
ALGEBRAIC
 COMBINATORICS

Dimitri Leemans & Philippe Tranchida
On residual connectedness in chiral geometries
Volume 4, issue 3 (2021), p. 491-499.

<http://alco.centre-mersenne.org/item/ALCO_2021__4_3_491_0>

© The journal and the authors, 2021.
Some rights reserved.

This article is licensed under the
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
http://creativecommons.org/licenses/by/4.0/

Access to articles published by the journal Algebraic Combinatorics on
the website http://alco.centre-mersenne.org/ implies agreement with the
Terms of Use (http://alco.centre-mersenne.org/legal/).

Algebraic Combinatorics is member of the
Centre Mersenne for Open Scientific Publishing

www.centre-mersenne.org

http://alco.centre-mersenne.org/item/ALCO_2021__4_3_491_0
http://creativecommons.org/licenses/by/4.0/
http://alco.centre-mersenne.org/
http://alco.centre-mersenne.org/legal/
http://www.centre-mersenne.org/
www.centre-mersenne.org


Algebraic Combinatorics
Volume 4, issue 3 (2021), p. 491–499
https://doi.org/10.5802/alco.162

On residual connectedness in chiral
geometries

Dimitri Leemans & Philippe Tranchida

Abstract We show that a chiral coset geometry constructed from a C+-group necessarily
satisfies residual connectedness and is therefore a hypertope.

1. Introduction
The concept of a hypertope, introduced recently in [6], is a generalization of an ab-
stract polytope. There are different but equivalent ways to define (abstract) polytopes,
one of which being that its faces form a partially ordered set that is a thin, residually
connected geometry. This has been generalized in [6] to include structures built from
a set of (what we still call) faces that do not form a partially ordered set.

Several papers have been written on the subject (see for instance [2, 4, 5, 7, 3, 8])
and in those papers dealing with chiral hypertopes, the check for residual connected-
ness has been a bit of a struggle.

In the regular case, there is an easy way to test if a coset geometry is residually
connected (see Theorem 3.1). The aim of this paper is to prove a similar result for
chiral geometries.

The paper is organized as follows. In Section 2, we recall the definitions and nota-
tion needed to understand this paper. In Section 3, we give the basic definitions on
hypertopes and recall how to construct regular and chiral hypertopes from C-groups
and C+-groups, respectively. In Section 4, we prove our main result, namely:

Theorem 1.1. Let G be a group and R be a set of generators of G such that (G+, R)
is a C+-group. Let Γ = Γ(G+, (G+

i )i∈I) be the incidence system associated to G+.
Then, if Γ is chiral, it is residually connected.

This theorem shows that residual connectedness for hypertopes constructed from
C+-groups follows from chirality in exactly the same way as it follows from flag-
transitivity for hypertopes constructed from C-groups. In other words, it is enough
to test that a coset geometry constructed from a C+-group is a chiral geometry to be
able to conclude that it is a hypertope.
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2. Preliminaries
2.1. Incidence geometries. An incidence system is a 4-tuple Γ := (X, ∗, t, I) such
that

• X is a set whose elements are called the elements, or faces, of Γ;
• I is a set whose elements are called the types of Γ;
• t : X → I is a type function, associating to each element x ∈ X of Γ a type
t(x) ∈ I;

• ∗ is a binary relation on X called incidence, that is reflexive, symmetric and
such that for every x, y ∈ X, if x ∗ y and t(x) = t(y) then x = y.

The rank of Γ is the cardinality of I. A flag is a set of pairwise incident elements of
Γ. The rank of a flag F is its cardinality and the corank of F is the cardinality of
Irt(F ). The type of a flag F is {t(x) : x ∈ F} and a flag of type I is called a chamber.

