obtain an elementary combinatorial proof that the definition of S∗α via dual
immaculate tableaux is equivalent to the definition of the immaculate noncommutative sym-
metric functions Sα via noncommutative Jacobi–Trudi determinants. A factorization of raising
operators leads to bases of NSym interpolating between the S-basis and the h-basis, and bases
of QSym interpolating between the S∗-basis and the M -basis. We also give t-analogues for
most of these results using combinatorial statistics defined on dual immaculate tableaux and
tournaments.

1. Introduction
1.1. The Kostka Matrix and its Inverse. The Kostka matrix and its inverse
are central objects in the theory of symmetric functions. For each positive integer n,
the Kostka matrix Kn has rows and columns indexed by integer partitions of n. The
entry Kn(λ, µ) in row λ, column µ, counts the number of semistandard Young tableaux
(SSYT) of shape λ and content µ. These are fillings of the cells in the diagram of λ
with µ1 copies of 1, µ2 copies of 2, etc. such that every row is weakly increasing from
left to right and every column is strictly increasing from bottom to top. Let Symn be
the vector space (over any field F ) of symmetric functions of degree n. Three bases
of Symn are the monomial basis (mλ), the Schur basis (sλ), and the complete basis
(hλ). The Kostka matrix and its transpose connect these bases, as follows:

(1) sλ =
∑
µ

Kn(λ, µ)mµ; hµ =
∑
λ

Kn(λ, µ)sλ.
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The sums here range over integer partitions of n; we omit the subscript n in Kn

when it is clear from context. Here and below, we assume familiarity with standard
notation for partitions and symmetric functions, which can be found in references
such as [11, 14, 15].

If we order integer partitions of n lexicographically, then the Kostka matrix is
upper-triangular with diagonal entries equal to 1. Thus we have an inverse Kostka
matrix K−1 = K−1

n that provides inverse transition matrices to the ones above:

(2) mλ =
∑
µ

K−1(λ, µ)sµ; sµ =
∑
λ

K−1(λ, µ)hλ.

Example 1.1.When n = 4, there are five integer partitions of 4, which we write in
abbreviated form as 4, 31, 22, 211, and 1111. The Kostka matrix K4 and its inverse
K−1

4 are shown here:

K :



4 31 22 211 1111
4 1 1 1 1 1
31 0 1 1 2 3
22 0 0 1 1 2
211 0 0 0 1 3
1111 0 0 0 0 1

; K−1 :



4 31 22 211 1111
4 1 −1 0 1 −1
31 0 1 −1 −1 2
22 0 0 1 −1 1
211 0 0 0 1 −3
1111 0 0 0 0 1

.
There is a rich combinatorial theory for the inverse Kostka matrices in Sym. The

following four methods (two algebraic formulas and two associated combinatorial mod-
els) are available for computing the entries K−1(λ, µ).

(1) Jacobi–Trudi Formula. K−1(λ, µ) is the coefficient of hλ when we expand the
determinant sµ = det[hµi+j−i] expressing the Schur function sµ as a signed
sum of products of complete symmetric functions hk.

(2) Special Rim Hook Tableau Model. Eğecioğlu and Remmel [6] showed that
K−1(λ, µ) is the sum of the signs of all special rim hook tableaux (SRHT) of
shape µ and type λ (see §4.4 for definitions and more details).

(3) Raising Operator Formula. According to Macdonald [14, (3.4′′), pg. 42],
K−1(λ, µ) is the coefficient of hλ when we expand sµ =

∏
i<j(I −Ri,j) • hµ.

Here I is the identity operator and Ri,j acts on any hβ by incrementing βi
and decrementing βj , but there are subtleties (see §2.1 for a full explanation).

(4) Tournament Model. The raising operator formula translates into a combina-
torial model for K−1(λ, µ) as a signed sum of certain tournaments. Details
appear in §4.1.

1.2. The Immaculate Kostka Matrix. Our goal in this paper is to extend the
combinatorics of the inverse Kostka matrix from the space Sym to the spaces NSym
and QSym. Here Sym is the self-dual Hopf algebra of symmetric functions, while NSym
and QSym are the dual Hopf algebras of noncommutative symmetric functions and
quasisymmetric functions, respectively. We will only require the vector space structure
of these Hopf algebras, rather than the full machinery of the product, coproduct, and
antipode map. For more information on NSym and QSym, see [7, 13].

A variety of Schur-like bases have been studied in NSym and QSym, each of which
leads to a possible version of the classical Kostka matrix [1, 2, 7, 8]. We focus on the
version arising from the immaculate basis (Sα) of NSym and the dual immaculate
basis (S∗α) of QSym, first defined in [2]. These bases, which are indexed by integer
compositions α, can be defined in two equivalent ways. There is a combinatorial
approach based on tableaux, as well as an algebraic approach based on the non-
commutative Jacobi–Trudi formula.
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The combinatorial approach needs the following definitions. A (strict) composition
of n of length k is a list α = (α1, α2, . . . , αk) of k positive integers with n = α1 +α2 +
· · · + αk. Note that αi = 0 is not allowed in a composition. Let Compn be the set
of all compositions of n. Let Comp be the set of all compositions. The diagram of a
composition α is an array of boxes, where row i consists of αi left-justified boxes. Our
convention is to number the rows from bottom to top and number the columns from
left to right. A dual immaculate tableau of shape α is a filling T of the diagram of α
with positive integers such that every row is weakly increasing from left to right, and
column 1 (the leftmost column) is strictly increasing from bottom to top. The content
of T is the list (f1, f2, . . .) where fi is the number of times i appears in the filling T .
For each n, the immaculate Kostka matrix is the matrix Kn with rows and columns
indexed by compositions of n, such that Kn(α, β) is the number of dual immaculate
tableaux of shape α and content β. As before, we omit the subscript n when it is clear
from context. Ordering compositions lexicographically, one readily checks that each
matrix Kn is upper-triangular with 1s on the diagonal, so Kn is invertible over Z.

Example 1.2. For α = (4, 2, 3) and β = (2, 3, 2, 2) the dual immaculate tableaux with
shape α and content β are:

3 4 4
2 3
1 1 2 2

3 3 4
2 2
1 1 2 4

3 3 4
2 4
1 1 2 2

3 4 4
2 2
1 1 2 3

.

Example 1.3.When n = 4, we compute:

K :



4 31 22 211 13 121 112 1111
4 1 1 1 1 1 1 1 1
31 0 1 1 2 1 2 2 3
22 0 0 1 1 1 2 2 3
211 0 0 0 1 0 1 1 3
13 0 0 0 0 1 1 1 1
121 0 0 0 0 0 1 1 2
112 0 0 0 0 0 0 1 1
1111 0 0 0 0 0 0 0 1


; K−1 :



4 31 22 211 13 121 112 1111
4 1 −1 0 1 0 0 0 −1
31 0 1 −1 −1 0 1 0 1
22 0 0 1 −1 −1 0 0 1
211 0 0 0 1 0 −1 0 −1
13 0 0 0 0 1 −1 0 1
121 0 0 0 0 0 1 −1 −1
112 0 0 0 0 0 0 1 −1
1111 0 0 0 0 0 0 0 1


.

Now let (Mα) be the monomial basis for QSym, and let (hα) be the noncommutative
complete basis for NSym. By definition, (Mα) and (hα) are dual bases for NSym and
QSym. This means that there is a bilinear pairing 〈·, ·〉 : QSym×NSym→ F (where
F is the field of scalars) such that 〈Mα,hβ〉 = χ(α = β). Here and below, for any
logical statement P , χ(P ) = 1 if P is true, and χ(P ) = 0 if P is false.

By analogy with (1), we define:

(3) S∗α =
∑
β

K(α, β)Mβ ; hβ =
∑
α

K(α, β)Sα.

These formulas explicitly define the dual immaculate functions S∗α in QSym and
implicitly define the immaculate functions Sα in NSym. Multiplying by the inverse
immaculate Kostka matrix, this definition is equivalent to:

(4) Mα =
∑
β

K−1(α, β)S∗β ; Sβ =
∑
α

K−1(α, β)hα.

Another equivalent version of these formulas is to define S∗α by the M -expansion
in (3) and then declare that Sα is the unique dual basis of NSym, meaning that
〈S∗α,Sβ〉 = χ(α = β) for all compositions α, β.
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1.3. The NonCommutative Jacobi–Trudi Formula. The algebraic approach to
defining Sα and S∗α goes in the opposite direction. First we define Sβ by a non-
commutative version of the Jacobi–Trudi formula. Given any m ×m matrix A with
entries in a (possibly noncommutative) ring, let the top-to-bottom determinant of A be

(5) det↓(A) =
∑
w∈Sm

sgn(w)A(1, w(1))A(2, w(2)) · · ·A(m,w(m)).

Here Sm is the set of permutations of {1, 2, . . . ,m}, and we multiply the chosen
entries of A in order working from row 1 down to row m. For any composition
β = (β1, . . . , βm), we define

(6) Sβ = det↓ [hβi+j−i]m×m =
∑
w∈Sm

sgn(w)h(β1+w(1)−1,β2+w(2)−2,...,βm+w(m)−m),

where h0 = 1 and hk = 0 for k < 0. Then we declare that (S∗β) is the unique basis
of QSym dual to the basis (Sβ) of NSym.

Example 1.4. For β = (3, 4, 1), we compute

S341 = det↓

 h3 h4 h5
h3 h4 h5
0 h0 h1

 = h341 + h53 − h35 − h431.

Due to noncommutativity, the answer is not zero even though the determinant has
two equal rows.

To see that this approach is equivalent to the combinatorial approach, one must
check that the h-expansion of Sβ (as given by the Jacobi–Trudi formula) really does
agree with the expansion in (3) obtained by inverting the matrix of dual immaculate
tableau counts. The equivalence of the two definitions is known but non-trivial; we
give a combinatorial proof of this fact later (Theorem 4.7). We take the combinatorial
formulas (3) and (4) as the definition of (Sα) and (S∗α) to be used here.

