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Noncommutative LR coefficients and crystal
reflection operators

Edward Richmond & Vasu Tewari

Abstract We relate noncommutative Littlewood–Richardson coefficients of Bessenrodt–
Luoto–van Willigenburg to classical Littlewood–Richardson coefficients via crystal reflection
operators. A key role is played by the combinatorics of frank words.

1. Introduction
Quasisymmetric Schur functions, introduced by Haglund–Luoto–Mason–vanWilligen-
burg [14], form a prominent basis for the Hopf algebra of quasisymmetric functions
QSym. The quasisymmetric Schur function indexed by the composition α, denoted
by Sα, is obtained by summing monomials attached to semistandard composition
tableaux of shape α. This is reminiscent of the definition of Schur functions as sums
of monomials corresponding to semistandard Young tableaux. As the name suggests,
quasisymmetric Schur functions share many properties with classical Schur functions,
and Mason’s map ρ [24] connects the combinatorics of composition tableaux to that
of Young tableaux. Understanding analogues of Schur functions and their generaliza-
tions has long been a theme in algebraic combinatorics; see [1, 2, 3, 4, 25, 32] for
recent work in this context.

The Hopf algebra of noncommutative symmetric functions NSym, introduced in the
seminal paper [12], is Hopf-dual to QSym as shown by Malvenuto–Reutenauer [23].
Bessenrodt–Luoto–van Willigenburg [5] studied the dual basis elements sα corre-
sponding to quasisymmetric Schur functions. The resulting functions, also indexed by
compositions, are called noncommutative Schur functions. The inclusion of the Hopf
algebra of symmetric functions Sym into QSym induces a projection χ : NSym �
Sym. This projection maps noncommutative Schur functions to classical Schur func-
tions, and justifies the name of the former. The structure constants Cγαβ that arise in

sα · sβ =
∑
γ

Cγαβ sγ(1)
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are called noncommutative Littlewood–Richardson (LR) coefficients. These coeffi-
cients turn out to be nonnegative integers that refine the classical LR coefficients cλνµ
that arise in the product of Schur functions

sν · sµ =
∑
λ

cλνµ sλ.(2)

More precisely, suppose ν and µ are partitions that rearrange to compositions α and β
respectively. Applying χ to both sides in (1) and comparing the result with (2) implies

cλνµ =
∑
γ

Cγαβ(3)

where the sum on the right runs over all compositions γ that rearrange to λ. Among
the numerous combinatorial interpretations of cλνµ, the one we focus on states that
cλνµ counts LR tableaux of shape λ/µ and content ν. Our primary goal in this article
is to describe the summands on the right hand side in (3) in terms of LR tableaux.
To this end, crystal reflection operators are key.

To state our result, we introduce the necessary notation briefly. The reader is
referred to Section 2 for details. Given a composition α, we denote the partition
underlying α by sort(α). Let LRT(λ, µ, ν) be the set of LR tableaux of shape λ/µ and
content ν. Given a permutation σ, let LRTσ(λ, µ, ν) be the set of tableaux obtained
by applying the crystal reflection operators corresponding to a reduced word of σ. Let
α := σ · ν, and let β be any composition that satisfies sort(β) = µ. On applying the
map ρ−1

β (which sends Young tableaux to composition tableaux, [22, Chapter 4]) to
elements in LRTσ(λ, µ, ν), we obtain the disjoint decomposition

LRTσ(λ, µ, ν) =
∐
γ
Xγ
αβ ,(4)

where Xγ
αβ consists of all tableaux T ∈ LRTσ(λ, µ, ν) whose outer shape under ρ−1

β is
given by the composition γ . Under this setup, our main theorem states the following.

Theorem 1.1. The noncommutative LR coefficient Cγαβ equals the cardinality of Xγ
αβ.

The upshot of Theorem 1.1 is that starting from LRT(λ, µ, ν), we can compute all
noncommutative LR coefficients Cγαβ , where α dictates the choice of crystal reflections
to be performed and β determines the generalized ρ map to be applied. We also
interpret Theorem 1.1 in terms of chains in Young’s lattice indexed by certain frank
words and obtain a rule for Cγαβ involving box-adding operators on compositions. In
the case where α is either a partition or reverse partition, our interpretations yield the
two LR rules in [6]. For an example demonstrating Theorem 1.1, see Subsection 3.2.

Note that LR coefficients can be interpreted as the number of lattice points in an
appropriate convex polytope/cone [26]. Since Theorem 1.1 describes noncommutative
LR coefficients by refining the set of LR tableaux, it is natural to ask if noncommu-
tative LR coefficients count lattice points in some refinement of the corresponding
polytope/cone. Data suggest that the analogue of the saturation conjecture, famously
resolved by Knutson and Tao [15], holds for noncommutative LR coefficients as well.
In fact (3) tells us that saturation of noncommutative LR coefficients implies that of
the classical counterparts. This motivates studying these constants from a polytopal
perspective, which is why the authors were interested in a statement like Theorem 1.1
in the first place.

Outline of the article. Section 2 sets up all the necessary combinatorial back-
ground. Section 3 describes our central result along with examples. Section 4.1 in-
troduces growth words and frank words. Section 4.2 presents an outline of our proof
strategy given its technical nature. Section 4.3 identifies LR tableaux with certain
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distinguished frank words called compatible words, drawing upon work by Remmel–
Shimozono [29]. In Section 4.4, we describe the Lascoux–Schützenberger symmetric
group action on frank words. Section 4.5 relates crystal reflections acting on LR
tableaux to the aforementioned action restricted to compatible words. Section 5 re-
lates the results in Section 4 back to noncommutative LR coefficients. We conclude
our article with Corollary 5.4, which reinterprets our combinatorial interpretation for
noncommutative LR coefficients in terms of box-adding operators on compositions.

2. Background
To keep this section brief, we assume knowledge of combinatorial structures and algo-
rithms arising in symmetric functions theory such as partitions, skew shapes, Young
tableaux, Robinson–Schensted–Knuth insertion and jeu-de-taquin. The reader is re-
ferred to standard texts [11, 30, 33] for further information.