An incidence system Γ is a geometry or incidence geometry if every flag of Γ is
contained in a chamber. An element x is incident to a flag F , and we write x ∗ F
for that, provided x is incident to all elements of F . If Γ = (X, ∗, t, I) is an incidence
geometry and F is a flag of Γ, the residue of F in Γ is the incidence geometry ΓF :=
(XF , ∗F , tF , IF ) where XF := {x ∈ X : x ∗ F, x 6∈ F}; IF := I r t(F ); tF and ∗F are
the restrictions of t and ∗ to XF and IF .

The incidence graph of Γ is the graph whose vertex set is X and where two distinct
vertices are joined provided the corresponding elements of Γ are incident.

An incidence system Γ is connected if its incidence graph is connected. It is resid-
ually connected when each residue of rank at least two of Γ (including Γ itself) has a
connected incidence graph.

An incidence system Γ is thin (respectively firm) when every residue of rank one
of Γ contains exactly (respectively at least) two elements.

Let Γ = (X, ∗, t, I) be an incidence system. An automorphism of Γ is a permutation
α of X inducing a permutation of I such that

• for each x, y ∈ X, x ∗ y if and only if α(x) ∗ α(y);
• for each x, y ∈ X, t(x) = t(y) if and only if t(α(x)) = t(α(y)).

An automorphism α of Γ is called type preserving when for each x ∈ X, t(α(x)) = t(x).
The set of type-preserving automorphisms of Γ is a group denoted by AutI(Γ). The
set of automorphisms of Γ is a group denoted by Aut(Γ). A group G 6 AutI(Γ)
acts flag-transitively on Γ if, for each J ⊆ I, the group G is transitive on the set of
flags of type J of Γ. In this case, we also say that Γ is flag-transitive. The following
proposition shows how, starting from a group G, we can construct an incidence system
whose type-preserving automorphism group contains G.

Proposition 2.1 (Tits, 1956 [9]). Let n be a positive integer and I := {0, . . . , n− 1}.
Let G be a group together with a family of subgroups (Gi)i∈I , X the set consisting of
all cosets Gig with g ∈ G and i ∈ I, and t : X → I defined by t(Gig) = i. Define an
incidence relation ∗ on X ×X by:

Gig1 ∗Gjg2 if and only if Gig1 ∩Gjg2 6= ∅.
Then the 4-tuple Γ := (X, ∗, t, I) is an incidence system having a chamber. More-
over, the group G acts by right multiplication on Γ as a group of type preserving
automorphisms. Finally, the group G is transitive on the flags of rank less than 3.

The incidence system constructed by the proposition above is called a coset inci-
dence system and will be denoted by Γ(G; (Gi)i∈I). It might not be a geometry, but
if it is a geometry we call it a coset geometry.

Given a family of subgroups (Gi)i∈I and J ⊆ I, we define GJ := ∩j∈JGj . The
subgroups GJ are called the parabolic subgroups of the coset geometry Γ(G; (Gi)i∈I).
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Moreover Gj = G{j} for each j ∈ I and the subgroups Gj are called the maximal
parabolic subgroups of Γ.

In the case of flag-transitive coset geometries, there is an easy group-theoretical way
to test residual connectedness, which was originally proved by Francis Buekenhout
and Michel Hermand.

Theorem 2.2 ([1, Corollary 1.8.13]). Suppose I is finite and let Γ = Γ(G, (Gi)i∈I) be
a geometry over I on which G acts flag transitively. Then Γ is residually connected if
and only if GJ = 〈GJ∪{i} | i ∈ I r J〉 for every J ⊆ I with |I r J | > 2.

Two chambers of a geometry Γ are adjacent if they differ by exactly one element.
They are called i-adjacent if they differ in their elements of type i.

A geometry Γ is chiral if AutI(Γ) has two orbits on the chambers such that any
two adjacent chambers lie in distinct orbits.

Observe that if a geometry is chiral, it is necessarily thin as if a rank one residue
contains more than two elements, this contradicts chirality.

3. Hypertopes
Most of the definitions in this section come from [6]. A hypertope is a thin, residually
connected geometry. A hypertope Γ is regular if Γ is a flag-transitive geometry. A
hypertope Γ is chiral if Γ is a chiral geometry.