1.4. Overview of Results. Section 2 defines raising operators Ri,j on various ab-
stract vector spaces and examines algebraic properties of the inverse Kostka operators∏
i<j(I − Ri,j) on each space. Section 3 develops combinatorial algorithms for com-

puting these operators and their inverses based on manipulations of filled diagrams.
Analysis of these algorithms leads naturally to expressions involving dual immacu-
late tableaux (Theorem 3.9) and analogous fillings of diagrams where rows of length
zero may occur (Theorem 3.6). Applying raising operators in stages leads to bases of
NSym interpolating between the S-basis and the h-basis, and dual bases of QSym
interpolating between the S∗-basis and the M -basis (§3.7).

Section 4 develops combinatorial models for the entries in the inverse of the dual im-
maculate Kostka matrix. We provide formulas involving tournaments (Theorem 4.3),
transitive tournaments (Theorem 4.4), noncommutative determinants (Theorem 4.7),
recursions (Theorem 4.9), and special rim hook tableaux (Theorem 4.12).

Section 5 defines t-analogues of inverse Kostka operators, dual immaculate
tableaux, tournaments, and the associated bases of NSym and QSym. These
t-analogues can be viewed as noncommutative and quasisymmetric versions of
the Hall–Littlewood polynomials, of which there are several in the literature al-
ready [2, 8, 9].
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2. Algebraic Development of Inverse Kostka Operators
In this section, we study the algebraic properties of inverse Kostka operators∏
i<j(I −Ri,j) acting on various abstract vector spaces. Later we specialize these

results to obtain information about transition matrices in QSym, NSym, and Sym.
Throughout this discussion we fix a positive integer m and a field F . All vector
spaces use scalars coming from F (the theory also works for free Z-modules). I
denotes the identity map on the vector space currently being considered. We set
[m] = {1, 2, . . . ,m}.

2.1. Action on Lists of Integers. Let Zm be the set of all ordered lists
[a1, . . . , am] with each ai ∈ Z. Let V0 be the vector space having Zm as a basis. Thus,
by definition, every v ∈ V0 is a finite formal linear combination of m-element lists of
integers. For distinct i, j ∈ [m], define the raising operator Ri,j : V0 → V0 to be the
linear map on V0 that acts on basis vectors via

Ri,j([a1, . . . , ai, . . . , aj , . . . , am]) = [a1, . . . , ai + 1, . . . , aj − 1, . . . , am].
For example, R1,3(−2[3, 1, 5] + 5[2,−3, 0]) = −2[4, 1, 4] + 5[3,−3,−1].

In the F -algebra of all linear operators on V0, all these raising operators commute
and obey the associative and distributive laws. We can now give a rigorous explanation
of the raising operator formula stated in §1.1. Given a partition µ = [µ1, . . . , µm]
with m parts, first apply the operator

∏
16i<j6m(I − Ri,j) to [µ1, . . . , µm] ∈ V0 to

obtain some linear combination of m-element lists. Then apply the evaluation map
E : V0 → Sym that sends each list α = [α1, . . . , αm] to hα = hα1 · · ·hαm (where
h0 = 1 and hk = 0 for k < 0, and the hk’s commute). The resulting symmetric
function is known to be the Schur function sµ [14, pg. 42].

Trying to analyze
∏
i<j(I − Ri,j) in V0 is problematic, however, for the follow-

ing reason. Although each Ri,j is invertible (clearly R−1
i,j = Rj,i), the operators

I − Ri,j : V0 → V0 are not invertible. For example, taking m = 2, we claim that
no v ∈ V0 solves (I−R1,2)(v) = [0, 0]. Comparing coefficients of basis vectors on both
sides of this equation, we see that any solution v must include all terms of the form∑−1
k=−∞ c[k,−k] +

∑∞
k=0(c + 1)[k,−k] for some c ∈ F . But whatever we choose for

c, this expression is not a finite linear combination of basis vectors. So there is no
solution in the space V0.

2.2. Action on Lists of Nonnegative Integers. To address the non-invertibility
of I − Ri,j , we pass to a smaller vector space. Let Zm>0 be the set of all ordered lists
[a1, . . . , am] where each ai is a nonnegative integer. We sometimes omit commas from
such a list if no confusion is likely. Let V be the vector space with basis Zm>0. For
distinct i, j ∈ [m], define the raising operator Ri,j : V → V to be the linear map
acting on basis vectors via

Ri,j([a1, . . . , ai, . . . , aj , . . . , am]) =
{

[a1, . . . , ai + 1, . . . , aj − 1, . . . , am] if aj > 0;
0 if aj = 0.

Intuitively, if the old raising operator produces a list with a negative entry, that list
is discarded from the answer. For example, R1,3(−2[3, 1, 5] + 5[2, 3, 0]) = −2[4, 1, 4].

These raising operators (like any linear maps on a vector space) still obey the
associative and distributive laws, but they no longer commute in general. For example,
R1,2 ◦R2,3([3, 0, 1]) = R1,2([3, 1, 0]) = [4, 0, 0], but R2,3 ◦R1,2([3, 0, 1]) = R2,3(0) = 0.
However, if i, j, a, b are four distinct indices, then Ri,j does commute with Ra,b. Sim-
ilarly, for a fixed index j, the operators R1,j , R2,j , . . ., Rj−1,j all commute. This is
because Ri,j ◦ Rk,j sends a basis vector [a1, . . . , am] to zero iff aj 6 1 iff Rk,j ◦ Ri,j
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sends [a1, . . . , am] to zero. We also have the following restricted version of commu-
tativity. Suppose Ri1,j1 , . . . , Ris,js are given raising operators and [a1, . . . , am] is an
input such that for all j ∈ [m], the number of occurrences of j in j1, . . . , js is at
most aj . Then applying these raising operators to input [a1, . . . , am], in any order,
produces the same output. This holds since the exceptional case where a basis vector
is sent to zero never applies. More specifically, the output here is [b1, . . . , bm], where
bk = ak +

∑s
r=1 χ(ir = k) −

∑s
r=1 χ(jr = k) for k ∈ [m]. This formula is unchanged

by reordering the given raising operators.
Due to noncommutativity, we must take care in defining what

∏
i<j(I−Ri,j) means.

For each fixed j between 2 and m, define a linear map Tj : V → V by

Tj = (I −R1,j) ◦ (I −R2,j) ◦ · · · ◦ (I −Rj−1,j) =
j−1∏
i=1

(I −Ri,j).

For definiteness we compose the factors I−Ri,j in the indicated order, although these
factors do commute. Next, we define the inverse Kostka operator on V to be

T = T2 ◦ T3 ◦ · · · ◦ Tm =
m∏
j=2

Tj .

So Tm acts first on an input vector, then Tm−1, etc. ending with T2. We use this order
to ensure that we get the expected answer for Sym when working in V rather than
V0 (see the discussion below (11) in §4.1).

Acting on V , it is no longer true that R−1
i,j = Rj,i. In fact, each Ri,j is a locally

nilpotent linear operator on V . This means that for each v ∈ V , there exists a positive
integer N (depending on v) such that RNi,j(v) = 0. More specifically, starting with the
basis vector [a1, . . . , aj , . . . , am] and applying Ri,j repeatedly, we obtain zero after
N = aj + 1 steps.

The local nilpotence makes it easy to invert I − Ri,j using the formal geometric
series formula. Specifically,

(I −Ri,j)−1 = I +Ri,j +R2
i,j + · · ·+RNi,j + · · · =

∞∑
e=0

Rei,j .

The sum on the right side has only finitely many nonzero terms when applied to
any specific input vector v. We could also fix n and restrict attention to the subspace
spanned by lists [a1, . . . , am] with a1+· · ·+am = n. On this subspace, Ri,j is nilpotent
of index n+ 1, and (I −Ri,j)−1 =

∑n
e=0 R

e
i,j . For example,

(I −R1,3)−1([2, 1, 3]) = [213] + [312] + [411] + [510].

It is now routine to invert the full inverse Kostka operator on V . For fixed j, we
have T−1

j = (I − Rj−1,j)−1 ◦ · · · ◦ (I − R1,j)−1. Then T−1 = T−1
m ◦ · · · ◦ T−1

3 ◦ T−1
2 .

Expanding this with the distributive law, we see that T−1 is the sum of all terms of
the form

R
em−1,m

m−1,m · · ·R
e1,m

1,m R
em−2,m−1
m−2,m−1 · · ·R

e1,m−1
1,m−1 · · ·R

e2,3
2,3 R

e1,3
1,3 R

e1,2
1,2 ,

where each ei,j is a nonnegative integer.

2.3. Action on Compositions. Let W be the subspace of V spanned by basis
vectors [a1, a2, . . . , am] where all zero parts (if any) occur at the end. More formally,
this means that if ai = 0 then ai+1, . . . , am must also be zero. By dropping any zero
parts at the end, these lists correspond to (strict) compositions with at most m parts.
Later we will identify the abstract basis vectors [a1, . . . , am] with particular basis
elements of QSym and NSym.
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The operators T and Tj on V do not always send inputs from W to outputs in
W . To resolve this difficulty, we introduce a linear projection map P : V → W
that acts on basis vectors by moving any zero parts to the right end. For example,
P ([2, 0, 3, 0, 1, 0]) = [2, 3, 1, 0, 0, 0] and P ([2, 4, 1, 3, 0, 0]) = [2, 4, 1, 3, 0, 0]. We say that
P acts on a list by packing the nonzero parts of its input on the left end. We now
define our inverse Kostka operator on the space W by letting U = P ◦ (T |W ), where
T |W : W → V is the restriction of the operator T to the domain W . We similarly
define Uj = P ◦ (Tj |W ) for j = 2, . . . ,m and Ui,j = P ◦ (I − Ri,j)|W for distinct
i, j ∈ [m].