Regarding notions relevant to the theory of quasisymmetric Schur functions, we ad-
here to the notation and conventions in [22].We emphasize that what we call quasisym-
metric Schur functions in this article are the Young quasisymmetric Schur functions
in [22]. This choice, although cosmetic as both the functions are related via a simple
involution, has its benefits. The tableau objects that we consider in the quasisymmet-
ric/noncommutative setting align with the more prevalent notion of Young tableaux
rather than reverse tableaux. Furthermore, it is the Young quasisymmetric Schurs that
decompose the dual immaculate quasisymmetric functions [4] positively as shown re-
cently in [2], thereby connecting two well-studied quasisymmetric analogues of Schurs.

2.1. Words. Throughout, we denote the set of positive integers by Z+. Given n ∈
Z+, define [n] := {1, . . . , n}. Furthermore, set [0] := ∅. Let Z∗+ denote the set of all
words in the alphabet Z+.

Consider w = w1 · · ·wn ∈ Z∗+. We call n the length of w and denote it by |w|. The
word wn · · ·w1 is denoted by wr. We say that w is reverse-lattice if every suffix of w
contains at least as many i’s as i + 1’s for all i ∈ Z+. Let Sn be the permutation
group on [n] and denote the longest element in Sn by w(n)

0 , or simply by w0 if n is
clear from context. The permutation σ ∈ Sn acts on a sequence λ = (λ1, . . . , λn) by
σ · λ = (λσ−1(1), . . . , λσ−1(n)). Note that this is a right action.

2.2. Compositions and partitions. A finite list of nonnegative integers α =
(α1, . . . , α`) is called a weak composition. If αi > 0 for all 1 6 i 6 `, then α is called a
composition. If, in addition, we have α1 > · · · > α` > 0, then α is called a partition.
Given α = (α1, . . . , α`) we call the αi the parts of α and the sum of the αi, denoted
by |α|, is called the size of α. We denote the number of parts of α by `(α) and call
it the length of α. The unique composition of length and size zero is denoted by
∅. We denote the composition (α`, . . . , α1) by αr. Also, denote the transpose of a
partition λ by λt. The reader is warned that on occasion we will suppress commas
and parentheses when writing our compositions.

The composition diagram of α = (α1, . . . , α`) is the left-justified array of boxes
with αi boxes in row i from the bottom. If α is a partition, then the composition
diagram of α coincides with the Young diagram of α in French notation. See Figure 1
for the composition diagram of (2, 1, 3).

Figure 1. The composition diagram of (2, 1, 3).

Algebraic Combinatorics, Vol. 4 #1 (2021) 147



Edward Richmond & Vasu Tewari

2.3. Young tableaux. A Young tableau T (henceforth YT) of skew shape λ/µ is a
filling of the boxes of λ/µ with positive integers so that entries along the rows increase
weakly read from left to right and entries along the columns increase strictly read from
bottom to top. If the entries in T are all distinct and belong to [|λ/µ|], then we call T
a standard Young tableau (henceforth SYT.) We denote the set of YTs of shape λ/µ
by YT(λ/µ).

If T is a YT with maximal entry m, then the content of T , denoted by cont(T ), is
the weak composition (α1, . . . , αm) where αi for 1 6 i 6 m counts the instances of i
in T . The standardization of T , denoted by stan(T ), is obtained by replacing the αi
entries in T equal to i by the integers 1+

∑i−1
j=1 αj through

∑i
j=1 αj from left to right.

2
1 2 2

1 2 3 3
1 2 4

stan−−−−−−−−→ 4
1 5 6

2 7 9 10
3 8 11

Figure 2. A Young tableau and its standardization.

2.4. Composition tableaux. To define composition tableaux, we need an analogue
of Young’s lattice. The Young composition poset Lc is the poset on compositions where
the partial order <c is obtained by taking the transitive closure of the cover relation
lc defined next. Let β = (β1, . . . , βm). Then β lc α if exactly one of the following
conditions holds.

• α = (β1, . . . , βm, 1).
• α = (β1, . . . , βk + 1, . . . , βm) for some k where βk 6= βi for all i > k.

The reader may check that, for instance, the compositions covering (2, 1, 3, 2) in Lc
are (2, 1, 3, 2, 1), (2, 2, 3, 2), (2, 1, 3, 3) and (2, 1, 4, 2).

Remark 2.1. The definition of lc implies that β <c α if and only if for every βi > βj
where i > j we have αi > αj.

If β <c α and β is drawn in the bottom left corner of α, then the skew composition
shape α//β is defined to be the array of boxes that belong to α but not to β. We refer
to α and β as the outer shape and inner shape respectively. If the inner shape is ∅,
then instead of writing α//∅ we simply write α. The size of α//β, denoted by |α//β|,
is |α| − |β|.

A composition tableau (abbreviated to CT) τ of shape α//β is a filling τ : α//β −→
Z+ that satisfies the following conditions.

(1) The entries in each row increase weakly from left to right.
(2) The entries in the leftmost column increase strictly from bottom to top.
(3) For any configuration in τ of the type in Figure 3, if a 6 c then b < c.

a b...
c

Figure 3. A triple configuration.

A composition tableau is standard if τ is a bijection between α//β and [|α//β|]. We
denote the set of CTs (respectively SCTs) of shape α//β by CT(α//β) (respectively
SCT(α//β)). Figure 4 depicts a tableau in CT((3, 6, 1, 7)//(2, 4)), where the shaded
boxes belong to the inner shape.
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2 2 2 2 3 3 4
1

1 2
1

Figure 4. A CT of shape (3, 6, 1, 7)//(2, 4).

2.5. Mason’s ρ map. Next we discuss a crucial map that bridges the combinatorics of
CTs and YTs. Let CT(−//β) denote the set of all CTs with inner shape β and YT(−/β̃)
denote the set of all YTs with inner shape sort(β). Then the map ρβ : CT(−//β) →
YT(−/sort(β)), which generalizes the map for semistandard skyline fillings [24] and
is introduced in [22, Chapter 4], is defined as follows. Given τ ∈ CT(−//β), obtain
ρβ(τ) by writing the entries in each column in increasing order from bottom to top
and bottom-justifying these new columns on the inner shape sort(β), which might be
empty.