Let Γ(X, ∗, t, I) be a thin geometry and i ∈ I. If C is a chamber of Γ, we let Ci
denote the chamber i-adjacent to C, that is, the chamber that differs from C only in
its i-face.

3.1. C-groups and regular hypertopes. Given a regular hypertope Γ and a
chamber C of Γ, for each i ∈ I let ρi denote the automorphism mapping C to Ci. Then
{ρ0, . . . , ρn−1} is a generating set for AutI(Γ) and Gi = 〈ρj | j 6= i〉 is the stabilizer
of the i-face of C. Moreover (AutI(Γ), {ρ0, . . . , ρn−1}) is a C-group [6, Theorem 4.1],
that is, {ρ0, . . . , ρn−1} is a set of involutions generating AutI(Γ) and satisfying the
following condition, called the intersection condition.

∀I, J ⊆ {0, . . . , n− 1}, 〈ρi | i ∈ I〉 ∩ 〈ρj | j ∈ J〉 = 〈ρk | k ∈ I ∩ J〉.

From a C-group we can get a hypertope when the incidence system arising from
Proposition 2.1 is flag-transitive, as shown in the following theorem.

Theorem 3.1. [6, Theorem 4.6] Let G = 〈ρ0, . . . , ρn−1〉 be a C-group of rank n and
let Γ := Γ(G; (Gi)i∈I) with Gi := 〈ρj |j ∈ I r {i}〉 for all i ∈ I := {0, . . . , n− 1}. If G
is flag-transitive on Γ, then Γ is a regular hypertope.

Observe that Theorem 1.1 is the equivalent of the latter theorem for chiral
geometries.

3.2. C+-groups. We now consider another class of groups from which we will be
able to construct hypertopes. These hypertopes may or may not be regular. In the
latter case, they will be chiral.

Consider a pair (G+, R) with G+ being a group and R := {α1, . . . , αr−1} a set of
generators of G+. Define α0 := 1G+ and αij := α−1

i αj for all 0 6 i, j 6 r−1. Observe
that αji = α−1

ij . Let G+
J := 〈αij | i, j ∈ J〉 for J ⊆ {0, . . . , r − 1}.

If the pair (G+, R) satisfies condition (1) below called the intersection condition
IC+, we say that (G+, R) is a C+-group.

(1) ∀J,K ⊆ {0, . . . , r − 1}, with |J |, |K| > 2, G+
J ∩G

+
K = G+

J∩K .
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It follows immediately from the intersection condition IC+ that, if (G+, R) satisfies
IC+, then R is an independent generating set for G+ (meaning that for every i =
1, . . . , r − 1, αi 6∈ 〈αj : j 6= i〉).

We now explain how to construct a coset geometry from a group and an indepen-
dent generating set of this group.

Construction 3.2. Let I = {1, . . . , r−1}, G+ be a group and R := {α1, . . . , αr−1} be
an independent generating set of G+. Define G+

i := 〈αj |j 6= i〉 for i = 1, . . . , r−1 and
G+

0 := 〈α−1
1 αj |j > 2〉. The incidence system Γ(G+, R) := Γ(G+; (G+

i )i∈{0,...,r−1})
constructed using Tits’ algorithm (see Proposition 2.1) is the incidence system asso-
ciated to the pair (G+, R).

If the incidence system Γ(G+, R) is a chiral hypertope, then (G+, R) is necessarily
a C+-group by the following theorem.

Given a chiral hypertope Γ(X, ∗, t, I) (with I := {0, . . . , r − 1}) and its automor-
phism group G+ := AutI(Γ), pick a chamber C. For any pair i 6= j ∈ I, there exists
an automorphism αij ∈ G+ that maps C to (Ci)j . Also, Cαii = (Ci)i = C and
α−1
ij = αji. We define

αi := α0i (i = 1 . . . , r − 1)
and call them the distinguished generators of G+ with respect to C.