Since Tj =
∏j−1
i=1 (I − Ri,j), one might expect that Uj =

∏j−1
i=1 Ui,j . However,

the following example shows this is not true in general. On one hand, applying U3 =
P ◦(I−R1,3)◦(I−R2,3) to [1, 1, 1, 1] gives P ([1111]−[2101]−[1201]) = [1111]−[2110]−
[1210]. On the other hand, U2,3([1, 1, 1, 1]) = P ◦ (I −R2,3)([1111]) = [1111]− [1210],
so U1,3(U2,3([1, 1, 1, 1])) = [1111]− [2110]− [1210] + [2200]. Thus, U3 6= U1,3 ◦ U2,3.

The example shows that we cannot indiscriminately insert new P ’s in the product
of I − Ri,j ’s defining U . But there are certain locations where P ’s may be inserted
safely. Specifically, we show later (Lemma 3.7) that P ◦

∏m
j=2 Tj =

∏m
j=2 P ◦ Tj when

acting on vectors in W , so that U = U2 ◦ U3 ◦ · · · ◦ Um holds. This fact allows us to
invert U in m−1 stages, writing U−1 = U−1

m ◦ · · · ◦U−1
3 ◦U−1

2 . However, we no longer
have simple formulas for U−1

j based on the geometric series, due to the presence of
the non-invertible projection map P . The next section shows how to invert each Uj
and U itself using combinatorial models for these operators and their inverses.

3. Combinatorics of Inverse Kostka Operators
This section gives combinatorial models for the action of the operators Tj , Uj , T−1

j ,
U−1
j , T−1, U−1, T , and U on basis vectors of V and W . We visualize a basis vector

[a1, . . . , am] of V by a generalized composition diagram that has ai left-justified boxes
in row i from the bottom. Working in V , we allow some rows to have zero boxes; but
for basis vectors in W , all such rows must occur at the top of the figure.

3.1. Combinatorial Action of Tj and Uj. Fix j between 2 andm. We begin with
a model for Tj =

∏j−1
i=1 (I − Ri,j) acting on input v = [a1, . . . , am] ∈ V . We create a

signed linear combination of diagrams by making the following choices in all possible
ways and adding the results. Start with the diagram of v with coefficient +1. First,
to model I − Rj−1,j , either leave the diagram unchanged or move one box from row
j to row j − 1 and change the sign. Second, either leave the diagram unchanged or
move one box from row j to row j − 2 with a sign change. Continue until the choice
for I −R1,j , where we either leave the diagram unchanged or move one box from row
j to row 1 and change the sign. During this process, if all boxes in row j are moved,
then we must choose I (leave the diagram unchanged) from that point on.

The algorithm for Tj can be described more concisely, as follows. Starting with the
diagram of v = [a1, . . . , am], decrease aj by some amount d with 0 6 d 6 aj , and
increment d distinct entries in the first j − 1 positions of v. Use the coefficient (−1)d
for this list, and add up all the lists that can be made from v in this way.

The action of Uj = P ◦ (Tj |W ) is similar, but there are two modifications. First,
Uj is only allowed to act on (linear combinations of) basis vectors in W . So any
input v = [a1, . . . , am] to Uj must have all zero parts at the right end. Second,
for any output list w = ±[b1, . . . , bm] produced by the algorithm for Tj , we must
replace this list by its packed version P (w). Now v is already packed, and the choice
process creating w from v can only create a new zero in position j. Therefore, we have
P (w) = ±[b1, . . . , bj−1, bj+1, . . . , bm, 0] when bj = 0 and P (w) = w when bj > 0. In
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terms of diagrams, when we make choices that move all aj cells from row j down to
lower rows, the part of the diagram above row j falls into the empty row j at the end.

Example 3.1.Given v = [1, 4, 2, 3, 1], we compute T3(v) and U3(v) by acting on
diagrams. We have T3(v) = [14231]− [24131]− [15131]+[25031] and U3(v) = [14231]−
[24131]− [15131] + [25310]. The diagrams for v and U3(v) are shown below. We place
a minus sign in each cell moved by an Ri,j operator to keep track of the sign.

U3−→

−
− −

−

3.2. Combinatorial Action of T−1
j and U−1

j . Recall that the inverse of Tj =∏j−1
i=1 (I −Ri,j) is given algebraically by the geometric series formula

(7) T−1
j =

∑
e1>0

∑
e2>0
· · ·

∑
ej−1>0

R
ej−1
j−1,j ◦ · · · ◦R

e2
2,j ◦R

e1
1,j .

Given a basis vector v = [a1, . . . , am] ∈ V , we can compute T−1
j (v) by acting on

diagrams as follows. Do the following steps in all possible ways and add the results.
Starting with the diagram of [a1, . . . , am], choose nonnegative integers e1, . . . , ej−1
with sum at most aj . For i = 1, 2, . . . , j − 1 in turn, move ei boxes from row j to row
i. We mark each moved box with a + symbol, noting that there are no negative signs
in the formula for T−1

j .
Now we introduce a combinatorial operator U ′j on W that will turn out to be U−1

j .
Start with the diagram of a packed basis vector v = [a1, . . . , am] ∈ W . As before,
choose e1, . . . , ej−1 with sum at most aj and move ei boxes from row j to row i for
each i < j. If there are still boxes left in row j, then we stop here and record the
resulting object. However, for choices of ei where e1 + · · ·+ ej−1 = aj , row j becomes
empty and the higher rows fall down (as happened with Uj). When this occurs, we
continue the process, choosing e′1, . . . , e′j−1 with sum at most aj+1 (the number of
boxes now in row j). We again move e′i boxes from row j to row i for each i < j. If
e′1 + · · ·+ e′j−1 < aj+1, then we stop and record the resulting object. Otherwise, the
rows above row j fall again and we continue recursively. This process must terminate
after finitely many steps, since eventually we run out of boxes above row j.

Example 3.2.We have T−1
3 ([3, 1, 2, 1]) = [3121] + [4111] + [3211] + [5101] + [3301] +

[4201]. Using the following diagrams, we find U ′2([1, 1, 2, 1]) = [1121]+[2210]+[3110]+
[4100] + [5000].

U ′2−→
+ + + + + + + + + +

3.3. Proof of Inverse Property for Uj.

Theorem 3.3. For 2 6 j 6 m, the operator U ′j : W → W is the inverse of
Uj : W →W .

Proof. It suffices to prove that U ′j◦Uj = I (the identity map onW ). The other identity
Uj◦U ′j = I follows automatically because for each n andm, Uj and U ′j restrict to linear
maps on the finite-dimensional subspaces ofW spanned by composition diagrams with
n boxes and m rows.
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When we act on diagrams by a sequence of operators, it is helpful to annotate the
diagrams by filling each box with its row number in the original input diagram. A
box that moves down due to a −Ri,j term retains its number along with a minus sign
(drawn above the number to save space). Other boxes that move or fall down keep
their number with no sign. The next example illustrates this annotation process for
the operator sequence U ′3 ◦ U3.

Example 3.4.We compute U ′3(U3([2311])) by drawing annotated diagrams. First we
find U3([2311]) = [2311]− [3310]− [2410] as shown here:

4
3
2 2 2
1 1

U3−→

4
3
2 2 2
1 1

4
2 2 2
1 1 3

4
2 2 2 3
1 1

.

To continue, we find U ′3(U3([2311])) = U ′3([2311]) − U ′3([3310]) − U ′3([2410]) by
applying U ′3 to each of the three intermediate diagrams produced in the previous
step. The seven positive diagrams for U ′3([2311]) are shown here:

4
3
2 2 2
1 1

4
2 2 2
1 1 3

2 2 2
1 1 3 4

2 2 2 4
1 1 3

4
2 2 2 3
1 1

2 2 2 3
1 1 4

2 2 2 3 4
1 1

.

The six negative diagrams for −U ′3([3310])− U ′3([2410]) are shown here:
4
2 2 2
1 1 3

2 2 2
1 1 3 4

2 2 2 4
1 1 3

4
2 2 2 3
1 1

2 2 2 3
1 1 4

2 2 2 3 4
1 1

.

Noting the cancellation of terms with the same shape but opposite signs, the final
answer is U ′3(U3([2311])) = [2311] = I([2311]).

We now prove that the cancellation seen in the example holds in general. Fix
j > 1. To prove U ′j ◦ Uj = I, it suffices to show that U ′j(Uj(w)) = w for all basis
vectors w = [a1, . . . , am] of W . We show this by introducing a sign-reversing, shape-
preserving involution on the set of annotated diagrams that appear in the calculation
of U ′j(Uj(w)). Observe the following property of such diagrams: each row i < j con-
tains (among other things) at most one box labeled −j, followed by zero or more
boxes labeled j.

Given such a diagram z, find the least row index i < j such that a box with −j or
j occurs in that row. If there is no such i, then neither Uj nor U ′j moved any boxes
down, so we must have z = w. This diagram (which is positive) is the unique fixed
point of the involution, corresponding to the output term w.

When i does exist, the involution acts as follows. If there is a −j in row i, change it
to j. If there is no −j in row i, change the first j in row i to −j. One sees immediately
that the new object is another valid annotated diagram arising in the computation of
U ′j(Uj(w)) with opposite sign as z. It is also clear that performing this action twice
restores the original object z, so we do have an involution. Thus all output objects
except w itself cancel, as needed. The previous example illustrates this involution.
The first object in row 1 is the fixed point [2311], and the remaining objects in row 1
match (in order) with the corresponding objects in row 2. �

The identity T−1
j ◦ Tj = I can be given a similar combinatorial proof (which we

omit). Here the situation is simpler, since rows do not fall and there is no recursive
continuation of the motion process in T−1

j .
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3.4. Tableau Description of the Kostka Operator T−1. Next we use anno-
tated diagrams to give a combinatorial formula for T−1 (the Kostka operator on V )
in terms of tableau-like structures. For a filled generalized composition diagram D,
the shape of D (denoted sh(D)) is the list of m row lengths of D. The content of D
is the list (f1, f2, . . . , fm), where fi is the number of occurrences of i in D. Recall
T = T2T3 · · ·Tm and T−1 = T−1

m · · ·T−1
3 T−1

2 . Therefore, we can compute the action
of T−1 on a basis vector v = [a1, . . . , am] ∈ V as follows. Start with the annotated
diagram for v, which has aj boxes labeled j in each row j (rows of length zero may
occur). Generate a collection of filled diagrams by executing the following loop and
making all possible box motions. For j = 2, 3, . . . ,m in this order, move any number
of boxes down from row j to the end of lower rows, keeping the labels in each box.
Then T−1(v) is the sum of the shapes of all filled diagrams generated in this way.