The inverse map ρ−1
β : YT(−/sort(β)) → CT(−//β) is also straightforward to

define. Given T ∈ YT(−/sort(β)),
(1) take the set of i entries in the leftmost column of T and write them in in-

creasing order in rows `(β) + 1, 2, . . . , `(β) + i above the inner shape β in the
first column to form the leftmost column of τ ,

(2) take the set of entries in column 2 in increasing order and place them in the
row with the largest index so that either
• the box to the immediate left of the number being placed is filled and
the row entries weakly increase when read from left to right, or
• the box to the immediate left of the number being placed belongs to the
inner shape,

(3) repeat the previous step with the set of entries in column k for k = 3, . . . ,m
where m is the largest part of sort(β).

In the case β = ∅, the map ρβ is Mason’s shift map [24] (or ρ map), and we set
ρ := ρ∅. One may verify that the YT on the left in Figure 2 maps to the CT in
Figure 4 under ρ−1

(2,4).

2.6. Reading words, jdt-equivalence and rectification. Given a word w =
w1 · · ·wn, the Robinson–Schensted correspondence (via row insertion or column in-
sertion) associates an ordered pair (P(w),Q(w)) of YTs of the same shape. We call
P(w) and Q(w) the insertion tableau and recording tableau respectively. We call two
words w1 and w2 Knuth-equivalent if P(w1) = P(w2). Intimately related to the notion
of Knuth-equivalence is the notion of jdt-equivalence. For this we need to introduce
reading words.

Definition 2.2 (Reading word). The reading word of T ∈ YT(λ/µ) (respectively
τ ∈ CT(α//β)), denoted by rw(T ) (respectively rw(τ)), is obtained by reading the
entries of T (respectively τ) in every column in decreasing order, starting from the
leftmost column and going to the right.

We declare YTs T1 and T2 to be jdt-equivalent if their reading words are Knuth-
equivalent, that is, P(rw(T1)) = P(rw(T2)). In view of Mason’s map ρβ , all combinato-
rial notions discussed in the context of Young tableaux are inherited by composition
tableaux. We focus on the notion of rectification given its importance in our context.

Definition 2.3 (Rectification). Given T ∈ YT(λ/µ), its rectification rect(T ) is the
unique YT of straight shape that is jdt-equivalent to T . This given, we can now define
rectification for CTs. Given τ ∈ CT(α//β), its rectification rect(τ), is defined to be
ρ−1(rect(ρβ(τ))).
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We make note of one important consequence: Let µ be a partition, and β(1), β(2)

be compositions such that sort(β(i)) = µ for i = 1, 2. Given T ∈ YT(λ/µ), let τi =
ρ−1
β(i)(T ) for i = 1, 2. As rw(τ1) = rw(τ2), we infer that rect(τ1) = rect(τ2).

2.7. Classical LR coefficients. Recall that the classical LR rule provides a com-
binatorial way to compute the structure coefficients cλνµ in

sνsµ =
∑

λ`|µ|+|ν|

cλνµsλ.

The LR rule was stated by Littlewood–Richardson [19] in 1934, and the first proofs
were obtained by Thomas [36] and Schützenberger [31] four decades later.

Definition 2.4. A tableau T ∈ YT(λ/µ) is a Littlewood–Richardson tableau if
cont(T ) is a partition and rw(T ) is reverse lattice. The set of LR tableaux of shape
λ/µ and content ν is denoted by LRT(λ, µ, ν).

It transpires that the LR coefficient cλνµ equals |LRT(λ, µ, ν)|. Figure 5 depicts the
LR tableaux that contribute to c76432

431,644. For various combinatorial interpretations of
LR coefficients, the reader is referred to [10, 38]. For a Hopf-algebraic perspective,
see [16], and for a beautiful unifying polytopal perspective, see [26].

2 3
1 2 2

1 1
1

2 3
1 1 2

1 2
1

2 2
1 1 3

1 2
1

Figure 5. The three LR tableaux contributing to c76432
431,644.

2.8. Noncommutative LR coefficients. We refer the reader to [12, 13, 22] for
background on noncommutative symmetric functions and quasisymmetric functions.
To describe the noncommutative LR rule, we need noncommutative analogues of
Schur functions or, equivalently, quasisymmetric analogues of skew Schur functions.
Following [22, Proposition 5.2.6], we define the skew quasisymmetric Schur function
indexed by α//β to be

Sα//β :=
∑

τ∈CT(α//β)

xcont(τ).(5)

Here xcont(τ) := xα1
1 · · ·xαm

m where m is the largest entry in τ and (α1, . . . , αm) =
cont(τ). If β = ∅ in (5), instead of writing Sα//∅, we write Sα. Additionally, we set
S∅ = 1.

The noncommutative Schur functions are defined indirectly [22, Definition 5.6.1] as
elements of the basis in NSym dual to the basis of quasisymmetric Schur functions in
QSym. We now proceed to describe the LR rule for noncommutative Schur functions,
equivalent to [22, Theorem 5.6.2].

Given a composition α = (α1, . . . , αk), the canonical composition tableau τα is
constructed by filling the boxes in the i-th row of the composition diagram of α with
consecutive positive integers from 1 +

∑i−1
j=1 αj to

∑i
j=1 αj from left to right, for

1 6 i 6 k. Figure 6 shows the canonical CT of shape (4, 2, 3, 1) on the right.

Theorem 2.5. Let α, β be compositions. Then

sαsβ =
∑

γ�|α|+|β|

Cγαβ sγ ,
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10
7 8 9
5 6
1 2 3 4

Figure 6. The canonical CT of shape (4, 2, 3, 1).

where Cγαβ is the number of SCTs of shape γ//β that rectify to τα.

For the proof of the theorem in its original context, see [5, Theorem 3.5]. As men-
tioned in the introduction, one motivation for this article is to develop a polytopal
perspective on noncommutative LR coefficients. Toward this end, relating them ex-
plicitly with LR tableaux is a worthwhile endeavour as the latter’s description allows
for a straightforward translation to linear inequalities [7, 15, 26].

2.9. Crystal reflection operators and LR tableaux. For in-depth exposition
on crystal bases and their relevance in algebraic combinatorics and representation
theory, we refer the reader to [8]. We proceed to describe crystal reflection operators.