Theorem 3.3 ([6, Theorem 7.1]). Let I := {0, . . . , r−1} and let Γ be a chiral hypertope
of rank r. Let C be a chamber of Γ. The pair (G+, R) where G+ = AutI(Γ) and R is
the set of distinguished generators of G+ with respect to C is a C+-group.

Corollary 3.4 ([6, Corollary 7.2]). The set R of Theorem 3.3 is an independent
generating set for G+.

4. Residual connectedness of chiral hypertopes
As we saw in the previous section, if a coset geometry Γ = Γ(G, (Gi)i∈{1,...,n}) is
flag-transitive, it is fairly easy to verify if it is residually connected. Not only do we
know that it is sufficient to check every residue of the base chamber (G0, . . . , Gn),
Theorem 2.2 even gives us a criterion for residual connectedness based only on the
maximal parabolic subgroups (Gi) and their intersections. The goal of this section is
to prove Theorem 1.1 which gives a similar result for chiral hypertopes.

The fact that it is sufficient to check the residues of flags contained in a base
chamber is actually pretty straightforward as the following theorem shows.

Theorem 4.1. Let Γ be a chiral geometry and let C be a chamber of Γ. Then Γ is
residually connected if and only if ΓF is connected for all flags F of corank at least 2,
contained in C.

Proof. If Γ is residually connected, then, obviously, ΓF is connected for all flags F of
corank at least 2 in Γ.

Now, let F be a flag of Γ, of corank at least 2 and that is not necessarily included
in C. Let us prove that ΓF is connected. The flag F is contained in a chamber C ′ of Γ
since Γ is a geometry. If C ′ is in the same orbit as C, then there exists an α ∈ AutI(Γ)
sending C ′ to C. Then, this α sends F to a flag α(F ) of C and ΓF is isomorphic to
Γα(F ) which is connected by hypothesis. Suppose now C ′ is not in the same orbit as
C, and take a type i ∈ I such that i /∈ t(F ). Then C ′ is in the same orbit as Ci,
the i-adjacent chamber to C. Then again, we can find α ∈ AutI(Γ) sending C ′ to
Ci. Now notice that, since Ci coincides with C except for the element of type i, α
actually maps F to a flag α(F ) contained in C. By the same reasoning as before, we
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obtain that ΓF is then connected. We have proved that ΓF is connected for all flags
F in Γ with corank at least 2, thus Γ is residually connected. �

The proof of the above theorem suggests the following result.
Proposition 4.2. Let Γ be a chiral geometry over I = {1, . . . , n}. Then AutI(Γ) is
transitive on the set of flags of type J for any J ⊆ I such that |J | < |I|.
Proof. Take two flags F and F ′ of type J . Then F is contained in at least two chambers
C1 and C2 lying in different orbits. Take C ′ a chamber of Γ containing F ′. Then either
C1 and C ′ or C2 and C ′ are in the same orbit. In any case, there exists an element
ρ ∈ AutI(Γ) such that ρ(Ci) = C ′ for i = 1 or 2 and thus ρ(F ) = F ′. �

In other words, AutI(Γ) is transitive on every set of flags of a given type, except
on chambers, since there are exactly 2 orbits for those.

We just proved that we only need to check that all the residues of rank at least two
of a given chamber are connected for a chiral geometry to be residually connected.
This concludes the first part of our analogy with the regular case.

We now focus on coset geometries that are chiral and try to find conditions on the
maximal parabolic subgroups for these geometries to be residually connected.

Let (G+, R) be a C+-group with set of generators R = {α1, α2, . . . , αn−1}. We use
Construction 3.2 to create the incidence geometry Γ = (G+, {G+

0 , G
+
1 , . . . , G

+
n−1})

from G+. We would like to find a condition for the residual connectedness of Γ which
would only involve subgroups of G+, in analogy to the condition existing for flag-
transitive coset geometries.