Example 3.5. Let v = [2, 1, 2]. Using the annotated diagrams shown below, we com-
pute

T−1(v) = [212] + 2[311] + [221] + 2[410] + 2[320] + [230] + [302] + [401] + [500].

The first diagram arises by moving no boxes when j = 2 and no boxes when j = 3.
The second diagram (of shape [311]) arises by moving no boxes when j = 2 and
moving one box from row 3 to row 1 when j = 3. We see this same shape in the ninth
diagram, which arises by moving a box from row 2 to row 1 when j = 2 and moving
a box from row 3 to row 2 when j = 3. This explains why [311] has coefficient 2 in
T−1(v).

3 3
2
1 1

3
2
1 1 3

3
2 3
1 1

2
1 1 3 3

2 3
1 1 3

2 3 3
1 1

3 3

1 1 2

3

1 1 2 3

3
3
1 1 2 1 1 2 3 3

3
1 1 2 3

3 3
1 1 2

The next theorem characterizes the filled diagrams that occur when we compute
T−1(v).

Theorem 3.6. For any basis vector v = [a1, . . . , am] of V , T−1(v) =
∑
D sh(D),

where we sum over all filled diagrams D with these properties:
(a) all rows of D are weakly increasing;
(b) D has content v;
(c) each copy of j in D appears in some row i 6 j.

Proof. First suppose D is one of the filled diagrams generated by the algorithm for
computing T−1(v). The initial diagram for v has content v, and the motion rules do
not change the content, so (b) holds. Since occurrences of j are moved to the end of
lower rows in increasing order of j, (a) holds. Since each copy of j begins in row j
and optionally moves down to lower rows, (c) holds.

To finish the proof, we must show that any filled diagram D with properties (a),
(b), (c) is produced in exactly one way by the algorithm computing T−1(v). Given
such a diagram D, we can produce D from the original filled diagram for v by the
following choices. For j = 2, 3, . . . ,m in order, move some of the aj copies of j in row
j down to lower rows so that the frequency of j’s in rows 1 through j matches the
frequency in D. This is possible, since D has exactly aj copies of j that all occur in
the first j rows. The choices made at each step are forced, so there is only one way
to produce D. �
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3.5. Combinatorial Action of T and U . We can give a similar combinatorial
prescription for acting by T = T2◦· · ·◦Tm on a basis vector v = [a1, . . . , am] ∈ V . Start
with the diagram of v, consisting of aj boxes in each row j. For j = m,m−1, . . . , 2 in
this order, move some number d > 0 of the boxes currently in row j into d distinct rows
i1, . . . , id < j. Every box that moves causes a sign change in the coefficient of the final
object produced. In this case, even if we fill each box with its original row number,
there is not always enough information in the final filled diagram to reconstruct the
choices that produced it. This is because a box might be moved to its final location
in several steps as we proceed from j = m down to j = 2. We remedy this defect
in §4.1 by giving a combinatorial model for T (v) based on tournaments. However, we
can use the current model to prove the following technical fact mentioned at the end
of §2.3.

Lemma 3.7. The operator U : W →W factors as U = U2 ◦ U3 · · · ◦ Um.

Proof. Recalling that U = P ◦ (T |W ) and Uj = P ◦ (Tj |W ), it suffices to prove
that P ◦

∏m
j=2 Tj and

∏m
j=2(P ◦ Tj) have the same effect on any packed basis vector

v = [a1, . . . , am] ∈ W . On one hand, to compute [P ◦
∏m
j=2 Tj ](v), we act on the

diagram of v by using the procedure given for T , but at the end we pack each output
diagram by letting higher rows fall into any zero-length rows that have been created.
On the other hand, to compute [

∏m
j=2 P ◦ Tj ](v), we pack the diagrams after every

iteration of the loop over j = m,m− 1, . . . , 2. We claim that the extra packing steps
do not affect the signed objects that can be generated. Intuitively, this holds since the
packing step after Tj does not affect the choices that can be made by later operators
Tj−1, . . . , T2. The formal proof follows.

Since the input list v is already packed, we can assume without loss of generality
that every ai is positive. This is because the operators Tj and P ◦ Tj , corresponding
to any zero parts aj = 0 at the right end of v, act first and send v to itself. Later
operators Ti and P ◦Ti neither affect nor are affected by these trailing zero parts in v.

Now, we prove the following statement by backwards induction on j ranging from
m down to 1: “if [

∏
j<J6m TJ ](v) =

∑
i ciLi for certain scalars ci and lists Li, then

[
∏
j<J6m P ◦ TJ ](v) =

∑
i ciL

′
i, where each L′i = P (Li), the first j components of L′i

agree with the corresponding components of Li, and the first j components of Li are
positive.” Here we interpret an empty product of operators as the identity map. For
the base case j = m,

∑
i ciLi and

∑
i ciL

′
i are both v, and the needed conclusions

hold by our assumption on v.
For the induction step, assume the quoted statement holds for a fixed j between

2 and m, and prove this statement also holds with j replaced by j − 1. Here,
[
∏
j−1<J6m TJ ](v) =

∑
i ciTj(Li) and [

∏
j−1<J6m P ◦ TJ ](v) =

∑
i ciP (Tj(L′i)),

where Li and L′i satisfy the conditions in the quoted statement. Let us compare how
Tj acts on a particular list Li = [b1, . . . , bj , bj+1, . . . , bm] with how P ◦ Tj acts on
the corresponding list L′i = [b1, . . . , bj , b

′
j+1, . . . , b

′
m]. Here, b1, . . . , bj are all positive,

and [b′j+1, . . . , b
′
m] is the packed version of [bj+1, . . . , bm]. Doing Tj to Li will produce

a signed linear combination of new lists Li,1, . . . , Li,si . Each list Li,s arises from Li
by decreasing bj by some amount (possibly zero) and incrementing certain entries in
b1, . . . , bj−1. We can perform exactly the same actions on L′i and then pack to get
new lists L′i,1, . . . , L′i,si

such that each L′i,s agrees with Li,s in the first j−1 positions,
which all contain positive entries. The only difference between L′i,s and Li,s is that if
the new entry in position j of Li,s is zero, then P moves that entry to the right end
in L′i,s. Thus, L′i,s = P (Li,s) for all i and s, completing the induction step.
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The quoted statement is now known to hold for j = 1. This statement tells us
(among other things) that we can obtain [

∏m
j=2 P ◦ Tj ](v) =

∑
i ciL

′
i by applying P

to [
∏m
j=2 Tj ](v) =

∑
i ciLi. This is exactly what we set out to prove. �

3.6. Tableau Description of the Kostka Operator U−1. Thanks to
Lemma 3.7, we know U−1 = U−1

m · · ·U−1
3 U−1

2 . So we can give a combinatorial
model for U−1 (the Kostka operator on W ) similar to what we did in §3.4 for T−1.
Given a packed basis vector v = [a1, . . . , am] ∈ W , compute U−1(v) as follows. Start
with the filled diagram of v where row j has aj boxes labeled j. For j = 2, 3, . . . ,m
in this order, use the recursive motion rule for U−1

j (see §3.2) to move filled boxes
from row j into lower rows. This includes the possibility that higher rows fall into
row j and some of their boxes move down recursively. Do this in all possible ways;
the sum of the shapes of the resulting filled diagrams is U−1(v).

Example 3.8.Given v = [2, 1, 2] ∈ W , let us find U−1(v) = U−1
3 (U−1

2 (v)). First
compute U−1

2 (v) = [212] + [320] + [410] + [500] using the diagrams shown below.
3 3
2
1 1

3 3
1 1 2

3
1 1 2 3 1 1 2 3 3

Now U−1
3 acts as the identity on [320], [410], and [500], since the associated diagrams

have no boxes in row 3. Computing U−1
3 ([212]), we now move entries from row 3 down

in all possible ways, obtaining the diagrams shown here.
3 3
2
1 1

3
2 3
1 1

3
2
1 1 3

2 3 3
1 1

2 3
1 1 3

2
1 1 3 3

Thus, U−1(v) = [212] + [221] + [311] + [230] + 2[320] + 2[410] + [500].

When we characterize the filled diagrams appearing in the computation of U−1(v),
dual immaculate tableaux miraculously emerge. Recall (§1.2) that a dual immaculate
tableau is a filling of a composition diagram so that rows weakly increase from left to
right and the first (leftmost) column strictly increases from bottom to top.

Theorem 3.9. For any basis vector v = [a1, . . . , am] of W , U−1(v) =
∑
D sh(D),

where we sum over all dual immaculate tableaux D of content v.

Proof. First suppose D is one of the filled diagrams generated by the algorithm for
computing U−1(v). Note that the initial filled diagram for v is a dual immaculate
tableau of content v. The action of each U−1

j preserves the content. Also, a routine
induction on j shows that U−1

j acts only on diagrams such that all values below row j

are less than all values in rows j and higher. It follows that each U−1
j (hence U itself)

preserves the property of having weakly increasing rows. Moreover, a value in column 1
only changes when a row becomes empty and higher rows fall down into the gap. Since
the initial values in column 1 form a strictly increasing sequence, this property is pre-
served throughout the algorithm. Thus, D is a dual immaculate tableau of content v.