Given a positive integer i, we define the crystal reflection operator si acting on the
set of Young tableaux as follows.

(1) Let T ∈ YT(λ/µ), and let w = w1 . . . wn := rw(T ). Scan w from left to right
and pair each i+ 1 with the closest unpaired i that follows.

(2) If no further pairing is possible, then change all unpaired i’s to i+ 1’s or vice
versa depending on whether the number of i’s is greater than the number of
i+ 1’s or not. Say the new word obtained via this procedure is w′.

(3) Define si(T ) to be the unique YT of shape λ/µ such that rw(si(T )) = w′.
Lascoux–Schützenberger [17] (see also [18, Section 3] and [28, Proposition 9]) proved
that the operators si give a well-defined action of the (infinite) symmetric group on
YT(λ/µ) by verifying the Coxeter–Moore relations. In particular, we obtain σ(T ) by
computing si1 · · · sik (T ) for any reduced word si1 · · · sik for σ.

For σ ∈ S`(ν), define
LRTσ(λ, µ, ν) := {σ(T ) | T ∈ LRT(λ, µ, ν)}.(6)

Since crystal reflection operators define an S|`(ν)|-action, we have |LRTσ(λ, µ, ν)|
equals cλνµ, for all permutations σ ∈ S`(ν).

Figure 7 shows all tableaux in LRTσ(λ, µ, ν) where λ = (7, 6, 4, 3, 2), µ = (6, 4, 4),
ν = (4, 3, 1) and σ = s1s2. The tableaux in LRT(λ, µ, ν) are shown in Figure 5. Note
that all tableaux in Figure 7 have content (1, 4, 3) = σ · (4, 3, 1).

3 3
2 2 3

1 2
2

3 3
2 2 2

1 3
2

3 3
2 2 3

2 2
1

Figure 7. Crystal reflection corresponding to s1s2 on tableaux in Figure 5.

The crucial insight behind our work is that even though LRTσ(λ, µ, ν) sheds no
further light on classical LR coefficients, it “knows” about noncommutative LR coef-
ficients. To motivate our upcoming results and to establish a connection with Theo-
rem 2.5, we invite the reader to check that for any tableau T in Figure 7, we have
that ρ−1(rect(T )) is the distinguished CT in Figure 8 with the defining property that
it is the unique CT with shape and content both equaling (1, 4, 3). Equivalently, we
could say that ρ−1(rect(stan(T ))) is the canonical CT of shape (1, 4, 3).
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3 3 3
2 2 2 2
1

Figure 8. The rectification of all tableaux in Figure 7.

In Section 5, we will establish this property in general by exploiting the interplay
between frank words and jeu-de-taquin. This will allow us to establish the veracity of
our main theorem.

3. Main result and related discussion
Our main result provides a combinatorial description for Cγαβ using crystal reflection
operators. We state it next and give a proof assuming results from Sections 4 and 5.

Theorem 3.1. Let α, β and γ be compositions such that |β|+|α| = |γ|. Let (λ, µ, ν) be
the triple (sort(γ), sort(β), sort(α)). If σ ∈ S`(ν) is a permutation such that α = σ · ν,
then

Cγαβ = |{T ∈ LRTσ(λ, µ, ν) | shape(ρ−1
β (T )) = γ//β}|.

Proof. Let (λ, µ, ν) be as in the statement of the theorem. Recall from (3) in the
introduction that

cλνµ =
∑

sort(δ)=λ

Cδαβ ,(7)

where we work with the convention that Cδαβ = 0 if δ does not lie above β in Lc.
Given γ such that sort(γ) = λ, define

Xγ := {T ∈ LRTσ(λ, µ, ν) | shape(ρ−1
β (stan(T ))) = γ}.(8)

By Proposition 5.3, we have that |Xγ | 6 Cγαβ . On the other hand, from (7) and the
fact that shape(ρ−1

β (stan(T ))) = shape(ρ−1
β (T )) for all YTs T with inner shape µ, we

infer that
|LRTσ(λ, µ, ν)| =

∑
sort(δ)=λ

|Xδ|.(9)

Thus, we must have |Xγ | = Cγαβ . �

3.1. Comparison with known results. It is natural to inquire whether our The-
orem 3.1 affords further insight into computing noncommutative LR coefficients when
compared to the existing description in [5]. To this end, note that [22, Theorem 5.6.2]
offers little algorithmic insight in terms of judiciously picking SCTs of shape γ//β that
rectify to τα, other than an exhaustive search. Additionally, given the involved bump-
ing algorithm for jeu-de-taquin on composition tableaux [34], the efficient approach
to rectification is still Mason’s insertion algorithm.

In contrast, Theorem 3.1 emphasizes the curious aspect that computing noncom-
mutative LR coefficients is best done by passing through the commutative realm.
Indeed, although computing classical LR coefficients is known to be #P-hard, we can
appeal to one of many descriptions that they possess to compute them in a deter-
ministic manner; see [7, 15, 20, 37]. Once the tableaux in LRT(λ, µ, ν) are computed,
it remains to apply an appropriate sequence of crystal reflections (determined by α)
followed by an appropriate ρβ to determine all noncommutative LR coefficients Cγαβ .

On a related noted, Bessenrodt–Tewari–van Willigenburg [6], in classifying sym-
metric skew quasisymmetric Schur functions, established Yamanouchi-type rules —
called left and right LR rules therein — for the Cγαβ in the special cases where α is
either a partition or a reverse partition, although the proof therein was not uniform.
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It transpires that these rules are in fact two extremes of our Theorem 3.1. Indeed by
picking σ to either be the identity or the longest word in S`(ν), we obtain the rules
of [6]; see discussion at the end of Section 5 for details.

3.2. Illustrating our main result. We discuss an example next to illustrate
Theorem 3.1. Let λ = 8642, µ = 4321 and ν = 532. Figure 9 shows tableaux in
LRT(λ, µ, ν), implying in particular that c8642

532,4321 = 4.

3
2 3

1 2 2
1 1 1 1

2
3 3

1 2 2
1 1 1 1

3
1 3

2 2 2
1 1 1 1

1
3 3

2 2 2
1 1 1 1

Figure 9. The tableaux in LRT(8642, 4321, 532).