The main problem lies in the fact that little to nothing is known, in the chiral case,
on how to express the residues of Γ in terms of coset geometries derived from G+

while everything works perfectly fine in the regular case as we previously saw.
Let us recall a lemma from [1]. We state it here for coset incidence systems con-

structed using right cosets.
Lemma 4.3 ([1, Lemma 1.8.9 (iii-v)]). Let Γ = Γ(G, (Gi)i∈I) be the coset incidence
system of G over (Gi)i∈I . Then, for each J ⊆ I, there is a natural injective homo-
morphism of incidence systems over I r J

ϕJ : Γ(GJ , (GJ∪{i})i∈IrJ) 7→ Γ{Gj |j∈J}

given by ϕ(GJ∪{i}a) = Gia (a ∈ GJ , i ∈ I r J). Furthermore, given J ⊆ I, the
homomorphism ϕJ is surjective if and only if, for all i ∈ IrJ , we have

⋂
j∈J(GiGj) =

GiGJ . Finally, if ϕJ is surjective for all J ⊆ I, then ϕJ is an isomorphism for all
J ⊆ I.
Remark 4.4. In particular, for J = {j} for some j ∈ I, we have that ϕ{j} is always
a bijective homomorphism. This means, that for geometries of rank three, we always
have a bijective homomorphism for residues of rank two. Here, it is important to
note that a bijective homomorphism does not need to be an isomorphism. It is an
isomorphism if and only if its inverse is also a bijective homomorphism.

In the regular case, all those ϕJ are isomorphisms and we therefore know that
every residue of type J is isomorphic to (GJ , (GJ∪{i})i∈IrJ), which gives us a perfect
description of the residues. We also know that, unfortunately, this cannot be the case
for chiral geometries, since it can be easily proven that if every ϕJ is an isomorphism,
then G has to act flag-transitively on Γ. Nonetheless, almost all of those ϕJ are still
surjective, and thus bijective, in the chiral case, as shown in the following result.
Lemma 4.5. Let Γ = Γ(G, (Gi)i∈I) be a coset incidence geometry over I and fix i ∈ I
and J ⊆ I r {i}. Then, G is transitive on the set of flags of type {i} ∪ J if and only
if G is transitive on the set of flags of type J and

⋂
j∈J GiGj = GiGJ .
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Proof. We set J = {j1, . . . , jk} for some natural number k. Suppose first that G is
transitive on the set of flags of type {i} ∪ J . Then G is obviously also transitive
on the set of flags of type J . Let us now take an element x ∈

⋂
j∈J GiGj . We will

prove that x is also in GiGJ . Since x ∈
⋂
j∈J GiGj , we have that x is in every GiGj

and that therefore x−1Gi ∩ Gj 6= ∅ for every j ∈ J or similarly Gix ∩ Gj 6= ∅ for
every j ∈ J . This means that {Gix,Gj1 , . . . , Gjk

} is a flag of Γ. By the transitivity
hypothesis, we can thus find an element g ∈ G such that Gig = Gix and Gjm

g = Gjm

for every m = 1, . . . , k. This means that x ∈ Gig and g ∈ GJ . Therefore, we have
x ∈ Gig ⊆ GiGJ and this shows that

⋂
j∈J GiGj ⊆ GiGJ .

The other inclusion is trivial since any x ∈ GJ also belongs to every Gj and thus
any y ∈ GiGJ belongs to every GiGj for every j ∈ J . This concludes the proof of the
only if part.