Conversely, we now verify that every dual immaculate tableau D of content v
arises in exactly one way during the computation of U−1(v). Fix such a tableau D.
Let the strictly increasing sequence of values in column 1 of D be a1 < a2 < · · · < ak,
where a1 = 1, and let M be the maximum value in D. Because rows of D weakly
increase, any occurrence in D of a value i 6 aj must occur in one of the first j
rows. Consider how we could produce D from the filled diagram of v during the
computation of U−1. The first step (acting by U−1

2 ) must terminate with a2 residing
in row 2, column 1, since none of the later U−1

j steps can displace the first entry in
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row 2. Similarly, the action by U−1
3 must terminate with a3 residing in row 3, column

1, and so on. This means that the box motions chosen in the U−1
2 step must be the

following: for i = 2, 3, . . . , a2 in this order, move the i’s from row 2 to their final
locations in D. Next, in the U−1

3 step, we must act as follows: for i = a2 + 1, . . . , a3,
move all the i’s from row 3 to their final locations in D. Continue similarly with
U−1

4 , . . . , U−1
k . If M > ak, then we end with the following actions during the U−1

k+1
step: for i = ak + 1, . . . ,M , move all the i’s from row k + 1 to their final locations in
D. This procedure gives the unique sequence of choices leading from v to D. �

Example 3.10.Given the dual immaculate tableau

D =
5 5
3 4 5
2 3
1 2 4

of content v = [12223], Figure 1 shows the unique choice sequence that produces D
from the filled diagram for v. In Figure 1 the labels moving are in bold in each step.

5 5 5
4 4
3 3
2 2
1

U−1
2−→

5 5 5
4 4
3 3
2
1 2

U−1
3−→

5 5 5
4 4
3
2 3
1 2

begin U−1
4−→

5 5 5
3 4
2 3
1 2 4

finish U−1
4−→

5 5
3 4 5
2 3
1 2 4

Figure 1. Illustration of the sequence of choices leading from v to D.

3.7. Interpolating Bases for NSym and QSym. Given a composition α ∈
Compm with ` nonzero parts, let [α] denote the m-element list [α1, . . . , α`, 0, . . . , 0],
which is a basis element of W . Theorem 3.9 translates into the following fact about
the immaculate Kostka matrix.

Theorem 3.11. For all compositions β ∈ Compm, U−1([β]) =
∑
α∈Compm

K(α, β)[α].

Let NSymm (resp. QSymm) be the subspace of NSym (resp. QSym) consisting of
homogeneous elements of degree m. Also let Wm be the subspace of W spanned by
the lists [α] with α ∈ Compm. We can identify the vector space Wm with NSymm by
identifying the list [α] with the immaculate basis elementSα for all α ∈ Compm. Then
U and U−1, which map Wm into itself, are identified with linear maps on NSymm.
Comparing Theorem 3.11 to the definition (3), we see that

(8) U−1(Sβ) =
∑

α∈Compm

K(α, β)Sα = hβ for all β ∈ Compm.

Thus, the Kostka operator U−1 maps the S-basis of NSym to the h-basis, and the
inverse Kostka operator U maps the h-basis to the S-basis.

We have seen that the linear map U−1 factors as U−1 = U−1
m · · ·U−1

3 U−1
2 , where

each U−1
j maps Wm into itself. Therefore, we obtain interpolating bases between the

h-basis and the S-basis of NSymm by defining

S
(i)
β = [U−1

i · · ·U
−1
3 U−1

2 ](Sβ) for all β ∈ Compm and 1 6 i 6 m.

Here S
(1)
β = Sβ and S

(m)
β = hβ .

So far we have always considered vector spaces V and W spanned by lists of a
fixed length m (including trailing zero parts). These spaces naturally embed in the
corresponding spaces spanned by lists of length m+1 by appending a zero part to the
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end of each basis vector. The maps Tm+1, Um+1, and their inverses act as the identity
on a list of length m+ 1 ending with a zero part. In particular, the value of quantities
such as U(v), U−1(v), U−1

i · · ·U
−1
2 (v), etc. remains stable if we append trailing zero

parts to v. By taking a suitable algebraic limit asm goes to infinity, we can extend our
entire discussion to spaces spanned by lists of infinite length that have only finitely
many nonzero parts. So for each positive integer i, we obtain a basis (S(i)

β ) of the
full space NSym =

⊕
m>0 NSymm, where β ranges through all compositions. For all

β ∈ Compm and all N > m, we have S
(N)
β = hβ .

Inverting (8), we see that the matrix of the linear map U : NSymm → NSymm

relative to the immaculate basis (Sβ) of NSymm is K−1, where K is the immaculate
Kostka matrix. Therefore, the matrix of the dual linear map U∗ : QSymm → QSymm

relative to the dual basis (S∗β) of QSymm is the transpose of K−1. In other words,
recalling (4),

U∗(S∗α) =
∑

β∈Compm

K−1(α, β)S∗β = Mα for all α ∈ Compm.

Thus the dual inverse Kostka operator U∗ maps the S∗-basis of QSymm to the M -
basis, while the dual of U−1 maps the M -basis to the S∗-basis. By applying U∗ or its
inverse in stages, we obtain interpolating bases between these two bases of QSymm.
As above, we can take a formal limit to get bases for the full space QSym, which are
dual to the bases (S(i)

β ). Specifically, S(i)∗
β = U∗i · · ·U∗3U∗2 (S∗β) for all compositions β.

By adjusting the proof of Theorem 3.9 to stop the computation of U−1 after U−1
i ,

we can obtain a combinatorial expansion of S(i)
β in terms of the S-basis. Given a

composition α, let `(α) = s be the number of positive parts of α. Given a composition
β = (β1, . . . , βm) and j ∈ [m], define β6j = (β1, . . . , βj) and β>j = (βj+1, . . . , βm).
Let K′(α, β6j) be the set of dual immaculate tableaux of shape α and content β6j
such that every entry in the top row is j. Let α • β>j be the composition consisting
of the parts of α followed by (βj+1, . . . , βm).

Theorem 3.12. For all compositions β with m parts and all positive integers i,

(9) S
(i)
β =

∑
α∈Comp:
`(α)<i

K(α, β)Sα +
∑

α∈Comp:
`(α)=i

m∑
j=i
K′(α, β6j)Sα•β>j

.

Proof. Consider a typical object D generated when we start with the filled diagram
of [β], act by U−1

2 , U−1
3 , . . ., U−1

i in this order, and then stop. If D has fewer than i
rows of positive length, then (as in the proof of Theorem 3.9) D is a dual immaculate
tableau of content β and some shape α with `(α) < i. Moreover, all such tableaux
arise exactly once in this computation. This accounts for the first sum in (9).

On the other hand, suppose D has at least i rows, and let j be the symbol in row i,
column 1 of D. Using the combinatorial description of the operators U−1

k , one readily
sees that: i 6 j 6 m; the first i rows of D form a dual immaculate tableau counted by
K′(α, β6j) for some α with `(α) = i; row i+ 1 of D must contain βj+1 copies of j+ 1;
row i + 2 of D must contain βj+2 copies of j + 2; and so on. Thus the overall shape
of D is α • β>j . Each diagram D satisfying these conditions (for some such α and j)
arises exactly once in the computation. This explains the second sum in (9). �

For instance, S(2)
212 = S212 + S32 + S41 + S5 by Theorem 3.12 or Example 3.8.

Remark 3.13. Theorem 3.12 shows that each interpolating basis (S(i)
β ) has a positive

integral expansion in the immaculate basis of NSym. By duality, the dual immaculate
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basis of QSym has a positive integral expansion in each basis (S(i)∗
β ). It would be

interesting to find (signed) combinatorial formulas for the expansions of (S(i)∗
β ) in

terms of other familiar bases of QSym such as the Young quasisymmetric Schur basis
or the fundamental basis.

4. Tournaments, Determinants, Recursions, and Special Rim
Hook Tableaux

This section gives combinatorial models for the action of the inverse Kostka operators
T and U based on tournaments and related structures. This leads to several formulas
for the entries in the inverse of the immaculate Kostka matrix.

An m-player tournament is an m × m matrix τ with entries in {0, 1} such that
for all i in [m], τ(i, i) = 0; and for all i < j in [m], exactly one of τ(i, j) and τ(j, i)
is 1. Let Tm be the set of all m-player tournaments. Note that τ ∈ Tm is uniquely
determined by the values τ(i, j) with 1 6 i < j 6 m. The sign of a tournament τ is
sgn(τ) =

∏
16i<j6m(−1)τ(i,j). Thus, sgn(τ) is −1 if τ has an odd number of 1s above

the diagonal, and +1 otherwise.

4.1. Tournament Models for Inverse Kostka Operators. Let us first con-
sider the action of the operator T0 =

∏
16i<j6m(I−Ri,j) on the vector space V0 with

basis Zm. We can expand this product of operators using the generalized distributive
law. For each factor I−Ri,j , we choose either I or −Ri,j , multiply together the chosen
factors, and add all the results. We can use a tournament τ ∈ Tm to record all the
choices made. Specifically, for each i < j in [m], we let τ(i, j) = 0 if we pick I from the
factor I−Ri,j , and we let τ(i, j) = 1 if we pick−Ri,j from this factor. We conclude that

T0 =
∏
i<j

(I −Ri,j) =
∑
τ∈Tm

sgn(τ)
∏
i<j:

τ(i,j)=1

Ri,j .

For fixed τ ∈ Tm, the term in this sum indexed by τ sends a list [a1, . . . , am] in Zm
to sgn(τ)[b1, . . . , bm], where

(10) bk = ak +
m∑

j=k+1
τ(k, j)−

k−1∑
i=1

τ(i, k) for 1 6 k 6 m.

This holds since position k initially contains ak, each Ri,j with i = k increments
position k, and each Ri,j with j = k decrements position k. Identifying each list
[c1, . . . , cm] with hc1 · · ·hcm

∈ Sym, we obtain the tournament model for the inverse
Kostka matrix mentioned at the end of §1.1.