Example 3.2. Suppose we pick σ ∈ S3 to be the identity permutation and β = µ.
Thus we do not need to apply crystal reflections. By applying ρ−1

4321 to the LR tableaux
in Figure 9 we obtain the CTs in Figure 10. By grouping these CTs according to outer
shape, we infer that

C6842
532,4321 = C6824

532,4321 = C8462
532,4321 = C8624

532,4321 = 1.

In particular we have Cγ532,4321 = 0 for all rearrangements of λ that are not in
{6842, 6824, 8462, 8624}.

3
2 3

1 1 1 1 1
2 2

2 3 3

1 1 1 1 1
2 2

3
1 2 2 2

3
1 1 1 1

1 3 3

2 2 2
1 1 1 1

Figure 10. CTs obtained by applying ρ−1
4321 to tableaux in Figure 9.

Example 3.3. Sticking with the same σ as before, we now pick β = 3412. The CTs
resulting from applying ρ−1

3412 are shown in Figure 11. Grouping them according to
outer shape reveals a different decomposition of c8642

532,4321. More precisely, we obtain

C6824
532,3412 = 3, and C4826

532,3412 = 1.

2 3
3

1 1 1 1
1 2 2

3 3
2

1 1 1 1
1 2 2

1 2 2 2
3

1 1 1 1
3

3 3
1

1 1 1 1
2 2 2

Figure 11. CTs obtained by applying ρ−1
3412 to tableaux in Figure 9.

Example 3.4. Suppose we now pick σ = s1s2. Then α = σ · ν = (2, 5, 3) and the
four tableaux in LRTσ(λ, µ, ν) are depicted in Figure 12. We pick β = 1243. Applying
ρ−1

1243 to these tableaux gives us the CTs in Figure 13. This time we obtain

C2468
253,1243 = 2, and C2486

253,1243 = 2.

Algebraic Combinatorics, Vol. 4 #1 (2021) 153



Edward Richmond & Vasu Tewari

3
2 3

1 2 3
1 2 2 2

3
3 3

2 2 2
1 1 2 2

3
2 3

2 2 3
1 1 2 2

2
3 3

2 2 3
1 1 2 2

Figure 12. The action of s1s2 on tableaux in Figure 9.

1 1 2 2 2
2 3

2 3
3

2 2 2 2 2
1 1

3 3
3

2 2 3
1 1 2 2

2 3
3

2 2 3
1 1 2 2

3 3
2

Figure 13. CTs obtained by applying ρ−1
1243 to tableaux in Figure 12.

4. Frank words and LR tableaux
In order to prove Theorem 3.1, we need to understand the rectification of tableaux
in LRTσ(λ, µ, ν) followed by an application of the generalized ρ map. To this end, it
helps to explore the relation between growth words of these tableaux and frank words.

4.1. Growth words and frank words.

Definition 4.1 (Growth word). Given an SYT T , its growth word gw(T ) is obtained
by reading entries from largest to smallest and recording the columns they belong to.
We extend the definition of growth word to all YTs by setting gw(T ) := gw(stan(T )).

The reader may verify that for both tableaux in Figure 2, the growth word is
76564321531.

Frank words were introduced by Lascoux–Schützenberger [18] in their investigation
of key polynomials. Subsequently, Reiner and Shimozono [27] studied the combina-
torics of frank words in depth in the context of a flagged LR rule, and we follow their
exposition as far as notions in this section are concerned.

We call w = w1 · · ·wn ∈ Z∗+ a column word if w1 > · · · > wn. Given a nonempty
word w ∈ Z∗+, consider its factorization w(1)w(2) · · ·w(m) where each w(i) is a maximal
column word (necessarily nonempty). We call w an m-column word. The column form
of w is the composition colform(w) := (|w(1)|, . . . , |w(m)|).

Definition 4.2 (Frank word). We say that w is frank if P(w) is of shape λt where
λ = sort(colform(w)). Given a composition α, we define Frank(α) to be the set of frank
words w satisfying colform(w) = α.

A remarkable feature of frank words is that one knows the shape of the P-tableau
without performing jeu-de-taquin. As an example of a frank word, consider w =
432 32 6531 . It is a 3-column word with colform(w) = (3, 2, 4). For clarity, we put
frames around maximal column words. Figure 14 depicts P(w). Note that the shape
underlying it is (4, 3, 2)t. Therefore, w ∈ Frank((3, 2, 4)).

4
3 6
2 3 5
1 2 3

Figure 14. The insertion tableau corresponding to w = 432 32 6531 .
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4.2. Outline of proof. Given the technical nature of our argument, we give a brief
overview of our strategy toward establishing Theorem 3.1.

(1) Given a skew shape λ/µ and a composition α � |λ| − |µ|, we consider the
distinguished subset of Frank(α) comprising λ/µ-compatible frank words.

(2) The main result of this section, Proposition 4.6, identifies these words as
precisely the growth words of tableaux in LRTσ(λ, µ, ν) where ν satisfies
sort(α) = ν. To arrive at this result, we study a symmetric group action
on frank words and establish that it really is the crystal reflection action in
disguise. This is the content of Subsections 4.4 and 4.5.

(3) Lemma 5.1 then states that the rectification of a Young tableau may be
described in terms of its growth word using Schützenberger’s evacuation.

(4) Finally, Proposition 5.3 establishes that applying ρ−1 to rect(stan(T )) for T
an element in LRTσ(λ, µ, ν) does indeed give the canonical tableau of shape
σ · ν. From this, Theorem 3.1 follows.

4.3. λ/µ-compatible frank words and LR tableaux.

Definition 4.3. Given partitions λ, µ such that µ ⊆ λ and a composition α, we
say that w ∈ Frank(α) is λ/µ-compatible if for every suffix w′ of w, we have that
cont(w′) + µt is a partition and that cont(w) + µt = λt. Set

Frank(λ, µ, α) := {w ∈ Frank(α) | w is λ/µ-compatible}.

Definition 4.3 may be interpreted as saying that w ∈ Frank(α) is λ/µ-compatible if
it is the growth word of a Young tableau of shape λ/µ. Observe that we must have
α � |λ| − |µ|.