Suppose now that
⋂
j∈J GiGj = GiGJ and that G is transitive on the set of flags

of type J and let us take a flag F = {Gix0, Gj1x1, . . . , Gjk
xk} of type {i} ∪ J in

Γ. We want to show that F lies in the same G-orbit as {Gi, Gj1 , . . . , Gjk
}. Since

G is transitive on the set of flags of type J , there exists an element g ∈ G such
that ({Gj1x1, . . . , Gjk

xk})g = {Gj1 , . . . , Gjk
}. Then Fg = {Gix0g,Gj1 , . . . , Gjk

}. We
can therefore suppose that F = {Gix,Gj1 , . . . , Gjk

} without loss of generality. By
looking at the incidence relations in F , since

⋂
j∈J GiGj = GiGJ by hypothesis,

we have that Gix ∗ Gjl
for each l = 1, . . . , k if and only if Gix meets all the other

cosets on GJ . Therefore there exists an element z ∈ ∩j∈JGj ∩Gix such that Fz−1 =
{Gi, Gj1 , . . . , Gjk

}. This concludes the proof. �

We are now ready to state the main proposition of this section.

Proposition 4.6. Let Γ = Γ(G, (Gi)i∈I) be a coset geometry over I and fix J ⊆ I
with |J | < |I|. Then the following are equivalent:

(1) G is transitive on the set of flags of type J ∪ {i} for every i ∈ I r J .
(2) The homomorphism ϕJ is surjective.
(3) For every i ∈ I r J , we have

⋂
j∈J GiGj = GiGJ and G is transitive on the

set of flags of type J .

Proof. The equivalence between (1) and (3) is given by Lemma 4.5 while the equiva-
lence between (2) and (3) is given by Lemma 4.3. �

We thus see that, if Γ = Γ(G, (Gi)i∈I) is a chiral geometry, by Proposition 4.2,
the group G is transitive on the set of flags of type J for every J 6= I and therefore,
every ϕJ is surjective, except those related to residues of rank one, which are of no
importance for residual connectedness. Since the ϕJ ’s are surjective, we deduce a
sufficient condition for the residue ΓJ to be connected (where ΓJ is any residue of
type J provided they all are isomorphic).

Proposition 4.7. Let Γ = Γ(G, (Gi)i∈I) be a chiral coset geometry over I and take a
subset J ⊆ I such that |J | < |I|. If GJ = 〈GJ∪{i} | i ∈ I r J〉, then ΓJ is connected.

Proof. If GJ = 〈GJ∪{i} | i ∈ I r J〉, the coset geometry Γ(GJ , (GJ∪{i})i∈IrJ) is
connected. Proposition 4.6 implies that ϕJ : Γ(GJ , (GJ∪{i})i∈IrJ)→ ΓJ is surjective
and therefore ΓJ is also connected. �

If we start from a C+-group (G+, R) and construct the associated coset geometry
with Construction 3.2, the intersection condition ensures that every ΓJ is connected
if |J | 6 |I| − 3. It remains only to check what happens to the residues of rank 2 of
Γ(G+, (G+

i )i∈I). Let us just state a small technical lemma before doing so.
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Lemma 4.8. Let (G+, R) be a C+-group and Γ(G+, (G+
i )i∈I) be its associated inci-

dence system. Then C = {G+
0 , G

+
1 , . . . , G

+
n−1} is a chamber of Γ. Moreover, the set

{G+
0 , G

+
1 , . . . , G

+
j αi,j , . . . , G

+
n−1} is a j-adjacent chamber to C if i is in I r {j}.

Proof. By definition of G+
k , αi,j is in G

+
k except if k = i or j. Therefore, since G+

j αi,j
contains αi,j , it has a non empty intersection with every G+

k with k 6= i, j. It just
remains to check that G+

j αi,j ∩ G
+
i 6= ∅. For example, we have that αk,j = αk,iαi,j

is in G+
j αi,j for any k 6= i, j. By definition αk,j is also in G+

i which concludes the
proof. �

Corollary 4.9. Let (G+, R) be a C+-group. If the incidence system Γ :=
Γ(G+, (G+

i )i∈I) is a geometry, then Γ is firm.