Turning to the space V , the inverse Kostka operator T acts on nonnegative lists
v = [a1, . . . , am] ∈ V by a similar formula. Note first that

(11) T =
∑
τ∈Tm

m∏
j=2

j−1∏
i=1

(−Ri,j)τ(i,j) =
∑
τ∈Tm

sgn(τ)
m∏
j=2

∏
i<j:

τ(i,j)=1

Ri,j .

We claim that we can find T (v) in V by computing T0(v) in V0 (using formula (10))
and then discarding any output lists that have negative entries. This claim holds
because of the order in which we apply the Ri,j operators in (11). The key point is
that if a list entry becomes negative after applying some of the operators encoded
by τ , then that entry must remain negative after applying all the operators encoded
by τ . Thus, a list that is sent to zero at some intermediate stage (working in V ) must
also be sent to zero if we work in V0 and only discard lists with negative entries at
the very end.
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Finally, we can describe how the inverse Kostka operator U = P ◦ (T |W ) acts on
the space W . We use the same formula (11) given for T (applied to basis vectors
[a1, . . . , am] ∈W ), but at the end we must apply P by packing all the output lists.

Example 4.1. The following table computes T ([3, 1, 3]) using tournaments. To visual-
ize (10), we enter a1 = 3, a2 = 1, a3 = 3 along the main diagonal of each tournament
matrix τ ∈ T3. To find the output term ±[b1, b2, b3] corresponding to τ via (10), we
start with each diagonal entry ak and compute bk by adding the 1s to the right of ak
in row k and subtracting the 1s above ak in column k. 3 0 0

1 1 0
1 1 3

  3 0 0
1 1 1
1 0 3

  3 0 1
1 1 0
0 1 3

  3 0 1
1 1 1
0 0 3

  3 1 0
0 1 0
1 1 3

  3 1 0
0 1 1
1 0 3

  3 1 1
0 1 0
0 1 3

  3 1 1
0 1 1
0 0 3


+[313] −[322] −[412] +[421] −[403] +[412] +[502] −[511]

Packing these outputs and noting the cancellation of ±[412], we get U([3, 1, 3]) =
[313]− [322] + [421]− [430] + [520]− [511].

Let the difference vector of a tournament τ ∈ Tm be the list ∆(τ) =
[δ1(τ), . . . , δm(τ)], where δk(τ) =

∑
j>k τ(k, j) −

∑
i<k τ(i, k). For each k ∈ [m],

the outdegree of k in τ is dk(τ) =
∑m
j=1 τ(k, j). Since τ(i, k) = 1− τ(k, i) for all i < k

in [m], we see that

(12) δk(τ) =
∑
j: j>k

τ(k, j) +
∑
j: j<k

(−1 + τ(k, j)) = dk(τ)− (k − 1) for all k ∈ [m].

For lists of integers v = [a1, . . . , am] and w = [b1, . . . , bm], let v⊕w = [a1+b1, . . . , am+
bm] (which is not the same as the formal linear combination v+w in V0). Our results
so far can be summarized as follows.

Proposition 4.2. For all basis vectors v ∈ V and w ∈W ,

(13) T (v) =
∑
τ∈Tm

sgn(τ)(v ⊕∆(τ)) and U(w) =
∑
τ∈Tm

sgn(τ)P (w ⊕∆(τ)).

Now suppose β is a (strict) composition of n with m parts. We know from The-
orem 3.11 that U([β]) =

∑
αK−1(α, β)[α]. It suffices to sum over compositions α

of n with at most m parts, as is readily checked. For any such composition α, let
Tm(α, β) be the set of τ ∈ Tm such that P ([β] ⊕ ∆(τ)) = [α]. We deduce the fol-
lowing combinatorial formula for the entries of the inverse of the immaculate Kostka
matrix.

Theorem 4.3. For all compositions α and β where β has m parts,

K−1(α, β) =
∑

τ∈Tm(α,β)

sgn(τ).

For instance, Example 4.1 provides the entire column of K−1 indexed by β =
[3, 1, 3]. Specifically, the entries in rows 313, 421, and 520 of this column are +1, the
entries in rows 322, 430, and 511 of this column are −1, and all other entries in this
column are 0.

4.2. Transitive Tournaments and the Jacobi–Trudi Formula. A tourna-
ment τ ∈ Tm is called transitive iff for all i, j, k ∈ [m], τ(i, j) = 1 and τ(j, k) = 1
imply τ(i, k) = 1. It is well-known (see, for instance, Theorem 12.64 in [11]) that τ is
transitive iff the list of outdegrees d1(τ), . . . , dm(τ) is a permutation of 0, 1, . . . ,m−1.
Let TTm be the set of transitive tournaments in Tm.
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Theorem 4.4. Formula (13) and Theorem 4.3 remain valid if we sum over transitive
tournaments in Tm and Tm(α, β), respectively.

Proof. It suffices to define an involution I on Tm such that for all transitive τ ∈ Tm,
I(τ) = τ ; and for all non-transitive τ ∈ Tm, sgn(I(τ)) = − sgn(τ) and ∆(τ) =
∆(I(τ)). Fix a non-transitive τ ∈ Tm, so that not all outdegrees in τ are distinct.
Choose the minimum r and then the minimum s > r such that dr(τ) = ds(τ).
Define τ ′ = I(τ) by interchanging the roles of r and s in τ . In more detail, writing
r′ = s, s′ = r, and k′ = k for all k 6= r, s in [m], we define τ ′(i′, j′) = τ(i, j) for all
i, j ∈ [m]. Since dr(τ) = ds(τ), the list of outdegrees for τ ′ is the same as the list
for τ . This implies that τ ′ is non-transitive and I(τ ′) = τ . Moreover, ∆(τ) = ∆(τ ′)
follows from (12). It is routine to check that sgn(τ ′) = − sgn(τ) (see [11, p. 548] for
details). �

Example 4.5. Cancellation may still occur in the formula

K−1(α, β) =
∑

τ∈TTm(α,β)

sgn(τ).

For example, K−1(32, 212) = 0 due to the cancellation of the first two transitive
tournaments shown below, while K−1(41, 212) = 0 due to the cancellation of the next
two transitive tournaments shown. These cancellations are possible because of the
packing of output lists when computing U([212]) = [212] − [221]. To guarantee that
the formula for K−1(α, β) has no such cancellations, it is sufficient that βj > j for
1 6 j 6 `(β). For in that case, no zero parts occur in the lists appearing in U([β]). 2 1 0

0 1 0
1 1 2

  2 0 1
1 1 1
0 0 2

  2 1 1
0 1 0
0 1 2

  2 1 1
0 1 1
0 0 2


−[302] +[320] +[401] −[410]

We now describe the close relation between transitive tournaments and permuta-
tions. Let Sm be the set of permutations (bijections) w : [m] → [m]. We identify
w ∈ Sm with the word w1, w2, . . . , wm, which is a rearrangement of 1, 2, . . . ,m. Recall
that the inversion count inv(w) is the number of i < j in [m] with wi > wj , and
sgn(w) = (−1)inv(w).

Lemma 4.6. There is a sign-preserving bijection W : TTm → Sm such that

W (τ) = w1(τ), . . . , wm(τ) = d1(τ) + 1, . . . , dm(τ) + 1

(the list of incremented outdegrees of τ). The inverse bijection W ′ : Sm → TTm sends
w = w1, . . . , wm ∈ Sm to τ , where for all i, j ∈ [m], τ(i, j) is 1 if wi > wj and 0
otherwise.

Proof. We see that W ′ does map Sm into the claimed codomain TTm by definition
of transitive tournaments, while W does map TTm into the codomain Sm by the
characterization of transitive tournaments in terms of outdegrees. Given w ∈ Sm, let
τ = W ′(w) ∈ TTm. We check that W (τ) = w. For each i ∈ [m], di(τ) =

∑m
j=1 τ(i, j)

is the total number of symbols in w that are less than wi. Since w is a rearrangement
of 1, 2, . . . ,m, the number of such symbols must be wi − 1. Hence di(τ) + 1 = wi for
all i, so W (τ) = w. As w was arbitrary, W ◦W ′ is the identity map on Sm. Since Sm
and TTm are both finite sets of size m!, we conclude that W ′ is the two-sided inverse
of W . To finish, we check that sgn(τ) = sgn(w). We compute

sgn(τ) = (−1)
∑

i<j
τ(i,j) = (−1)

∑
i<j

χ(wi>wj) = (−1)inv(w) = sgn(w). �
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We can now relate the tournament-based formulas for K−1 to the noncommutative
Jacobi–Trudi formula. The next theorem provides the promised combinatorial proof
of the equivalence of the two definitions (4) and (6) for the immaculate basis (Sβ) of
NSym.

Theorem 4.7. For all compositions α, β where β has m parts, K−1(α, β) is the co-
efficient of hα in det ↓ [hβi+j−i]m×m (and hence this determinant does equal Sβ as
defined in (4)).

Proof. Fix compositions α, β where β hasm parts. Theorem 4.4 shows that K−1(α, β)
is the sum of sgn(τ) over the transitive tournaments τ ∈ Tm(α, β). For any transitive
m-player tournament τ , the following conditions are equivalent:

• τ is in Tm(α, β).
• P ([β]⊕∆(τ)) = [α].
• Packing the list β1 + δ1(τ), β2 + δ2(τ), . . . , βm + δm(τ) yields [α].
• Packing the list β1+d1(τ), β2+d2(τ)−1, . . . , βm(τ)+dm(τ)−(m−1) yields [α].
• Packing the list β1+w1(τ)−1, β2+w2(τ)−2, . . . , βm(τ)+wm(τ)−m yields [α].
• W (τ) is a permutation w in Sm such that

hβ1+w(1)−1,β2+w(2)−2,...,βm+w(m)−m = hα.