As an example, note that w = 621 76432 ∈ Frank(α) is λ/µ-compatible for
λ = 76422, µ = 5521, and α = 35. The reader can easily verify that w is the growth
word of the tableau in Figure 15. Note further that this tableau is an LR tableau.

There is an intimate link between LR tableaux and compatible words. To under-
stand this link we go via an intermediate tableau object.

Given w ∈ Frank(λ, µ, α), let w(1) · · ·w(m) be its maximal column word factoriza-
tion where m := `(α). Construct a Young tableau φ(w) of shape λ/µ and content αr
as follows: Let λ(0) := λ and inductively define λ(i) for 1 6 i 6 m to be such that
λ(i−1)/λ(i) is a horizontal strip with boxes in columns given by letters appearing in
w(i). Subsequently, fill the boxes of the horizontal strips λ(i−1)/λ(i) with m + 1 − i
to obtain φ(w). Note that λ(m) is µ and that φ(w) does indeed belong to YT(λ/µ).
Figure 15 gives an example.

2 2
1

1 1
2
1 1

Figure 15. The tableau φ(w) corresponding to 621 76432 .

Define
FrankTab(λ, µ, α) := {φ(w) | w ∈ Frank(λ, µ, α)}.(10)

Our next lemma establishes that LRT(λ, µ, ν) = FrankTab(λ, µ, νr).

Lemma 4.4. Let λ, µ and ν be partitions such that µ ⊆ λ and |ν| = |λ/µ|. We have
LRT(λ, µ, ν) = FrankTab(λ, µ, νr).
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Proof. Let w ∈ Frank(λ, µ, νr). As colform(w) = νr and w is frank, we know that
w is the reading word of a tableau of skew shape rotate(νt), which is obtained from
the shape ν by a 180◦ rotation. It follows that φ(w) ∈ LRT(λ, µ, ν). This establishes
FrankTab(λ, µ, νr) ⊆ LRT(λ, µ, ν).

The opposite inclusion follows since the reading word of an LR tableau is reverse-
lattice. In particular, the growth word of any T ∈ LRT(λ, µ, ν) is the reading word of
a YT of skew shape rotate(νt). �

Figure 16 depicts growth words of LR tableaux in Figure 5 as reading words of
YTs of skew shape rotate(νt). Here λ = 76432, µ = 644 and ν = 431.

2 3 7
2 6
1 5

1

2 6 7
3 5
1 2

1

3 6 7
2 5
1 2

1

Figure 16. Growth words of LR tableaux are frank words.

Now that we have established elements of FrankTab(λ, µ, νr) as LR tableaux in the
usual sense, it remains to understand the case where νr is replaced by an arbitrary
composition.

4.4. A symmetric group action on frank words. We proceed to describe a
symmetric group action on frank words that we subsequently connect to the symmetric
group action on Young tableaux via crystal reflections described earlier. This new
action is best understood by focusing on 2-column frank words, very much in the
manner that crystal reflections are understood by acting on consecutive letters.

Let A denote the set of 2-column frank words. Consider w ∈ A and let colform(w) =
(β1, β2). Thus, w may be identified as the reading word of a tableau T of shape
(β1, β2)t if β1 > β2 or of a tableau T of shape (β2, β2)t/(β2 − β1)t if β1 < β2; see [27,
Appendix 2].

If the former holds, define ι(w) to be the reading word of the unique tableau T ′ of
shape (β1, β1)t/(β1−β2)t that is jdt-equivalent to T (obtained by performing jeu-de-
taquin slides within the rectangle (β1, β1)t). If the latter holds, define ι(w) to be the
reading word of the unique tableau T ′ of shape (β2, β1)t that is jdt-equivalent to T .

Clearly, ι is an involution on A. Equally importantly, w and ι(w) are Knuth-
equivalent. For instance, jdt-equivalence of tableaux in Figure 17 implies that

ι( 76421 632 ) = 621 76432 .

7
6
4 6
2 3
1 2

−→ 7
6 6
2 4
1 3

2

−→ 6 7
2 6
1 4

3
2

Figure 17. Establishing ι( 76421 632 ) = 621 76432 by jeu-de-taquin.

We employ the involution ι to construct the desired symmetric group action. Let
λ be a partition and let m := `(λ). Define

Fλ :=
∐

sort(β)=λ
Frank(β).
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Following [18], define an action of Sm on Fλ by describing the action of the gen-
erator si for 1 6 i 6 m − 1 as follows: Let w(1) · · ·w(m) be the maximal col-
umn word factorization of w ∈ Fλ. Let v(i)v(i+1) := ι(w(i)w(i+1)) and define v =
w(1) · · ·w(i−1)v(i)v(i+1)w(i+2) · · ·w(m). Observe that sort(colform(v)) = λ. As v and w
are Knuth-equivalent, we infer that v ∈ Fλ. We define v to be si(w). This given, we
may define σ(w) for any σ ∈ Sm by picking a reduced word for σ.

Figure 18 depicts the S3-orbit of the frank word 4321 632 53 ∈ F432. We
have chosen to represent the action on words via their tableau representatives. In
particular, each column when read from top to bottom gives a maximal column word
in the maximal column word factorization. Each si performs a “local” jeu-de-taquin
on two columns.

4
3 6
2 3 5
1 2 3

4 6
3 3
2 2 5

1 3

4
3
2 3 6
1 2 5

3

4
3 3 6
2 2 5

3
1

3 4
2 3 6

2 5
1 3

3 4 6
2 3 5

2 3
1

s1

s2

s1

s2

s1

s2

Figure 18. The S3-orbit of 4321 632 53 .

4.5. Relating the two symmetric group actions. Our next lemma connects
the action of crystal reflection operators on FrankTab(λ, µ, α) to the symmetric group
action on λ/µ-compatible frank words in Frank(λ, µ, α).

Lemma 4.5. Consider w ∈ Frank(λ, µ, α) and i satisfying 1 6 i 6 `(α)− 1. We have
that si(φ(w)) = φ(s`(α)−i(w)).