Proof. Every non maximal flag F of Γ is contained in a chamber C. Since F is not
maximal, there exists a type i ∈ I such that F has no element of type {i}. Then,
Lemma 4.8 gives us an i-adjacent chamber of C, which also contains F . �

Let us now have a look at the residues of rank two of a chiral coset geometry Γ =
Γ(G+, (G+

i )i∈I). For the sake of simplicity, let us first suppose that Γ is a rank 3 coset
geometry. In this case, Γ = Γ(G+, (G+

0 , G
+
1 , G

+
2 )) with G+

0 = 〈α−1
1 α2〉, G+

1 = 〈α2〉
and G+

2 = 〈α1〉.
Let us recall that G+

i ∩ G
+
j = {e} for all i 6= j ∈ {0, 1, 2} by the intersection

condition of C+-groups. By Proposition 4.6 we have bijective homomorphisms
ϕ{i} : Γ(G+

i , ({e}, {e})) 7→ Γ{i}
for any i = 0, 1, 2. Let us suppose, without loss of generality, that i = 0. Since ϕ{0} is
surjective, every element of type j in Γ{0} is of the form G+

{0,j}α
k
1,2 for some natural

number k less than or equal to the order of α1,2. Furthermore, we also know that
G+
{0,1}α

k
1,2 is incident to G+

{0,2}α
k
1,2 for every k as both cosets contain (α1,2)k.

Now, by Lemma 4.8, we know that (G+
0 , G

+
1 , G

+
2 α1,2) is a chamber that is 2-

adjacent to (G+
0 , G

+
1 , G

+
2 ). This means that G+

1 is incident not only to G+
2 but also

to G+
2 α1,2. By using the action of α1,2 on the incident pair {G+

1 , G
+
2 α1,2}, we obtain

that G+
1 (α1,2)k is incident to G+

2 (α1,2)k−1 for every k. Putting this together with the
incidence relation deduced from ϕ{0} we get that Γ{0} has an incidence graph which
is at least a circuit of size 2|G+

0 | . When Γ is thin, that is the case we are dealing
with, the graph is fully determined. If Γ is not thin, there might be more incidence
relations between the elements of Γ{0}. In both cases, Γ{0} is connected.

Example 4.10. Figure 1 illustrates the reconstruction of the residue Γ{0} using the
method described in the above paragraph, supposing that α1,2 is of order 3. The full
lines represent the incidence relations deduced from the action of α1,2 on the chamber
{G+

0 , G
+
1 , G

+
2 } and the dotted lines represent the incidence relations deduced from

the action of α1,2 on the chamber {G+
0 , G

+
1 , G

+
2 α1,2}

Proposition 4.11. Γ = Γ(G+, (G+
0 , G

+
1 , G

+
2 )) is residually connected and firm.

Proof. The surjectivity of ϕ{i} for i = 0, 1, 2 always holds as stated in an earlier
remark, and we therefore need not to ask Γ to be chiral on this special case. The
above construction then shows that every residue of rank 2 is connected. Moreover
Γ itself is also connected since G+ = 〈G+

i | i = 0, 1, 2〉 by definition of C+-groups.
Corollary 4.9 says that Γ has to be firm. �

The construction described for rank 2 residues actually only depends on the sur-
jectivity of ϕ{i}, that is guaranteed by Lemma 4.5. We can thus extend this to coset
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G+
2 (α1,2)2

G+
1 α1,2G+

2

G+
1 (α1,2)2

G+
1 G+

2 α1,2

Figure 1. The incidence graph of a residue of rank 2 when |G+
0 | = 3.

geometries Γ(G+, (G+
i )i∈I) of any rank. Indeed, if we fix a J ⊆ I such that |J | = |I|−2,

then the coset geometry Γ(GJ , (GJ∪{i})i∈IrJ) is generated by αi,k for the two ele-
ments i, k ∈ I that are not in J and the construction proceeds as for the rank 3 case.
This permits us to finish the proof of our main theorem.

Proof of Theorem 1.1. Putting everything together, the above construction yields
that the rank 2 residues are connected and the intersection condition together with
the surjectivity of ϕJ for all J ⊆ I such that |J | 6 |I|−3 yields that the rank 3 or more
residues are also connected. In addition Γ itself is also connected by the intersection
condition. �
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