Using this and the definition of the determinant in (6), we see that the sum of sgn(τ)
over transitive τ ∈ Tm(α, β) equals the sum of sgn(w) over all w ∈ Sm that yield a
term hα when we expand det↓ [hβi+j−i]. Thus, K−1(α, β) is indeed the net coefficient
of hα in this expansion. �

4.3. Recursive Computation of K−1. We can use Laplace expansions of the non-
commutative Jacobi–Trudi determinant to obtain recursions characterizing the entries
of K−1. For any m×m matrix A, let A[i|j] be the matrix obtained by deleting row i
and column j of A. The most natural recursive expansions of a top-to-bottom deter-
minant proceed along row 1 or row m:

det↓ [A] =
m∑
j=1

(−1)1+jA(1, j) det↓ [A[1|j]] =
m∑
j=1

(−1)m+j det↓ [A[m|j]]A(m, j).

However, to ensure that the smaller subdeterminants are also Jacobi–Trudi determi-
nants, we need to consider an expansion of det ↓ [A] down column m, which is more
awkward to formulate.

For any list v ∈ Zm, let A(v) be the m ×m matrix with entries A(i, j) = hvi+j−i
for i, j ∈ [m]. In this discussion, we do not replace the symbols h0 by 1 or hk by 0
for k < 0. For any i ∈ [m], let v(i) be the list obtained by deleting the ith entry of v
and decrementing all subsequent entries. The key observation is that deleting row i,
column m of A(v) produces the matrix A(v(i)).

Example 4.8. For v = (2, 4, 1, 3),

A(v) =


h2 h3 h4 h5
h3 h4 h5 h6

h−1 h0 h1 h2
h0 h1 h2 h3

 .
We have v(1) = (3, 0, 2), v(2) = (2, 0, 2), v(3) = (2, 4, 2), and v(4) = (2, 4, 1). We see by
inspection that A(v)[i|4] = A(v(i)) for i = 1, 2, 3, 4.

Consider the defining formula (5) for det ↓ [A(v)]. For fixed i ∈ [m], we can
obtain the terms indexed by f ∈ Sm with f(i) = m as follows. First compute
det↓ [A(v)[i|m]] = det↓ [A(v(i))] to obtain a sum of terms ±hw, where w ∈ Zm−1 is a
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list of m− 1 integers. Adjust each such term by inserting vi +m− i into position i of
list w, and multiplying the sign by (−1)i+m. Summing all the adjusted terms arising
from all i ∈ [m], we obtain det ↓ [A(v)]. These ideas lead to the following recursive
technique for computing entries of K−1.

Theorem 4.9. For v, w ∈ Zm, let D(w, v) be the coefficient of hw when we expand
det↓ [A(v)]. Define v(i) as above, and let w[i] be the list w with its ith entry deleted.

(a) D(w, v) = χ(w = v) for m = 1, and

(14) D(w, v) =
m∑
i=1

(−1)i+mD(w[i], v(i))χ(wi = vi +m− i) for m > 1.

(b) For all compositions α, β where β has m parts,

(15) K−1(α, β) =
∑
w∈Zm:
P (w)=[α]

D(w, [β]).

Proof. (a) The formula for D(w, v) is true when m = 1, since det ↓ [A(v)] = hv1 in
that case. For m > 1, we obtain (14) by expanding det ↓ [A(v)] along column m, as
described above. A term involving hw arises in this expansion precisely when there
is an i such that det↓ [A(v(i))] produces a term involving hw[i] and we insert wi into
w[i] as the new ith entry, modifying the sign coefficient by (−1)i+m. Since the actual
value inserted is vi + m − i, we only get a contribution to D(w, v) for those i such
that wi = vi +m− i.

(b) For compositions α, β where β has m parts, Theorem 4.7 states that K−1(α, β)
is the coefficient of hα in det↓ [A([β])], where now we do substitute h0 = 1 and hk = 0
for k < 0. For lists w ∈ Zm without negative entries, this has the effect of replacing
each hw by hP (w). The net coefficient of hα is the sum of the coefficients of hw over
all w with P (w) = [α]. So formula (15) holds. �

4.4. Special Rim Hook Tableaux. In the particular case where β is a partition
(meaning that the parts of β are weakly decreasing), we can give a formula for
K−1(α, β) involving special rim hook tableaux. We first review the analogous for-
mula, due to Eğecioğlu and Remmel [6], for the inverse of the original Kostka matrix.

Recall that we draw the Ferrers diagram of an integer partition µ with the longest
row at the bottom. A special rim hook of length ` in the diagram of µ is a sequence
of ` cells that starts in the leftmost column and moves right or down at each step.
The sign of a rim hook is +1 (resp. −1) if the rim hook occupies an odd (resp. even)
number of rows. Given partitions λ and µ, a special rim hook tableau (SRHT) of shape
µ and type λ is a decomposition of the diagram of µ into a disjoint union of special rim
hooks such that the weakly decreasing rearrangement of the list of rim hook lengths
is λ. The sign of a SRHT is the product of the signs of its rim hooks. Eğecioğlu and
Remmel [6] proved that K−1(λ, µ) is the sum of the signs of all SRHT of shape µ and
type λ. For more details and an abacus-based proof of this formula, see [11, §10.16].

Example 4.10. The diagram below shows all SRHT of shape µ = (4, 3, 3).

The first three tableaux have sign +1 and types 433, 541, and 622, respectively.
The next three tableaux have sign −1 and types 442, 532, and 631, respectively. We
therefore obtain the six nonzero entries in column µ of K−1. The same information
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can be found by taking the coefficients of hλ in the (commutative) Jacobi–Trudi
expansion of the Schur function s433:

s433 = det

h4 h5 h6
h2 h3 h4
h1 h2 h3

 = h4h3h3 + h5h4h1 + h6h2h2 − h4h4h2 − h5h2h3 − h6h3h1

= h433 + h541 + h622 − h442 − h532 − h631.

To state our formula for K−1(α, µ) where µ is a partition and α is a composition,
we introduce the notions of total content and content for special rim hook tableaux.
Let S be a SRHT of partition shape µ = (µ1, . . . , µm), where some parts at the end
might be zero. For 1 6 i 6 m, let the special rim hook starting in row i have length
ai and end in row ri; if no rim hook starts in row i, let ai = 0 and ri = i. The total
content of S is the rearrangement of the rim hook lengths a1, . . . , am produced as
follows. Start with the empty list; for i = 1, 2, . . . ,m, insert ai into position ri of the
current list. The content of S is the strict composition obtained by deleting all zero
parts from the total content of S.
Example 4.11. The following diagram shows four SRHT of shape µ = [3, 3, 3, 3, 2].

From left to right, these SRHT have total content [42530], [45302], [34511],
and [75200]. In more detail, the first SRHT has (a1, . . . , a5) = (2, 4, 0, 3, 5) and
(r1, . . . , r5) = (1, 1, 3, 3, 3). The total content algorithm builds the lists [2], [4, 2],
[4, 2, 0], [4, 2, 3, 0], and [4, 2, 5, 3, 0]. The examples show that we cannot compute the
content of an SRHT by scanning the boxes in the diagram in a predetermined order
and recording the lengths of the rim hooks as they are encountered.

Each SRHT shown above corresponds to a term in the noncommutative Jacobi–
Trudi determinant

S33332 = det↓


h3 h4 h5 h6 h7
h2 h3 h4 h5 h6
h1 h2 h3 h4 h5
h0 h1 h2 h3 h4
0 0 h0 h1 h2

 .

For example, the first SRHT corresponds to choosing h4 from row 1, h2 from row 2,
h5 from row 3, h3 from row 4, and h0 = 1 from row 5. As we prove in the next theorem,
the total content of the SRHT agrees with the sequence of hk’s multiplied together
in top-to-bottom order. We remark in passing that using a left-to-right determinant
expansion would have led to a simpler content rule where we simply read the rim
hook lengths from bottom to top, but this alternate determinant does not equal Sµ

in general.
Theorem 4.12. For all compositions α and partitions µ, K−1(α, µ) is the sum of the
signs of all special rim hook tableaux of shape µ and content α.
Proof. For all lists v, w ∈ Zm such that v is weakly decreasing, let C(w, v) be the
sum of the signs of all SRHT of shape v and total content w. (This is zero if v or w
has a negative entry.) We first prove that C(w, v) = D(w, v) for all such lists v, w. It
suffices to check that the quantities C(w, v) satisfy the recursion and initial condition
in Theorem 4.9(a). Note here that if v ∈ Zm is weakly decreasing, then all the related
lists v(i) appearing in (14) are also weakly decreasing.

Algebraic Combinatorics, Vol. 4 #6 (2021) 1138



Combinatorics of the immaculate inverse Kostka matrix

When m = 1, the initial condition C(w, v) = χ(w = v) holds because there is
exactly one SRHT of shape (v1), which consists of a single positive rim hook of length
v1. Now suppose m > 1, and fix v, w ∈ Zm with v weakly decreasing. Consider a
particular SRHT S counted by C(w, v). Let the special rim hook starting in row m
of S end in row i. This rim hook has sign (−1)m−i = (−1)i+m. Deleting this rim
hook and the cells it occupies, we obtain a smaller SRHT S′ such that sgn(S) =
(−1)i+m sgn(S′). One readily checks that since S has shape v, S′ has shape v(i). Also
since S has total content w, S′ has total content w[i]. Finally, wi is the length of
the deleted rim hook, which is vi + m − i since this rim hook starts in column 1
of row m and ends in column vi of row i. Conversely, by adding a rim hook of this
form above a smaller SRHT, we see that every S counted by C(w, v) arises in this
way from a unique choice of i with wi = vi + m − i and a unique S′ counted by
C(w[i], v(i)). Thus, recursion (14) holds with D replaced by C. It follows by induction
that C(w, v) = D(w, v) for all v, w ∈ Zm such that v is weakly decreasing.