Proof. Without loss of generality, we may assume that α has two parts. Suppose
α = (p, q) � n. Assume w = w(1)w(2) where |w(1)| = p and |w(2)| = q. We want to
show that s1(φ(w)) = φ(ι(w)).

Assume p < q. Let w(1) = a1 . . . ap and w(2) = b1 . . . bq. We have a1 > · · · > ap and
b1 > · · · > bq. As w is frank, it is the reading word of a Young tableau of skew shape
rotate((q, p)t). Thus, ai 6 bi for 1 6 i 6 p.

Instead of computing ι(w) by rectifying the appropriate two-columned tableau, one
may perform successive Schensted column insertions of the numbers ap down to a1
starting from the single-columned tableau with column word w(2). See Figure 19 for an
example. Compare with Figure 17 which established the same fact using jeu-de-taquin.

In each intermediate step of this column insertion procedure, the number ai being
inserted into the current tableau bumps a distinct element from {b1, . . . , bq}. Further-
more this bumped entry is guaranteed to be strictly greater than the entries in the sec-
ond column in the current tableau. Therefore, the insertion tableau is completely de-
termined by the entries that get bumped. More precisely, for i from p down to 1, define
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7
6
4
3
2

−→ 7
6
4
3
1 2

−→ 7
6
4
2 3
1 2

−→ 7
6
4 6
2 3
1 2

Figure 19. Establishing that ι( 621 76432 ) = 76421 632 by
column-inserting 1,2, and 6 into the single-columned tableau with
reading word 76432. Blue boxes show the entries being inserted
whereas red boxes contain the entries bumped.

the integer m(i) recursively as follows. We define m(p) to be the largest integer j such
that ap 6 bj . Subsequently, for i = p− 1, . . . , 1, define m(i) to be the largest integer j
such that j < m(i + 1) and ai 6 bj . Observe that in our Schensted column-insertion
procedure, the entry ai bumps bm(i). Therefore, the set of entries that get bumped is
{bm(i) | 1 6 i 6 p}. For the example in Figure 19, we have m(3) = 5, m(2) = 4 and
m(1) = 2. Therefore the set of entries that get bumped is {b5, b4, b2} = {2, 3, 6}.

Consider rw(φ(w)) = u1 · · ·un. The word v := v1 · · · vn obtained by recording the
column to which each ui belongs gives us the weakly increasing arrangement of letters
in w. Furthermore, for 1 6 i 6 p (respectively 1 6 i 6 q) the letter in v corresponding
to the ith 2 (respectively 1) from the left in rw(φ(w)) is equal to ai (respectively bi).
Recall that the crystal reflection operator s1 acting on φ(w) begins by pairing each 2
in rw(φ(w)) to the closest unpaired 1 to its right. Equivalently, in our current context,
a 2 corresponding to ai for some 1 6 i 6 p gets paired with the 1 in rw(φ(w)) corre-
sponding to bm(i). We infer that the unpaired 1s in rw(φ(w)) correspond to those bj
that are not bumped. These are precisely the bj that determine which 1s in φ(w) turn
into 2s in computing s1(φ(w)). Thus we infer that s1(φ(w)) = φ(ι(w)). This estab-
lishes the claim in the case p < q. The case p > q is similar and left to the reader. �

To illustrate the ideas in the preceding proof, Figure 20 depicts the action of s1 on
the tableau φ(w) from Figure 15, where w = 621 76432 . From Figure 19, we see that
the entries that do not get bumped are {4, 7}. Also, note that rw(φ(w)) = 22111211
where the unpaired 1s are highlighted. In terms of the tableau φ(w), we see that the
unpaired 1s belong to columns 4 and 7. The tableau on the right in Figure 20 is easily
verified to be φ(ι(w)) as ι(w) = 76421 632 .

2 2
1

1 1
2
1 1

s1−→ 2 2
1

1 2
2
1 2

Figure 20. Crystal reflection on φ(w) and its relation to the ι involution.

We are ready to give a precise relation between LRTσ(λ, µ, ν) and λ/µ-compatible
frank words with a certain column form that generalizes Lemma 4.4.

Proposition 4.6. Let λ, µ and ν be partitions such that µ ⊆ λ and |ν| = |λ/µ|. Let
w0 be the longest word in S`(ν). For σ ∈ S`(ν), we have

LRTσ(λ, µ, ν) = FrankTab(λ, µ, (w0σw0) · νr).

Proof. Lemma 4.4 implies
LRT(λ, µ, ν) = FrankTab(λ, µ, νr).
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Consider T ∈ LRTσ(λ, µ, ν). We must have T = σ(T ′) for a unique T ′ ∈ LRT(λ, µ, ν),
which in turn implies that T = σ(φ(w′)) for a unique w′ ∈ Frank(λ, µ, νr). Lemma 4.5
implies that T = φ(w0σw0(w′)). As colform(w0σw0(w′)) = (w0σw0) · νr, we conclude
that

LRTσ(λ, µ, ν) ⊆ FrankTab(λ, µ, (w0σw0) · νr).(11)
A simple cardinality count implies this inclusion must be an equality. �

The upshot of Proposition 4.6 is that elements of LRTσ(λ, µ, ν) are in bijection with
λ/µ-compatible frank words with column form w0σw0 · νr. As an example, consider
LRTσ(λ, µ, ν) from Figure 7 where λ = (7, 6, 4, 3, 2), µ = (6, 4, 4), ν = (4, 3, 1) and
σ = s1s2. Note that growth words of the tableaux therein are indeed frank words
with column form (w0s1s2w0) · (1, 3, 4) = (s2s1) · (1, 3, 4) = (3, 4, 1). Figure 21 shows
these frank words as reading words of tableaux with column lengths 3, 4 and 1 read
from left to right. We encourage the reader to obtain these tableaux by performing
jeu-de-taquin slides to those in Figure 16.

3 7
2 6
1 2

1 5

6 7
2 3
1 2

1 5

3 6
2 5
1 2

1 7

Figure 21. Growth words of tableaux in Figure 7 are frank words.