Now for all compositions α and partitions µ where µ has m parts, Theorem 4.9(b)
says

K−1(α, µ) =
∑
w∈Zm:
P (w)=[α]

C(w, [µ]).

Each SRHT of total content w has content P (w) (with trailing zeros deleted). So this
expression for K−1(α, µ) reduces to the sum of the signs of all SRHT of shape µ and
content α, as needed. �

Remark 4.13. In contrast to the situation for partition diagrams, we have found no
satisfactory way of decomposing composition diagrams into rim hooks to give com-
binatorial objects satisfying the recursion in Theorem 4.9. Starting with the diagram
of β ∈ Compm, one would have to remove βi +m− i cells (for some i) in a way that
leaves the diagram of β(i). Various methods for drawing the diagram or removing
these cells all seem to produce substructures consisting of diagrams and/or rim hooks
that are disconnected.

5. t-Analogues
The original Kostka matrix (§1.1) has a t-analogue that gives the expansion of Schur
symmetric functions in terms of the Hall–Littlewood symmetric polynomials Pµ [14,
Ch. III]. Lascoux and Schützenberger [10] found a combinatorial formula for the entries
of this matrix based on the charge statistic. Specifically, the t-analogue of the Kostka
number K(λ, µ) is the sum of tcharge(S) over all semistandard tableaux S of shape λ
and content µ. For more details on charge, see [14, III.6] or [12, §3.3]. Carbonara [5]
found a combinatorial formula for the inverse of the t-Kostka matrix as a sum over
certain tournaments weighted by an appropriate power of t. See [12, §3.4] for a brief
summary of this formula.

In this section, we develop t-analogues of the inverse Kostka operators, the im-
maculate Kostka matrix, the inverse of the immaculate Kostka matrix, and related
concepts. The basic idea is to replace each raising operator Ri,j by tRi,j , where t is a
formal variable, and trace the powers of t through all the combinatorial constructions.

5.1. t-Analogues of Inverse Kostka Operators. Fix a positive integer m. We
use the vector space V and its subspaceW from §2. For 2 6 j 6 m, define [Tj ]t : V →
V by [Tj ]t =

∏j−1
i=1 (I − tRi,j). Define [Uj ]t : W → W by [Uj ]t = P ◦ [Tj ]t|W . Define

the t-inverse Kostka operators [T ]t =
∏m
j=2[Tj ]t and [U ]t = P ◦ [T ]t|W . The rules for

how these operators act on generalized composition diagrams are the same as before.
The only new ingredient is that whenever a box moves into a lower row due to the
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application of a raising operator, the coefficient of the resulting object is multiplied
by t. However, when boxes fall into a row due to application of P , no new t-factors
are introduced.

The inverse of [Tj ]t is given by formula (7) with the power tej−1+···+e2+e1 inserted
inside the sums on the right side. Theorem 3.3 holds for the t-analogues of Uj and U ′j ,
with the same proof. We need only observe that the involution preserves the t-power
(since changing the sign of a moved j does not affect how many boxes are moved
by a raising operator), and the fixed point w is not multiplied by any t’s. Similarly,
Lemma 3.7 is still true for the t-analogues, so that [U ]t =

∏m
j=2[Uj ]t.

Example 5.1. In Example 3.1, [U3]t([14231]) = [14231]−t[24131]−t[15131]+t2[25310].
In Example 3.2, [U2]−1

t ([1121]) = [1121] + t[2210] + t2[3110] + t3[4100] + t4[5000]. In
Example 3.4, the seven positive diagrams shown have t-weights 1, t, t2, t2, t, t2, t2
(respectively). The six negative diagrams have the same t-weights as their matches
under the involution.

Remark 5.2. In important recent work [3, 4], Blasiak, Morse, Pun, and Summers
obtain detailed information about the k-Schur symmetric functions by applying cer-
tain products of t-raising operators to Schur functions, creation operators, etc. These
products are indexed by root ideals (or their complements) in the poset {(i, j) : 1 6
i < j 6 m}. It would be interesting to see if their ideas carry over to give new bases
or other combinatorial information about NSym and QSym.

5.2. t-Analogue of the Immaculate Kostka Matrix. The tableau description
of the Kostka operator T−1 : V → V (§3.4) has the following t-analogue. Given a
basis vector v = [a1, . . . , am] ∈ V , [T ]−1

t (v) is a t-weighted sum of all filled diagrams D
satisfying conditions (a), (b), (c) in Theorem 3.6. The power of t for a given diagram
D is the number of times an entry j in D appears below row j. This holds since the
only way a j initially in row j can move to a lower row is when it is moved there by
a raising operator tRi,j .

The t-analogue of the Kostka operator U−1 : W →W is more interesting since the
action of P (the falling operation) does not introduce new t’s. In this case, we know
(§3.6) that U−1(v) is the formal sum of the shapes of all dual immaculate tableaux
with content v. Given such a tableau D with values a1 < a2 < · · · < ak in column 1,
we find the t-power of D as follows. For 1 6 i 6 k, count the number of occurrences
of ai in D below row i. Add to these counts the number of occurrences of symbols j
in D such that there is no j in column 1 of D. Denote the total count by wt(D).

Example 5.3.We compute the weight of the tableau D shown here:

D =
5 5
3 4 5
2 3
1 2 4

.

Note that the first column contains 1 < 2 < 3 < 5, so the labels in bold in the
diagram each contribute to the weight of D. Additionally, since there is no 4 in the
first column of D, the two 4’s in the diagram each contribute to the weight of D.
Thus, wt(D) = 5. This corresponds to the 5 raising operators used in Figure 1 to
convert the filled diagram of v = [1, 2, 2, 2, 3] to D.

Theorem 5.4. For all basis vectors v of W , [U ]−1
t (v) =

∑
D t

wt(D) sh(D), where we
sum over all dual immaculate tableaux D of content v.

Proof. Let D be a dual immaculate tableau with content v, maximum entry M , and
first column a1 < a2 < · · · < ak. It suffices to show that wt(D) is the number of times
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a raising operator was applied in the passage from the initial filled diagram of v to D.
This process was described in the proof of Theorem 3.9 in §3.6. First, a1 = 1, and all
occurrences of 1 in D are in row 1, so the 1s in D contribute nothing to wt(D). Second,
when the t-version of U−1

2 acts, every occurrence of every symbol in {2, 3, . . . , a2− 1}
is moved by a raising operator from row 2 to row 1. Also, any occurrences of a2 below
row 2 must arrive there by a raising operator. Third, when the t-version of U−1

3 acts,
every occurrence of every symbol in {a2 +1, . . . , a3−1} is moved by a raising operator
from row 3 to lower rows. Also, any occurrences of a3 below row 3 must arrive there
by a raising operator. We continue similarly. If M > ak, then at the end the t-version
of U−1

k+1 moves all occurrences of ak + 1, then ak + 2, . . . ,M from row k + 1 to lower
rows via raising operators. We see from this description that wt(D) does indeed count
the total number of raising operators applied to reach D. �

Example 5.5. The tableaux arising from the computation of U−1([2, 1, 2]) in Exam-
ple 3.8 are shown below, along with their t-weights.

3 3
2
1 1

3 3
1 1 2

2 3
1 1 3

3
1 1 2 3

2
1 1 3 3

3
2 3
1 1

3
2
1 1 3

2 3 3
1 1 1 1 2 3 3

t0 t1 t2 t2 t2 t1 t1 t2 t3

Thus, [U ]−1
t ([2, 1, 2]) = [212]+(t2 +t)[320]+2t2[410]+t[221]+t[311]+t2[230]+t3[500].

We now define a t-analogue of the immaculate Kostka matrix. For any compositions
α, β, let K(α, β; t) =

∑
D t

wt(D), where we sum over all dual immaculate tableaux of
shape α and content β. Using this matrix and its inverse in (3) and (4), we obtain
t-analogues of the immaculate basis of NSym and the dual immaculate basis of QSym:

Sβ(t) =
∑
α

K−1(α, β; t)hα; S∗α(t) =
∑
β

K(α, β; t)Mβ .

We can also define t-analogues of the interpolating bases from §3.7. In fact, by us-
ing a different formal variable tj for each operator Uj , we could obtain multivariate
analogues for these bases and the associated transition matrices.

5.3. t-Analogue of the Inverse Immaculate Kostka Matrix. Formula (11)
expresses the operator T as a sum over tournaments τ ∈ Tm of certain products
of raising operators. We obtain the analogous formula for [T ]t by replacing each
Ri,j in (11) by tRi,j . The total power of t in the term indexed by τ ∈ Tm is then
wt(τ) =

∑
16i<j6m τ(i, j). We obtain t-analogues of other formulas in §4.1 by replac-

ing sgn(τ) by sgn(τ) wt(τ). In particular, we deduce from Theorem 4.3 the following
combinatorial formula for the entries in the inverse of the immaculate t-Kostka matrix.

Theorem 5.6. For all compositions α, β where β has m parts,

K−1(α, β; t) =
∑

τ∈Tm(α,β)

sgn(τ) wt(τ).

However, unlike the t = 1 case, we cannot replace the sum in Theorem 5.6 by a sum
over transitive tournaments. This is because the involution in the proof of Theorem 4.4
does not preserve the t-power, in general, as seen in the example below. Consequently,
there is no t-analogue of the noncommutative determinant formula from Theorem 4.7
or the special rim hook tableau formula from Theorem 4.12. Although the tournament
model involves more objects than these other models, we need tournaments to make
the t-analogue work.
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Example 5.7. From the tournaments in Example 4.1, we compute all entries in col-
umn [3, 1, 3] of the t-analogue of K−1: row 313 has 1, row 322 has −t, row 412 has
t2 − t, row 421 has t2, row 43 has −t, row 52 has t2, row 511 has −t3, and all other
entries in this column are zero. The tournaments contributing to K−1(412, 313; t) are
the two non-transitive tournaments in T3, and we see that the t-powers of these two
tournaments are unequal.
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