5. Noncommutative LR coefficients and frank words
Now that we understand tableaux in LRTσ(λ, µ, ν) as certain λ/µ-compatible words
with a prescribed column form, we are ready to establish the connection to non-
commutative LR coefficients. Recall that our goal is to show that rect(stan(T )) for
T ∈ LRTσ(λ, µ, ν) is equal to the canonical CT of shape σ ·ν. We recast rect(stan(T ))
in terms of the growth word of T .

Lemma 5.1. For any Young tableau T , we have rect(stan(T )) = evac(Q(gw(T )))t.

Proof. We sketch the proof and follow the exposition in [21]. Let T ′= stan(T ) and sup-

pose that T has n boxes. Consider the biword
[
u
v

]
where u := u1 · · ·un is the longest

word inSn and v := v1 · · · vn is obtained by recording the column in T ′ to which ui be-

longs. In other words, v = gw(T ′) = gw(T ). Consider biwords
[
u′

v′

]
and

[
u′′

v′′

]
, where u′

(respectively v′′) in the weakly increasing rearrangement of u (respectively v) and v′
(respectively u′′) is the rearrangement induced by the aforementioned sorting. Then
we have that

v′ = gw(T ′)r and u′′ = rw(T ′).
Note that rect(stan(T )) = rect(T ′) = P(rw(T ′)) = P(u′′). By [21, Proposition 5.3.9],
this equals Q(v′) and by [33, Corollary A1.2.11] which relates reversal to evacuation,
the claim now follows. �

For the leftmost tableau T in Figure 22, its standardization rectifies to the tableau
in the middle. We have gw(T ) = 321 7621 5 , and Q(gw(T )) is shown on the right.
We invite the reader to verify that evac(Q(gw(T ))) is indeed the tableau in the middle
upon transposing.

We now appeal to a simple defining characterization of canonical composition
tableaux that will be useful. Recall that the descent set of an SYT T with n boxes
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3 3
2 2 3

1 2
2

rect ◦ stan−−−−−−−−−−−−−−→ 6
2 7 8
1 3 4 5

evac ◦ transpose←−−−−−−−−−−−−−− 7
3 6
2 5
1 4 8

Figure 22. A demonstration of the claim rect(stan(T )) = evac(Q(gw(T )))t.

is the set of integers i ∈ [n − 1] such that i + 1 occupies a row strictly above that
occupied by i. Via the folklore bijection between compositions of n and subsets of
[n − 1] that sends α = (α1, . . . , α`) to set(α) := {α1, α1 + α2, . . . , α1 + · · · + α`−1},
one obtains the descent composition of T from its descent set.

Lemma 5.2. Let α be a composition. There is a unique Young tableau T of shape
sort(α) and descent composition α. Furthermore, this tableau satisfies ρ−1(T ) = τα.

Proof. Observe that the first column of T when read from bottom to top is forced
to be 1, 1 + α1, 1 + α1 + α2, . . . , 1 +

∑`(α)−1
j=1 αj . The first claim follows from this

observation, and our second claim follows from applying the map ρ to τα. We omit
the details. �

We finally arrive at the key proposition that is utilized in the proof of our central
result Theorem 3.1.

Proposition 5.3. If T ∈ LRTσ(λ, µ, ν), then rect(stan(T )) = ρ(τα) where α = σ · ν.

Proof. Throughout, assume that σ · ν = α and set n := |α|. By Lemma 5.1 we have
rect(stan(T )) = evac(Q(gw(T )))t.(12)

Since T ∈ LRTσ(λ, µ, ν), Proposition 4.6 implies
gw(T ) ∈ Frank(λ, µ, αr).(13)

Therefore, the shape underlying Q(gw(T )) is sort(α)t = νt. Using the preceding fact
along with (12), we infer that rect(stan(T )) has shape ν.

Note that the descent set of gw(T ) is {n− i | i ∈ [n− 1]r set(α)}, which therefore
is also the descent set of Q(gw(T )). It follows that the descent set of evac(Q(gw(T )))
is [n − 1] r set(α), which in turn implies that the descent set of rect(stan(T )) =
evac(Q(gw(T )))t is set(α). Thus we have established that rect(stan(T )) has shape
sort(α) and descent composition α. Lemma 5.2 proves the proposition. �

This also completes the proof of our main theorem. A remarkable aspect of Propo-
sition 5.3 is that the symmetric group action on LR tableaux via crystal reflection
operators translates to the usual permutation action on the parts of the shape under-
lying the rectification, after applying the ρ map.

5.1. Revisiting the LR rules in [6]. To conclude this article, we briefly describe an
equivalent interpretation of our central result in the language of box-adding operators
on compositions. By Proposition 4.6, we know that elements of LRTσ(λ, µ, ν) may be
constructed by computing λ/µ-compatible words w satisfying colform(w) = (w0σw0) ·
νr, where w0 is the longest word in S`(ν). Equivalently, these words are exactly the
growth words of standardizations of tableaux in LRTσ(λ, µ, ν).

Thus, they may be identified with certain saturated chains in Young’s lattice from
µ to λ. By applying the map ρβ where sort(β) = µ, these chains may be interpreted
as chains in Lc from β to certain compositions γ that satisfy sort(γ) = λ. Fixing a γ
and counting these chains allows us to compute Cγαβ where α = σ · ν.
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We make the preceding discussion precise by phrasing the result in the language of
box-adding operators on compositions introduced in [35] following the seminal work
of Fomin [9]. Given i > 1 and a composition α that has at least one part equaling
i − 1, we define ti(α) to be the unique composition covering α in Lc where the new
box occurs in the i-th column. Given a word w = w1 · · ·wn, define tw := tw1 · · · twn

.
We have the following corollary.

Corollary 5.4. Let α, β and γ be compositions such that |β|+ |α| = |γ|. Let (λ, µ, ν)
be the triple (sort(γ), sort(β), sort(α)). If σ ∈ S`(ν) satisfies α = σ · ν, then

Cγαβ = |{w ∈ Frank(λ, µ, (w0σw0) · νr) | tw(β) = γ}|.

The cases in Corollary 5.4 where σ is either the identity or the longest permutation
in S`(ν) correspond to the left and right LR rules of [6]. We reiterate here that the two
LR rules in [6] were proved by different approaches. Thus Corollary 5.4 generalizes
these rules by providing a uniform proof that works in all cases.
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